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Generalized matrix exponential solutions to the AKNS equation are obtained by the inverse scattering transformation (IST). The
resulting solutions involve six matrices, which satisfy the coupled Sylvester equations. Several kinds of explicit solutions including
soliton, complexiton, and Matveev solutions are deduced from the generalized matrix exponential solutions by choosing different
kinds of the six involved matrices. Generalized matrix exponential solutions to a general integrable equation of the AKNS hierarchy
are also derived. It is shown that the general equation and its matrix exponential solutions share the same linear structure.

1. Introduction

Many nonlinear models are studied and shown to possess
hierarchies, and recursion operators play a crucial role in
constructing hierarchies of soliton equations [1]. Associated
with the variational derivative, recursion operators have been
developed to formulate the Hamiltonian structures proving
the integrability of soliton hierarchies [2, 3]. Recursion oper-
ators also have a tight correlation with one-soliton solutions.
For example, the Korteweg-de Vries (KdV) hierarchy

u,=T'u,, n=0,1,2,..., 1)

X2
possesses the following one-soliton solution:
L k(x+K"t+9)
u=—sech"——=,
2 2

where T = 0* + 4u + 2u,0"" is the recursion operator of the
KdV hierarchy, & is a constant, and @ = 9/0x, 0" = 9'0 =
1. Notice that the dispersion relation of (2)

kx + K"t (3)

is linked closely with the order of the recursion operator T

n=0,1,2,..., 2

Since the discovery of scattering behavior of solitons
[4] and the IST [5], solitons have received much attention.
The IST has been also well developed and widely used to
solve nonlinear equations [1, 6]. It can be used to solve
not only normal soliton equations but also unusual soliton
equations such as equations with self-consistent sources [7],
nonisospectral equations [8, 9], and equations with steplike
finite-gap backgrounds [10] and on quasi-periodic back-
grounds [11]. Recently, Ablowitz and Musslimani developed
the IST for the integrable nonlocal nonlinear Schrédinger
(NLS) equation [12].

The Sylvester equation

AM -MB=C (4)

is one of the most well-known matrix equations. It appears
frequently in many areas of applied mathematics and plays a
central role, in particular, in systems and control theory, sig-
nal processing, filtering, model reduction, image restoration,
and so on. In recent years, it has been used to solve soliton
equations [13, 14] successfully. The method based on the
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Sylvester equation is also known as Cauchy matrix approach
[14-18], which is actually a by-product of direct linearization
approach first proposed by Fokas and Ablowitz in 1981 [15]
and developed to discrete integrable systems by Nijhoff et al.
in early of 1980s [16].

In the process of solving soliton equations, it can yield
fantastic results by using matrices properly. Successful exam-
ples are the Wronskian technique and the IST. Ma et al.
had introduced the matrix element in Wronskian determi-
nants when they used the Wronskian technique to solve
soliton equations [19-23]. They obtained various kinds of
solutions such as soliton, rational, Matveev, and complexiton
solutions. In 2006, Aktosun and Van Der Mee proposed
a modified inverse scattering transformation (MIST) [24].
They expressed the scattering data of spectral problems by
three matrices, A, B, C, and proved that the matrices A, B,
C satisty the Sylvester equation. The advantage of the method
is that it can get more kinds of solutions and its process is
simpler than the traditional IST [24-27].

In this paper, we would like to consider the AKNS

hierarchy
(q> :L"(_q) n=0,1,2,...), (5)
r/, r

with the help of MIST, where

q 4 -1 0
L:aa+2< )a (r.q), a:< ) (6)
-r 0 1

Many integrable systems can be reduced from it such as
the modified KdV, sine-Gordon, nonlinear Schrédinger, and
nonlocal nonlinear Schrodinger system. There have had
already a lot of researches on AKNS hierarchy for it is a
representative integrable hierarchy [21, 22, 28]. In this paper,
we will construct the soliton, complexiton, and Matveev
solutions to the first nonlinear equation of (5). We will show
that the linear relation (3) exists not only in one-soliton
solutions but also in multisoliton, complexiton, and Matveev
solutions.

The paper is organized as follows: In Section 2, we will
review the recovered potentials of the AKNS spectral problem
by IST. In Section 3, we will obtain the coupled Sylvester
equations and generalized matrix exponential solutions to the
AKNS equation. In Section 4, some different types of explicit
solutions will be constructed. In Section 5, generalized matrix
exponential solutions will be given to the AKNS hierarchy.
The relationship between the recursion operator and the
solutions of the AKNS hierarchy will be discussed also. We
conclude the paper in Section 6.

