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Fig. 1. Left: A piece of mesh-based cloth draped over a solid obstacle is splashed with water. Middle: Water flows through a piece of yarn-based handwoven
fabric. Right: After being vigorously wrung out, a fuzzy towel continues to drip.

We propose a method for simulating the complex dynamics of partially and
fully saturated woven and knit fabrics interacting with liquid, including the
effects of buoyancy, nonlinear drag, pore (capillary) pressure, dripping, and
convection-diffusion. Our model evolves the velocity fields of both the liquid
and solid relying on mixture theory, as well as tracking a scalar saturation
variable that affects the pore pressure forces in the fluid. We consider the
porous microstructure implied by the fibers composing individual threads,
and use it to derive homogenized drag and pore pressure models that faith-
fully reflect the anisotropy of fabrics. In addition to the bulk liquid and
fabric motion, we derive a quasi-static flow model that accounts for liquid
spreading within the fabric itself. Our implementation significantly extends
standard numerical cloth and fluid models to support the diverse behaviors
of wet fabric, and includes a numerical method tailored to cope with the
challenging nonlinearities of the problem. We explore a range of fabric-
water interactions to validate our model, including challenging animation
scenarios involving splashing, wringing, and collisions with obstacles, along
with qualitative comparisons against simple physical experiments.
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1 INTRODUCTION

A beach vacation provides ample opportunity to experience the
characteristic aspects of liquid-fabric interaction. A tipped pina
colada splashes onto beachwear, wetting, then diffusing to dampen
a larger area. Submerged board shorts drag along with the ocean
waves, lifted buoyantly upon the surf, then drip distinctively on the
return to dry land. Wringing those shorts then squeezes out the
liquid, leaving tiny drops scattered within the fabric microstructure.

To develop a computational model of these varied liquid-fabric
interactions, we must understand the composition of fabric. Fabric
is composed of individual strands (“thread,” “yarn”) packed into
thin oriented fibers. Tiny pockets within and between these fibers
collect fluid, and are largely responsible for the wetting behavior
we observe at the coarse scale. Because these pockets are numerous
and individually imperceptible to the naked eye, it can be wasteful
or intractable to represent them as discrete elements for animation
applications. Therefore, we develop a macroscopic model.

Building on modern mixture theory [Anderson and Jackson 1967],
we model fabric as a continuous porous medium through which fluid
may flow. The model accounts for the material’s anisotropic struc-
ture, and the evolution of its saturation, to capture buoyancy, drag,
small-scale capillary (surface tension) effects, and fluid convection.

Our numerical treatment integrates a piecewise linear Lagrangian
cloth or rod model [Bergou et al. 2010; Grinspun et al. 2003] with a
hybrid Eulerian-Lagrangian (APIC) fluid simulator [Bridson 2015;
Jiang et al. 2015]. We apply this model to application scenarios
involving mesh-based cloth, yarn-based fabric, and fuzzy fabric
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in contact with water. We also examine qualitative comparisons
against simple real-world experiments, including liquid spreading
and suction tests.

We develop a multi-scale framework capturing the interactions
between fabric and fluid, including

o the adaptation of mixture theory and porous flow to par-
tially saturated fabrics with buoyancy in a particle-in-cell
framework,

o the development of an approximate anisotropic fabric mi-
crostructure model to support nonlinear drag and pore pres-
sure forces,

e treatments for liquid capture, and dripping,

e a quasi-static model of fluid flow within the fabric based on
convection-diffusion,

e an efficient numerical solver for the resulting complex sys-
tems.

2 RELATED WORK

Cloth Simulation. Cloth simulation has a long history in computer
animation; we refer to the survey of Thomaszewski et al. [2007] for a
thorough review. Two of the key aspects of a cloth simulation system
are the numerical model for the cloth dynamics and the approach
used for contact- and collision-handling. In our work, we adopt the
discrete shell model [Grinspun et al. 2003] to treat the bending of
cloth and linear elasticity [Bonet and Wood 1997] for stretching,
based on their simplicity and effectiveness. To handle contacts and
collisions, we make use of the recently proposed method of Jiang et
al. [2017] which exploits a background volumetric grid to efficiently
treat contact forces among complex colliding materials, drawing on
ideas from material point methods (MPM) [Sulsky et al. 1994]. We
adapt their method with augmented MPM [Stomakhin et al. 2014] to
use the marker-and-cell (MAC) grid for pressure projection. Never-
theless, our approach is not intrinsically dependent on these choices,
and should be compatible with other cloth simulation frameworks.

Yarn Simulation. Since real cloth is composed of many individual
threads, a more costly but potentially much more faithful strategy is
to simulate every strand of yarn or thread. This was first suggested
by Kaldor et al. [2008], and further accelerated by Kaldor et al. [2010]
and Cirio et al. [2014] with more efficient treatments of inter-yarn
contact. As noted above, we instead make use of the work by Jiang
et al. [2017] that models yarns as Lagrangian rods, but handles
complicated collisions on a grid.

Liquid simulation. To treat bulk liquid regions, we adopt a hybrid
grid/particle-based simulator that uses the affine particle-in-cell
(APIC) method [Jiang et al. 2015]. A thorough review of hybrid
and grid-based methods for fluid simulation is provided by Brid-
son [2015]. A common alternative that has also been frequently
used for fluid-cloth interactions is the family of smoothed particle
hydrodynamics (SPH) methods [Thmsen et al. 2014; Monaghan 1994;
Miiller et al. 2003]. Our use of APIC allows our method to share the
usual benefits of mixed Eulerian-Lagrangian approaches, including
simplicity of boundary handling, efficacy of pressure computation,
and ease of integration into visual effects pipelines.
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Wetting of solids in animation. The earliest explorations of wet-
ting effects addressed painting techniques or the simulation of flows
on static planar objects. Curtis et al. [1997] simulated shallow wa-
ter on paper textiles for watercolor painting effects, and solved a
diffusion equation to treat capillary effects that enable spreading of
fluid through pores in paper. Later, Chu and Tai [2005] proposed
a sophisticated system to simulate the ink percolation process. In
their work the permeability and boundary conditions are designed
based on artistic considerations. Instead of solving a simple diffusion
flow, Huber et al. [2011] solved Fick’s second law on cloth with a
gravitational term added, and also demonstrated liquid absorption.

Fluid-solid interaction is a many-faceted phenomenon, and some
previous works have therefore sought to address one or two of those
facets in isolation. With an approach relying on fractional deriva-
tives, Ozgen et al. [2010] simulated the deformation of completely
submerged cloth without simulating water at all. Chen et al. [2012]
proposed modified saturation, wrinkling, and friction models to bet-
ter approximate the look of wet clothing. Um et al. [2013] combined
a shallow water model and the diffusion equation to address fluid
flow on and within dynamic cloth.

Another branch of research has focused on careful handling of
boundary conditions for water interacting with impermeable thin
shells, for both Eulerian and Lagrangian fluids. In the context of
Eulerian methods, Guendelman et al. [2005] used a variable-density
pressure solve to account for weakly coupled interaction forces,
while Robinson et al. [2008] proposed a strong coupling approach
by temporarily lumping together the momentum of thin shells and
fluid. Azevedo et al. [2016] used conforming interpolation and exact
cut cells to prevent fluid crossing over impermeable thin boundaries.
Among SPH methods, Akinci et al. [2013] carefully sampled thin
deformable objects with SPH particles to improve the accuracy of
pressure forces and ensure the cloth remains impermeable to liquid,
assuming appropriate timestep sizes. Huber et al. [2015] instead used
the cloth triangle mesh itself directly, combining repulsion forces
and continuous collision detection to strictly enforce impermeability.
In this paper we target permeable thin structures, and therefore take
a weak coupling approach that uses drag and buoyancy forces to
transfer momentum between liquid and thin structures.

Simulation of mixtures in animation. Simulation of more general
deformable wet materials, including cloth, was proposed by Lenaerts
et al. [2008]. They used an SPH method to solve porous (Darcy) flow
inside a solid object. Similarly, Rungjiratananon et al. [2008] consid-
ered fluid interactions with dynamic porous media in the context
of wet sand, simulating sand, water, and their mutual interactions
using SPH. Subsequent research focused on various simplifications
intended to achieve higher performance. Saket and Parag [2013]
presented an SPH method for the simulation of wet cloth, using a
geometric diffusion method to simulate interior flow for increased
efficiency. Lin et al. [2014; 2015] proposed a similar porous flow
model with SPH, but further incorporated two-way fluid-hair in-
teractions. Fei et al. [2017] coupled an APIC-based water simulator
with a dimension-reduced model for thin liquid on elastic rods to
treat fluid-hair interactions, assuming the hairs to be impermeable.

