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Abstract Based on the Hirota bilinear form of the (2+ 1)-dimensional Ito equation,
one class of lump solutions and two classes of interaction solutions between lumps and
line solitons are generated through analysis and symbolic computations with Maple.
Analyticity is naturally guaranteed for the presented lump and interaction solutions,
and the interaction solutions reduce to lumps (or line solitons) while the hyperbolic-
cosine (or the quadratic function) disappears. Three-dimensional plots and contour
plots are made for two specific examples of the resulting interaction solutions.
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1 Introduction

Hirota bilinear forms are one of the integrablility characteristics of nonlinear par-
tial differential equations [1] and associated bilinear equations can be solved by the
Wronskian technique [2,3]. Solitons, positons and complexitons are typical solutions
presented through theWronskian formulation [4,5], and interaction solutions between
two classes of such solutions describemore diverse nonlinear physical phenomena [3].
Moreover, upon taking long wave limits, lump solutions, rationally localized solutions
in all directions in space, can be generated from solitons [6,7]. Hirota bilinear forms
play a key role in generating the above mentioned solutions, and trial and error is a
basic way to solve Hirota bilinear equations [1,8].

The KP equation of the following form:

(ut + 6uux + uxxx )x − uyy = 0 (1.1)

possesses the lump solution [9]:

u = 2(ln f )xx , f =
(
a1x + a2y + a1a22 − a1a62 + 2 a2a5a6

a12 + a52
t + a4

)2

+
(
a5x + a6y + 2a1a2a6 − a22a5 + a5a62

a12 + a52
t + a8

)2

+ 3
(
a12 + a52

)3
(a1a6 − a2a5)2

, (1.2)

where the involved parameters ai ’s are arbitrary but a1a6 − a2a5 �= 0. This contains
the following lump solution presented earlier [10]:

u = 4
− [

x + ay + (
a2 − b2

)
t
]2 + b2(y + 2at)2 + 3/b2{[

x + ay + (
a2 − b2

)
t
]2 + b2(y + 2at)2 + 3/b2

}2 , (1.3)

where a and b are real free parameters. There are many other soliton equations pos-
sessing lump solutions: the three-dimensional three-wave resonant interaction [11],
the BKP equation [12,13], the Davey–Stewartson equation II [6], and the Ishimori-I
equation [14]. General rational solutions to soliton equations have been generated
within the Wronskian formulation, the Casoratian formulation and the Grammian or
Pfaffian formulation [1,7], and typical physically significant examples include the
KdV equation, the Boussinesq equation and the nolinear Schrödinger equation in
(1 + 1)-dimensions, the KP and BKP equations in (2 + 1)-dimensions, and the Toda
lattice equation in (0+1)-dimensions (see, e.g., [3,15–18]). Direct computations have
been also made for general rational solutions to nonlinear equations (see, e.g., [19]),
including generalized bilinear equations (see, e.g., [20–24]).

In this paper, we would like to consider lump solutions and interaction solutions
between lumps and line solitons of the (2 + 1)-dimensional Ito equation, and present

Author's personal copy



Lump and lump-soliton solutions to the... 429

one class of lump solutions and two classes of interaction solutions through analysis
and symbolic computations with Maple, which supplement the existing literature on
lump and soliton solutions. We will begin with the Hirota bilinear form of the (2+1)-
dimensional Ito equation, and test if quadratic functions and combined functions of
quadratic functions and the hyperbolic cosine can solve the bilinear Ito equation. A
few of concluding remarks will be given in the last section.

2 Lump and interaction solutions

The (2 + 1)-dimensional Ito equation reads [25,26]

PIto(u, v) : = utt + uxxxt + 6uxut + 3uuxt + 3uxxvt
+αuyt + βuxt = 0, (2.1)

where vx = u and α, β are two constants, or equivalently,

vxtt + vxxxxt + 6vxxvxt + 3vxvxxt + 3vxxxvt + αvxyt + βvxxt = 0.

It is a (2 + 1)-dimensional generalization of the KdV equation from a perspective
of Hirota bilinear forms, which possesses N -soliton solitons [25]. Its Hirota bilinear
form is determined by (see, e.g., [25,27]):

BIto( f ) : = (D2
t + D3

x Dt + αDyDt + βDx Dt ) f · f

= 2
[
ft t f − ft

2 + fxxxt f − 3 fxxt fx + 3 fxt fxx − fxxx ft

+α( fyt f − fy ft ) + β( fxt f − fx ft )
] = 0, (2.2)

under the transformations

u = 2(ln f )xx = 2( fxx f − fx 2)

f 2
,

v = 2(ln f )x = 2 fx
f

. (2.3)

Such characteristic transformations have been adopted in Bell polynomial theories of
soliton equations (see, e.g., [28,29]), and precisely, we have

PIto(u, v) =
(
BIto( f )

f 2

)
xx

.

