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Generalized matrix exponential solutions to the AKNS equation are obtained by the inverse scattering transformation (IST). The
resulting solutions involve six matrices, which satisfy the coupled Sylvester equations. Several kinds of explicit solutions including
soliton, complexiton, and Matveev solutions are deduced from the generalized matrix exponential solutions by choosing different
kinds of the six involvedmatrices. Generalizedmatrix exponential solutions to a general integrable equation of the AKNS hierarchy
are also derived. It is shown that the general equation and its matrix exponential solutions share the same linear structure.

1. Introduction

Many nonlinear models are studied and shown to possess
hierarchies, and recursion operators play a crucial role in
constructing hierarchies of soliton equations [1]. Associated
with the variational derivative, recursion operators have been
developed to formulate the Hamiltonian structures proving
the integrability of soliton hierarchies [2, 3]. Recursion oper-
ators also have a tight correlation with one-soliton solutions.
For example, the Korteweg-de Vries (KdV) hierarchy𝑢𝑡 = 𝑇𝑛𝑢𝑥, 𝑛 = 0, 1, 2, . . . , (1)
possesses the following one-soliton solution:

𝑢 = 𝑘22 sech2 𝑘 (𝑥 + 𝑘
2𝑛𝑡 + 𝛿)2 , 𝑛 = 0, 1, 2, . . . , (2)

where 𝑇 = 𝜕2 + 4𝑢 + 2𝑢𝑥𝜕−1 is the recursion operator of the
KdV hierarchy, 𝛿 is a constant, and 𝜕 = 𝜕/𝜕𝑥, 𝜕𝜕−1 = 𝜕−1𝜕 =1. Notice that the dispersion relation of (2)𝑘𝑥 + 𝑘2𝑛+1𝑡 (3)
is linked closely with the order of the recursion operator 𝑇.

Since the discovery of scattering behavior of solitons
[4] and the IST [5], solitons have received much attention.
The IST has been also well developed and widely used to
solve nonlinear equations [1, 6]. It can be used to solve
not only normal soliton equations but also unusual soliton
equations such as equations with self-consistent sources [7],
nonisospectral equations [8, 9], and equations with steplike
finite-gap backgrounds [10] and on quasi-periodic back-
grounds [11]. Recently, Ablowitz and Musslimani developed
the IST for the integrable nonlocal nonlinear Schrödinger
(NLS) equation [12].

The Sylvester equation

𝐴𝑀 −𝑀𝐵 = 𝐶 (4)

is one of the most well-known matrix equations. It appears
frequently in many areas of applied mathematics and plays a
central role, in particular, in systems and control theory, sig-
nal processing, filtering, model reduction, image restoration,
and so on. In recent years, it has been used to solve soliton
equations [13, 14] successfully. The method based on the
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Sylvester equation is also known as Cauchy matrix approach
[14–18], which is actually a by-product of direct linearization
approach first proposed by Fokas and Ablowitz in 1981 [15]
and developed to discrete integrable systems by Nijhoff et al.
in early of 1980s [16].

In the process of solving soliton equations, it can yield
fantastic results by using matrices properly. Successful exam-
ples are the Wronskian technique and the IST. Ma et al.
had introduced the matrix element in Wronskian determi-
nants when they used the Wronskian technique to solve
soliton equations [19–23]. They obtained various kinds of
solutions such as soliton, rational, Matveev, and complexiton
solutions. In 2006, Aktosun and Van Der Mee proposed
a modified inverse scattering transformation (MIST) [24].
They expressed the scattering data of spectral problems by
three matrices, 𝐴, 𝐵, 𝐶, and proved that the matrices 𝐴, 𝐵,𝐶 satisfy the Sylvester equation.The advantage of the method
is that it can get more kinds of solutions and its process is
simpler than the traditional IST [24–27].

In this paper, we would like to consider the AKNS
hierarchy

(𝑞𝑟)
𝑡

= 𝐿𝑛 (−𝑞𝑟 ) (𝑛 = 0, 1, 2, . . .) , (5)

with the help of MIST, where

𝐿 = 𝜎𝜕 + 2( 𝑞−𝑟) 𝜕−1 (𝑟, 𝑞) , 𝜎 = (−1 00 1) . (6)

Many integrable systems can be reduced from it such as
the modified KdV, sine-Gordon, nonlinear Schrödinger, and
nonlocal nonlinear Schrödinger system. There have had
already a lot of researches on AKNS hierarchy for it is a
representative integrable hierarchy [21, 22, 28]. In this paper,
we will construct the soliton, complexiton, and Matveev
solutions to the first nonlinear equation of (5). We will show
that the linear relation (3) exists not only in one-soliton
solutions but also in multisoliton, complexiton, and Matveev
solutions.

The paper is organized as follows: In Section 2, we will
review the recovered potentials of theAKNS spectral problem
by IST. In Section 3, we will obtain the coupled Sylvester
equations and generalizedmatrix exponential solutions to the
AKNS equation. In Section 4, some different types of explicit
solutions will be constructed. In Section 5, generalizedmatrix
exponential solutions will be given to the AKNS hierarchy.
The relationship between the recursion operator and the
solutions of the AKNS hierarchy will be discussed also. We
conclude the paper in Section 6.

2. Preparation

To make the paper self-contained, we first briefly recall the
Lax integrability of the isospectral AKNS hierarchy and its
Gel’fand-Levitan-Marchenko (GLM) equations.