Mixture theory was first introduced for animation by Nielsen
and Dsterby [2013], who simulated fluid spray and air as continua.
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Later, Ren et al. [2014] and Yang et al. [2015] proposed an SPH-based
framework to handle a wide range of multi-fluid flow phenomena
including extraction and partial dissolution. Yan et al. [2016] general-
ized the multi-fluid SPH framework to incorporate solids, adopting
a diffusion model for the relative motion between solid and lig-
uid. More recently, Yang et al. [2017] extended their previous SPH
framework with a phase-field method to simulate phase-changing
phenomena for multi-materials. In their method, the momentum
exchange between different phases was done by incorporating a
viscous term between particles, and inside each particle different
materials share the same momentum. We adopted a similar physical
model, but solved the equations on both polygonal meshes and an
Eulerian grid, allowing us to capture the diffusion and pressure
forces more accurately, and incorporate stiff elastoplastic materials
with large drag forces more effectively.

In recent work on simulating porous sand mixed with water [Tam-
pubolon et al. 2017], the authors adopted a formulation by Bandara
and Soga [2015] to compute buoyancy forces, but concluded that
buoyancy is largely negligible in their problem. In our setting, the
buoyancy force significantly affects the motion, as demonstrated in
Fig. 4 and the supplemental video. Furthermore, we adopt a nonlin-
ear drag force that is appropriate for liquid at both low and high
Reynolds numbers, and confirm with dimensional analysis that our
drag force is physically consistent.

Modeling porous media. The history of modeling porous media
can be traced back to the late 18th century, when empirical mod-
els for fluid and porous solids were adopted to solve hydraulics
problems for architectural design [Woltmann 1792]. A review of
works in the early era can be found in the survey by Bedford and
Drumbheller [1983] or the book by de Boer [2012]. Some physical
models developed during this era are still widely used today in nu-
merical simulations. For example, Fick’s second law [1855] can be
used to describe moisture transmission through homogeneous fabric
material [Das et al. 2007]. Darcy’s law [1856] can be used to calculate
the velocity of liquid through porous media for a given pressure
drop, viscosity coefficient, and permeability, and is a popular choice
for the calculation of viscous drag in a numerical simulation [Ban-
dara and Soga 2015].

Subsequent research sought to improve the accuracy of drag mod-
els. Forchheimer [1901] extended Darcy’s (linear) drag model with
a quadratic model for high Reynolds number flows. Ergun [1952]
extended the empirical Kozeny-Carman equation [Carman 1937]
(another extension of Darcy’s law for modeling linear permeabil-
ity) and proposed a non-linear version which is a function of the
Reynolds number. The Ergun equation can also be reformulated to
discover the relationship between linear and non-linear drag forces,
which can be applied to various materials [Akgiray and Saat¢1 2001;
Nithiarasu et al. 1997]. In this paper, we adopt a modern, unified
drag formulation [Yazdchi and Luding 2012], and use the Ergun
equation to relate the linear and non-linear terms, while the perme-
ability of fibers is calculated following the empirically determined
equations of Stylianopoulos et al. [2008].

Early soil mechanics researchers studied the effect of water pres-
sure on soil. Fillunger [1913] and Terzaghi [1923] found that the
total stress applied on a mixture is the combination of the effective

stress ct(compression and shear resistance) and the pore water pres-
sure, an effect which is now known as Terzaghi’s principle. Later
Biot [1941] combined Terzaghi’s principle with linear elasticity and
fluid dynamics to develop the theory of dynamic poroelasticity
(sometimes called Biot’s theory), which became the foundation of
mixture theory [Anderson and Jackson 1967]. Mixture theory was
inijtially developed for saturated porous media with incompress-
ible solids, where the interaction forces between porous solids and
liquid include two parts: drag and pore pressure. Pore pressure is
usually formulated as the pressure gradient applied to the solid
and fluid with their respective volume fractions [Pitman and Le
2005]. Recently, Borja [2006] generalized mixture theory for unsatu-
rated porous media with compressible solids, and formalized it in
a mathematical framework [Song and Borja 2014]. Their formula-
tion has been used in several papers simulating two-way coupled
porous media. For example, Abe et al. [2013] used the material point
method (MPM) to solve the generalized Darcy equation for the sim-
ulation of creeping flow in porous soil. Bandara and Soga [2015]
later extended this method to include the inertial effects of liquid
to address porous media undergoing large deformations. Daviet
and Bertails-Descoubes [2017] combined mixture theory with an
implicit non-smooth treatment of the Drucker-Prager rheology to
simulate immersed granular flows.

Our method is also built on mixture theory, and was inspired by
these methods from engineering. We derive a two-scale mixture
model targeting bulk fluid and codimensional porous flow, respec-
tively, to simulate thin, unsaturated porous media undergoing large
deformations. For the flow inside cloth/yarn, instead of combining
another model, we show that the codimensional flow is a specific
case of the equations for bulk liquids and solids, and can be derived
from mixture theory.

Reduced flows. Reduced models for fluid flows have been an active
topic of research for centuries. For example, the original shallow
water equations [de Saint-Venant 1856] describe flow on planar
boundaries where the vertical velocity is negligible; Hele-Shaw
flow [Hele-Shaw 1898] describes non-inertial flow between two
thin plates; and lubrication theory [Oron et al. 1997] is used to
model the dynamics of thin liquid whose viscosity dominates over
inertia. A thorough introduction to such reduced flows can be found
in the book by Ockendon [1995]. Within computer animation, Wang
et al. [2007] generalized the shallow water equations to mesh sur-
faces. Segall et al. [2016] proposed an efficient model for Hele-Shaw
flow using generalized barycentric coordinates. Azencot and Vant-
zos [2015; 2017] proposed a numerical scheme to efficiently evolve
thin film flow on arbitrary meshes. Inspired by these previous works,
we adopt similar discrete differential operators to discretize a gen-
eralized variant of the Richards equation [Richards 1931] on cloth,
yarn, and junctions between them.

Elastocapillarity in Textiles. At small scales, surface tension forces
on liquid-air interfaces exhibit elastocapillarity, in which liquid
"bridges" arise that can deform elastic solids, as survey recently
by Bico et al. [2018]. Although the cohesion between two planar
objects has been extensively researched [Wang et al. 2013], this
effect was not methodically studied on textiles until recent work by
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Fig. 2. Fabric as porous material. (a) Micro-CT image of plain woven
fabric, adapted from [Shinohara et al. 2010]. (b) Barely-saturated fabric

(Sy = 0.1). (c) Half-saturated fabric (S; ~ 0.5). (d) Fully-saturated fabric
(Sr = 1.0).

Lou et al. [2015; 2018; 2017]. The authors considered liquid bridges
with circular area, and showed that the coalescence force between
textile and water increases monotonically with the perimeter of the
circular wetted area. Inspired by this work, we adopt a simple model
to approximate the perimeter of the wetted area and calculate the
corresponding cohesion force.

Wicking in Textiles. Research in textile engineering has studied
how the pores in cloth and yarn affect the behavior of liquid propa-
gation, or wicking [Kissa 1996]. Cloth and yarn are usually modeled
as capillary tubes and the classic Lucas-Washburn equation [Lucas
1918; Washburn 1921] has been widely applied to the prediction
of the position of the hydraulic head in one-dimensional scenarios.
A detailed discussion on this topic can be found in the book by
Masoodi and Pillai [2012b]. Modern research focuses on the experi-
mental estimation of the capillary radius [Dang-Vu and Hupka 2005;
Masoodi et al. 2008], which is the effective radius of pores, and on
modeling the suction tensor that describes the stress due to surface
tension [Scholtés et al. 2009]. Wicking along fibers was studied
by Chwastiak [1973], Amico and Lekakou [2002], and Williams et
al. [1974]; wicking across fibers was investigated by Senoguz et
al. [2001], Ahn et al. [1991], Lekakou and Bader [1998], and Pillai
and Advani [1996]. Further work has studied the suction tensor in
woven or non-woven fabrics [Ahn et al. 1991; Kim 2003]. In our
work, we adopt a general model for textiles from Masoodi and Pil-
lai [2012a] and propose to construct the anisotropic suction tensor
by aligning to specific axes. Several of our examples show the effect
of wicking in cloth or yarn.

