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1. Introduction

Integrable systems are usually generated from matrix spectral problems or Lax pairs
associated with matrix loop algebras (see, e.g., [1-5]). Among celebrated examples,
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with dependent variables less than three, are the Korteweg—de Vries (KdV) hierar-
chy [6], the Ablowitz—Kaup—Newell-Segur (AKNS) hierarchy [7], the Dirac hierar-
chy [8], the Kaup—Newell hierarchy [9], the coupled AKNS-Kaup—Newell hierarchy
[10] and the Wadati-Konno—Ichikawa hierarchy [11].

Simple matrix loop algebras generate typical integrable systems (see, e.g., [7,
9] and [12, 13] for examples associated with sl(2,R) and so(3,R), respectively).
Semisimple matrix loop algebras engender separated integrable systems, i.e. col-
lections of typical integrable systems, each of which corresponds to a simple ma-
trix loop algebra. Non-semisimple matrix loop algebras yield integrable couplings
[14-17]. Integrable systems often possess bi-Hamiltonian structures [18], which gen-
erate hereditary recursion operators [19] and guarantee the Liouville integrability
[20]. The associated Hamiltonian structures can be furnished by the trace identity
[21] if the underlying matrix loop algebras are semisimple, and by the variational
identity [22, 23] otherwise.

Darboux transformations are a direct and powerful approach to integrable sys-
tems, generating new solutions from known ones [24, 25], and they can be applied to
diverse analytical solution situations [26-28], including solitons (see, e.g., [29, 30])
and rogue waves (see, e.g., [31, 32]), like Hirota’s bilinear method [33]. The ma-
trix Lie algebras which underlie various existing Darboux transformations are all
semisimple [24, 25]. Integrable couplings are triangular multiple component inte-
grable systems associated with non-semisimple matrix Lie algebras [34]. Therefore,
it is natural to ask what kind of Darboux transformations there exists for inte-
grable couplings. How can we construct Darboux transformations associated with
non-semisimple matrix Lie algebras? This will create new studies to supplement
the mathematical literature on Darboux transformations.

Let us recall the zero curvature equation formulation and the corresponding
Darboux transformations for integrable systems [24, 25]. An integrable system of
partial differential equations:

up = K(u) = K(x,t,u, ug, .. .), (1.1)

is said to possess a zero curvature equation representation, if it is generated from
a zero curvature equation:

Uy~ Ve +[U, V] =0, (1.2)

where the two square matrices, U and V, called a Lax pair, belong to a matrix loop
algebra [4, 14]. The above zero curvature equation is the compatibility condition of
the spectral problems

¢z =Ud=U(u,A\)g, ¢ =V =V(u,A)g, (1.3)

where A is the spectral parameter and ¢ is the vector eigenfunction. One of im-
portant tasks in the field of integrable systems is to construct, from the zero cur-
vature equation formulation, Darboux transformations of the underlying spectral
problems.
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A transformation of ¢’ = D¢ and v = ' (u), with D = D(u, \) being a square
matrix, is called a Darboux transformation of the spectral problems (1.3), if ¢’
satisfies the same type spectral problems:

o, =U'¢ =U'(W" N, ¢,=V'¢ =V'(u N, (1.4)

where U’ and V' should possess the same form as U and V, respectively. The matrix
D is called a Darboux matrix of the spectral problems (1.3). The new Lax pair can
be easily worked out:

U'=pDUD'+D,D™', V' =DVD '+ DD (1.5)

Assume that U and V in the underlying Lax pair are N x N matrices. A Darboux
matrix of first-order in A\ can be taken as

D(\) = Al + 8, (1.6)

where [ is the identity matrix of order N and S is an N x N matrix independent
of A\. We introduce N distinct eigenvalues A1, Az, ..., Ay and their corresponding
eigenfunctions:

o) = U \)¢,  of =V \)el, 1<s<N, (1.7)

where v is a given solution to (1.1). Then a class of Darboux matrices can be
generated [25, 26] from

S=HAH', (1.8)
where
H= (W 0@ oW A=diag(A, Az, ..., An). (1.9)

An integrable coupling of an integrable system (1.1) is a triangular integrable
system of the following form [35, 36]:

uy = K(u),
e = K(u) (1.10)
Ut = T(u7 U);
which is compactly written as
iy = K(u) (1.11)

with the enlarged dependent variable @ = (u”,v”)T. If T' is nonlinear with respect
to the second sub-vector v of dependent variables, the integrable coupling (1.10) is
called nonlinear. An example of integrable couplings is the first-order perturbation
system [35]:

(1.12)

{ut = K(U),
ve = K'(u)[v],

where K’ is the Gateaux derivative of K.
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General Lie algebras possess semi-direct sum decompositions [37]:
g=9g &g, g-semisimple, g.-solvable, (1.13)

and so do non-semisimple Lie algebras. Therefore, semi-direct sums of Lie algebras
lay a foundation for constructing integrable couplings [14, 15]. The notion of semi-
direct sums

g=0¢€gc (1.14)
precisely means that the two Lie subalgebras g and g. satisfy
9,9c] € ge, (1.15)

where [g,9.] = {[A,B]|A4 € g,B € g.}, with [,:] denoting the Lie bracket of g.
Obviously, g. is an ideal Lie sub-algebra of g. The subscript ¢ indicates a contribu-
tion to the construction of coupling systems. It is recognized [14, 15] that integrable
couplings are integrable systems associated with semi-direct sums of Lie algebras
and thus non-semisimple Lie algebras, and Lax pairs for integrable couplings of
integrable systems generated from (1.2) must be of the form:

_ U(u, \) Ul(u,v,A)] 7@ V(u,A) Vi(u,v,\)

vEn=1", Uu, A) 0 Vi, )

], (1.16)

where U and V are elements in a non-semisimple matrix Lie algebra.

In this paper, we would like to propose a formulation of Darboux transformations
for integrable couplings, which gives a positive answer to the previous two questions.
Darboux transformations of integrable couplings will be explicitly presented, on the
basis of matrix structures of non-semisimple matrix Lie algebras. Applications will
be made to a kind of integrable couplings of the AKNS equations, and reductions to
integrable couplings of the nonlinear Schrodinger (NLS) equation and the modified
Korteweg—de Vries (MKdV) equation will be created, along with exact one-soliton-
like solutions to all the obtained integrable couplings. The resulting theory opens
a new research area in the field of integrable systems. We will end the paper with
a few concluding remarks.