It is well known that the AKNS hierarchy has the
following Lax pairs [29]:

𝜙𝑥 = 𝑀𝜙, 𝑀 = (−𝑖𝑘 𝑞𝑟 𝑖𝑘) , (7a)

𝜙𝑡 = 𝑁𝜙, 𝑁 = (𝐴 𝐵𝐶 −𝐴) , (7b)

where 𝜙 = (𝜙1, 𝜙2)𝑇, 𝑘 is a spectral parameter, and 𝑞 = 𝑞(𝑡, 𝑥),𝑟 = 𝑟(𝑡, 𝑥) are potential functions. We assume that 𝑞(𝑥, 𝑡)
and 𝑟(𝑥, 𝑡) are smooth functions of variables 𝑡 and 𝑥, and
their derivatives of any order with respect to 𝑥 vanish rapidly
as 𝑥 → ∞. The compatibility condition, zero curvature
equation

𝑀𝑡 − 𝑁𝑥 + [𝑀,𝑁] = 0, (8a)

with boundary conditions

𝑁|(𝑞,𝑟)=(0,0) = (−12 (2𝑖𝑘)𝑛 0
0 12 (2𝑖𝑘)𝑛), (8b)

can yield the isospectral AKNS hierarchy (5). The first two
nonlinear equations in the AKNS hierarchy are

(𝑞𝑟)
𝑡

= (−𝑞𝑥𝑥 + 2𝑞2𝑟𝑟𝑥𝑥 − 2𝑞𝑟2 ) , (9a)

(𝑞𝑟)
𝑡

= (𝑞𝑥𝑥𝑥 − 6𝑞𝑟𝑞𝑥𝑟𝑥𝑥𝑥 − 6𝑞𝑟𝑟𝑥) . (9b)

Next we mainly follow the notions and results given in
[1, 6].

Lemma 1. If the read potentials (𝑞(𝑥, 𝑡), 𝑟(𝑥, 𝑡))𝑇 satisfy
∫∞
−∞

󵄨󵄨󵄨󵄨󵄨𝑥𝑗𝑞 (𝑥)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 < +∞,
∫∞
−∞

󵄨󵄨󵄨󵄨󵄨𝑥𝑗𝑟 (𝑥)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 < +∞,
(𝑗 = 0, 1) ,

(10)

the spectral problem (7a) has a group of Jost solutions 𝜙(𝑥, 𝑘),𝜙(𝑥, 𝑘), 𝜓(𝑥, 𝑘), and 𝜓(𝑥, 𝑘) which are bounded for all values
of 𝑥 and also enjoy the following asymptotic behaviors:

𝜙 (𝑥, 𝑘) ∼ (01) 𝑒𝑖𝑘𝑥,
𝜙 (𝑥, 𝑘) ∼ (10) 𝑒−𝑖𝑘𝑥,

(𝑥 󳨀→ ∞) ,
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𝜓 (𝑥, 𝑘) ∼ (10) 𝑒−𝑖𝑘𝑥,
𝜓 (𝑥, 𝑘) ∼ ( 0−1) 𝑒𝑖𝑘𝑥,

(𝑥 󳨀→ −∞) .
(11)

In the usual manner, we define the scattering coefficient
by

𝜓 (𝑥, 𝑘) = 𝑎 (𝑘) 𝜙 (𝑥, 𝑘) + 𝑏 (𝑘) 𝜙 (𝑥, 𝑘) , (12a)

𝜓 (𝑥, 𝑘) = −𝑎 (𝑘) 𝜙 (𝑥, 𝑘) + 𝑏 (𝑘) 𝜙 (𝑥, 𝑘) , (12b)

where 𝑎 (𝑘) 𝑎 (𝑘) + 𝑏 (𝑘) 𝑏 (𝑘) = 1. (13)

Furthermore, one can give 𝜙(𝑥, 𝑘), 𝜙(𝑥, 𝑘) by the integral
representation

𝜙 (𝑥, 𝑘) = (01) 𝑒𝑖𝑘𝑥 + ∫∞𝑥 𝐾(𝑥, 𝑦) 𝑒𝑖𝑘𝑦𝑑𝑦, (14a)

𝜙 (𝑥, 𝑘) = (10) 𝑒−𝑖𝑘𝑥 + ∫∞𝑥 𝐾(𝑥, 𝑦) 𝑒−𝑖𝑘𝑦𝑑𝑦, (14b)

where 𝐾(𝑥, 𝑦) = (𝐾1(𝑥, 𝑦), 𝐾2(𝑥, 𝑦))𝑇 and 𝐾(𝑥, 𝑦) = (𝐾1(𝑥,𝑦), 𝐾2(𝑥, 𝑦))𝑇 are column vectors.
In order for (14a) and (14b) to be valid, it is necessary that𝑞 (𝑥) = −2𝐾1 (𝑥, 𝑥) ,𝑟 (𝑥) = −2𝐾2 (𝑥, 𝑥) . (15)

Definition 2. If 𝑘𝑗 and 𝑘𝑗 are single roots of 𝑎(𝑘) and 𝑎(𝑘),
respectively, there exist 𝑐𝑗 and 𝑐𝑗 such that

2∫∞
−∞
𝑐2𝑗 𝜙1 (𝑥, 𝑘𝑗) 𝜙2 (𝑥, 𝑘𝑗) = 1,

2 ∫∞
−∞
𝑐2𝑗𝜙1 (𝑥, 𝑘𝑗) 𝜙2 (𝑥, 𝑘𝑗) = 1. (16)

𝑐𝑗 and 𝑐𝑗 are named the normalization constants for the
eigenfunctions 𝜙(𝑥, 𝑘𝑗) and 𝜙(𝑥, 𝑘𝑗). Accordingly, 𝑐𝑗𝜙(𝑥, 𝑘𝑗)
and 𝑐𝑗𝜙(𝑥, 𝑘𝑗) are named the normalization eigenfunctions.