3 PHYSICAL MODEL OF WET FABRIC

We represent wet fabric as a continuum mixture of water, air, and
fabric material (Figure 2). The governing equations for such a con-
tinuum are provided by mixture theory.

3.1  Mixture Theory

Mixture theory [Rajagopal and Tao 1995] models multiphase sys-
tems consisting of several interpenetrable continua. The theory
assumes that all three phases are present, in some ratio, at every
point of the material. The theory develops the momentum and mass
balance equations for such a mixture.

As water penetrates it, fabric saturates from dry to damp to soaked
(Figure 2). Saturation is the measure that determines volume frac-
tions, the relative occupancy of the water, air, and solid fabric.
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Saturated continuity equations. In the (maximally) saturated state,
fabric pores are entirely filled with liquid [Anderson and Jackson
1967; Daviet and Bertails-Descoubes 2017]. The motion of both the
porous medium and the liquid are described by

Dyu
Pty V05 = pstg — fios =0, (12)
Us
Dy ur
=)o =V o= pl=$)g+ fos =0, (1b)
ug
0
a—‘f + V- (dus) = 0, (1c)
o1 -

T@ +V-[(1-¢ug =0. (1d)
Here the fields u (velocity), p (density), and o (Cauchy stress tensor)
have values for both the porous medium and the liquid, indicated by
their respective subscripts: “s” for the (solid) porous media and “f”
for the fluid. The volume fraction of the solid in the porous material
is given by ¢ (so 1 — ¢ gives the complementary non-solid fraction),
and g represents any external forces, such as gravity. The operator

]])),,ut is the Eulerian material derivative under the flow velocity u,

defined as 5% = % +u - V. Lastly, fr_ is the interaction force
between the liquid and the solid porous medium. It is this force that
we must derive to properly model wet cloth and yarn.

Equations (1a) and (1b) are the momentum equations of solid and
fluid, respectively, while equations (1c) and (1d) are the correspond-
ing laws of mass conservation (or continuity equations). We will
elaborate below on the solid stress and interaction forces, including
buoyancy and drag. But first, we must drop an assumption that we
have made.

The continuity equations (1c) and (1d) assume that pores are fully
filled with liquid, and thus the liquid volume in a unit material
volume is given by 1 — ¢. How do we model a porous medium
partially filled with liquid? One way to approach this is to (fully)
saturate our porous medium with a fluid that represents both liquid
and air components [Borja 2006].

Consider a fluid mixture of liquid and air. Since the air density
is orders of magnitude smaller than the liquid density, we ignore
the mass of the air. We assume that the fluid velocity field is shared
by the liquid and air components moving in unison. We use the
saturation variable S; to indicate the volume fraction of liquid in the
fluid (thus 1 — S; indicates the volume fraction of air in the fluid). In
such a mixture, the fluid density pf (recall (1b)) becomes a fraction
of the water density p,, (i.e., pr = Srpw). We can substitute this
liquid-air fluid mixture, in place of only liquid, to obtain continuity
equations that do not assume liquid saturation.

Unsaturated continuity equation. Consider a porous medium that
is not necessarily (fully) saturated with liquid. Such a medium is
(fully) saturated with our liquid-air fluid mixture. A unit volume of
the porous fabric medium is the sum of three parts,

p+(1=P)S +(1-¢g)1-5) =1, (2

where the three terms correspond to the volume fraction of solid,
liquid, and air, respectively. The continuity equation (1d) of liquid
can be modified to account for partial saturation using a slightly
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Fig. 3. Pore pressure example. Consider a piece of fabric laying on a table.
The fabric is wet initially in a circular region. Near the boundary of the circle,
the saturation S; changes from zero to one, along the directions indicated
by the arrows. On the left is a real photograph, and in the middle is our sim-
ulated result. P. in this case is the pore pressure introduced by the water-air
surface between the textile fibers (right). Because of the change of S; along
the radial directions, the gradient V(1 — S;)P. in (8) generates interaction
forces between the textile fibers and the water between. Macroscopically,
these forces point along the directions of the arrows. Since the forces are
mostly uniform in all directions, the fabric remains static, but the water
spreads outwards.

different form,

KD v (1~ s = 0. ®

Lastly, subtracting (1d) from (1c) yields the incompressibility condi-
tion for the solid-fluid mixture,

V- [pus + (1= pug] = 0. ©

In summary, equations (la-1c) together with (3-4) form the mixture
theory model for unsaturated porous media.

Solid stress. The effect of porosity on solid stresses is that, un-
der the same deformation, the effective stress o5 of a porous solid
material is smaller than the corresponding stress o, exhibited by
a densely packed or non-porous material (i.e., with zero porosity).
Given an applied deformation (or strain), o, can be evaluated using
a particular constitutive model, the choice of which depends on
whether we are simulating wet cloth or yarn (see §4). The relation-
ship between o, and o5 has been experimentally and numerically
established by Makse et al. [2000], namely, o = ¢* o, where the
parameter A is material-dependent, usually taking values from 1 ~ 3.
In all our examples, we use the value 1 = 2.

Interaction forces. There are two relevant types of interaction
forces between solid and liquid [Anderson and Jackson 1967]: the
pressure gradient force ffp; , and the drag force ff‘i_)S The total
interaction force is

fios = g+ fls 5)

The pressure gradient acts when cloth and yarn are submerged
(Figure 4). The drag force, on the other hand, is due to liquid-solid
friction and wake turbulence. The next two subsections are dedi-
cated to our derivation of the specific forms of these forces for wet
cloth and yarn.

3.2 Pressure Gradient

In a saturated solid-liquid mixture, the pressure gradient is

fEo=—99p. ©)
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Fig. 4. Comparison with and without the liquid pressure gradient
applied to solid. A simulation with the liquid pressure gradient applied to
cloth yields correct buoyancy (left), where cloth lighter than water floats
and cloth heavier than water sinks. Without the pressure gradient, all the
cloth erroneously sinks (right).

Here we neglect the liquid stress induced by the porous solid, a
standard assumption for open pores [Pitman and Le 2005]. The
liquid pressure p is smoothly varying except for a jump at the liquid
free surface induced by surface tension.

An unsaturated porous medium has tiny air pockets, for which the
surface tension force exactly balances the liquid-air pressure jump.
The myriad air pockets make for a markedly more complex liquid
surface, since air and liquid are present “everywhere;” the jumps due
to surface tension are densely distributed and more appropriately
captured in a homogenized force balance, pf — pa = pc, referring to
the liquid, air, and pore pressure, respectively [Borja 2006].

From mixture theory, the effective pressure p of an unsaturated
porous medium is given by weighting the component pressures by
the saturation S; [Borja 2006],

P =Spg+ (1= St)pa. 7
Substituting the force balance ps — pc = pa into (7), then into (6),
ff e =~99p = —¢Vpr +¢V((1 - Sr)pe). ®)
buoyancy pore pressure

The first term of the pressure gradient governs buoyancy, the force
that pushes lighter objects up toward the fluid surface. As we can see,
the second term is present only for an unsaturated porous medium
(Sr < 1). We now explore this pore pressure term.

Suction tensor. It has been confirmed by experimental studies
[Scholtés et al. 2009] that pore pressure depends on the porous solid
microstructure. Here, we develop a pore pressure model suited to
our application.

The void space between textile fibers, which is oriented along
individual yarns, yields an anisotropic microstructure. Consequently,
our pore pressure is also anisotropic, and must therefore be described
by a second-order tensor rather than a scalar. This tensor is called
the suction tensor in the mechanics literature.

Drawing on the literature on porous flow through fibers, we
propose a model for the suction tensor specialized to the case of
cloth, yarn, and combinations of the two. Consider a pack of fibers
along a yarn segment (Figure 5-a). When mixed with water the void
spaces between individual fibers effectively form capillary tubes
that act to transport water. The pore (or suction) pressures along
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Fig. 5. Fiber pack, cloth and yarn orientation. In our derivation of the
pressure gradient and drag forces, we use a canonical frame of reference to
orient the fiber pack, cloth, and yarn. Cloth and yarn in arbitrary orientations
are first rotated into this frame of reference to compute the force tensors,
and then rotated back to their original frame.

the fiber direction and the perpendicular direction are, respectively,

2¢ycosf Pa

P g, M

as Masoodi and Pillai [2012a] introduced and experimentally verified.

