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a b s t r a c t

Based on symbolic computations, lump solutions to the Kadomtsev–Petviashvili I (KPI)
equation with a self-consistent source (KPIESCS) are constructed by using the Hirota
bilinear method and an ansatz technique. In contrast with lower-order lump solutions of
the Kadomtsev–Petviashvili (KP) equation, the presented lump solutions to the KPIESCS
exhibit more diverse nonlinear phenomena. The method used here is more natural and
simpler.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Soliton equations with self-consistent sources are role models in many fields of physics, and important developments
have been made in exploring their soliton phenomena [1–20]. The Kadomtsev–Petviashvili (KP) equation with a self-
consistent source arose in describing the interaction of long and short waves and its soliton solutions were first found by
Mel’nikov [21,22]. Later, N-soliton solutions of the KP equation with self-consistent sources were obtained through the
Hirota method [23] and the generalized binary Darboux transformation [24]. Furthermore, the general high-order rogue
waves which are given in terms of determinants whosematrix elements have plain algebraic expressions of the KP equation
with self-consistent sources were derived via the Hirota method [25].

In contrast to soliton solutions, lump solutions are another kind of important exact solutions, which are rational analytical
and localized in all directions in the space. General rational function solutions were presented for the Korteweg–de Vries
(KdV) equation, the Boussinesq equation, the nonlinear Schrödinger (NLS) equation and the Toda lattice equation system-
atically through the Wronskian and Casoratian determinant techniques for integrable equations [26–30]. Special examples
of lump solutions are also found for many integrable equations such as the Kadomtsev–Petviashvili I (KPI) equation [31,32],
the three-dimensional three-wave resonant interaction [33], the B-Kadomtsev–Petviashvili (BKP) equation [34], the Davey–
Stewartson-II equation [35,36] and the Ishimori-I equation [37].

In mathematical physics, the KP equation is usually written as

(ut + 6uux + uxxx)x − σuyy = 0, σ = ±1, (1)

which is classified as the KPI equation when σ = 1 and the KPII equation when σ = −1. Recently, one of the authors
(Ma) has proposed a symbolic computation method to search for positive quadratic function solutions, particularly for the
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(2 + 1)-dimensional bilinear KPI equation [38]. The obtained quadratic function solutions in the KPI case [38] contain a set
of six free parameters, and taking special choices of the involved parameters covers a particular class of lump solutions
generated from computing long wave limits of soliton solutions. The same idea was also adopted to derive lumps and
interaction solutions between lumps and kinks for several equations such as KPI equation [39,40], BKP equation [41,42],
(2 + 1)-dimensional Ito equation and (2 + 1)-dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera (CDGKS) equation [43],
(2+1)-dimensional Sawada–Kotera equation [44], dimensionally reduced gKP and gBKP equations [45], (3+1)-dimensional
Jimbo–Miwa equation [46,47]. Especially, in the case of the (2 + 1)-dimensional Ito equation, an interesting characteristic
that an arbitrary function is involved in the resulting interaction solutions was explored [48]. It should be noticed that the
Hirota bilinear method plays an important role in these works and this technique has the advantage of being applicable
directly upon the equations [49–51].

In this paper, we would like to discuss the KPI equation with a self-consistent source (KPIESCS){
(ut + 6uux + uxxx + 8|Φ|

2
x )x − 3uyy = 0,

iΦy = Φxx + uΦ,
(2)

and want to determine its lump solutions and their dynamics. We begin with the Hirota bilinear form of the KPIESCS and
make some ansatz by combination functions of quadratic functions to solve the corresponding bilinear counterpart equation.
The resulting solutions exhibitmore diverse nonlinear phenomena than lower-order lumps solutions to the KPI equation and
provide supplements to the existing solutions in the literature. A few concluding remarks will be given in the last section.

2. Lump solutions to KPIESCS

Through the dependent variable transformation u = 2(ln F)xx and Φ = G/F , the KPIESCS is rewritten as⎧⎪⎨⎪⎩
[
2(FxtF − FxFt + FxxxxF − 4FxxxFx + 3F 2

xx − 3FyyF + 3F 2
y ) + 8GG∗

F 2

]
xx

= 0,

i(GyF − GFy) − GxxF + 2GxFx − GFxx = 0,

(3)

from which we obtain its bilinear equation{
2(FxtF − FxFt + FxxxxF − 4FxxxFx + 3F 2

xx − 3FyyF + 3F 2
y ) + 8GG∗

= cF 2,

i(GyF − GFy) − GxxF + 2GxFx − GFxx = 0,
(4)

where c is a constant of integration. Here asterisk G∗ means the complex conjugation and D is the famous Hirota bilinear
operator [26]. Eq. (4), with c = 8, may also be written concisely in terms of the D-operators as{

(DxDt + D4
x − 3D2

y)F · F + 8(GG∗
− F 2) = 0,

(iDy − D2
x )G · F = 0.