Definition 3. One named the set

{𝑘 (Im 𝑘 = 0) , 𝑅 (𝑘) = 𝑏 (𝑘)𝑎 (𝑘) , 𝑅 (𝑘) = 𝑏 (𝑘)𝑎 (𝑘) ;
𝑘𝑗 (Im 𝑘𝑗 > 0) , 𝑘𝑚 (Im 𝑘𝑚 < 0) , 𝑐𝑗, 𝑐𝑚, 𝑗 = 1, 2,
. . . , 𝑙, 𝑚 = 1, 2, . . . , 𝑙}

(17)

to be the scattering data for the spectral problem (7a).

Lemma 4. Given the scattering data for the spectral problem
(7a) and

𝐹 (𝑥) = 𝐹𝑐 (𝑥) + 𝐹𝑑 (𝑥) ,𝐹 (𝑥) = 𝐹𝑐 (𝑥) + 𝐹𝑑 (𝑥) , (18a)

where

𝐹𝑐 (𝑥) = 12𝜋 ∫∞−∞ 𝑅 (𝑘) 𝑒𝑖𝑘𝑥𝑑𝑘,
𝐹𝑑 (𝑥) = 𝑙∑

𝑗=1

𝑐2𝑗 𝑒𝑖𝑘𝑗𝑥, (18b)

𝐹𝑐 (𝑥) = 12𝜋 ∫∞−∞ 𝑅 (𝑘) 𝑒−𝑖𝑘𝑥𝑑𝑘,
𝐹𝑑 (𝑥) = − 𝑙∑

𝑗=1

𝑐2𝑗𝑒𝑖𝑘𝑗𝑥, (18c)

one has the GLM equations for the AKNS hierarchy

𝐾(𝑥, 𝑦) + (01)𝐹 (𝑥 + 𝑦)
+ ∫∞
𝑥
𝐾 (𝑥, 𝑧) 𝐹 (𝑧 + 𝑦) 𝑑𝑧 = 0, (19a)

𝐾(𝑥, 𝑦) − (10)𝐹 (𝑥 + 𝑦)
− ∫∞
𝑥
𝐾 (𝑥, 𝑧) 𝐹 (𝑧 + 𝑦) 𝑑𝑧 = 0. (19b)

3. Generalized Matrix Exponential
Solutions to the AKNS Equation

In this section, we will get generalized matrix exponential
solutions to the AKNS equation (9a) via MIST.

From the previous section, we know that the potentials
of spectral problem (7a) can be recovered by (15). For
convenience, we denote𝐾1(𝑥, 𝑦) and𝐾2(𝑥, 𝑦) by𝐾(𝑥, 𝑦) and𝐾(𝑥, 𝑦), respectively, in this and the following sections.

Lemma 5. The GLM equations (19a) and (19b) of the AKNS
hierarchy have other forms:

𝐾(𝑥, 𝑦)
= 𝐹 (𝑥 + 𝑦)
− ∫∞
𝑥
∫∞
𝑥
𝑑𝑠 𝑑𝑧𝐾 (𝑥, 𝑠) 𝐹 (𝑠 + 𝑧) 𝐹 (𝑧 + 𝑦) ,
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𝐾(𝑥, 𝑦)
= −𝐹 (𝑥 + 𝑦)
− ∫∞
𝑥
∫∞
𝑥
𝑑𝑠 𝑑𝑧𝐾 (𝑥, 𝑠) 𝐹 (𝑠 + 𝑧) 𝐹 (𝑧 + 𝑦) .

(20)

Proof. Rewrite (19a) and (19b) in their component forms as

𝐾1 (𝑥, 𝑦) + ∫∞
𝑥
𝐾1 (𝑥, 𝑧) 𝐹 (𝑧 + 𝑦) 𝑑𝑧 = 0, (21a)

𝐾2 (𝑥, 𝑦) + 𝐹 (𝑥 + 𝑦) + ∫∞
𝑥
𝐾2 (𝑥, 𝑧) 𝐹 (𝑧 + 𝑦) 𝑑𝑧= 0, (21b)

𝐾1 (𝑥, 𝑦) − 𝐹1 (𝑥 + 𝑦) − ∫∞
𝑥
𝐾1 (𝑥, 𝑧) 𝐹 (𝑧 + 𝑦) 𝑑𝑧= 0, (21c)

𝐾2 (𝑥, 𝑦) − ∫∞
𝑥
𝐾2 (𝑥, 𝑧) 𝐹 (𝑧 + 𝑦) 𝑑𝑧 = 0. (21d)

Substituting (21a) and (21d) into (21c) and (21b) and replacing𝐾1(𝑥, 𝑦),𝐾2(𝑥, 𝑦)with𝐾(𝑥, 𝑦),𝐾(𝑥, 𝑦), respectively, we have
𝐾(𝑥, 𝑦)= 𝐹 (𝑥 + 𝑦)

− ∫∞
𝑥
∫∞
𝑥
𝑑𝑠 𝑑𝑧𝐾 (𝑥, 𝑠) 𝐹 (𝑠 + 𝑧) 𝐹 (𝑧 + 𝑦) ,

𝐾 (𝑥, 𝑦)= −𝐹 (𝑥 + 𝑦)
− ∫∞
𝑥
∫∞
𝑥
𝑑𝑠 𝑑𝑧𝐾 (𝑥, 𝑠) 𝐹 (𝑠 + 𝑧) 𝐹 (𝑧 + 𝑦) .