2. Formulation of Darboux Transformations of
Integrable Couplings

Assume that a soliton hierarchy of integrable couplings:
iy, = Kp(a) = (KL (u), TE (u, )", a=(u’,v")T, m>0, (2.1)
ie.
ug,, = Ki(u), v, = Tn(u,v), m >0, (2.2)
is associated with a hierarchy of enlarged spectral problems:
6o = U@ N, or, =V"(@Ng, m=0, (2.3)
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where the enlarged Lax pairs are block upper triangular matrices:

_ Ulu,\) Uy(a, A _ Vi, n) v,
Sy [N GEN] e ey e ]
0 Ul(u, \), 0 VIl (u, \)
(2.4)
We will focus on the matrix blocks defined by
U(U,)\)ZJ/\—FP, Ul(ﬂ,/\)zjl)\—FPl,
m (2.5)
VI, A) = 3V, v ZVM AT m >0,
7=0

where J and J; are two given constant diagonal matrices of order N, and P and P;
are two IV X N matrices, consisting of dependent variables, whose diagonal elements
are all zero. Upon introducing

-7 A T L] (2.6)
- y ; j = ) SJ=m, .
0 J o P" 7T lo v g
then the enlarged spectral problems (2.3) can be rewritten as
5o =0d= T+ P)G, &, =VIMG=S"TVA" 93, m=>0.  (27)

0

J:
Let D = D(z,t,\) be a 2N x 2N matrix. If ¢’ = D¢ satisfies the same type
spectral problems as (2.7):

B =03 =\ +P)F, &, = Vg =S vimmig om0, (28)
j=0

where P’ has the same form as P:

P P

o P

P =

(2.9)

P’ and P being N x N matrices with zero diagonal elements, then the transfor-
mation

(¢, P) = (&', P") (2.10)

presents a Darboux transformation of the enlarged spectral problems (2.7) and D
is a Darboux matrix of (2.7).
We are interested in a class of Darboux matrices of first-order in A:

D=X -5, I=diag(l,I), (2.11)

where I is the identity matrix of order N as before, and S is a 2N x 2N matrix to
be determined. The first equation in (2.8) reads

AT+ PYN — 8)p = (M — 8)d), = (M — S)(\J + P)p — S,6.
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The coefficients of the first and second powers of A require

P =P+1J,9], (2.12)
and
S, =P8—-8P=pPS—-SP+J5?-8J8S, (2.13)
which is equivalent to
S, + 18,75+ P] =0. (2.14)

The second equation in (2.8) reads
D VI = 8)d = (M = 8))r,, = M= 5) Y Vid" 96— 5,6
j=0 =0
Comparing coefficients of powers of A leads to
‘70/:%7 ‘7j/+1:‘7j+1+v'/S_SV37 Ogjgm_lv

and

These two equations equivalently requires
Vi=Vo, V/=Vi+> [V;og,SIS¥ 1, 1<j<m, (2.15)
k=1

and

S;. 4+ |S,

m

V;8m1| =0. (2.16)

s

Il
<

J
To sum up, we have the following theorem on Darboux matrices of the enlarged
spectral problems (2.7).

Theorem 2.1. D = A — S is a Darbouz matriz of the enlarged spectral problems
(2.7) if and only if S satisfies

S; +[S,JS+P]=0 (2.17)
and
St + 15, V;Sm | =0. (2.18)
§=0

Moreover, the corresponding Darbouz transformation generates the Backlund trans-
formation of (2.1):

P =P+1],89]. (2.19)
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To present a Darboux transformation for an integrable coupling (2.1), we intro-
duce N enlarged eigenfunctions associated with IV eigenvalues: As,1 < s < N:
o) = U@ e, o) =VIM(@A)6™, 1<s<N, (220
where @ is a given solution to (2.1). We denote
o) = (@, 9T, 1<s<N, (2.21)

where ¢(®) and qﬁls) are N-dimensional column vector functions, and then formulate
a block upper triangular matrix

H =

- |H H;
0 H

:|’ H= [¢(1)a-~-a¢(N)]a Hl = [ gl)r“ad)gN)]' (222)

Obviously, we have
H,=JHA+ PH, H,=JH,A+PH,+ JiHA+ P H, (2.23)

and

Hy =Y V;HA™, Hy =Y V;HIA™ ™+ Y Vi HA™ S, (2.24)
=0 =0 =0

where A is defined as in (1.9).

Theorem 2.2. Let H be defined by (2.22) and A = diag(A, A). Then H is invertible
if and only if H is invertible. When H is invertible, S = HAH ™' can be represented
as

S 5
0

, S=HAH™', S,=-HAH'HH '+ HAH™', (2.25)

and D = X\ — S is a Darbouz matriz of the enlarged spectral problems (2.7), which
leads to the Backlund transformation for the integrable coupling (2.1):

P =P+[J,S], Pl=P +1[J5]+[J],5]. (2.26)

Proof. Noting that H defined by (2.22) has a block upper triangular form and the
diagonal blocks are the same as H, we know that H is invertible if and only if H is
invertible.

Assume now that H is invertible. It is easy to see that H can be inverted
blockwise as follows:

H' —-H'HH!

H'=
0 H!

)
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and so, we can work out the formula for S:

S=HAH!
‘H H|[A Ol [HY —H'H H
o H||o A0 H-!

‘A H A [HY —HH H
| 0 HA 0 H-!

[HAH-! —HAH ‘H,H* + HAH™}
B 0 HAH-! ’

which exactly tells the expressions for S and S; in (2.25).
We need to show that S satisfies the two conditions in (2.17) and (2.18), i.e.