2. Preparation

To make the paper self-contained, we first briefly recall the
Lax integrability of the isospectral AKNS hierarchy and its
Gel'fand-Levitan-Marchenko (GLM) equations.
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It is well known that the AKNS hierarchy has the
following Lax pairs [29]:

_'k
b, = M, M=<; 1) (72)
= N N = A B 7b
w-no. N=(7 ). (7b)

where ¢ = (¢,,¢,)", k is a spectral parameter, and g = q(t, x),
r = r(t,x) are potential functions. We assume that q(x, t)
and r(x,t) are smooth functions of variables ¢t and x, and
their derivatives of any order with respect to x vanish rapidly
as x — o00. The compatibility condition, zero curvature
equation

M,- N, +[M,N] =0, (8a)
with boundary conditions

—% ik 0

Nlgn=00 = , (8b)

0 % Qik)"

can yield the isospectral AKNS hierarchy (5). The first two
nonlinear equations in the AKNS hierarchy are

q x24T
= N 9
<T)t ( rxx—quz ) (2)
<q> _ (qxxx - 66]"%) (9b)
r), Toxx — 0QTT, '

Next we mainly follow the notions and results given in
(1, 6].

Lemma 1. If the read potentials (q(x,t), r(x, )7t satisfy
I |qu (x)| dx < +00,

joo |xjr (x)| dx < +00, (10)

(j=0,1),

the spectral problem (7a) has a group of Jost solutions ¢(x, k),
$(x, k), y(x, k), and y(x, k) which are bounded for all values
of x and also enjoy the following asymptotic behaviors:

0\ .

¢ (x, k) ~< )elkx,
1

_ 1 )

¢ (x, k) ~ (0) e,

(x — 00),
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k 1 —ikx

y(x, k) ~ <0>e ,
0 .

W(x,k)fv( l)e’kx,

(x — —00).
(11)

In the usual manner, we define the scattering coeflicient
by

v (6, k) = a (k)¢ (x,k) + b (k)¢ (x, k), (12a)
v (6, k) = —a (k) (x,k) +b (k) (x,k),  (12b)

where
ak)a(k)+bk)bk) = 1. (13)

Furthermore, one can give ¢(x,k), ¢(x,k) by the integral
representation

(14a)

X

¢ (x, k) = (?) e 4 JOO K (x,y)e™dy,

¢ (x,k) = ((1)) e g JOO K (x,y) e ™®dy, (14b)

X

where K(x, y) = (K, (x, ), K,(x, )" and K(x, y) = (K, (x,
y),Ez(x, y))T are column vectors.
In order for (14a) and (14b) to be valid, it is necessary that

q(x) =-2K, (x,x),
_ (15)
r(x) = =2K, (x,x).

Definition 2. If kj and Ej are single roots of a(k) and a(k),

respectively, there exist ¢; and ¢; such that

2 JOO c;gbl (x, kj)qu (x, k]-) =1,
o (16)
2 LO &6, (6K, &, (x. k) = 1.

¢ and Ej are named the normalization constants for the

eigenfunctions ¢(x, k;) and P(x, E]-). Accordingly, ¢;¢(x, k;)

and Ej$(x, Ej) are named the normalization eigenfunctions.
Definition 3. One named the set

_ _bk) 4 _bK),
{k (Imk = 0), R(k) = oL R(k) = 0

k; (Imk; > 0), k,, (Imk,, <0), ¢;, C,, j=1,2, (17)
N A m:l,z,...,i}

to be the scattering data for the spectral problem (7a).

Lemma 4. Given the scattering data for the spectral problem
(7a) and

F(x)=F.(x)+F; (x),

_ _ _ (18a)
F(x)=F. (x)+F;(x),
where
1 © ikx
F(x) = - j R (k) e dk,
21 )0
; (18b)
F;(x) = Zc]?eikfx,
=1
F(x) = - j R(k) e ™ dk,
21 )0
; - (18¢)
Fy(x)=~- E?eikfx,
=1
one has the GLM equations for the AKNS hierarchy
_ 0
K(x,y)+ <1>F(x+y)
(19a)
+J K(x,2)F(z+y)dz =0,
1\
K(oy)={,)Flx+y)
(19b)

- Joof(x,z)l?(z+y)dz =0.

X

3. Generalized Matrix Exponential
Solutions to the AKNS Equation

In this section, we will get generalized matrix exponential
solutions to the AKNS equation (9a) via MIST.

From the previous section, we know that the potentials
of spectral problem (7a) can be recovered by (15). For
convenience, we denote K, (x, y) and fz (x, y) by K(x, y) and
K(x, ), respectively, in this and the following sections.