(22)

Lemma 6. Let 𝐴 and 𝐴 be 𝑙 × 𝑙 constant matrices, 𝐵 and 𝐵 be𝑙 × 1 constant column vectors, and 𝐶 and 𝐶 be 1 × 𝑙 constant
row vectors. Assume that 𝐴 and 𝐴 satisfy lim𝑥→∞𝑒𝐴𝑥 = 0 and
lim𝑥→∞𝑒−𝐴𝑥 = 0, respectively, where 0 is the 𝑙 × 𝑙 matrix with
all elements being zero. Then upon taking

𝑀 = ∫∞
0
𝑒𝐴𝑧𝐵𝐶𝑒−𝐴𝑧𝑑𝑧,

𝑀 = ∫∞
0
𝑒−𝐴𝑧𝐵𝐶𝑒𝐴𝑧𝑑𝑧, (23)

one has the following coupled Sylvester relations:

𝑀𝐴 − 𝐴𝑀 = 𝐵𝐶,
𝐴𝑀 −𝑀𝐴 = 𝐵𝐶. (24)

Proof. We only prove the first relation, and the second
relation can be proved similarly:

𝑀𝐴 − 𝐴𝑀 = ∫∞
0
(𝑒𝐴𝑧𝐵𝐶𝑒−𝐴𝑧𝐴 − 𝐴𝑒𝐴𝑧𝐵𝐶𝑒−𝐴𝑧) 𝑑𝑧

= −𝑒𝐴𝑧 𝐵𝐶𝑒−𝐴𝑧󵄨󵄨󵄨󵄨󵄨󵄨∞0 = 𝐵𝐶.
(25)

For convenience, we set

Ω (𝑥) = 𝑒−𝐴𝑥𝑀𝑒𝐴𝑥,
Ω (𝑥) = 𝑒𝐴𝑥𝑀𝑒−𝐴𝑥,
Ξ (𝑡) = 𝑒𝑇𝑡,
Ξ (𝑡) = 𝑒−𝑇𝑡,

(26)

where 𝑇, 𝑇 are 𝑙 × 𝑙 matrices, 𝑀, 𝑀, 𝐴, 𝐴, 𝐵, 𝐵, 𝐶, 𝐶 are
matrices defined in Lemma 6, and they enjoy the relations
(24).

Setting

Γ = 𝐼 + Ω (𝑥) Ξ (𝑡)Ω (𝑥) Ξ (𝑡) ,
Γ = 𝐼 + Ω (𝑥) Ξ (𝑡)Ω (𝑥) Ξ (𝑡) , (27)

if Γ and Γ are nondegenerate matrices, we have the following
theorem.

Theorem 7. If 𝐴𝑇 = 𝑇𝐴 and 𝐴𝑇 = 𝑇𝐴, the potentials of the
AKNS spectral problem (7a) can be recovered as

𝑞 (𝑥, 𝑡) = −2𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1𝑒−𝐴𝑥𝐵,
𝑟 (𝑥, 𝑡) = 2𝐶𝑒𝐴𝑥Ξ (𝑡) Γ−1𝑒𝐴𝑥𝐵. (28)

Proof. Let 𝐹𝑐(𝑥) and 𝐹𝑐(𝑥) be zero and 𝐹𝑑(𝑥) and 𝐹𝑑(𝑥) be
matrix exponential forms in (18a); that is,

𝐹 (𝑥) = 𝐹𝑑 (𝑥) = 𝐶𝑒𝐴𝑥𝐵,
𝐹 (𝑥) = 𝐹𝑑 (𝑥) = 𝐶𝑒−𝐴𝑥𝐵. (29)

Suppose that the time evolution of 𝐹(𝑥) and that of 𝐹(𝑥) are
𝐹 (𝑥, 𝑡) = 𝐶𝑒𝐴𝑥Ξ (𝑡) 𝐵,
𝐹 (𝑥, 𝑡) = 𝐶𝑒−𝐴𝑥Ξ (𝑡) 𝐵. (30)

We may take

𝐾(𝑥, 𝑦) = 𝐻 (𝑥, 𝑡) 𝑒−𝐴𝑦𝐵,
𝐾 (𝑥, 𝑦) = 𝐻 (𝑥, 𝑡) 𝑒𝐴𝑦𝐵, (31)

accordingly, where𝐻(𝑥, 𝑡),𝐻(𝑥, 𝑡) are 1 × 𝑙 row vectors.
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Substituting (30), (31) into the first equation of (20), we
get

𝐻(𝑥, 𝑡) = 𝐶𝑒−𝐴𝑥Ξ (𝑡) − ∫∞
𝑥
∫∞
𝑥
𝑑𝑠 𝑑𝑧𝐻 (𝑥, 𝑡)

⋅ 𝑒−𝐴𝑠𝐵𝐶𝑒𝐴(𝑠+𝑧)Ξ (𝑡) 𝐵𝐶𝑒−𝐴𝑧Ξ (𝑡) . (32)

That is,

𝐻(𝑥, 𝑡) (𝐼
+ ∫∞
𝑥
𝑒−𝐴𝑠𝐵𝐶𝑒𝐴𝑠𝑑𝑠Ξ (𝑡) ∫∞

𝑥
𝑒𝐴𝑧𝐵𝐶𝑒−𝐴𝑧𝑑𝑧Ξ (𝑡))

= 𝐶𝑒−𝐴𝑥Ξ (𝑡) .
(33)