<

S, +[S,JS+P| =0, S, + |83 V5m| =, (2.27)
7=0

to guarantee that D = AI — S is a Darboux matrix of the enlarged spectral problems
(2.7). )
Let us firstly show that the (1,2)th block in the = part of the conditions for S
in (2.27) is equal to zero. On one hand, based on (2.25), we can compute that
Sie = —HAH'HH '+ HAH'H,H'HH ' - HAH'H,,H™!
+HAH'H\H'H,H ' + H,AH' — H{AH'H, H!
= —(JHA+ PH)AH 'H H ' + HAH *(JHA + PH)H 'H H™!
—HAH Y(JH\A+ PH, + JJHA + PP H)H ™!
+HAH *H H Y (JHA + PH)H™*
+(JH\A + PH, + JJHA + PP H)AH ' — H{AH ' (JHA + PH)H !
= JHAN*H'H\H™' - PHAH'HH ' + HAH 'JHAH'H H™!
—HAH 'JHAH™' — HAH 'J,HAH ' — HAH'P,
+HAH *H\H ' JHAH ' + HAH *H,H'P
+JHNH™ ' + PHIAH ' + ZHAN*H ™' + PPHAH ™!
—HAH YJHAH ' — HAH'P,

where (2.23) was used and the two terms involving the underlined expressions cancel
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each other out. On the other hand, we have

I Y ST B B A O P P
[S,JS + P] = ,
o s|'lo J]lo s 0 P
i (SJS1 4SS+ S1JS + SPy + S P
S, JS + P]
= —JSS1—J515—J152—P51—P15) .
0 S, JS + P

Therefore, again based on (2.25), the (1,2)th block of [S, JS + P] can be computed
as follows:

[S,JS + Plia = SJS1 + SIS+ S1JS + SP + S P
—JSS; —JS1S — J18* — PS; — P,.S
= HAH 'J(—HAH '*H\H ' + H{AH ™)
+HAH 'JyHAH ' + (-HAH'H,H™ ' + HyAH HJHAH !
+HAH 'P, + (~-HAH 'HH ' + HHAH ") P
—~JHAH Y(~HAH'H,H™' + HiAH ™)
~J(=HAH 'H\H '+ FyAH YHAH ™' — JJHA*H ™

—P(-HAH '"HyH™ ' + HHAH™") — PLHAH ™!

= —HAH 'JHAH 'H,H ' + HAH 'JH,AH™!
+HAH 'JyHAH ' — HAH *H\H 'JHAH
+ H\AH 'JHAH ' + HAH'P, - HAH 'H,H™'P
+HAH P+ JHN*H "H\H™ ' — JHAN*H™ — T HA*H
+PHAH 'H\H ' — PHAH ' — PP HAH !,

where the two terms involving the underlined expressions cancel each other out.
Now a careful but direct comparison between the above two equalities tells that the
(1,2)th block in the x part of the conditions in (2.27) is equal to zero.

Let us secondly verify that the (1,2)th block in the ¢, part of the conditions
for S in (2.27) is equal to zero, too. We begin to observe

m—j
o |5 Y
k=1 ’
0 Sm—i

where
T, =S5,...,8515,....,8, 1<k<m-—j.
——

k—1 m—j—k
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It directly follows that

_ s
& 77 am—j S 5 Vi Vi Sm—i Z Ty
15, 7;,5m] = >
0 s v |
L 0 Sm—J
m—j ' v -
SV; Z Ty + SV1,;S™7 + 5,V; 8™
= [S’ ‘/}Sm*j] = m—j
—V;8mI8 —V; (Z Tk) S — %jsm_j+l‘| '
k=1
L0 [, V;5m~] ]
0<j<m.
Note that applying (2.25), we have
) i
S =Y 5...856...5
— N—_———
k=1 ] i h
= HA’f VHY(—HAH 'H,H ' + HyAH Y)HA™ -k ~1
k=1
, m—j .
= — Z HAkH*IHlAmfjkafl + Z HAkilHilHlAmijfk*HH*l
k=1

= —HA" H 'HyH '+ HyA™TH .
Therefore, we can then compute that
Sy =-HAH 'HH '+HAH *HH 'HH'-HAH 'H,H!
+HAH 'HH'HH '+ HAH ' — HIAH *HH!

=Y [-V;HA" P H H H ™ + HAH 'V, HA™ T H'H,H ™!
j=0

— HAH N V;HWA™ 7 + Vi, HA™ ) H '+ HAH'HyH'V;HA™ T H !
+ (V;HiA™ T + Vi HA™ )AH ™ — HIAH 'V, HA™ T H 1

(-V;HA™ P g H H Y + HAH 'V, HA™ 9 H'H,H ™!

I

<
Il
o

—~HAH'V;H{ A" H™' — HAH Vi ;HA™ T {1
+HAH 'HiH'W;HA™ T H ™ + V;H A™ I g
+ Vi, HA™ I =t — AH 'V, HA™ T H ™Y,
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where (2.24) was used, and again by use of (2.25), the (1,2)th block of [5727:1
V;8m=3] is

12
m m—j )
=D SV Y T+ SVi; 8™ 4+ 5V 87 T — VST,
j=0 k=1
m—j '
o (n) v
k=1

[HAH 'V;(~HA™ 9 HYH H™* + HiA™TH™Y)

.

-
I
=)

+HAH 'V HAN"VH ™ + (-HAH *HH™ ' + H{AH YV, HA™ T H !
~V;HAN" 9 H Y (~HAH 'H;H '+ HIAH™")
~Vi(—HA" Y H'H H '+ HlA™ T H Y)HAH ™' — Vi, HA™ T g~

=Y (~HAH'V;HA" H'HiH™ '+ HAH'V;Hy A"/ H ™!
7=0

+HAH 'V HAN™ T H™' — HAH 'HH 'V;HA™ T H !
+ A AH YW HA" T H T 4 V;HA™ T Y
—V;H AT g v HA I )

where the two terms involving the underlined expressions cancel each other out.
Now, a careful comparison between the above two equalities tells that the sum of
1 and the (1, 2)th block of [S, 377", V;8™ /] is equal to zero. That is, the (1,2)th
block in the ¢, part of the conditions for S in (2.27) is zero.

Note that it is a standard result (see, e.g., [25, 26]) that the two diagonal blocks
in the conditions for S in (2.27) are the same and equal to zero, which precisely
means that D = M\ — S with S = HAH ! is a Darboux matrix of the uncoupled
spectral problems associated with u;,, = Ky, (u):

br =Uu, N, b1, = VI (u,N)p, m>0. (2.28)
Therefore, the enlarged matrix S satisfies the two conditions in (2.27), and further,

D is a Darboux matrix of the enlarged spectral problems (2.7).