Here ¢ is again the volume fraction of the capillary tubes (in our

case the textile fibers), y is the surface tension coefficient of liquid

(i.e., y = 72.0dyn/cm for water), 0 is the equilibrium contact angle

between liquid and the fibers, and ry, is the radius of the capillary
tubes.

©

Adapting this concept to our setting, we note that if a yarn seg-
ment is aligned along the Z-direction, we can write its suction tensor
as a diagonal matrix whose diagonal elements are [pg pg pa]- Sim-
ilarly, in a small piece of cloth with its normal aligned along the
Z-direction (Figure 5-b), the textile fibers are instead oriented along
the X- and Y-directions. Then, the suction tensor is another diagonal
matrix with diagonal elements [py pa pgl- When individual yarn
strands extend perpendicularly from the cloth surface (Figure 5-c)
— for example, when simulating a fuzzy towel — we express the
suction tensor as a weighed combination of both diagonal matrices,

Pe 0 0 pp 0 0
Po=se|0 pa 0|+(1=5)|0 pg 0], (10)
0 0 pg 0 0 pg

where we call s¢ the “shape fraction”: when we consider the suction
tensor in an infinitesimal region of cloth or yarn, s¢ = 0 if this region
is occupied entirely by a yarn strand, s¢ = 1 if it is entirely occupied
by cloth, and s¢ lies between 0 and 1 if the region is near the root of
a yarn strand extending from a piece of cloth (Figure 5-c).

With the suction tensor P. defined for cloth and yarn in the
canonical orientation above, the suction tensor P, in an arbitrary
orientation will be a rotated version of P, namely

P. = RTP.R. (11)

In cloth, R is the rotation matrix that rotates the cloth normal to
the Z-direction, and in yarn, R rotates the yarn tangent to the Z-
direction. (In the mixtures we described above, these directions are
mutually aligned.)

Finally, having developed our new application-specific definition
of the suction tensor, the pressure gradient force in (8) can be re-
written as

f2. = =¢Vpp + ¢V - (1= Sp)Pe), (12)
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Fig. 6. Comparison between nonlinear and linear drag models. Non-
linear drag (left) exhibits a sharp "kink" (red dashed curve) around the
liquid-solid interface due to fast-moving cloth having pulled water with
it. Since linear drag is not suitable for high Reynolds number flows, this
effect is not seen for linear drag (middle). This effect can, however, be readily
observed in physical experiments (right, with red dashed curve).

where the divergence of our anisotropic suction (stress) tensor has
taken the place of the gradient of the scalar pore pressure.

Remark. The total stress, an oft-used quantity when modeling
porous materials such as sand and soil [Song and Borja 2014], is the
sum of the solid stress o5 and fluid stress of. The equation above
effectively states that of = —pfls + (1 — S;)Pc, where I3 is a 3x3
identity. In §3.1, we saw that o5 = qﬂ’lac. Our total stress is therefore
¢A oc — psls + (1 — S¢)Pc. For saturated and densely packed porous
material (A — 0 and S; — 1), our definition of total stress becomes
oc — prl3, which is precisely consistent with the classic Terzaghi’s
total stress [Terzaghi 1943].

3.3 Drag Force

Drag. Liquid flow through a porous solid is resisted by a drag
force proportional to the relative velocity, ff‘jl_)S = C(ug — ug), where
C is a diagonal matrix of drag coefficients, C;.

For a pack of fibers oriented along the Z axis (Figure 5), the drag
coefficients along the transversal (1 < i < 2) and lateral (i = 3)
directions can be expressed in terms of anisotropic permeability.

Permeability is a measure of the ability of a porous material to
allow liquids to pass through it [Bear 2013]. The permeabilities of
flows lateral and transverse to a pack of fibers are [Stylianopoulos
et al. 2008]

~Ing — 1.476 + 2¢ — 0.5¢> 7
16¢

~Ing — 1.476 + 2¢ — 1.774¢? + 4.078¢> 7

32¢ ’

ko = and

(13)

kg =
respectively, in terms of the volume fraction ¢ and fiber diameter d.

Drag coefficient. Yazdchi and Luding [2012] relate the drag coeffi-
cient to the permeability of a fibrous material. The drag coefficient
C; is normalized by the liquid viscosity y and fiber diameter d to de-
fine a dimensionless drag, or modified friction factor, f; = —d?C; /.
Similarly, the permeability is normalized as K; = k;d?. The dimen-
sionless drag and permability are related via

1
- fi= ot xiRe?, (14)

i



where the exponent ¢ = 1.6 is a constant; Re; = pe(ug ; — us ;)d/p
is the Reynolds number, where the subscript i of uf and ug indicates
the X-, Y-, or Z-component of the velocity.

The coefficient y; weights the nonlinear second term relative to
the linear first term. Many models exist for computing y;, and we
choose to use the classic Ergun equation [Ergun 1952], as validated
by Yazdchi and Luding [2012]. Replacing the various quantities
in (14), we obtain our final formula for the drag coefficient,

1-c

1.75 pfd
VIS0 (1 - 92 vK;

Ci=t+ g = w5 (1)
3

These coefficients allow us to compute the drag force when a
pack of fibers are oriented along the Z-direction. Given cloth or yarn
with an arbitrary orientation, we construct a rotated drag tensor C
in a similar manner to the suction tensor in (11): namely, C = RTCR,
where C is a diagonal matrix. For cloth, C has the diagonal elements
[éﬁ C’ﬁ Cg], while in yarn C has the diagonal elements [Cq Co C‘ﬁ].
Here C, and C s are determined by substituting k, and kg of (13)

into the k; of (15), respectively. In general, C is a combination of the
two cases, defined in the same way as in (10). R is a rotational matrix
that aligns the cloth’s normal direction or the yarn’s tangential
direction with the Z-direction, as in (11).

Finally, the drag force is computed as
£, = Clug — ug) = RTCR(ug - ug). (16)

Remark I. Dimensional analysis provides a useful sanity check
on our derivation. The value C; in (15) has units of g-cm™3-s! for
any positive ¢ value. Therefore, ffd_)S / ps always has units of cm-s2,

which are precisely the units of acceleration.

Remark II. Drag force models have been used in many computer
graphics simulations, yet almost all such models have been linear
with respect to the relative velocity. For example, recent work on
simulating sand and water mixtures [Tampubolon et al. 2017] adopts
alinear model. Meanwhile, studies in porous mechanics have shown
that the drag force is nonlinear, especially when the Reynolds num-
ber is not small [Masoodi and Pillai 2012a]. In Figure 6 and our
supplemental video, we compare our nonlinear drag model in (15)
with the linear drag model that ignores the second term of (15), to
demonstrate their very distinct visual difference.

3.4 Dynamic and Quasi-Static Model

Dynamic model. Putting together all the forces derived above,
our mixture model for cloth and yarn is comprised of five equations:
namely, the momentum equations (1a) and (1b); the continuity equa-
tion (1c) for solid material; the continuity equation (3) for the liquid,
which also advects the porous saturation S;; and the incompress-
ibility condition (4). To complete (1a) and (1b), the interaction force
Jft—s is the sum of the pressure gradient force (12) and the drag
force (16). We refer to these equations as the dynamic equations of
wet cloth and yarn. In the next section, we will numerically solve
them by discretizing the entire domain of the liquid, wet cloth, and
wet yarn using Eulerian grids.
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Quasi-static model. To capture liquid diffusing and convecting
within the thin volume of cloth and yarn, directly discretizing the
dynamic equations in 3D necessitates the use of very fine grids, re-
sulting in prohibitive simulation costs. We therefore treat this case
specially. We observe that water travels along the cloth and yarn
volume slowly even while the cloth and yarn might undergo large
deformation. This suggests that we can model the liquid motion in
the frame of reference attached to the cloth or yarn. In this frame
of reference, the Reynolds number is relatively low, so we choose
to model the liquid motion quasi-statically as diffusion on the codi-
mensional objects (i.e., 2D surface for cloth and 1D curve for yarn).
In particular, we ignore the inertia term in (1b). We further note
that the cloth and yarn material is isotropic in the codimensional
space, and hence so is the pressure tensor. Then, Equation (1b) after
substituting (12) and (16) can be simplified into

) +g =0, (1)
Because the frame of reference is non-inertial, the force g must now
include not only the external force g but also additional fictitious
forces, such as the centrifugal and Coriolis forces (to be discussed
further in §4).