Lemma 5. The GLM equations (19a) and (19b) of the AKNS
hierarchy have other forms:

K(x,y)
=F(x+y)

_ JOO Joodsde(x,s)F(s+z)F(z+y),

X X



K (x, )

=-F(x+y)

- Joo Joodsdzﬁ(x,s)?(s+z)1~"(z+y).

X X

(20)

Proof. Rewrite (19a) and (19b) in their component forms as

K, (x,y)+ ro K, (x,2)F(z+y)dz =0, (21a)

K, (x,y)+F(x+y)+ Jjo K, (x,2)F(z+y)dz ()
=0,

Ky (x,y)-F, (x+y)- L K, (x,2)F(z +y)dz 219
-0,

K, (x,y) - ro K,(x,2)F(z+y)dz = 0. (21d)

Substituting (21a) and (21d) into (21c) and (21b) and replacing
K, (x, ), K,(x, y) with K(x, y), K(x, y), respectively, we have

K(x,y)
=F(x+y)
- JOO Joodsde(x,s)F(s+z)ﬁ(z+y),
x Jx (22)
K(x,y)
=-F(x+y)
- ro desdzf(x,s)F(Hz)F(zw).
O

Lemma 6. Let A and A bel x [ constant matrices, B and B be
I x 1 constant column vectors, and C and C be 1 x I constant
row vectors. Assume that A and A satisfy lim,_ . e® = 0 and
lim,_, . e™™ = 0, respectively, where 0 is the | x | matrix with
all elements being zero. Then upon taking

(o] _ —
M = J e BCe ¥ dz,
0

(23)
—_— B A—
M = J e **BCe*dz,
0
one has the following coupled Sylvester relations:
MA - AM = BC,
(24)

AM - MA = BC.
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Proof. We only prove the first relation, and the second
relation can be proved similarly:

(o) — —
MA - AM = J (eAZBCe‘AZA - AeAZBCe‘Az) dz
’ (25)
— A |0 —
= —¢™ BCe ™ , =BC.
O
For convenience, we set
Q(x) = e_KxMeAx,
Q(x) = e Me ™,
(26)
E(t) = e,
E) = e_ﬂ,

where T, T are I x I matrices, M, M, A, A, B, B, C, C are
matrices defined in Lemma 6, and they enjoy the relations
(24).

Setting

Fr=I1+Qx)EGOQ®E®,
- o (27)
T=I+QX)EBOQXE®),

if T and T are nondegenerate matrices, we have the following
theorem.

Theorem 7. If AT = TA and AT = T A, the potentials of the
AKNS spectral problem (7a) can be recovered as

q(x,t) = _2Ce™E ) e B,
. (28)
r(x,t) = 2Ce™E )T e*B.

Proof. Let F.(x) and l_jc(x) be zero and F,(x) and l?d(x) be
matrix exponential forms in (18a); that is,

F(x) = F, (x) = Ce*B,
_ (29)
F(x) = F,(x) = Ce *B.

Suppose that the time evolution of F(x) and that of F(x) are
F (x,t) = Ce™E (t) B,
_ o (30)
F (x,t) = Ce “E(t)B.

We may take

K(x,y) = H(x,t) e_ZyE,
(31)

K(x,y) =H (x,t) eYV'B,

accordingly, where H(x, t), H(x, t) are 1 x [ row vectors.
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Substituting (30), (31) into the first equation of (20), we
get

H(x,t) = Ce ™8 () - ro ro dsdzH (x, t)
X X (32)

. e MBCe Mg (1) BCe B (1).

That is,
H (x,t) (I

+J e “BCe™dsE (t)J eAZBEe_szZE(t)> (33)

X X
- Ce ™8 (1).

In the light of

o0 — —
J e®BCe ds = e Me ™,

X

L i (34)
L e “BCe™ds = e Me™,
we have
H(x,t)=Ce BT (35a)
Similarly, we can arrive at
Hx,t) = —Ce™2 )T . (35b)

Finally, we find that the potentials of the AKNS spectral
problem (7a) can be recovered as

q(x) = 2K (x,x) = 2Ce M (1) T e B, 56
36
r(x) = —2K (x, x) = 2Ce™E () T ™ B,
by taking advantage of (15). O

Next we will get solutions to the AKNS equation (9a) from
the recovered potentials (28).

Proposition 8. The matrices Q(x)E() and Q(x)E() satisfy

QEMT  =T'Qx)E®), (37a)

T'OWED=0ENT, (37b)

=1 - Lo
respectively. Thus, the two matricesT — and T™" are similar.

Although Proposition 8 is simple, we will use it many
times in the following part of this paper.

