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Abstract A (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko
equation that possesses a Hirota bilinear form is considered. Starting with
its Hirota bilinear form, a class of explicit lump solutions is computed through
conducting symbolic computations with Maple, and a few plots of a specific
presented lump solution are made to shed light on the characteristics of lumps.
The result provides a new example of (2 + 1)-dimensional nonlinear partial
differential equations which possess lump solutions.

Keywords Symbolic computation, lump solution, soliton theory
MSC 35Q51, 35Q53, 37K40

1 Introduction

The Cauchy problem is one of the fundamental problems in the theory of
differential equations, and its aim is to determine a solution of a differential
equation satisfying what are known as initial data. Laplace’s method is
developed for solving Cauchy problems for linear ordinary differential equations,
and the Fourier transform method, for linear partial differential equations. In
modern soliton theory, the isomonodromic transform method and the inverse
scattering transform method have been created for handling Cauchy problems
for nonlinear ordinary and partial differential equations, respectively [1,32].
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Only the simplest differential equations, normally constant-coefficient and
linear, are solvable explicitly. It is definitely difficult to determine exact
solutions to nonlinear differential equations. However, some recent studies have
been made on a kind of interesting explicit solutions called lumps, originated
from solving soliton equations [30,35]. Lumps are a kind of rational function
solutions that are localized in all directions in space, and solitons are analytic
solutions exponentially localized in all directions in space and time, historically
found for nonlinear integrable equations. Taking long wave limits of N -soliton
solutions can engender special lumps [34]. Positon and complexiton solutions
also exist for nonlinear integrable equations, adding to the diversity of solitons
[20,39]. More recent studies show that there exist interaction solutions [28]
between two different kinds of solutions to (2 + 1)-dimensional integrable
equations [27], and they can be used to describe various nonlinear phenomena
in sciences.

It is known that the Hirota bilinear method provides a powerful technique
to look for exact solutions in soliton theory [2,8]. Let a polynomial P determine
a Hirota bilinear form

P (Dx,Dt)f · f = 0,

where Dx and Dt are Hirota’s bilinear derivatives, for a given partial differential
equation with a dependent variable u. Through the Hirota bilinear scheme,
soliton solutions can be usually determined as follows:

u = 2(log f)xx, f =
∑
µ=0,1

exp

( N∑
i=1

µiξi +
∑
i<j

µiµjaij

)
,

where
∑

µ=0,1 denotes the sum over all possibilities for µ1, µ2, . . . , µN taking
either 0 or 1, and the wave variables and the phase shifts are given by

ξi = kix− ωit+ ξi,0, 1 6 i 6 N,

and

eaij = −P (ki − kj , ωj − ωi)
P (ki + kj , ωj + ωi)

, 1 6 i < j 6 N,

with ki and ωi satisfying the corresponding dispersion relation and ξi,0 being
arbitrary translation shifts.

It is recognized that the KPI equation possesses lump solutions [22], among
which are special lump solutions derived from N -soliton solutions [31]. Other
integrable equations which possess lump solutions include the three-dimensional
three-wave resonant interaction [11], the BKP equation [6,42], the Davey-
Stewartson equation II [34], the Ishimori-I equation [10], and many others (see,
e.g., [35,49]). It is very interesting to enlarge this category of nonlinear partial
differential equations that possess lump solutions.

This paper aims to add an equation to that category of nonlinear equations
by exploiting lump solutions to a (2+1)-dimensional generalized Bogoyavlensky-
Konopelchenko equation, via Maple symbolic computations starting with its
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Hirota bilinear form. Explicit formulas of the parameters involved in the
obtained solutions will be given, and three-dimensional plots, contour plots,
and plots of t-, x-, and y-curves of a specific example of the solutions will be
made via Maple plot tools. A few concluding remarks will be presented in the
last section.

2 A study on lump solutions

We consider a (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko
(gBK) equation

PgBK(u, v) := ut + α(6uux + uxxx) + β(uxxy + 3uuy + 3uxvy)

+ γ1ux + γ2uy + γ3vyy

= 0, (2.1)

where vx = u, and α, β, γ1, γ2, and γ3 are constant coefficients. This is
equivalent to the following equation:

vtx + α(6vxvxx + vxxxx) + β(vxxxy + 3vxvxy + 3vxxvy)

+ γ1vxx + γ2vxy + γ3vyy = 0, (2.2)

which is a generalization of the (2 + 1)-dimensional gBK equation (see, e.g.,
[33,37]):

vtx + α(6vxvxx + vxxxx) + β(vxxxy + 3vxvxy + 3vxxvy) = 0.