Finally, a simple computation yields that
o LS [, 81+ [, S
g5 [BS) s+
0 [J, 5]

1850003-11
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where J is defined as in (2.6). Therefore, P’ and P + [J, S] have the same matrix
form and the transformation (2.19), i.e. P’ = P + [J,S], generates the concrete
Bécklund transformation presented in (2.26). This completes the proof. |

In the following section, we will apply the above generic formulation of Darboux
transformations to a kind of integrable couplings of the AKNS equations.

3. Applications to a Kind of Integrable Couplings
of the AKNNS Equations

3.1. A kind of integrable couplings of the AKNS equations

Let us consider a novel enlarged AKNS spectral problem:

¢e =Ug =U(u,\)o, (3.1)
where the enlarged spectral matrix is chosen as
_ U U A p A r
= , U= , U= , (3.2)
0 U q A s A

and we denote the enlarged potential and eigenfunction by
(ZE: (¢T7¢T)T7 ¢: (¢1a¢2)T7 d): (¢1a¢2)T'

We point out that U; introduced above depends explicitly on the spectral parameter
A, which is a new try to generate integrable couplings.
Assume that

_ lW Wl] [a b ] [e f ]
W = , W= , W= . (3.4)
0o w c —a g —e

(3.3)

Then the enlarged stationary zero curvature equation, W, = [U, W], results in
W, =[U W], Wiy, = [U, Wi+ [U, W], (3.5)

which is equivalent to

az = pc — gb,
by = —2\b — 2pa, (3.6)
e = 2qa + 2)c,

and
ex =pg — qf +rc—sb,
fo = =2\ — 2pe — 2)\b — 2ra, (3.7)
gz = 2qe + 2)g + 2sa + 2)c,

1850003-12



Rev. Math. Phys. 2018.30. Downloaded from www.worldscientific.com

by Prof. Wen-Xiu Ma on 02/13/18. For personal use only.

Darbouz transformations of integrable couplings and applications

respectively. Define

W:iWi)ﬁi, W; = [ai b
=0

C; —Qy
> i €i i

Wi = ZWLM%, Wi = l f ] , 12>0.
i=0 gi —6€;

Substituting those into the equations in (3.6) and (3.7), and comparing the coeffi-
cients of powers of \, we obtain the recursion relations to define W and Wi:

apx = Oa bO = 07 Co = Oa
Qjg = PC; — qbi7 { > 17
1
bi=—gbi-1z —pai-1, P21, (39)
L > 1
Ci = 5Ci—1,z — 4QGi—1, 1=z 1
2 1, q 1
and
GOm:Oa f0:O7 gO:Oa
€iz = pgi — qfi +rci — sbi, i>1,
1 .
fi= —§fi—1,a: —pei_1—b; —ra;_1, ©>1, (3 10)
1 .
9i = 591‘—1,7: —(q€i—1 — $Qj—1 — Cj, i >1,
respectively. We take the initial values
ap =a, ey=p, (3.11)

where o and (8 are arbitrary constants, real or complex numbers, and choose the
constants of integration to be zero:

ai|u:0 = 0, ei|ﬂ:0 = O7 ) Z 1. (312)

This way, we can determine the sequence of a;, b;, ¢;, €;, fi, gi, i > 1, from (3.9) and
(3.10) uniquely. The first few sets can be worked out as follows:

by = —ap, ¢ =—-aq, a; =0;
, 1 ! B '
2 = 204pm7 C2 = 201%57 az = 2ap%
1 1 1 1 1
by = —a (me — §p2q), c3 = —a | 7 — §pq2), a3 = —70(pds — qp.);
by — 1 3 B 1 3
4 = 8pmz 4pqu , €4 = —« 8(]zzz 4pqqgc ,

SN S DR SN SO
4 = SPQMU 8qpam 8pra: 8p q )

1850003-13
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and
fi=alp—r)—PBp, g1=alg—s)—PBq, e1=0;

1 1 1 1
f2 =~ (pm - §Tz) + 55}%, g2 =« <Qz - §3z) - 56(1za

1 1 16
= —_—— —_—— T‘ —_— .
€9 o | pq 2p3 2q 2 Pq;
A 1 3, 1, 1 1,

3 1 3 1 1 1
g3 =« (—qm — —Szz — =pq* + pgs + —q2r> - B (—qm - —pqz),

4 4 2 2 4 2
3 1 1
€3 =« Z(pqa: - qpa:) - Z(psw —qry +rqz — pr) - Zﬁ(pqw - qu);

fa=—a 1 —lr -3 +§5 4—§ T +§r

5 1 3
8pzzz 4pqpm )

1 1 3 n 3 n 3 4 3
= Q| zGzxx — FSzxx — T —PSqy —P4qSzx —qrgx
g4 2q 3 Pqq. 417 q 4pq 4q q

1 3
- B (g%m - qucbv)a

1 1
€4 = & |:§(pqa:a: + qPxax — prm) - g(psww + SPxx + qTrzz + TQzae — PxSx — (Ime)

3 3 1 3
— §p2q2 - Z(qus - qur)] - B |:§(p%m + @Paw — Pas) — §p2q2} .

Now, we take the enlarged Lax matrices as

ylml — ., m>0, (3.13)

where the matrix blocks are defined by

aml pim] m _
viml = = (A"W)y =Y Wi,

ml _glm] v

m>0, (3.14)

e gt m ‘
= glml _elml = W1)+:;W“A ’

1850003-14
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to introduce the time evolution of the enlarged eigenfunction
i, = VMo = vVIm(@ Ng, m>o. (3.15)

Then based on the recursion relations in (3.9) and (3.10), the compatibility con-
ditions of the enlarged spectral problems (3.1) and (3.15), i.e. the enlarged zero
curvature equations:

Uy, — VM + [0, V™) =0, m>o0, (3.16)

which is equivalent to

Uy, — VM 4w, viml] = o,
) ] m 20,
Ultrn - Vlaj + [U7 Vl ] + [Ul? V[m]] = 07
generate a hierarchy of AKNS integrable couplings:
p —2bm41 2ap
_ 2Cm _ —2a
i, = |1 = Kn(a) = i = om T mo,
r —2fma1 — 2bman 2(Bp + ar)
S ton 2gm+1 + 2cm+1 _2(661 + as)
(3.17)
where the enlarged hereditary recursion operator ® reads
_ ) 0
b= , (3.18)
.- O

with ® and @, being determined by
1
—§8+p8_1q p0~lq

)

—q0'q %3 —q07'p

[ 107 q+p0~ts 107 p+po!
o, — 7 prpe T (3.19)
|—s07'q—q07's —s07'p—qd'r

The first few sets of integrable couplings in (3.17) can be worked out as follows:

—apy
—aqy

(pe = 12) — Bpa

gz — 52) — B

g, = Kq(u) = , (3.20)

1850003-15
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— 1 )
Q| SPxx —
210 b q
1 2
—Q (iqa:a: —q p)

Gy, = Ko() = )
& 2() 1 2 2 1 2
—a m—§rmm—2pq+ps+2pqr +8 Sz = P74
1 2 2 1 2
a qm—§sm—2pq +q°r+2pgs | — 50z — P4
g, = Ks(u)

3 3 3
PPz + 5DPSPx + P4z + 547Dz

3 1
A\ —Prex — 7 Trzx —
gPaee = 2 2 2

3 1 9 n 3 n 3 i 3
« “Qrxxr — 7 Sxxx — 3 x = PSqx a. S =4qrqx
4(] 1 2pqq 223 q 2pq 2q q

1 3
i - B (Zszm - §pQQm>

3.2. Darboux transformations of the AKNS integrable couplings

)

(3.21)

(3.22)

We would here like to apply Theorem 2.2 on Darboux transformations to the inte-

grable couplings in (3.17). In this case, we have

U=Uu,\ =M +P, U =U(a)\=A+P,

-1 0 0 p 0 r
J=J1= , P= , P = .
q 0 s 0

0 1
Take two different eigenvalues A\; and A2, and denote

¢jk :d)j()\k), ¢jk :¢J(Ak)a ],/{3:1,2

Then, we have

Ao A0  H= $11 <Z512, - Y11 1/112,
0 X P21 P22 Pa1 P22

which allows us to compute that

S=HAH™', S =—-HAH 'HH '+ HAH "

1850003-16
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The Darboux matrix of first-order in A presented in Theorem 2.2 reads

S S
0o S

, S= , (3.28)

__ _ _[ro
D=X-8, I=
0 I

where I = diag(1, 1) and the corresponding Darboux transformation is given by

¢ =D¢, P =P+[], 9], (3.29)
which leads to the associated Bécklund transformation:
P =P+[J,S], P =P +[)h,S]+][JS] (3.30)
Reformulate an initial solution (P, P;) and eigenfunction ¢ as
0 Pl . 0o o7 Z;
P =Pl = Lm , p=P= L“” . 1 Co=d= | @3
?2
and a new solution (P’ P) and eigenfunction ¢’ as
W
1 1 7
$o

Then, we arrive at the Béacklund transformation generating new solutions from
known ones:

Pl = POl 175, PM = PP 4 gy, 8]+ [, 84, (3.33)
which precisely defines

1] — 0] 4 201 =A9)dy1d12
P =Pt GG d12021

[ — o] 2(A 1 —A2) P21 ¢22
¢ =9+ d11422—P12421

ED T 2(/\1—%2)(<i>112<¢>12¢22—¢112¢12¢22+¢112¢22w12*¢11¢122¢21+¢11¢122w21*¢122¢21w11)
- (P11922—¢12¢21)7 ’

sl — 0] ¢ 2(/\1—/\2)(¢11¢21¢222+¢11¢222w21—4)124)2124)22—¢12¢212w22+¢212¢22w12—¢21¢222¢11)
(611622 —d12621)?

(3.34)

To obtain Darboux transformations of higher-order in A, we can iterate the
Darboux transformation established in Theorem 2.2 a few times. This also means
that we can further compute a newer solution (p?, ¢!, v, 512 associated with two
different eigenvalues A\; and Ay from the solution (p!*, ¢, 71 s[) just computed:

P = ptl (78, PP =pPMy 7,8+ 8], (3.35)
where S and S; are defined similarly by

S HAA-, $ — —ARA-EA+ A, (3.36)

1850003-17
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through a new set of matrices

O R e A (3.37)
0 X $23 G2 a3 g

where qgjk = qNSJ(S\k) and 1;]»;C = 1/~)j(5\k)7j,k =1,2.
While computing examples below, we denote the time variable only by ¢, but
not t,,, for convenience’s sake.

Example 1. The Second-Order System

Let us firstly consider the integrable coupling system #; = K» defined by (3.21).
Note that from (3.14), we have

2 2 o b
2] _ | _ i i 2—i
AR B I

i Cc; —a;
0w ; (3.38)
e €; ; .
v = = o
' [9[2] —em] glg —CJ

where

1
el = o (pq 5PS — —qr) +5 <>\2 - §pq),

. (3.39)
_T)‘ pz"’ Tm:|+/8<_pk+_pm)7

-« 2

1 1
2 2] — _ z 2l — —g\— =
oz</\ 2 ) b oz( p/\+2pz), c oz( g\ 2qz),
1

1 1
[2]_O‘|:q_3 /\+qgc_§5m:| +B<_q)‘_§qgc>~

Now, starting from the zero seed solution and solving the corresponding spectral
problems (3.1) and (3.15) generates the following eigenfunctions associated with an
eigenvalue \:

= (ﬂ)\2/'l’lt — )\/_,le + MS)GA(O(Atfm)7

(A)
o = X2(( A)) = — (BN gt — Maaw — pg)e— A=), (3.40)
(

where p;, 1 < i < 4, are arbitrary constants. To obtain analytical solutions by the
proposed Darboux transformation, we choose the following two vectors of eigen-
functions:

1?1(/\1) = Xl(/\l)a ¢2(/\1) = X2(/\1),
d1(A1) = x3(M1),  P2(M) = xa(A1),

1850003-18
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and
P1(A2) = —x1(A2),  Y2(X2) = x2(A2),
d1(A2) = —x3(N2),  @2(A2) = xa(N2),

associated with two different eigenvalues \; and A3, respectively. Then by the
Bécklund transformation (3.34), we obtain a one-soliton-like solution to the AKNS
integrable coupling system (3.21):