(5)

To search for lump solutions to the above bilinear equation, putting G = GR + iGI and supposing⎧⎪⎨⎪⎩
F = 1 + ξ 2

1 + ξ 2
2 ,

GR = b0 + b1ξ1 + b2ξ2 + b3ξ 2
1 + b4ξ 2

2 ,

GI = c0 + c1ξ1 + c2ξ2 + c3ξ 2
1 + c4ξ 2

2 ,

(6)

with {
ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,

(7)

where the parameters ai(1 ≤ i ≤ 8), bj, cj(0 ≤ j ≤ 4) are all real constants to be determined. It is easy to see that the
assumption for F here guarantees analyticity and rational localization of solutions. Substituting Eqs. (6) and (7) into Eq. (5)
and equating all the coefficients of different polynomials of x, y, t to zero, we obtain a set of algebraic equations on the
undetermined parameters. After careful discussions, we can generate the following set of constraining equations for the
parameters

{a3 =
(a22 − a41)[3(a

4
1 + a22)

2
+ 16a41]

a1(a41 + a22)2
, a5 = 0, a6 = a21,

a7 =
2a1a2[3(a41 + a22)

2
− 16a41]

(a41 + a22)2
, b0 =

b3(a22 − 3a41)
a41 + a22

, (8)

b1 = kc1, b2 = kc2, b4 = b3, c0 = −kb0, c1 = −
4a21a2b3
a41 + a22

,
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(a) u at t = 0. (b) Density plot of Fig. 1(a).

Fig. 1. (Color online) Plots of lump solution for uwith a1 = 1, a2 = −2, a4 = −1, a8 = 0, b3 =
3
5 , k = −

4
3 at t = 0.

c2 =
4a41b3
a41 + a22

, c3 = −kb3, c4 = c3},

where k is an auxiliary arbitrary real constant which needs to satisfy the following condition

b23(1 + k2) = 1, (9)

and the other parameters not expressed in the set are arbitrary, provided that all corresponding formulas are well defined.
Therefore, the non-zero determinant condition discussed before in [38] now becomes a1a6 − a2a5 = a31 ̸= 0, which
guarantees the localization of the associated solutions.

Actually, it is readily observed that at any given time t , the above lump solution u → 0 when x2 + y2 → ∞. We can also
get all critical points of the function F at a fixed time t by solving the first-order derivative equations (Fx, Fy) = 0 to obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(t) =
3(a41 + a22)

3
+ 16(a81 − 3a41a

2
2)

a21(a
4
1 + a22)2

t −
a21a4 − a2a8

a31
,

y(t) =
2a2[16a41 − 3(a41 + a22)

2
]

a1(a41 + a22)2
t −

a8
a21

,

(10)

and they are also critical points in the (x, y)-plane for the function u = 2(ln F )xx. Moreover, based on the second partial
derivative test, we can know that the lump solution u has a peak at the critical point (x(t), y(t)) since

uxx = −24a41 < 0, uxxuyy − u2
xy = 192a101 > 0. (11)

However, with respect to the consistent-source term |Φ|
2

= |G|
2/F 2

= (G2
R + G2

I )/F
2, it decays into b23 + c23 = 1 for

|x|, |y| → ∞. Its critical points do not always coincide with those functions F and G. For illustration, two special pairs of the
lump solutions with specific values of the parameters are given as follows.

Firstly, if we take a special choice for the parameters

a1 = 1, a2 = −2, a4 = −1, a8 = 0, b3 =
3
5
, k = −

4
3
, (12)

we get the lump solution which was exactly presented in Ref. [24] as µ = 1/2, ν = 1. The corresponding three dimensional
plots and density plots when t = 0 are shown in Figs. 1 and 2, respectively. The lump solutions are all centered at (1, 0), but
the source term |Φ|

2 owns two maximal points and one minimal point as shown in the figures. Meanwhile, we can see a
twist in Fig. 2(b) for the source term.

Secondly, the plots for another selection of the parameters

a1 = 1, a2 = −1, a4 = −1, a8 = 0, b3 = 1, k = 0, (13)

when t = 1 are depicted in Figs. 3 and 4, respectively. It can be seen that the potential u is similar, but the source term |Φ|
2

exhibits different and diverse dynamics from the first case. It owns two peak points and twominimal points compared with
Fig. 2.
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(a) |Φ|
2 at t = 0. (b) Density plot of Fig. 2(a).

Fig. 2. (Color online) Plots of lump solution for |Φ|
2 with a1 = 1, a2 = −2, a4 = −1, a8 = 0, b3 =

3
5 , k = −

4
3 at t = 0.

(a) u at t = 1. (b) Density plot of Fig. 3(a).

Fig. 3. (Color online) Plots of lump solution for uwith a1 = 1, a2 = −1, a4 = −1, a8 = 0, b3 = 1, k = 0 at t = 1.

3. Conclusion

In this paper, the lump solutions to the KPI equation with a self-consistent source (KPIESCS) were presented by using
the direct ansatz and the Hirota bilinear method. It is shown that the direct ansatz is a powerful means for seeking lump
solutions to nonlinear equations,when it is combinedwith theHirota bilinearmethod.We can see that the solutions obtained
are consistent with those presented before, and the approach used here is more natural and simpler. It is hoped that the
presented results would be helpful in understanding the propagation processes of nonlinear waves, particularly in fluid
mechanics. Recently, interaction solutions between lumps and solitons have attracted a lot of attention and various kinds of
interaction solutions have been obtained [52]. It will be interesting to discuss the existence conditions and solutionmethods
for getting new interaction solutions to nonlinear wave equations. Those problems are left for future research publications.
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(a) |Φ|
2 at t = 1. (b) Density plot of Fig. 4(a).

Fig. 4. (Color online) Plots of lump solution for |Φ|
2 with a1 = 1, a2 = −1, a4 = −1, a8 = 0, b3 = 1, k = 0 at t = 1.
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