A direct computation tells that this gBK equation (2.1) can be written as a
Hirota bilinear form

BgBK(f) := (DtDx + αD4
x + βD3

xDy + γ1D
2
x + γ2DxDy + γ3D

2
y)f · f

= 2[ftxf − ftfx + α(fxxxxf − 4fxxxfx + 3f2xx)

+β(fxxxyf − fxxxfy − 3fxxyfx + 3fxxfxy)

+ γ1(fxxf − f2x) + γ2(fxyf − fxfy) + γ3(fyyf − f2y )]

= 0, (2.3)

under the transformations

u = 2(log f)xx =
2(fxxf − f2x)

f2
, v = 2(log f)x =

2fx
f
. (2.4)

Such logarithmic transformations play a prominent role in Bell polynomial
theories for soliton equations and their generalized counterparts (see, e.g.,
[5,21]). Actually, we have

PgBK(u, v) =
(BgBK(f)

f2

)
x
,
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and thus, when f solves the bilinear gBK equation (2.3), u = 2(log f)xx and
v = 2(log f)x will solve the (2 + 1)-dimensional gBK equation (2.1).

Bearing in mind that the gBK equation (2.1) has a Hirota bilinear form,
we search for a class of quadratic function solutions to the (2 + 1)-dimensional
bilinear gBK equation (2.3), defined by

f = ξ21 + ξ22 + a9, (2.5)

where
ξ1 = a1x+ a2y + a3t+ a4, ξ2 = a5x+ a6y + a7t+ a8, (2.6)

ai, 1 6 i 6 9, being constant parameters to be determined. Inserting such a
function f into the gBK equation (2.1) yields a system of algebraic equations
on the parameters and the constant coefficients. Then, direct symbolic
computations with Maple show that the resulting system of algebraic
equations has a class of explicit solutions:

a3 = −a1γ1 − a2γ2 −
a1(a

2
2 − a26) + 2a2a5a6
a21 + a25

γ3,

a7 = −a5γ1 − a6γ2 −
2a1a2a6 − a5(a22 − a26)

a21 + a25
γ3,

a9 = −3(a21 + a25)
2[α(a21 + a25) + β(a1a2 + a5a6)]

(a1a6 − a2a5)2γ3
,

(2.7)

and the other parameters could be arbitrary provided that the solutions of u
and v presented by (2.4) will make sense. The constant coefficient γ3 in the
solutions by (2.7) should not be zero, in order to produce lump solutions, but
it could be either positive or negative, which is different from the case in the
KPI equation [22].

Now, the transformations in (2.4) generate a large class of lump solutions
to the (2 + 1)-dimensional gBK equation (2.1), determined by

u =
2(fxxf − f2x)

f2
=

4(a21 + a25)

f
− 8(a1ξ1 + a5ξ2)

2

f2
,

v =
2fx
f

=
4(a1ξ1 + a5ξ2)

f
.

(2.8)

It is known that the requirement

a1a6 − a2a5 6= 0 (2.9)

is a necessary and sufficient condition for a solution f, defined by (2.5) and (2.6),
to yield a lump solution in (2+1)-dimensions through (2.8). The condition (2.9)
also guarantees a21 + a25 6= 0. Once we require the condition (2.9), we can solve

fx(x(t), y(t), t)) = 0, fy(x(t), y(t), t) = 0, (2.10)
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to get all critical points of f :
x = x(t) =

(a2a7 − a3a6)t+ (a2a8 − a4a6)
a1a6 − a2a5

,

y = y(t) = −(a1a7 − a3a5)t+ (a1a8 − a4a5)
a1a6 − a2a5

,

(2.11)

where t is a time parameter arbitrarily fixed. Since the sum of two squares, i.e.,
the function f − a9, vanishes at this set of critical points, we see that f > 0 if
and only if a9 > 0. This implies that u and v defined by (2.8) are analytical
in R3, if and only if a9 > 0. Further according to (2.7), u and v by (2.8) are
analytical, if and only if

[α(a21 + a25) + β(a1a2 + a5a6)]γ3 < 0. (2.12)

For any given time t, the point (x(t), y(t)) defined by (2.11) is also a critical
point of the function u = 2(log f)xx, and thus, by the second derivative test,
the lump solution u has a peak at this point (x(t), y(t)), because we have

uxx = −24(a21 + a25)
2

a29
< 0,

uxxuyy − u2xy =
192(a21 + a25)

2(a1a6 − a2a5)2

a49
> 0,

(2.13)

at the critical point (x(t), y(t)) of f. The peak of u has a value of

umax =
4(a21 + a25)

a9
. (2.14)

At the critical point (x(t), y(t)) of f, we also have

v = 0, vx =
4(a21 + a25)

a9
> 0, vy =

4(a1a2 + a5a6)

a9
, (2.15)

and thus, (x(t), y(t)) is definitely not a critical point of v, and the x-curve of
v is increasing but the y-curve of v could be either increasing or decreasing at
(x(t), y(t)), which depends on the sign of a1a2 + a5a6.