(3.42)

= O 2 g R Oa g,

M2
0= P2 (3, = Ag)em 0TI A e,
1
= _i()\ — Xo)nsech?¢ o
= 2[@ 1 2)1 )
1 2
s— — (A1 — A2)(sech?g,

o
where
&= (A1 — A)[a(A + A2t — 2],
N = [p1p2(2BX%t — 200w + 1) — pipta + popsle
+ (122802t — 20z + 1) — papig + propigle®2(@A2t=2),
¢ = [m1p2(2BX2%t — 29w — 1) — papua + pgpugle”2Ar(@Ait=a)
+ (22807t — 20@ — 1) — pypa + popsle”Pe(@rat=),
Example 2. The Third-Order System

2)\1(a)\1t7m)

Let us secondly consider the integrable coupling system u; = K3 defined by (3.22).
Note that from (3.14), we have

(3.44)
V[S} _ 6[3] f[g] _ € fl )\371
1 g8l el 9 —e ’
where
3] 3 1 1
a®' =a |\ —§pq)\+ Z(qu—p%) )
1 1 1
Bl = o [ —pA2 + =po — ~p? 4
b Oz( PA° + 2pz/\ 4pmc + 2p Q)a (3 5)
1 1 1
Bl — o [ —gA2 — Zg )\ — = —pq?
¢ a( gA 2qu 4qm+2pq )

1850003-19
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and

+ﬁ[A3—

Now, starting from

1
o8 — o qu_

f[S] =« |:(p - 7"))\2 - (pw - %Tm) A + mew -

1
9[3] =« |:(q - s))\2 + <qw - §sw> )\ + an:a: -

1 3 1
5Ps — —q7") A+ Z(p%c - qqa:) - _(psa: —qrg + Tqx — spw):|

277 2 4
1 1

P\ — 7 (paz — ap) |

5PaA — 7(pa qp)]

3

170 _§2 +l23+ r
7w 2pq 2p Pq

1 1 1
+ (—p/\2 + =Ped — ~ Pz + —qu),

2 4 2

3 ls _§ 2+1 2r 1+ pgs
S 2p(] 2(1 pq

1 1 1
+ (—qx\2 — =\ — ~ Qs + —pq2>~

2 4 2

(3.46)

the zero seed solution, we have the eigenfunctions of the corre-

sponding spectral problems (3.1) and (3.15) associated with an eigenvalue A:

where p;, 1 <i <4,

Y1 = (BNt = M + pig)eN N t=o),

VYo = — (BN ot — Aoz — M4)6_’\(M2t_m)7

3.47
AaA?t—z) ( )

1 = pie

¢2 — HQe—A(a)\zt—m)’

are arbitrary constants. In the proposed Darboux transforma-

tion, we take the same type of vector eigenfunctions associated with two different
eigenvalues A1 and Ao as did in the previous example. Again by the Bécklund
transformation (3.34), we obtain a one-soliton-like solution of the AKNS integrable
coupling system (3.22):

q:

T =

S =

_&()\1 _ )\2)6(A1+)\2)[O{(A127A1A2+)\22)t7$}sech§’

H2
@(/\1 _ )\2)6—(>\1+>\2)[Oé(Al2—>\1>\2+>\22)t+r]sech§,
H1
1 , (3.48)
_W()\l — A2)nsech”E,
2
1 2
_W(/\l — A2)(sech?¢,
1
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where
£ =M\ — A2)[a(A\F + M2 + A3)t — ],
= [1p2(2B8X2t — 2Xo0x + 1) — pajis + papsle
+ [ p2(28M°t — 2013 + 1) — py g + prapisle?(@rt=0)
¢ = [mpa(2BX%t — 2Xaw — 1) — papia + pppisle 2 (@A)
+ [ p2 (2805 — 2012 — 1) — pajug + popisle PN =),

2A1 (a)\12t7m)

3.3. Reductions to the NLS and MKdV equations
Let us make the following type of reduction:
p=-q", r=-s", (3.49)
where the superscript * denotes the complex conjugate, and assume that
VIMTX) = — (o)) W) = o)t (350)
which precisely means that
al™l(=A7) = —(al™ ()7, b (=A) = (™))",
{e[m](—/\*) = —(el™)7, =N = —(gm(V)7

Then, if ¢ = (Y1,v2, ¢1,62)7 is an eigenfunction of the spectral problems (3.1)
and (3.15) associated with A = A1, we can see that v = (3, —¥%, ¢35, —¢7)T is an
eigenfunction of the spectral problems (3.1) and (3.15) associated with A = —A7}.
Therefore, upon taking

A O *k *
Ao 1 1, I P11 ¢gi H - P11 ¢21 7
0 —=A7 P21 —@1y o1 —YT
we can work out the associated Backlund transformation

$11071 +P3 P21’

{p[l] —plol _ 201+ P11 93,

AU 0]y 200D (011205, 0]y 4611205, vy —911 2911 w5 — 91165 2oo1 1165, P wa1 — 95, Péa1v11)
(¢1107,+05,621)2 ]

(3.51)
for the reduced AKNS integrable couplings under the reduction (3.49).
To achieve the restrictions in (3.50), we take the initial value conditions
ag=a=—a" ey=p=—8" when m - even, (3.52)
or
ag=a=ca*, e ==/ whenm- odd. (3.53)

Particularly, under the reduction (3.49) with the conditions in (3.52) and (3.53), the
AKNS integrable coupling systems (3.21) and (3.22) reduce to integrable couplings

1850003-21
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of the NLS and MKdV equations, respectively. To obtain exact analytical solutions
to those two integrable coupling systems from the Bécklund transformation (3.51),
we set

Al =t4iR, A =—A = —L+ k. (3.54)

We list two examples below to show the resulting one-soliton-like solutions for the
reduced second and third-order AKNS integrable coupling systems.

Example 1. The Reduced Second-Order System
Let us firstly take the spectial initial value conditions
apg=a=-2i, ey=p=0. (3.55)

Then, the AKNS integrable coupling system (3.21) reduces to an integrable coupling
of the NLS equation:

ipt — Paa — 2|p[*p =0,
! v (3.56)
ire — Tow + 2Dpz — 20°7° — 4|p?r + 4|p|?p = 0.