Equation (17) allows us to express ug with respect to us, pr, and
Pa, by isolating us on one side of the equation. Substituting it in (3)
yields the equation to be solved in the codimensional space:

der g [A=Per (V(i?a — PO+ peg)
ot Co

1
— V[ - S)pa — pe] -
o [(1 = Se)pa — prl

erus| = 0. (18)

where py = (1 - Sy)pe, and we define e = (1 — ¢)S; as the volume
fraction of liquid in the unsaturated mixture. This is a convection-
diffusion equation describing how €y is transported quasi-statically
along cloth surfaces and yarn strands.

Remark. If we ignore external forces and the pressure from the
bulk fluid, and assume the porous solid is static, then py, g, and ug
in (18) all vanish, while ¢ remains constant. Then this equation
reduces to the famous Richards equation in soil mechanics [Richards
1931], that describes the movement of water in unsaturated soils:

s,

i V- [D(S)VS:] . (19)

where D(S;) is called the diffusivity, and is usually some function of
Sy and the permeability. In our model, D(Sy) = %’ which has
a linear dependence on S; and corresponds to a linear water reten-
tion curve. Other popular models, such as Brooks-Corey [1964], van
Genutchen [1980], or models from experimental data fitting [Lan-
deryou et al. 2005], usually assume an infinite suction pressure when
Sy approaches zero. We adopt a linear model since it is effective and
numerically stable, and can be derived from a standard modification
of mixture theory for unsaturated porous media.

4 NUMERICAL SIMULATION

Having laid down the governing equations, we turn our attention
to the numerics.
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Method overview. We discretize the quasi-static equation (18) over
Lagrangian fabric “solid” meshes, and the remaining dynamic equa-
tions over a “background” Eulerian marker-and-cell (MAC) grid
augmented with Lagrangian particles for advection.

Bulk liquid is simulated using the affine particle-in-cell (APIC)
method [Jiang et al. 2015]. Each Lagrangian liquid particle carries a
scalar volume and two set of velocities: the liquid velocity uf and
the solid porous material’s velocity us.

The porous fabric solid is simulated using a Lagrangian mesh,
with each vertex carrying the solid velocity ug, a porous volume
fraction ¢, and a liquid saturation fraction S;. We use the APIC
method to distribute data from Lagrangian points (liquid particles
and solid mesh vertices) to the Eulerian grid faces, and vice versa.

The elastic forces of the fabric are computed using discrete shells
[Grinspun et al. 2003] for woven cloth, and discrete elastic rods
[Bergou et al. 2010; Kaldor et al. 2008] for knitted garments. These
elastic forces are coupled with the background grid using the method
of Jiang et al. [2017] to resolve collision and frictional forces.

At each timestep, our method performs the following steps (see
Figure 7 for a visual overview of our algorithm):

(1) Build the MAC grid (§4.2.4)

(2) Compute solid internal forces and apply the flow-rule for
solid plasticity (§4.2.4),

(3) Map liquid and solid particles onto the Eulerian grid (§4.2.4),

(4) Solve the pressure projection (§4.2.1),

(5) Solve the solid velocity (§4.2.2),

(6) Update the liquid velocity (§4.2.3),

(7) Map the liquid and solid velocity back to particles, update
solid deformation gradient, advect particles (§4.2.4),

(8) Handle liquid capture and dripping for cloth and yarn (§4.1.2),

(9) Solve the quasi-static equation on solid meshes (§4.1).

4.1 Codimensional Quasi-Static Simulation

Because fabric strand features are ~4-8x smaller than a grid cell, we
solve (18) on the Lagrangian meshes directly without relying on the
MAC grid. We must consider three types of mesh configurations:
(woven) cloth triangles, (individual or knitted) yarn segments, and
the junctions between them (see Figure 8). Junctions are useful not
only for modeling cloth-knit assemblies, but also other non-manifold
structures, such as fuzzy fabric (see Figure 13).

Notation. The subscript E indicates that a field is discretized over
mesh elements, triangle faces and yarn segments, for example, ug g
represents solid velocity defined on elements. By contrast, the sub-
script V indicates that a field is discretized over vertices. Individual
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Fig. 8. Codimensional objects. (a) Cloth modeled as a triangle mesh. (b)
Yarn modeled as a sequence of cylinders. (c) A cloth-yarn joint. The volume
of the shaded region is used to compute vertex weights. Each triangle is
uniformly divided according to its barycenter and edge bisectors.

timesteps are indicated by a superscript n (e.g., py; for pressure stored
on vertices at timestep n), and h always denotes the timestep size.

4.1.1 Codimensional solve. To solve (18) on irregular meshes,
we first define the necessary mesh-based discrete differential oper-
ators [Botsch et al. 2010]. We will use uppercase sans serif letters
(e.g., G) to denote discrete operators.

Each mesh element (cloth triangle or rod segment) is associated
with a time-invariant finite volume Vg in physical space. For a cloth
triangle, this is computed from its undeformed area and fabric thick-
ness. For a rod segment, this is computed from its undeformed
length and yarn thickness.

Each vertex is also associated with a time-invariant finite volume
W (Figure 8), computed in a typical barycentric style: incident cloth
triangles contribute a third of their volume to each vertex, and
incident rod segments contribute half of their volume to each vertex.

The liquid volume discretized on vertices is given by the vector
Vev = ([1-4]v)S,,vW, where [1-¢]y and S, y are the liquid volume
fraction and liquid saturation per vertex (recall §3.1). Similarly, V¢ g
is a vector describing the liquid volume per element. With these
expressions, we can discretize the convection-diffusion equation (18)
for the liquid fraction using implicit integration as

Vit = vy - 6T [l (11 - glelvigs!

(Gl —prlfy* + prge)) + VI uls! |, 20)

where the notation [-] denotes the operator that converts a vector
into a diagonal matrix.

On triangle meshes, we use the standard gradient and divergence
operators described in detail by Botsch et al. [2010]. The gradient
operator G € R3IEXIV] maps the vector form of a quantity defined
on vertices to its gradient on elements, and its adjoint, the divergence
operator GT e RIVISIE] maps a vector quantity on elements to
its divergence on vertices. |'V| and |&| indicate the total number of
vertices and elements, respectively. Construction of G relies on the
same weight contributions used to compute Vy.

This is a system of equations with respect to Vf"\;’ ! that is nonlin-
ear, and, in the general case, very difficult to solve [Paniconi et al.

1991]. In our case, the Reynolds number of liquids flowing through
cloth and yarn is low, so Vf”‘; ! remains fairly close to Vi over a

timestep. Thus, we solve (2()) using fixed-point iterations [Burden
and Faires 1985]: in each iteration, we update V¥ ! by interpolating
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Fig. 9. Liquid capturing. ¢ liquid particles; e solid vertices; o grid faces.
Opacity indicates kernel weight. For legibility, only the faces in the x-axis
are shown; similar operations are done for the y— and z-axis. (a) Liquid
volume from particles is distributed onto grid faces. (b) Solid vertices absorb
volume from grid faces whose volume is reduced correspondingly. (c) The
retained volume is stored back onto particles.

Vf”‘j' ! from the previous iteration, and then update Vf”‘f 1 using (20).
In practice, this method converged within four iterations for the
scenes we tested.

4.1.2  Liquid capturing and dripping. When cloth and yarn come
in contact with water they begin to absorb it, and become wet. On
the other hand, if cloth or yarn becomes locally oversaturated, water
starts to drip off. Therefore, our codimensional simulation must also
exchange liquid with the background fluid grid.

Notation. We use a subscript p to indicate quantities stored at
liquid particles, and subscript i to indicate quantities on the grid
(i.e., grid faces). For example, anp is the volume of a liquid particle
p at timestep n.

Water absorption is performed with the following steps (see fig-
ure 9):

(1) For each grid face, we update its liquid volume by sum-
ming contributions from liquid particles in the grid, anz =
Zp folpwp, i» where wp ; is the kernel function between the
particle p and grid face i, as defined by Jiang et al. [2015].

(2) Each solid vertex (cloth or yarn) captures liquid by taking
liquid volume contributions from the background grid: anV =
i foll-Wi,V, where w; v is the kernel function between grid
face i and solid vertex V.

(3) For each grid face, we compute the amount of liquid removed
by the cloth or yarn: Vf,_i = v foliwi,v, which totals the
face’s liquid contribution to all solid vertices.