All the solutions computed this way provide a valuable supplement to the
solution theories available on soliton solutions and dromion-type solutions,
developed through powerful existing techniques such as the Hirota perturbation
approach and symmetry constraints including symmetry reductions (see, e.g.,
[3,4,13–15,52]).

Let us take

α = 1, β = 1, γ1 = 1, γ2 = −1, γ3 = 1, (2.16)

and then we arrive at a special gBK equation

ut + 6uux + uxxx + uxxy + 3uuy + 3uxvy + ux − uy + vyy = 0, (2.17)
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where u = vx. Now, further fixing

a1 = 1, a2 = −1, a4 = −1, a5 = −1, a6 = 5, a8 = 1, (2.18)

which ensures the conditions (2.9) and (2.12), and so, the positiveness of the
generating function f, we can obtain a specific lump solution to the special gBK
equation (2.17) as follows:

u =
8

f
− 32(x− 3y − 13t− 1)2

f2
, v =

8(x− 3y − 9t− 1)

f
, (2.19)

where
f = (x− y + 5t− 1)2 + (−x+ 5y + 23t+ 1)2 + 3. (2.20)

Three three-dimensional plots and contour plots, and t-, x-, and y-curves of this
lump solution are made via Maple plot tools, to shed light on the characteristics
of lump solutions, in Figures 1 and 2.

Fig. 1 Profiles of u when t = 0, 0.3, 0.5: 3d plots (top) and contour plots (bottom)

3 Concluding remarks

We have studied a (2 + 1)-dimensional generalized Bogoyavlensky-
Konopelchenko (gBK) equation to exploit lump solutions, through symbolic
computations with Maple. The result, enriching the theory of solitons, provides
a new example of (2 + 1)-dimensional nonlinear integrable equations that
possess lump solutions. Three-dimensional plots, contour plots, and t-, x-, and
y-curves of a specially chosen solution were made by using plot tools in Maple.
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Fig. 2 Curves of u at (x, y) = (1,−1), (t, y) = (0,−1), and (t, x) = (0,−5)

On one hand, recent studies tell that many other nonlinear equations
possess lump solutions, which include (2+1)-dimensional generalized KP, BKP,
KP-Boussinesq, and Sawada-Kotera equations [18,19,26,29,47]. Abundant lump
solutions provide valuable supplements to exact solutions generated from
different kinds of combinations (see, e.g., [16,25,38,40,53]), and generate the
corresponding Lie-Bäcklund symmetries, which might be helpful in determining
conservation laws by symmetries and adjoint symmetries [9,24]. On the other
hand, some more recent studies show that there exist interaction solutions
between lumps and other kinds of exact solutions to nonlinear integrable
equation in (2 + 1)-dimensions. They include lump-kink interaction solutions
(see, e.g., [12,36,48,51]) and lump-soliton interaction solutions (see, e.g.,
[27,44–46]). In the (3 + 1)-dimensional case, lump-type solutions, which are
rationally localized in almost all directions in space, were computed for the
integrable Jimbo-Miwa equations. Various such solutions were worked out
for the (3 + 1)-dimensional Jimbo-Miwa equation (see, e.g., [23,43,50]) and
the (3 + 1)-dimensional Jimbo-Miwa like equation [7]. There are also Rossby
wave solutions to generalized Boussinesq and Benjamin-Ono equations (see,
e.g., [17,41]).

We point out that for the (2 + 1)-dimensional gBK equation (2.1), we can
also find a set of traveling wave solutions with an arbitrary function:

u = 2(log g(ξ))xx, v = 2(log g(ξ))x,

ξ = x− α

β
y − α2γ3 − αβγ2 + β2γ1

β2
t+ c,

where g is an arbitrary function and c is an arbitrary constant. Therefore, the
gBK equation (2.1) can have various lump-type solutions as well. However, we
failed to find any interaction solutions between lump or lump-type solutions
and kink or soliton solutions for the (2 + 1)-dimensional gBK equation (2.1).
We guess that the existence of such interaction solutions might strongly reflect
complete integrability of the partial differential equations under consideration.

It is, of course, interesting to look for lump solutions and interaction
solutions to partial differential equations in whatever dimensions. Conversely,
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the other interesting problem is to characterize partial differential equations,
both linear and nonlinear, which could possess lump solutions and interaction
solutions.
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