In the light of

∫∞
𝑥
𝑒𝐴𝑠𝐵𝐶𝑒−𝐴𝑠𝑑𝑠 = 𝑒𝐴𝑥𝑀𝑒−𝐴𝑥,

∫∞
𝑥
𝑒−𝐴𝑠𝐵𝐶𝑒𝐴𝑠𝑑𝑠 = 𝑒−𝐴𝑥𝑀𝑒𝐴𝑥, (34)

we have

𝐻(𝑥, 𝑡) = 𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1. (35a)

Similarly, we can arrive at

𝐻(𝑥, 𝑡) = −𝐶𝑒𝐴𝑥Ξ (𝑡) Γ−1. (35b)

Finally, we find that the potentials of the AKNS spectral
problem (7a) can be recovered as

𝑞 (𝑥) = −2𝐾 (𝑥, 𝑥) = −2𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1𝑒−𝐴𝑥𝐵,
𝑟 (𝑥) = −2𝐾 (𝑥, 𝑥) = 2𝐶𝑒𝐴𝑥Ξ (𝑡) Γ−1𝑒𝐴𝑥𝐵, (36)

by taking advantage of (15).

Nextwewill get solutions to theAKNS equation (9a) from
the recovered potentials (28).

Proposition 8. The matrices Ω(𝑥)Ξ(𝑡) and Ω(𝑥)Ξ(𝑡) satisfy
Ω (𝑥) Ξ (𝑡) Γ−1 = Γ−1Ω (𝑥) Ξ (𝑡) , (37a)

Γ−1Ω (𝑥) Ξ (𝑡) = Ω (𝑥) Ξ (𝑡) Γ−1, (37b)

respectively. Thus, the two matrices Γ−1 and Γ−1 are similar.

Although Proposition 8 is simple, we will use it many
times in the following part of this paper.

Theorem 9. If 𝑇 = (2𝐴)2 and 𝑇 = (2𝐴)2 in Ξ(𝑡) and Ξ(𝑡),
respectively, the recovered the potentials (28) are solutions to
the AKNS equation (9a).

Proof. Weonly prove the first equation of (9a), and the second
equation can be proved similarly.

On the one hand𝑞𝑡 = 8𝐶𝑒−4𝐴2𝑡−𝐴𝑥Γ−1 [Γ𝐴2 + Ω (𝑥) Ξ (𝑡) 𝐴2Ω (𝑥) Ξ (𝑡)
− Ω (𝑥) Ξ (𝑡)Ω (𝑥) Ξ (𝑡) 𝐴2] Γ−1𝑒−𝐴𝑥𝐵
= 8𝐶𝑒−4𝐴2𝑡−𝐴𝑥Γ−1 [𝐴2 + Ω (𝑥) Ξ (𝑡) 𝐴2Ω (𝑥) Ξ (𝑡)]
⋅ Γ−1𝑒−𝐴𝑥𝐵,

(38)

and on the other hand− 𝑞𝑥𝑥 + 2𝑞2𝑟 = 2𝐶𝑒−4𝐴2𝑡−𝐴𝑥Γ−1 [(Γ𝐴2 + 𝐴2Γ)
+ 2 (Γ𝑥 + Γ𝐴) Γ−1 (Γ𝑥 + 𝐴Γ) − Γ𝑥𝑥
+ 8𝑒−𝐴𝑥𝐵𝐶𝑒4𝐴2𝑡+𝐴𝑥Γ−1𝑒𝐴𝑥𝐵𝐶𝑒−4𝐴2𝑡−𝐴𝑥] Γ−1𝑒−𝐴𝑥𝐵.

(39)

Through proper simplification, we have

− 𝑞𝑥𝑥 + 2𝑞2𝑟 = 8𝐶𝑒−4𝐴2𝑡−𝐴𝑥Γ−1 [𝐴2
+ Ω (𝑥) Ξ (𝑡) 𝐴2Ω (𝑥) Ξ (𝑡)] Γ−1𝑒−𝐴𝑥𝐵. (40)

4. Exact Solutions to the AKNS Equation

In this section, we will construct different kinds of explicit
solutions to the AKNS equation (9a) by taking different kinds
of 𝐴, 𝐵, 𝐶 and 𝐴, 𝐵, 𝐶.
(i) One-Soliton Solutions. Taking 𝐴 = 𝑘1, 𝐵 = 𝑏1, 𝐶 = 𝑐1 and𝐴 = 𝑘2, 𝐵 = 𝑏2, 𝐶 = 𝑐2, we get

𝑞 = −2 (𝑘2 − 𝑘1)2 𝑏2𝑐2𝑒−4𝑘22𝑡−2𝑘2𝑥(𝑘2 − 𝑘1)2 + 𝑏1𝑏2𝑐1𝑐2𝑒4(𝑘21−𝑘22)𝑡+2(𝑘1−𝑘2)𝑥 ,
𝑟 = 2 (𝑘2 − 𝑘1)2 𝑏1𝑐1𝑒4𝑘21𝑡+2𝑘1𝑥(𝑘2 − 𝑘1)2 + 𝑏1𝑏2𝑐1𝑐2𝑒4(𝑘21−𝑘22)𝑡+2(𝑘1−𝑘2)𝑥 ,

(41)

where 𝑘𝑗, 𝑏𝑗, 𝑐𝑗 ∈ C (𝑗 = 1, 2) and Re 𝑘1 < 0, Re 𝑘2 > 0.
(ii) Two-Soliton Solutions. Taking