(4) Lastly, we update each liquid particle’s volume by computing
the weighted sum of the updated liquid volume on grid faces:

fol;l = (Zi(Vf,"i - ‘/ﬁ_l-)wp,i) /[ (Zi Zvwp,iwiv)-

The updated volume of liquid particles will be used in the next
timestep of the grid simulation (see §4.2).

Liquid drips off of cloth or yarn when a solid vertex is oversatu-
rated. This is indicated by the condition Vyy > W (1 - ¢v). If it is
satisfied, we inject liquid particles back into the grid. Each generated
liquid particle has a fixed volume V. !. The number of liquid particles

!We follow a standard rule of thumb to set V;.. As discussed by Um et al. [2017], a
common practice is to have eight particles in a grid cell, each having sufficient volume

7r\/§(‘5x3
16

to cover half of the cell size in each dimension. This means that V, = where

Sx is the size of a grid cell.
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Viv-W(l-¢p)

Vv, :
We then uniformly sample N; positions on the elements (triangles
and yarn segments) incident to the vertex, placing a liquid particle
at each. Since liquid flow on the cloth and yarn is assumed to be
quasi-static, the velocity of a new particle is set to the solid velocity
at its position. Afterward, the liquid volume at the oversaturated
solid vertex is updated to Vyy — Ny V5.

that an oversaturated vertex can generate is Ny =

4.2  Grid Simulation

We solve the dynamic equations of wet cloth and yarn on the MAC
grid. First, we discretize the incompressibility condition (4) and
obtain

hGT [plul*! + hGT[1 - $lul*! = o. (21)

Here we reuse G and G to denote the (finite-volume) gradient and
divergence operators, analogous to those in (20), but on the grid.

When discretizing the momentum equations (1a) and (1b), we
ignore the advection terms (i.e., the u - V term in the material deriv-
ative), because we advect the liquid and solid materials in a separate
substep via background particles with the APIC method (to be dis-
cussed in §4.2.4). Moreover, since cloth and yarn can often be highly
stiff, they demand an implicit discretization of (1a). Otherwise, very
small timestep sizes are needed, which would dramatically slow
down the simulation. Thus, discretizing the momentum equations
(1a) and (1b) yields

[(Ms + R[CIVC) + h°H] ul*! = h[C]Veuf ™! + hVGp™*!
= hfs + Mgul', (22)

(Mg + h[CIVe) ul "' = h[CIVeul ™! + hV(Gp™*! = hfy+Mpuf,
(23)

where Mg, My, V¢, Vg, and Vy are all diagonal matrices. We obtain Mg
by distributing the mass of cloth and yarn vertices to the face centers
of grid cells (see §4.2.4). We obtain V. similarly by distributing vertex
volumes Vy to the face centers of grid cells. Since a vertex volume
is occupied by solid, liquid, and air, Vg = [@]V, is the solid portion
of Vi, while V¢ = [1 — ¢][S;]V. is the liquid portion of V.. Mg is
the mass matrix of liquid. [C] is a tridiagonal matrix whose 3X3
diagonal subblocks are the drag tensors (as defined in (16)) evaluated
at grid face centers. Lastly, f; includes forces on solid vertices and
are distributed to the grid’s face centers, f; are forces applied on the
liquid, and H is the Jacobian matrix of solid force f; with respect to
the solid vertex positions. Their specific forms will be given in §4.2.4.

Assembling the discrete equations (21-23), we obtain a system

of linear equations with respect to the unknowns u?**1, u?“, and

p"1. However, solving this linear system is rather challenging
since it is large and unsymmetric. It couples u'*!, u"*1, and p™*!
together, and its size is about seven times the number of grid faces,
which makes direct solvers impractical. To make matters worse, the
linear system can be stiff due to the large stretching stiffness of
cloth and yarn or large pressure gradient applied, thus requiring
many iterations for iterative solvers to converge to the solution. We
initially attempted to use BICGSTAB, but it successfully converged

only under impractically small time step sizes (Courant number less
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than 10%). We therefore propose an efficient alternative solution
strategy.

Solver overview. We begin by summarizing the three main steps of
our solver. First, by discretizing (1a) explicitly, we reduce the linear
system to a smaller one involving p"*! alone. After obtaining p™*1,
we return to an implicit discretization of (1a), and solve another
system of linear equations with respect to u?*! alone. Lastly, we

construct a linear system to solve for u?“. This final system will be
diagonal and hence trivially inverted. In this process, u?**! for the
solid porous materials is obtained with an implicit solve, ensuring
that the timestep size is not restricted by explicit integration. We
now elaborate on each of these three steps.

4.2.1 Pressure solve. We start with the explicit discretization
of (1a), for which the h?H term in front of #*! in (22) vanishes.
Then, the linear system consisting of (21), (23), and the explicit
counterpart of (1a) can be written as (refer to section 1 of the sup-
plemental material for the derivation)

D; 0 h(Vs + ViP)G] [ult!
0 Dy h(Vs + VsQ)G| [uft!
hGT[g] hGT[1-¢] 0 n+l

hfs + Msug' + P(Mgug + hfy)
= |hfr + Mpug' + Q(Mug + hfs)|,  (24)
0

where the matrices P, Q, D, and Dy are
P = (Mg + h[C]V) " h[CIVL,
Q = (M + h[C]V.) ' A[C]V, (25)
Ds = M5 + PMy, and Dy = My + QM.

Recall that [C] is a tridiagonal matrix. Let C denote one of its 3x3 di-
agonal subblocks defined by (16). Its off-diagonal element C; 7 depicts
the drag force along the axis i induced by the liquid-solid velocity
difference along a different axis j. The cross-axis terms in the drag
tensor are responsible for rotational and shear effects, which can be
assumed negligible under moderate Reynolds number [Bagchi and
Balachandar 2002]. We therefore lump the off-diagonal elements
of [C] into its diagonal elements, turning [C] into a fully diagonal
matrix. This approximation can also be justified from a numerical
point of view. When the drag force is large (e.g., for fast liquid flows
wherein the Reynolds number is high), [C], without lumping, domi-
nates over M¢ and M. Thus, P and Q in (25) are both nearly identity
matrices, and Dy and Dy are nearly diagonal; lumping simply [C]
approximates Dg and Dy as fully diagonal. On the other hand, when
the drag force is very small, [C] approaches zero. Then, P and Q are
close to zero, and Dg and Dy remain almost diagonal, so lumping

[C] to be diagonal matrix is again a reasonable approximation.
With Dg and D¢ being diagonal, the first two equations of (24)

allow us to easily express u ™1 and uF“ with respect to p™*1. After

substituting this expression into the third equation of (24), we obtain

a system of equations with respect to p™*1,

hGT [[1 - §ID; (Ve + V5Q) + [41D; (Vs + ViP)| Gp™*!
=G [ + M fi) + Bspul + M f5)] . (26)
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where the matrices @ and ®g have the following forms,
@5, = [1- $ID; "My + [$]DS ' M¢P,

Dy = [¢]Ds_lMs + [1 - ¢]Df_lMsQ~ (27)

Equation (26) is analogous to the pressure projection step in standard
fluid simulation, but for solid-liquid mixtures.

4.2.2  Solid velocity solve. After obtaining p™*!, we are ready to

solve for u**1. Because of the high stretch stiffness of cloth and
yarn, we adopt the implicit discretization in (22). Then, the h*H term
multiplying u?*! in (22) will appear in the first row of equations
in (24): the first subblock Ds becomes D + h>H. We obtain a system
of equations with respect to u**1:

(Ds + h*H)u™ = —h(Vg + V{P)Gp™ ™ +
hfs + Msul! + P(Mqul' + hfy), (28)

where the pressure p™*! is already known at this point. On the

left-hand side, Ds + h*H is a symmetric positive definite matrix. We
then solve this system with a matrix-free conjugate-residual solver
preconditioned with D!,

4.2.3  Fluid velocity solve. Lastly, we substitute p"*! and u**!

into the second line of (24) to solve for u}”l. As the matrix Dg

multiplying u;”'l is diagonal, this equation is trivially solved, where

ul*! = D! [-h(Vi + VsQ)Gp™ 1+
hfi + Mqul + Q(Mgul! +hfs)] . (29)

Remark. While we require implicit integration for stability of the
fabric, we observed that within a single time step, the explicit and
implicit methods produce similar fabric motion, especially when
the time step is not too large. Therefore, we choose a semi-implicit
approach in exchange for computational performance: by explicitly
integrating velocity for the pressure solve, and implicitly integrating
the fabric velocity after the pressure solve, we reduce the large,
unsymmetric linear system to three smaller symmetric and positive
definite systems which are much easier to solve.