The resulting one-soliton-like solution (3.43) with 1 = po and us = w4 becomes
p= —2Le*2“202*“2)””}Sech[2L(4f$t — 1)), (3.57)
= e~ 2207 RN ttna] p o oy [2c(4Kt — )], '

where
n = (2ikT + 2z — 1)e T2 4 (2iky — 2a — 1)ed TR,

This solution can also be computed directly by using the associated Backlund trans-
formation (3.51).

Example 2. The Reduced Third-Order System
Let us secondly take the special initial value conditions
ap=a=-2, e=p0=0. (3.58)

Then, the AKNS integrable coupling system (3.22) reduces to an integrable coupling
of the MKdV equation:

1
Pt — §pzzz - 3|p‘2pm = Oa
(3.59)

3 1 # *
re + §pwmw - Era:a:a: + 9‘p|2pw - 3|P\27"x —3prps — 3pTrp, = 0.

Similarly, the resulting one-soliton-like solution (3.48) with 1 = pe and ps = pg
becomes

. 2 2
p = —e 2HREI=mIHTl g0 £9,[2(,% — 3k2)t + 2]},
{ (2020 - 3621+ ) .

= e~ 2R2BE il sech?{2:[2(:2 — 3x2)t + z]},

1850003-22
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where
n=(2ike — 2tz — 1)67242“27573"2)”””} + (2ikx + 20z — 1)62420273&2)“%],

and this solution can also be worked out directly by using the associated Bécklund
transformation (3.51).

4. Concluding Remarks

Based on the algebraic structures of non-semisimple matrix Lie algebras, we formu-
lated a theory of Darboux transformations for integrable couplings. The resulting
Darboux transformation theory was applied to construction of solutions to a kind
of integrable couplings of the AKNS equations. Similar Darboux transformations
to other integrable couplings can be computed, based on our idea proposed in this
paper. It is expected that other solution methods could be developed to solve inte-
grable couplings.

There has been a growing interest in generating hierarchies of integrable cou-
plings [35], from matrix spectral problems associated with non-semisimple matrix
loop algebras [14]. Integrable couplings show rich mathematical structures, bring-
ing us inspiring thoughts and ideas to classify multi-component integrable systems
[38]. Bi-integrable couplings [39] and tri-integrable couplings [40] do exhibit diverse
structures on recursion operators in specific block matrix forms [34, 38, 41]. It
should also be important to explore concrete mathematical structures on Darboux
transformations for bi-integrable couplings and tri-integrable couplings.

There are many other interesting questions on integrable couplings, which are
worthy of further investigation. For example, is there any Hamiltonian structure
for the bi-integrable coupling

w = K(u), ve=K'(up], w =K (u)wl],

where K’ denotes the Gateaux derivative of K, when u; = K(u) is assumed to be
Hamiltonian? How can one generally solve the perturbation system

up = K(u), v=K'"(u)]?
A special case associated with the KdV equation u, = 6uu, + tzes is
Ut = 6uua: + Uz, V= G(UU)m + Vzza,

where the second equation is a variable-coefficient linear third-order partial differ-
ential equation for v. It is particularly interesting to us how to solve any initial-
boundary value problems of this linearized KdV equation once u is given. There
exist, though, plenty of particular solutions to the perturbation system, and one
class of immediate solutions is to take v as a symmetry of u; = K (u). Hirota bilin-
ear forms of the perturbation systems of different orders can also be used to present
exact solutions [42].

1850003-23



Rev. Math. Phys. 2018.30. Downloaded from www.worldscientific.com

by Prof. Wen-Xiu Ma on 02/13/18. For personal use only.

W. X. Ma 6 Y. J. Zhang

Acknowledgments

The work was supported in part by NNSFC under the grants 11371326, 11271008,
11325417, 61227902 and 61072147, NSF under the grant DMS-1664561, the 111
project of China (B16002), Natural Science Fund for Colleges and Universities of
Jiangsu Province of China under the grant 17KJB110020, Natural Science Founda-
tion of Shanghai (Grant No. 11ZR1414100), Zhejiang Innovation Project of China
(Grant No. T200905), the First-Class Discipline of Universities in Shanghai and
the Shanghai University Leading Academic Discipline Project (No. A.13-0101-12-
004), the Distinguished Professorships by Shanghai University of Electric Power
and Shanghai Second Polytechnic University, the China Scholarship Council, the
University of South Florida and the Lanzhou University. The authors are also grate-
ful to S. T. Chen, X. Gu, X. Lii, S. Manukure, M. Mcanally, O. Unsal, X. L. Yang
and Y. Zhou for their stimulating discussions.

References

[1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and
Inverse Scattering (Cambridge University Press, 1991).

[2] S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Soli-
tons — The Inverse Scattering Method (Consultants Bureau/A Division of Plenum
Publishing Corporation, 1984).

[3] D.Y. Chen, Introduction to Solitons (Science Press, Beijing, 2006).

[4] V. G. Drinfeld and V. V. Sokolov, Equations of Korteweg—de Vries type and simple
Lie algebras, Soviet Math. Dokl. 23 (1981) 457-462.

[5] A. S. Fokas, Symmetries and integrability, Stud. Appl. Math. 77 (1987) 253-299.

[6] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm.
Pure Appl. Math. 21 (1968) 467-490.

[7] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, The inverse scattering
transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974) 249—
315.

[8] H. Grosse, New solitons connected to the Dirac equation, Phys. Rep. 134 (1986)
297-304.

[9] D.J.Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrodinger
equation, J. Math. Phys. 19 (1978) 798-801.

[10] W.X.Ma and R. G. Zhou, A coupled AKNS-Kaup—Newell soliton hierarchy, J. Math.
Phys. 40 (1999) 4419-4428.

[11] M. Wadati, K. Konno and Y. H. Ichikawa, New integrable nonlinear evolution equa-
tions, J. Phys. Soc. Jpn. 47 (1979) 1698-1700.

[12] W. X. Ma, A soliton hierarchy associated with so(3,R), Appl. Math. Comput. 220
(2013) 117-122.