𝐴 = (−2 00 −1) ,
𝐵 = (12) ,
𝐵 = (21) ,
𝐶 = 𝐶 = (1 1) ,

(42)
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we have

𝑞 = − 16𝑒2(−8𝑡+𝑥) (9𝑒12𝑡 + 50𝑒2𝑥 + 1800𝑒12𝑡+8𝑥 + 3600𝑒32𝑡+10𝑥)1 + 1800𝑒8𝑥 + 576𝑒6(2𝑡+𝑥) + 6400𝑒10(2𝑡+𝑥) + 1800𝑒8(4𝑡+𝑥) (1 + 8𝑒8𝑥) ,
𝑟 = 16𝑒4(4𝑡+𝑥) [9 + 50𝑒20𝑡+2𝑥 (1 + 72𝑒8𝑥 + 36𝑒6(2𝑡+𝑥))]1 + 1800𝑒8𝑥 + 576𝑒6(2𝑡+𝑥) + 6400𝑒10(2𝑡+𝑥) + 1800𝑒8(4𝑡+𝑥) (1 + 8𝑒8𝑥) .

(43)

(iii) Three-Soliton Solutions. Taking

𝐴 = (−1 0 00 −1 00 0 −2) ,

𝐴 = (2 0 00 1 00 0 2) ,

𝐵 = ( 1−11 ) ,

𝐵 = ( 1−12 ) ,
𝐶 = (1 2 1) ,
𝐶 = (2 1 1) ,

(44)

we have

𝑞 = −72𝑒−4(4𝑡+𝑥) (𝑒12𝑡 − 4𝑒2𝑥 − 144𝑒6𝑥 + 36𝑒12𝑡+8𝑥)720 cosh 12𝑡 − 648 cosh 2𝑥 − 1297 cosh 6𝑥 − 432 sinh 12𝑡 − 1295 sinh 6𝑥 ,
𝑟 = 72𝑒4𝑡−4𝑥 (1 + 36𝑒8𝑥 − 𝑒2(6𝑡+𝑥) − 36𝑒12𝑡+6𝑥)720 cosh 12𝑡 − 648 cosh 2𝑥 − 1297 cosh 6𝑥 − 432 sinh 12𝑡 − 1295 sinh 6𝑥 .

(45)

(iv) Matveev Solutions. Taking

𝐴 = (1 10 1) ,
𝐴 = (2 10 2) ,
𝐵 = (12) ,
𝐵 = (21) ,
𝐶 = 𝐶 = (1 1) ,

(46)

we have𝑞
= 𝑒−2(2𝑡+𝑥) [22 + 32𝑡 + 8𝑥 + 𝑒2(6𝑡+𝑥) (−6 + 32𝑡 + 4𝑥)]4 + 𝑒4(6𝑡+𝑥) + 𝑒2(6𝑡+𝑥) [3 − 256𝑡2 − 96𝑡 (1 + 𝑥) − 2𝑥 (5 + 4𝑥)] ,

𝑟
= 2𝑒4(4𝑡+𝑥) [4 + 64𝑡 + 8𝑥 + 𝑒2(6𝑡+𝑥) (3 + 16𝑡 + 4𝑥)]4 + 𝑒4(6𝑡+𝑥) + 𝑒2(6𝑡+𝑥) [3 − 256𝑡2 − 96𝑡 (1 + 𝑥) − 2𝑥 (5 + 4𝑥)] .

(47)

(v) Complexiton Solutions. Taking

𝐴 = ( 1 1−1 1) ,
𝐴 = ( 2 2−2 2) ,
𝐵 = (13) ,
𝐵 = (31) ,
𝐶 = 𝐶 = (1 1) ,

(48)
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we have

𝑞 = 32 cos (8𝑡 + 2𝑥) − 16 sin (8𝑡 + 2𝑥) − 4𝑒2𝑥 [2 cos (32𝑡 + 4𝑥) + sin (32𝑡 + 4𝑥)]4𝑒2𝑥 + 𝑒6𝑥 − 𝑒4𝑥 [5 sin (24𝑡 + 2𝑥) + sin (40𝑡 + 6𝑥)] ,
𝑟 = 4𝑒4𝑥 [2 cos (32𝑡 + 4𝑥) − sin (32𝑡 + 4𝑥)] + 4𝑒6𝑥 [2 cos (8𝑡 + 2𝑥) + sin (8𝑡 + 2𝑥)]4 + 𝑒4𝑥 − 𝑒2𝑥 [5 sin (24𝑡 + 2𝑥) + sin (40𝑡 + 6𝑥)] . (49)

5. The Same Linear Relation That a General
Equation and Its Solutions Share

In this section, we will construct a new general equation
related to the AKNS hierarchy and get its generalized matrix
exponential solutions. Furthermore, we find that the recur-
sion operator and the solutions of the AKNS hierarchy have
the same linear relation.