When solving for the liquid velocity, we may either insert the
pressure and solid velocity into (23) or only insert the pressure into
the second line of (24). We tested both options. For the former choice,
we observed an average of ~ 3% difference in the divergence in all
of our examples using the time step given in Table 1, while for the
latter choice we observed an average difference in the divergence
an order of magnitude smaller. The intuition is that in the former
choice an additional Jacobian matrix h?H is added to the divisor
when solving for the matrix Q in (25), which further increases the
mismatch between the solved pressure and the divergence of liquid
velocity. Hence we choose the latter solution.

We also found that the difference has approximately linear growth
with respect to time step and the viscosity of the liquid. In practice,
for liquid up to a moderate viscosity coefficient (e.g., olive oil), we did
not observe any visual artifacts due to the difference. Nevertheless
for high viscosity liquid (e.g., honey) there is indeed some instability
due to the mismatch between the explicitly integrated solid velocity
used by the drag force, and the actual implicitly integrated solid
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velocity. A method with a strict guarantee of incompressibility and
which can handle high viscosity liquid requires future investigation.

4.24  Implementation details. In the aforementioned three steps,
we need to construct Mg, V¢, Vg, Vi, and Mg for the face centers of
the MAC grid. For Mg, V¢, Vg, and Vg, we first compute the corre-
sponding quantities on cloth and yarn vertices. For example, the
liquid volume Vf at a vertex is computed with Wy (1 — §)S, where ¢
is the solid volume fraction at that vertex, and S; is its saturation.
We then distribute the quantities from the vertices to face centers,
using the kernel functions defined in the APIC method [Jiang et al.
2015]. Similarly, for constructing Mg, we compute the liquid mass
peVg p on each liquid particle, and distribute it to the face centers.

Force computation. In the discretized equations (22) and (23), the
forces are computed as

fs = VsV [(1=S)Pc] + fr and ff = V¢V - [(1 = Sr)Pc] + Mgg, (30)

where P, as defined in (11), is the suction tensor computed using
the quantities stored on grid face centers, and S; is the solid vertex
saturation distributed on the grid. Hence the first terms of both f;
and ff are directly evaluated on grid face centers, and Mgg is the lig-
uid’s gravity force evaluated on the grid as well. On the other hand,
Jr are forces applied on solid vertices, including the internal elastic
forces, collision and frictional forces, and gravity forces. These are
evaluated at individual solid vertices and distributed to grid faces
using the APIC method. We adopt existing models to compute these
forces. In particular, the cloth internal forces are computed using
the discrete shell model [Grinspun et al. 2003], the internal forces
of yarn follow the discrete elastic rod model [Bergou et al. 2010],
and the collision and frictional forces are computed following Jiang
et al. [2017].

We highlight one detail related to the distribution of yarn torques
using APIC. The discrete viscous thread model uses a scalar ty at
each yarn vertex to indicate the strength of torque with respect to
the tangential direction dy of the yarn. In order to distribute the
torque to a background grid face i, we convert the scalar into a
vector tydy X Vw; v (see derivation in section 2 of the supplemental
material) before adding it to the grid face i. Here w; y is the kernel
function between grid face i and solid vertex V.

Jacobian matrix computation. The matrix H in (22) and (23) is the
Jacobian of f; distributed on the grid. This matrix emerges when we
integrate the force terms implicitly. Because the stiffest force terms
in f; are the internal elastic forces, we compute their contributions to
the Jacobian matrix, and ignore the contributions from collision and
frictional forces, instead integrating them explicitly. We compute
the Jacobian matrix Hy of the elastic forces at each solid vertex V,
and add its contribution to the grid face i using

Hi,V = WT

l_)VHVwiﬁv, (31)
where W;_,y is the weight that distributes a force vector from grid
face i to solid vertex V in the augmented MPM method, as defined

by Stomakhin et al. [2014].

Cohesion force between cloth. When two pieces of wet cloth are in
close proximity, the surface tension of the liquid between introduces
cohesion forces. Accurately computing surface tension requires the
reconstruction of detailed liquid surface shapes between the cloth,

which in turn demands an extremely high grid resolution. Even
for a moderate size piece of cloth, computing this effect through
brute force is intractable. In this work, we use a simple model to
approximate cohesion forces at cloth vertices, and use the APIC
method again to distribute the forces to grid nodes. We describe
our model in section 3 of the supplemental material, while leaving
a full investigation of this surface tension-induced effect to future
research. For the cohesion between yarns, we took the model by Fei
et al. [2017] to compute the force.

5 RESULTS

We divide our results into two classes: i) a group of didactic cases
designed to validate individual components of our framework, and
ii) a set of more general scenarios of liquid interaction with cloth
and yarn that demonstrate the diversity of practical effects that can
be achieved by our system. Details of our surface reconstruction
and rendering method can be found in section 4 of the supplemental
material. A summary and discussion of the physics parameters used
throughout this paper can be found in section 5 of the supplemental
material.

5.1 Didactic Examples

Ring Test. A classic experiment in the textiles industry is a ring
test [Patnaik et al. 2006], where a controlled volume of liquid is
released onto the center of a piece of cloth. We compare our simula-
tion with a physical experiment in Figure 3. When the liquid touches
the cloth, wicking can be observed in both the physical experiment
and our simulation. Although our numerical experiment does not
quite reproduce the noisy details of the real-world surface, the liq-
uid in both the experiment and our simulation yielded visually and
qualitatively consistent wicking behaviors.

Drag Forces. The nonlinearity of drag forces has a significant
impact on the look of real liquid-cloth interactions. Figure 6 presents
a comparison between nonlinear and linear drag force models. The
most obviously distinct visual phenomenon that can be seen in the
nonlinear case is the formation of “kinks" around regions where
the relative velocity between the cloth and liquid is large; the cloth
has dragged the liquid along with it to create this characteristic
shape. This phenomenon cannot be readily observed with the linear
drag force. The same figure illustrates this “kink" effect in a real
experiment in which large relative velocities are induced by pulling
a cloth rapidly out of liquid.

Buoyancy Forces. In Figure 4, we highlight the importance of the
pressure gradient, using fabrics with differing mass densities. The
leftmost has density ps = 0.25g/cm3, which is lower than water’s;
the middle fabric has the same density ps = 1.0g/cm? as water (i.e.,
neutrally buoyant); and the rightmost has density ps = 4.0g/cm?,
which is higher than water’s. With the correct pressure gradient
applied to the fabrics, as expected, the left one rises to the water
surface; the middle one drifts along with the fluid water; and the
right one sinks quickly to the bottom. By contrast, if the pressure
gradient is neglected, the fabrics sink and come to rest at the bottom,
regardless of their mass densities.
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Fig. 10. Comparison for different sets of fabric and liquid parameters. Parameters different from the reference’s are highlighted with bold text. The
fabric parameters include rest solid fraction ¢ (unitless), fiber diameter d (micrometers), capillary radius r3 (micrometers), and thread count per inch n;
(unitless), where any two of them can be determined by the other two. The liquid parameters include viscosity p (centipoise) and contact angle ¢ (degrees).

Various Parameters. Different fabric and liquid parameters can
also drastically alter the look of cloth-liquid interaction [Das et al.
2008]: permeability decreases quadratically with fiber diameter and
nonlinearly with volume fraction (Equation (13)); while the pore
pressure increases with volume fraction and decreases with con-
tact angle (Equation (9)). In Figure 10 we compare simulation with
different sets of parameters varied from reference (Figure 10a). All
the simulations are done with the same initial geometries, and the
screenshots are captured at 4.0 seconds. The expected effects are
recovered in our numerical experiments. In Figure 10b and 10c, as
we adjust the fiber diameter d, we simultaneously hold the rest solid
fraction ¢y constant by appropriately adjusting the thread count
n; and capillary radius rj, to compensate; the cloth with smaller
d is less readily penetrated by the liquid, the liquid attaches more
readily to the cloth surface, and a shorter wicking distance is ob-
served. In Figure 10d and 10e, as we adjust the fiber diameter d, we
simultaneously hold the thread count n; constant; as d and the rest
solid fraction ¢ increased, the cloth is less easily penetrated by the
liquid, also with less liquid retention inside the cloth. In Figure 10f
and 10g, we change the thread count n;, while holding the fiber
diameter d constant; as n; and the rest solid fraction ¢ increased,
the cloth shows a similar behavior. We also compare between dif-
ferent liquid parameters. In Figure 10h and 10i, we demonstrate the
different behavior of acetaldehyde and olive oil, where the former
is less viscous and the latter is much more viscous than water: the
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cloth is less easily penetrated by olive oil, which also has a much
shorter wicking distance. In Figure 10j, we demonstrate the effect
where zero pore pressure is applied when the contact angle is ex-
actly 90 degrees: there is then no wicking effect and the liquid is
less attracted to the cloth surface.