Theorem 9. If T = (A and T = (22)2 in B(t) and E(t),
respectively, the recovered the potentials (28) are solutions to
the AKNS equation (9a).

Proof. We only prove the first equation of (9a), and the second
equation can be proved similarly.

On the one hand

—QXEMQXE®) Zz] e 4B
(38)
— —2 A o — J—
= 8Ce *A 1Al [A2 +Q(x)E () A2 (%) E (t)]
. I‘_le_zxﬁ
and on the other hand
2 = 4A Al [ (2 2
— G, +2q°r = 2Ce r [(FA +AT)

+2(T, +TA) I (T, + AT) - T, (39)

_ . o, _
+ 8¢ AXBC A AR Ax g 1A t—Ax] e Ag,
Through proper simplification, we have
— —2, = —
—ux 2q2r = 8Ce 4 " [A2
(40)
L Q@) EM A (0)E (t)] e B,

O

4. Exact Solutions to the AKNS Equation

In this section, we will construct different kinds of explicit
solutions to the AKNS equation (9a) by taking different kinds
of A,B,Cand A, B, C.

(i) One-Soliton Solutions. Taking A = k;, B = b, C = ¢; and
A=k, B=b,,C =, we get
-2 (ky - k1)2 bzcze%k;tizkzx

= (k, - kl)z bbycic, ARk, —ky)x

(41)
2
2 (k2 _ k1 )2 blcle4klt+2k1x
= (5, - kl)z T+ bbycic, ARk —ky)x

where k;, bj,¢; € C (j =1,2) and Rek; < 0,Rek, > 0.

(ii) Two-Soliton Solutions. Taking
(o 2)
A= ,
0 -1
1
o= ()
2 (42)
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we have
1662-81+) (9e12t + 5062 + 1800128% 4 3600632t+10x)
T 1+ 180065 + 5766521 1 6400¢10C) 4 18005 ) (1+8e%)’
43
1664(4t+x) [9 + 50620t+2x (1 + 7268x + 3666(2t+x)>] ( )
1+ 180065 + 576¢5CE) 4 64001001 4 18008 ) (1 +8e%)’
(iii) Three-Soliton Solutions. Taking 1
B=| -1,
-1 0 0
2
A= o -1 0 |,
0 0 -2 C=(121),
200 C=(211),
A=|lo010|, (44)
002
1
B=[ -1,
1 we have
_726—4(4t+x) (eIZt _ 462x _ 14466x + 36612t+8x)
1= 720 cosh 12t — 648 cosh 2x — 1297 cosh 6x — 432 sinh 12t — 1295 sinh 6x~ (45)
45
72e4t—4x (1 + 3668x _ 62(6t+x) _ 36612t+6x)
r= :
720 cosh 12t — 648 cosh 2x — 1297 cosh 6x — 432 sinh 12t — 1295 sinh 6x
(iv) Matveev Solutions. Taking r
11 26" [4. 4 64t + 8x + 7 (34 16t + 4x) |
= (0 1) ) T4 MOt 4 Q26100) [3 25612 — 96t (1 + x) — 2x (5 + 4x)]
(47)
1 21
“\o 2/’ (v) Complexiton Solutions. Taking
1 1
L (! (46) Ao ( )
2 )’ -11
B-(’ A= ( 2 2) ’
-(7) 22
1
c=C=(11), B:(), (48)
3
we have
_ 3
q B= ,
1

e 22 4+ 32t + 8x + &2 (=6 + 32t + 4x)

T 4+ M6 4 2600 [3- 25612 — 96t (1 + x) — 2x (5 + 4%)] C=C=(11),
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we have

_ 32cos (8t +2x) — 16 sin (8t + 2x) — 4¢** [2 cos (32t + 4x) + sin (32 + 4x)]

B 4e%* + %% — e%* [5sin (24t + 2x) + sin (40t + 6x)] ’

e 4e* [2 cos (32t + 4x) — sin (32t + 4x)] + 4e®* [2 cos (8t + 2x) + sin (8t + 2x)]

B 4 + e** — e2% [5sin (24t + 2x) + sin (40f + 6x)] ‘

5. The Same Linear Relation That a General We consider a new general equation:
Equation and Its Solutions Share
a\ 0(L) q