Therefore, when f solves the bilinear Ito equation (2.2), u = 2(ln f )xx and v =
2(ln f )x will solve the (2 + 1)-dimensional Ito equation (2.1).
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2.1 Lump solutions

Basedon analysis and symbolic computationswithMaple,we can show that the (2+1)-
dimensional bilinear Ito equation (2.2) has a class of quadratic function solutions
determined by

f = (a1x + a2y + a3t + a4)
2 + (a5x + a6y + a7t + a8)

2 + a9, (2.4)

where

βa1 + αa2 + a3 = 0, βa5 + αa6 + a7 = 0, a1a3 + a5a7 = 0, (2.5)

and the other parameters are arbitrary. By the transformations in (2.3), this yields a
large class of lump solutions to the (2 + 1)-dimensional Ito equation (2.1).

We know that the condition

a1a6 − a2a5 �= 0 (2.6)

is necessary and sufficient for a solution f , defined by (2.4), to generate a lump solution
in (2 + 1)-dimensions through (2.3). Under the condition (2.6), we can solve

fx = 0, fy = 0, (2.7)

to get all critical points

x = x(t) = (a2a7 − a3a6)t + (a2a8 − a4a6)

a1a6 − a2a5
,

y = y(t) = − (a1a7 − a3a5)t + (a1a8 − a4a5)

a1a6 − a2a5
, (2.8)

where t is arbitrarily given. The function f −a9, i.e., the sum of two squares, vanishes
at this set of critical points. Thus, f > 0 if and only if a9 > 0, which tells that u
and v defined by (2.3) are analytical in R

3 if and only if a9 > 0. For any given time
t , the point (x(t), y(t)) determined by (2.8) is also a critical point of the function
u = 2(ln f )xx , and thus the lump solution u has a peak at this point (x(t), y(t)), since
we have

uxx = −24(a12 + a52)2

a92
< 0, uxxuyy − uxy

2

= 192(a12 + a52)2(a1a6 − a2a5)2

a94
> 0

at the point (x(t), y(t)).
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It is direct to see, through taking two special cases of (2.4), that the resulting
lump solutions above cover the two classes of lump solutions presented by symbolic
computations in [27]:

u1 = 4 a52

f1
−

8 a52
(
a5x − β a5

α
y + a8

)2
f12

, v1 =
4 a5

(
a5x − β a5

α
y + a8

)
f1

,

with

f1 =
(
−a3

α
y + a3t + a4

)2 +
(
a5x − β a5

α
y + a8

)2

+ a9;

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u2 = 4 a12

(
a32 + a72

)
a72 f2

− 8 a12
[
a1

(
a32 + a72

)
(α x − β y) − α a7 (a3a8 − a4a7)

]2
α2 a74 f22

,

v2 = 4 a1
[
a1

(
a32 + a72

)
(α x − β y) − α a7(a3a8 − a4a7)

]
α a7 f2

,

with

f2 =
(
a1x − β a1 + a3

α
y + a3t + a4

)2

+
(

−a1a3
a7

x

+ β a1a3 − a72

α a7
y + a7t + a8

)2

+ a9.

2.2 Interaction solutions

Basic approaches to soliton solutions and dromion-type solutions include the Hirota
perturbation technique and symmetry reductions and constraints (see, e.g., [30–33]).
The following analysis aims to compute interaction solutions between lumps and line
solitons to the (2 + 1)-dimensional Ito equation (2.1) through testing if combined
functions of quadratic functions and the hyperbolic cosine can solve the (2 + 1)-
dimensional Ito equation (2.2). Interaction solutions describe more diverse nonlinear
phenomena in nature.

By the computer algebra system Maple, we first search for combined solutions to
the bilinear Ito equation (2.2). We start from an ansatz

f = ξ1
2 + ξ2

2 + cosh ξ3 + a13, (2.9)

where three linear wave variables are defined by

⎧⎨
⎩

ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,
ξ3 = a9x + a10y + a11t + a12,

(2.10)
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with the parameters ai ’s being real constants to be determined. The ansatz leads to
a class of one-soliton solutions when ξ1 = ξ2 = 0, while it generates a class of
lump solutions when ξ3 = 0. Therefore, the combined solutons are called interaction
solutions. We take two cases into consideration, where imposing a9 = 0 or a11 =
0. Combined with Maple symbolic computations, a direct analysis gives rise to the
following two classes of solutions for the parameters ai ’s:

⎧⎪⎪⎨
⎪⎪⎩

βa1 + αa2 + a3 = 0,
βa5 + αa6 + a7 = 0,
a1a3 + a5a7 = 0,
a9 = 0, αa10 + a11 = 0,

(2.11)

and

⎧⎪⎪⎨
⎪⎪⎩

βa1 + αa2 + a3 = 0,
βa5 + αa6 + a7 = 0,
a1a3 + a5a7 = 0,
αa10 + βa9 + a93 = 0, a11 = 0,

(2.12)

where the other parameters are arbitrary. These sets of solutions for the parameters
generate two classes of combined solutions f1 and f2 to the bilinear Ito equation (2.2),
defined by (2.9) and (2.10) with (2.11) or (2.12), and then the resulting combined solu-
tions present two classes of interaction solutions u1 and u2 to the (2+ 1)-dimensional
Ito equation (2.1), under the transformations in (2.3). The analyticity of the interactions
solutions is definitely guaranteed, if we require a13 > −1. These interaction solutions
reduce to the soliton solutions [26] when the quadratic function is not involved, and
the lump solutions [27] when the hyperbolic cosine is not involved. We point out that
the presented interaction solutions do not approach zero in all directions in the inde-
pendent variable space since a line soliton wave is involved, and they form a peak at
finite times due to the existence of a lump wave.

To get two specific interaction solutions to the (2 + 1)-dimensional Ito equation
(2.1), let us choose the following two special sets of the parameters:{

α = 1, β = −1, a1 = 1, a2 = 2, a3 = −1, a4 = 1, a5 = 2, a6 = 3
2 ,

a7 = 1
2 , a8 = 2, a9 = 0, a10 = 2, a11 = −2, a12 = 5, a13 = 1,

(2.13)

and{
α = 2, β = −2, a1 = 2, a2 = −1, a3 = 6, a4 = −1, a5 = −2, a6 = −5,
a7 = 6, a8 = −2, a9 = −1, a10 = − 1

2 , a11 = 0, a12 = 3, a13 = 2.

(2.14)

Since a13 > −1 in these two cases, the analyticity is guaranteed for the two corre-
sponding specific interaction solutions. It is easy to work out these two interaction
solutions:
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u1 = 20

g1
− 2(10 x + 10 y + 10)2

g12
, v1 = 2(10 x + 10 y + 10)

g1
, (2.15)

with

g1 = (x + 2 y − t + 1)2 +
(
2 x + 3

2
y + 1

2
t + 2

)2

+ cosh(−2 y + 2 t − 5) + 1, (2.16)

and

u2 = 2
[
16 + cosh(x + 1

2 y − 3)
]

g2

−2
[
16 x + 16y + 4 + sinh(x + 1

2 y − 3)
]2

g22
, (2.17)

v2 = 2
[
16 x + 16 y + 4 + sinh(x + 1

2 y − 3)
]

g2
, (2.18)

with

g2 = (2 x − y + 6 t − 1)2 + (−2 x − 5 y + 6 t − 2)2

+ cosh

(
x + 1

2
y − 3

)
+ 2. (2.19)

Three 3-dimensional plots and contour plots of the solution u1 at t = 0, 2, 5 and the
solution u2 at t = 0, 1, 2 are shown in Figs. 1 and 2, respectively.

3 Concluding remarks

Based on the Hirota form of the (2 + 1)-dimensional Ito equation, we computed one
class of lump solutions and two classes of interaction solutions between lumps and line
solitons to the (2 + 1)-dimensional Ito equation explicitly by symbolic computations
with Maple, and the resulting classes of interaction solutions provide supplements to
the existing lump and soliton solutions in the literature.

We point out that we can also present a kind of interactions solutions between
the lumps presented above and kinks as in [27]. In addition, if we replace the Hirota
derivatives in (2.2) with generalized bilinear derivatives [34], all previous computa-
tions would be different in the case of the Ito-like equation defined by the generalized
bilinear derivatives Dp,z with p = 3:

(
D2
3,t + D3

3,x D3,t + αD3,y D3,t + βD3,x D3,t

)
f · f = 0,

but lump solutions derived from quadratic functions are not changed. It would also
be interesting to find combined solutions to other generalized bilinear and tri-linear
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Fig. 1 Profiles of (2.15) with t = 0, 2, 5: 3d plots (top) and contour plots (bottom)

Fig. 2 Profiles of (2.17) with t = 0, 1, 2: 3d plots (top) and contour plots (bottom)

differential equations, generated from using generalized bilinear derivatives [34]. This
kind of mixed solutions is different from resonant solutions by the linear superposition
principle [35,36] and could describe complicated nonlinear physical phenomena.
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