We consider a new general equation:

(𝑞𝑟)
𝑡

= 𝜃 (𝐿) (−𝑞𝑟 ) , (50)

where

𝜃 (𝐿) = 𝑎0𝐿𝑛 + 𝑎1𝐿𝑛−1 + ⋅ ⋅ ⋅ + 𝑎𝑛−1𝐿 + 𝑎𝑛 (51)

is a polynomial operator on 𝐿.
Let

(𝑞𝑛𝑟𝑛) = (2
𝑛+1𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1 [𝐴𝑛 + Ω (𝑥) Ξ (𝑡) 𝐴𝑛Ω (𝑥) Ξ (𝑡)] Γ−1𝑒−𝐴𝑥𝐵2𝑛+1𝐶𝑒𝐴𝑥Ξ (𝑡) Γ−1 [𝐴𝑛 + Ω (𝑥) Ξ (𝑡) 𝐴𝑛Ω (𝑥) Ξ (𝑡)] Γ−1𝑒𝐴𝑥𝐵 ) ,

(𝑢𝑛
V𝑛
) = (2𝑛𝐶𝑒𝐴𝑥Ξ (𝑡) Γ−1𝑒𝐴𝑥 (𝐴𝑛−1𝑀−𝑀𝐴𝑛−1) Ξ (𝑡) 𝑒−𝐴𝑥Γ−1𝑒−𝐴𝑥𝐵2𝑛𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1𝑒−𝐴𝑥 (𝑀𝐴𝑛−1 − 𝐴𝑛−1𝑀)Ξ (𝑡) 𝑒𝐴𝑥Γ−1𝑒𝐴𝑥𝐵) ;

(52)

we have the following Lemma.

Lemma 10. If 𝐴𝑇 = 𝑇𝐴 and 𝐴𝑇 = 𝑇𝐴, one obtains
𝑞𝑛 + 𝜕𝑞𝑛−1 = 2𝑞 (𝑢𝑛 + V𝑛) ,𝑟𝑛 − 𝜕𝑟𝑛−1 = −2𝑟 (𝑢𝑛 + V𝑛) . (53)

Proof. We only prove the first equation. For

𝜕𝑞𝑛−1 = 𝜕 {2𝑛𝐶𝑒−𝐴𝑥 [𝐴𝑛−1Ξ (𝑡)
+ Ξ (𝑡) Γ−1Ω (𝑥) Ξ (𝑡) 𝐴𝑛−1Ω (𝑥) Ξ (𝑡)
− Ξ (𝑡) Γ−1Ω (𝑥) Ξ (𝑡)Ω (𝑥) Ξ (𝑡) 𝐴𝑛−1] Γ−1𝑒−𝐴𝑥𝐵}
= 2𝑛+1𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1 [𝐴𝑛 − 𝐴Γ−1𝐴𝑛−1
− 𝐴𝑛−1Γ−1𝐴 − Ω (𝑥) Ξ (𝑡) 𝐴Ω (𝑥) Ξ (𝑡) Γ−1𝐴𝑛−1
− 𝐴𝑛−1Γ−1Ω (𝑥) Ξ (𝑡) 𝐴Ω (𝑥) Ξ (𝑡) − Ω (𝑥) Ξ (𝑡)
⋅ 𝐴Ω (𝑥) Ξ (𝑡) Γ−1Ω (𝑥) Ξ (𝑡) 𝐴𝑛−1Ω (𝑥) Ξ (𝑡)
− 𝐴Γ−1Ω (𝑥) Ξ (𝑡) 𝐴𝑛−1Ω (𝑥) Ξ (𝑡) − Ω (𝑥) Ξ (𝑡)

⋅ 𝐴𝑛−1Ω (𝑥) Ξ (𝑡) Γ−1Ω (𝑥) Ξ (𝑡) 𝐴Ω (𝑥) Ξ (𝑡) − Ω (𝑥)
⋅ Ξ (𝑡) 𝐴𝑛−1Ω (𝑥) Ξ (𝑡) Γ−1𝐴 + Ω (𝑥) Ξ (𝑡) 𝐴𝑛Ω (𝑥)
⋅ Ξ (𝑡)] Γ−1𝑒−𝐴𝑥𝐵,

(54)

we have𝑞𝑛 + 𝜕𝑞𝑛−1 = 2𝑛+1𝐶𝑒−(2𝐴)𝑛𝑡−𝐴𝑥Γ−1 {[𝐴Ω (𝑥) Ξ (𝑡)
− Ω (𝑥) Ξ (𝑡) 𝐴] Γ−1Ω (𝑥) Ξ (𝑡) 𝐴𝑛−1
+ [𝐴𝑛−1Ω (𝑥) Ξ (𝑡) − Ω (𝑥) Ξ (𝑡) 𝐴𝑛−1]
⋅ Γ−1 [Ω (𝑥) Ξ (𝑡) 𝐴 − 𝐴Ω (𝑥) Ξ (𝑡)]
− [𝐴Ω (𝑥) Ξ (𝑡) − Ω𝑥Ξ (𝑡) 𝐴] Γ−1𝐴𝑛−1Ω (𝑥) Ξ (𝑡)}
⋅ Γ−1𝑒−𝐴𝑥𝐵 = 2𝑛+1𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1𝑒−𝐴𝑥 [(𝐴𝑀
−𝑀𝐴) 𝑒𝐴𝑥Ξ (𝑡) Γ−1𝑒𝐴𝑥 (𝑀𝐴𝑛−1 − 𝐴𝑛−1𝑀)Ξ (𝑡)
+ (𝐴𝑛−1𝑀−𝑀𝐴𝑛−1) 𝑒𝐴𝑥Ξ (𝑡) Γ−1𝑒𝐴𝑥 (𝑀𝐴
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− 𝐴𝑀)Ξ (𝑡)] 𝑒−𝐴𝑥Γ−1𝑒−𝐴𝑥𝐵 = 2𝑛+1𝐶𝑒−𝐴𝑥Ξ (𝑡)
⋅ Γ−1𝑒−𝐴𝑥 [𝐵𝐶𝑒𝐴𝑥Ξ (𝑡) Γ−1𝑒𝐴𝑥 (𝑀𝐴𝑛−1 − 𝐴𝑛−1𝑀)
⋅ Ξ (𝑡) + (𝐴𝑛−1𝑀−𝑀𝐴𝑛−1) Ξ (𝑡)
⋅ 𝑒𝐴𝑥Γ−1𝑒𝐴𝑥𝐵𝐶Ξ (𝑡)] 𝑒−𝐴𝑥Γ−1𝑒−𝐴𝑥𝐵.