Impermeable Cloth. We
show that our method
can also simulate liquid
coupled with a pinned im-
permeable (non-porous)
cloth, which corresponds
to an infinitely small pore
size and infinitely large drag force in our model. Since the drag force
is implicitly integrated (equation 24, 28 and 29), our simulation is
valid even when the drag tensor approaches infinity. Around the
overlapped region, the liquid and solid share the same velocity,
corresponding to a no-slip boundary condition.

5.2 General Examples

Splash on Cloth. Figure 11 demonstrates wetting, dragging, drip-
ping, and wicking effects of liquid-cloth interaction. When the liquid
has high velocity, it can penetrate through the cloth from one side
to another, but as it is slowed down by viscous drag, it will attach
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to the cloth surface and start to slip. As more liquid attaches to the
cloth, the cloth also starts drooping due to the added mass.

Splash on Yarns. Similarly, in Figure 12 we show that our model
can handle yarn-based fabrics by dropping a ball of water on a piece
of pinned handwoven fabric. Some of the liquid is captured by the
fibers, while the majority of it flows through the pores and forms a
liquid jet on the other side. The fabric is also noticeably tightened
by the initial impact of the water ball.

Splash on Fuzzy. Beyond cloth and yarn, we show that our model
can handle a scenario involving both kinds of structure: in Figure 13
we splash a ball of water onto a fuzzy cloth that has many short
strands protruding from its surface. This cloth has a stiffer visual
look than regular cloth, it absorbs more water, and the drag force is
also stronger.

Tighten the Towel. Lastly, we show an example with more com-
plicated dynamics in which the motion of a fuzzy cloth actively
affects the flow of a liquid. Specifically, in Figure 14 we simulate
the tightening of a towel. The towel is rapidly yanked out of water
and tightened. As the towel twists, a sudden rush of liquid flows out
of the towel. As time goes on, the flow of liquid leaving the towel
steadily decreases to a trickle.

For both Tighten the Towel and Drag Forces we measured the total
volume of liquid on the towel and in bulk form over the course
of the simulation. The volume of the bulk liquid is calculated as
the sum of the spherical volumes of liquid associated with each
APIC particle, according to each particle’s radius. The volume of the
liquid on the towel is calculated as the sum of the liquid stored on
the vertices. For each solid vertex the liquid volume is simply the
saturation multied by the empty pore space. Figure 15, left, shows
that the net increase of water on the mesh (blue curve) was always
offset by the net decrease in bulk liquid (orange curve), yielding
remarkably good conservation of total liquid volume (green curve).

5.3 Performance Numbers

In Table 1 we collected timing data to evaluate the computational
cost of our method and its various components on our examples,
using a workstation with four Intel Xeon E5-2687W CPUs with
eight cores each running at 3.10GHz. For the towel example we
also provide a detailed breakdown in Figure 16. The most time
consuming part is for the calculation of the forces, plasticity and
interpolation kernel weights. Throughout the paper, we use a cell
size of dx = 0.288cm, with an average distance between mesh
vertices of 0.144cm. Since our grid is built only in a neighborhood

Fig. 11. A ball of water splashes on a mesh-based cloth.

Table 1. Timings and storage statistics.

Examples Z/;Zl; # ?&:;;le # element h(s) (P:Aale(ngB)
Drag Forces | 5.93 570K 854K  2x107* 5.41
Buoyancy Forces | 6.02 742K 105K 2x107* 6.06
Various Parameters | 1.88 199K 64.1K 2x 1074 4.39
Impermeable Cloth | 3.20 112K 71.8K 2x 1074 2.44
Splash on Cloth | 18.73 729K 336K 2x 1074 18.35
Splash on Yarns | 2.72 277K 79.6K 2x 1074 6.19
Splash on Fuzzy | 9.31 282K 123K 2x 1074 5.27
Tighten the Towel | 8.97 390K 712K 2x107* 4.90

around the solid vertices and liquid particles, its size is temporally
variant. The number of cells varies between 50 and 250 in the largest
dimension for all of our examples.

6 DISCUSSION AND LIMITATIONS

We have presented a numerical model to animate liquid interactions
with permeable cloth and yarn that is able to capture many key
phenomena. We highlight below a few limitations imposed by our
chosen assumptions, numerical methods, or experiments.

In Figure 3 we compared the diffu- iy
sion simulated by our method with
a laboratory experiment. To better
match the laboratory result (Figure 3-
left), we experimented with using a :
manually specified volume fraction : .
field on the textile (visualized in the bottom-right of the adjacent
figure). While this leads to non-uniform diffusion closer to the lab-
oratory result, we found very difficult to match perfectly. This is
because there are other factors that would affect the diffusion, such
as the spatially varying fiber radii that changes the pore pressure
and the abrasion of the textile sample that produces irregular bumps
on the surface. In future work it would be worth investigating how
to model and incorporate these textile “defects” for more realistic
simulation.

Our fiber model makes assumptions about the dominant axes
of the pore structure, which places limitations on the fidelity of
our pore pressure and drag forces for general microstructures; for
example, yarn strands in the fuzzy cloth are assumed to attach
perpendicularly to the cloth. For numerical efficiency, our drag
model also relied on a lumping strategy that assumes shear and
rotational effects are relatively unimportant.

Since the liquid bridge geometry that causes wet cloth sticking is
difficult to model, we adopted a fairly simple cohesion approach. Of
course, there are situations in which cohesion has a very meaningful
influence on the dynamics: consider the manner in which wet clothes
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e
Fig. 13. A ball of water splashes on a fuzzy cloth.

Fig. 14. A towel is pulled rapidly out of water and wrung out.
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Fig. 15. Volume conservation is demonstrated by plotting the deviation
of fluid volume in bulk form (orange), on the cloth (blue), and their total
(green). Left: T:ghten the Towel example. Right: Drag Forces example.
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Fig. 16. Performance breakdown for Tighten the Towel (Figure 14).

adhere to one’s body. Relatedly, we did not include surface tension in
the bulk fluid flow, though adding an explicitly integrated approach
would likely be straightforward.
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More fundamentally, our system relies on mixture and porous
flow theories, which themselves entail a variety of both limitations
along with benefits. Principally, they assume continuum models
of the phenomena and their interactions, for example abstracting
away real fine-scale geometry of individual droplets and pores. In
both engineering and animation this extreme level of detail is often
superfluous, though not universally. For example, in the ring test,
it is likely that we might recover some of the differences from the
physical experiment with a more faithful coarse-scale model of
the specific fabric geometry we used; however, certain small-scale
heterogeneities, wrinkles, etc. seem likely to remain beyond the
reach of our scheme.

We adopted weak coupling through the drag force and do not
enforce an exact matching of velocity at the interface. The liquid and
solid are treated as a continuum mixture, and the drag force acts to
pull the liquid velocity closer to that of the solid. The scale of the drag
force depends on the solid permeability. As such, the solid velocity
will only exactly match the liquid velocity in the limit of infinitely
large drag force (corresponding to the scenario of an impermeable
cloth). We indeed observed artifacts when the discretization is too
coarse, which is a limitation of continuum modeling.

At present, our method relies on a relatively fine grid resolution
to achieve realistic results: the fabric thickness is not even a full
order of magnitude smaller than a grid cell. Ideally, one would
prefer a large gap to reduce the significant cost of the volumetric
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solve, although ensuring seamless interactions under such coarse
conditions appears non-trivial. In a related vein, strictly speaking
our model is semi-implicit which implies a timestep restriction that
could slow our results; a fully implicit solution remains an open
question. However, in practice, the primary factor driving timestep
selection was collision-handling, rather than internal dynamics. For
the sake of efficiency, we also adopted a free surface model that
avoids simulating the bulk air volume; this offers a faster simulation
but sacrifices air-dependent effects such as (grid-scale) bubbles.
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