In this section, we will construct a new general equation i) r)’
related to the AKNS hierarchy and get its generalized matrix !
exponential solutions. Furthermore, we find that the recur-  where
sion operator and the solutions of the AKNS hierarchy have o
the same linear relation. O(L)=a)l" +a,Ll"" +---+a, ,L+a,

is a polynomial operator on L.
Let

(qn> 2"CeMEM T A"+ Q) E () A"Q () E (1)] r*le*ZXE
N\ 2t EnT ! [A"+ O WEOA Q) E®]T B

v

(un) 2"CeME (1) T et (A”‘lM - MA"! ) () e T e B
2Ce A F (1) I le A (mﬂ - Z’“M) E(t) T 'eAB )’

we have the following Lemma. CATTOEOTTIQM)E AQ () E®) - Q (%)
Lemma10. If AT = TA and AT =T A, one obtains EMATQWEOT A+ QX EMAQ(x)
= -1 —Axo
G+ 0,1 = 2q (1, +v,), B0,
(53)
T, — 01, =—2r(u, +v,).
we have

Proof. We only prove the first equation. For mHIE QA A

q+aqn1:2 Ce

_ n= -Ax [z 1= 1 —
aq’“‘a{z Ce [A E® —QEEMA]T QWEMA"

2T () A Q0 E
+EMTQE)EMAQX)E(?) +I:Zn—IQ(X)E(t)_Q(X)E(t)An_l]

SEOTO@EOQWEMA” |17 B e
I [QWEBMA-AQX)E®)]
= 2™ ME (1) T [A _ar'art

—n-1__1—

AT TTA-Q()EM®)AQ () E()T A"
_ATTTQ () E() AQ () E () - Q(x)E ()
CAQ)EMTQMEM A Q) E ()

_ATIQ () E () AT () E (1) - Q (x)E (1) +(ATM-MA) BT ™ (MA

r'{[Acmew

-[Aame@® - oxem AT A O WE®)
. F_le_zxﬁ = 2”+166_Zx§ (t) F_le_z" [(ZM

- MA)eMEMT e (MZ"‘I—A"*‘M)E(t)

(49)

(50)

(51)

(52)

(54)



8
- AM)E (t)] e T e B = 21 Ce M E (1)
Tl [ECeA"E (OT et (MZ"'1 - A”‘lM)
E@) + (Z’“M - MA”‘I) E(t)
T ' eBCE (t)] e AT A,
(55)
From (28), we know that the conclusion is right. O

Theorem 11. If AT = TA and AT =T A, one has

X, t —q(x,t
(qn( )):L"( q( )>. (56)
1, (x,1) r(x,t)
Proof. We use the mathematical induction to prove the

theorem.
When #n = 1, we have

<q1> B (qx)
1’1 - rx
e EMT [A+ Q) EMNAQEW®)]Te™B
N\ et T A+ QWEMAQEW]T ™8 )

(57)

and (56) is established.
Supposing that

<qn—1) _ Ln_l (_q (.X, t)) ’ (58)
Tt r(x,t)
(%) _ L<qn1); (59)
rn rnfl

(qn) _ (—aqn_l +2q07" (rq, , + qrn_1)> | (60)

7 arn—l - zrail (rqnfl + qrnfl)

n

we obtain

that is,

Through tedious calculation, we arrive at

9 (4 +v,)

™ =qr,, +7q, - (61)

By Lemma 10, we know that the first equality in (60) is right.
Its second equality can be proved analogously. O

Corollary 12. If T = 0(2A) and T = 0(2A) in E(t) and E(t),
respectively, the recovered potentials (28) solve (50), where

O(A) =ayA" +a, A" "+ +a, A+al (62

is a polynomial matrix on A and I is an unit matrix.
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Proof. When 0(2A) = (2A)", we have

% _ 2n+1ae—(2ﬁ)"t—2xznr—le—ZxE

ot
+2Ce GA AN pIIp ol ANp

= 2" Ce ME (M) T [TA"
+QX)EMWAQK)E®) (63)
~QWEMNQMXEMA| T e B,

= 2" Ce ME (T [A"
+QEEMNAQWEWD]T e ™B.

That is, dq/0t = g, = q,,. In the same way, we also can obtain
r, = r, when 6(2A) = (2A)". Thus we have

(1) =) ea(lr)eeall)
=a, +a +--+a,
r ¢ Tn rn_l r
:G(L)<_q).
r

The corollary means that the operator and the solutions
of the AKNS hierarchy enjoy the same linear structure.

O

6. Conclusions

To sum up, we have solved the AKNS hierarchy by the
MIST. The MIST can determine solutions more directly and
generate more diverse solutions than the traditional IST.
Actually, such solutions can be also obtained by applying
the Wronskian technique [19-23]. The arbitrariness of the
matrices involved leads to the diversity of exact solutions.

A general integrable equation of the AKNS hierarchy
was constructed and its matrix exponential solutions were
obtained. The ways to generate the equation and its matrix
exponential solutions are the same. They share the same
linear algebraic structure, not only in the case of one-soliton
solutions but also in the case of other interesting solutions.
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