[13] W. X. Ma, A spectral problem based on so(3, R) and its associated commuting soliton
equations, J. Math. Phys. 54 (2013) 103509.

[14] W.X.Ma, X. X. Xuand Y. F. Zhang, Semi-direct sums of Lie algebras and continuous
integrable couplings, Phys. Lett. A 351 (2006) 125-130.

[15] W. X. Ma, X. X. Xu and Y. F. Zhang, Semidirect sums of Lie algebras and discrete
integrable couplings, J. Math. Phys. 47 (2006) 053501.

1850003-24



Rev. Math. Phys. 2018.30. Downloaded from www.worldscientific.com

by Prof. Wen-Xiu Ma on 02/13/18. For personal use only.

[34]

(35]

[36]

Darbouz transformations of integrable couplings and applications

X. X. Xu, An integrable coupling hierarchy of the MKdV_ integrable systems, its
Hamiltonian structure and corresponding nonisospectral integrable hierarchy, Appl.
Math. Comput. 216 (2010) 344-353.

X. R. Wang, X. E. Zhang and P. Y. Zhao, Binary nonlinearization for AKNS-KN
coupling system, Abstr. Appl. Anal. 2014 (2014) 253102.

F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19
(1978) 1156-1162.

B. Fuchssteiner, Application of hereditary symmetries to nonlinear evolution equa-
tions, Nonlinear Anal. 3 (1979) 849-862.

W. X. Ma, Integrability, in Encyclopedia of Nonlinear Science, ed. A. Scott (Taylor
& Francis, 2005), pp. 250-253.

G. Z. Tu, On Liouville integrability of zero-curvature equations and the Yang hier-
archy, J. Phys. A: Math. Gen. 22 (1989) 2375-2392.

W. X. Ma and M. Chen, Hamiltonian and quasi-Hamiltonian structures associated
with semi-direct sums of Lie algebras, J. Phys. A: Math. Gen. 39 (2006) 10787-10801.
W. X. Ma, A discrete variational identity on semi-direct sums of Lie algebras, J.
Phys. A: Math. Theoret. 40 (2007) 15055-15069.

V. B. Matveev and M. A. Salle, Darbouz Transformation and Solitons (Springer,
1991).

C. H. Gu, H. S. Hu and Z. X. Zhou, Darbouz Transformations in Integrable Systems
(Springer, 2005).

W. X. Ma, Darboux transformations for a Lax integrable system in 2n-dimensions,
Lett. Math. Phys. 39 (1997) 33-49.

X. Y. Li, Y. Q. Zhang and Q. L. Zhao, Positive and negative integrable hierarchies,
associated conservation laws and Darboux transformation, J. Comput. Appl. Math.
233 (2009) 1096-1107.

X. X. Xu, A deformed reduced semi-discrete Kaup—Newell equation, the related in-
tegrable family and Darboux transformation, Appl. Math. Comput. 251 (2015) 275~
283.

D. Zhao, Y. J. Zhang, W. W. Lou and H. G. Luo, AKNS hierarchy, Darboux trans-
formation and conservation laws of the 1-D nonautonomous nonlinear Schrodinger
equations, J. Math Phys. 52 (2011) 043502.

X. Lii, Soliton behavior for a generalized mixed nonlinear Schrédinger model with
N-fold Darboux transformation, Chaos 23 (2013) 033137.

B. L. Guo, L. M. Ling and Q. P. Liu, Nonlinear Schrodinger equation: Generalized
Darboux transformation and rogue wave solutions, Phys. Rev. E 85 (2012) 026607.

J. S. He, L. H. Wang, L. J. Li, K. Porsezian and R. Erdélyi, Few-cycle optical
rogue waves: Complex modified Korteweg—de Vries equation, Phys. Rev. E 89 (2014)
062917.

R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics,
Vol. 155 (Cambridge University Press, 2004).

W. X. Ma, Variational identities and Hamiltonian structures, in Proceedings of the 1st
International Workshop on Nonlinear and Modern Mathematical Physics, eds. W. X.
Ma, X. B. Hu and Q. P. Liu, AIP Conference Proceedings, Vol. 1212 (American
Institute of Physics, 2010), pp. 1-27.

W. X. Ma and B. Fuchssteiner, Integrable theory of the perturbation equations,
Chaos Solitons Fractals 7 (1996) 1227-1250.

W. X. Ma, Integrable couplings of soliton equations by perturbations I — A general
theory and application to the KdV hierarchy, Methods Appl. Anal. 7 (2000) 21-56.

1850003-25



Rev. Math. Phys. 2018.30. Downloaded from www.worldscientific.com

by Prof. Wen-Xiu Ma on 02/13/18. For personal use only.

W. X. Ma 6 Y. J. Zhang

[37]
[38]
(39]
(40]

[41]

[42]

L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie Algebras and Superalgebras
(Academic Press Inc., 2000).

W. X. Ma, J. H. Meng and H. Q. Zhang, Integrable couplings, variational identities
and Hamiltonian formulations, Global J. Math. Sci. 1 (2012) 1-17.

W. X. Ma, Loop algebras and bi-integrable couplings, Chin. Ann. Math. Ser. B 33
(2012) 207—224.

W. X. Ma, J. H. Meng and H. Q. Zhang, Tri-integrable couplings by matrix loop
algebras, Int. J. Nonlinear Sci. Numer. Simul. 14 (2013) 377-388.

W. X. Ma, Integrable couplings and matrix loop algebras, in Proceedings of the 2nd
International Workshop on Nonlinear and Modern Mathematical Physics, eds. W. X.
Ma and D. Kaup, AIP Conference Proceedings, Vol. 1562 (American Institute of
Physics, 2013), pp. 105-122.

W. X. Ma and W. Strampp, Bilinear forms and Béacklund transformations of the
perturbation systems, Phys. Lett. A 341 (2005) 441-449.

1850003-26



	Introduction
	Formulation of Darboux Transformations of Integrable Couplings
	Applications to a Kind of Integrable Couplings of the AKNS Equations
	A kind of integrable couplings of the AKNS equations
	Darboux transformations of the AKNS integrable couplings
	Reductions to the NLS and MKdV equations

	Concluding Remarks