(55)

From (28), we know that the conclusion is right.

Theorem 11. If 𝐴𝑇 = 𝑇𝐴 and 𝐴𝑇 = 𝑇𝐴, one has
(𝑞𝑛 (𝑥, 𝑡)𝑟𝑛 (𝑥, 𝑡)) = 𝐿𝑛 (−𝑞 (𝑥, 𝑡)𝑟 (𝑥, 𝑡) ) . (56)

Proof. We use the mathematical induction to prove the
theorem.

When 𝑛 = 1, we have
(𝑞1𝑟1) = (𝑞𝑥𝑟𝑥)
= (4𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1 [𝐴 + Ω (𝑥) Ξ (𝑡) 𝐴Ω (𝑥) Ξ (𝑡)] Γ−1𝑒−𝐴𝑥𝐵4𝐶𝑒𝐴𝑥Ξ (𝑡) Γ−1 [𝐴 + Ω (𝑥) Ξ (𝑡) 𝐴Ω (𝑥) Ξ (𝑡)] Γ−1𝑒𝐴𝑥𝐵 ) ,

(57)

and (56) is established.
Supposing that

(𝑞𝑛−1𝑟𝑛−1) = 𝐿𝑛−1 (−𝑞 (𝑥, 𝑡)𝑟 (𝑥, 𝑡) ) , (58)

we obtain

(𝑞𝑛𝑟𝑛) = 𝐿(𝑞𝑛−1𝑟𝑛−1) ; (59)

that is,

(𝑞𝑛𝑟𝑛) = (−𝜕𝑞𝑛−1 + 2𝑞𝜕
−1 (𝑟𝑞𝑛−1 + 𝑞𝑟𝑛−1)𝜕𝑟𝑛−1 − 2𝑟𝜕−1 (𝑟𝑞𝑛−1 + 𝑞𝑟𝑛−1) ) . (60)

Through tedious calculation, we arrive at

𝜕 (𝑢𝑛 + V𝑛)𝜕𝑥 = 𝑞𝑟𝑛−1 + 𝑟𝑞𝑛−1. (61)

By Lemma 10, we know that the first equality in (60) is right.
Its second equality can be proved analogously.

Corollary 12. If 𝑇 = 𝜃(2𝐴) and 𝑇 = 𝜃(2𝐴) in Ξ(𝑡) and Ξ(𝑡),
respectively, the recovered potentials (28) solve (50), where

𝜃 (𝐴) = 𝑎0𝐴𝑛 + 𝑎1𝐴𝑛−1 + ⋅ ⋅ ⋅ + 𝑎𝑛−1𝐴 + 𝑎𝑛𝐼 (62)

is a polynomial matrix on 𝐴 and 𝐼 is an unit matrix.

Proof. When 𝜃(2𝐴) = (2𝐴)𝑛, we have
𝜕𝑞𝜕𝑡 = 2𝑛+1𝐶𝑒−(2𝐴)𝑛𝑡−𝐴𝑥𝐴𝑛Γ−1𝑒−𝐴𝑥𝐵
+ 2𝐶𝑒−(2𝐴)𝑛𝑡−𝐴𝑥Γ−1Γ𝑡Γ−1𝑒−𝐴𝑥𝐵,

= 2𝑛+1𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1 [Γ𝐴𝑛
+ Ω (𝑥) Ξ (𝑡) 𝐴𝑛Ω (𝑥) Ξ (𝑡)
− Ω (𝑥) Ξ (𝑡)Ω (𝑥) Ξ (𝑡) 𝐴𝑛] Γ−1𝑒−𝐴𝑥𝐵,

= 2𝑛+1𝐶𝑒−𝐴𝑥Ξ (𝑡) Γ−1 [𝐴𝑛
+ Ω (𝑥) Ξ (𝑡) 𝐴𝑛Ω (𝑥) Ξ (𝑡)] Γ−1𝑒−𝐴𝑥𝐵.

(63)

That is, 𝜕𝑞/𝜕𝑡 = 𝑞𝑡 = 𝑞𝑛. In the same way, we also can obtain𝑟𝑡 = 𝑟𝑛 when 𝜃(2𝐴) = (2𝐴)𝑛. Thus we have

(𝑞𝑟)
𝑡

= 𝑎0 (𝑞𝑛𝑟𝑛) + 𝑎1 (𝑞𝑛−1𝑟𝑛−1) + ⋅ ⋅ ⋅ + 𝑎𝑛 (−𝑞𝑟 )
= 𝜃 (𝐿) (−𝑞𝑟 ) .

(64)

The corollary means that the operator and the solutions
of the AKNS hierarchy enjoy the same linear structure.

6. Conclusions

To sum up, we have solved the AKNS hierarchy by the
MIST. The MIST can determine solutions more directly and
generate more diverse solutions than the traditional IST.
Actually, such solutions can be also obtained by applying
the Wronskian technique [19–23]. The arbitrariness of the
matrices involved leads to the diversity of exact solutions.

A general integrable equation of the AKNS hierarchy
was constructed and its matrix exponential solutions were
obtained. The ways to generate the equation and its matrix
exponential solutions are the same. They share the same
linear algebraic structure, not only in the case of one-soliton
solutions but also in the case of other interesting solutions.
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