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Abstract

Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a 
class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The 
basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate 
quadratic functions. A complete determination of quadratic functions positive in space and time is given, 
and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and 
sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and 
such polynomial solutions yield lump solutions to nonlinear partial differential equations under the depen-
dent variable transformations u = 2(lnf )x and u = 2(lnf )xx , where x is one spatial variable. Applications 
are made for a few generalized KP and BKP equations.
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1. Introduction

The Korteweg–de Vries (KdV) equation and the Kadomtsev–Petviashvili (KP) equation are 
nonlinear integrable differential equations, and their Hirota bilinear forms play a crucial role in 
generating their soliton solutions, a kind of exponentially localized solutions, describing diverse 
nonlinear phenomena [9].

By lump functions, we mean analytical rational functions of spatial and temporal variables, 
which are localized in all directions in space. In recent years, there has been a growing interest 
in lump function solutions [4,8,10,22], called lump solutions (see, e.g., [1,7,12,25] for typical 
examples). The KPI equation

(ut + 6uux + uxxx)x − 3uyy = 0 (1.1)

admits the following lump solution

u = 4
−[x + ay + 3(a2 − b2)t]2 + b2(y + 6at)2 + 1/b2

{[x + ay + 3(a2 − b2)t]2 + b2(y + 6at)2 + 1/b2}2 , (1.2)

where a and b �= 0 are free real constants [21]. Lump functions provide appropriate prototypes to 
model rogue wave dynamics in both oceanography [23] and nonlinear optics [27]. There are var-
ious discussions on general rational function solutions to integrable equations such as the KdV, 
KP, Boussinesq and Toda equations [2,3,17–19]. It has become a very interesting topic to search 
for lump solutions or lump-type solutions, rationally localized solutions in almost all directions 
in space, to nonlinear partial differential equations, through the Hirota bilinear formulation.

In this paper, we would like to characterize positive quadratic functions and analyze positive 
quadratic function solutions to Hirota bilinear equations. Such polynomial solutions generate 
lump or lump-type solutions to nonlinear partial differential equations under the dependent vari-
able transformations u = 2(lnf )x and u = 2(lnf )xx , where x is one of the spatial variables. We 
will present sufficient and necessary conditions for positive quadratic functions to solve Hirota 
bilinear equations, and apply the resulting theory to a few generalized KP and BKP equations.

2. From Hirota bilinear equations to nonlinear equations

Let M be a natural number and x = (x1, x2, · · · , xM)T in RM be a column vector of indepen-
dent variables. For f, g ∈ C∞(RM), Hirota bilinear derivatives [9] are defined as follows:

D
n1
1 D

n2
2 · · ·DnM

M f · g :=
M∏
i=1

(∂xi
− ∂x′

i
)ni f (x)g(x′)|x′=x, (2.1)

where x′ = (x′
1, x

′
2, · · · , x′

M)T and ni ≥ 0, 1 ≤ i ≤ M . For example, we have the first-order and 
second-order Hirota bilinear derivatives:

Dif · g = fxi
g − fgxi

, DiDjf · g = fxi ,xj
g + fgxi ,xj

− fxi
gxj

− fxj
gxi

, (2.2)

where 1 ≤ i, j ≤ M .
One basic property of the Hirota bilinear derivatives is that
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Di1Di2 · · ·Dikf · g = (−1)kDi1Di2 · · ·Dikg · f, (2.3)

where 1 ≤ i1, i2, · · · , ik ≤ M need not be distinct. It thus follows that if k is odd, we have

Di1Di2 · · ·Dikf · f = 0. (2.4)

We will discuss the following general Hirota bilinear equation

P(D)f · f = P(D1,D2, · · · ,DM)f · f = 0, (2.5)

where P is a polynomial of M variables and D = (D1, D2, · · · , DM). Since the terms of odd 
powers are all zeros, we assume that P is an even polynomial, i.e., P(−x) = P(x), and to 
generate non-zero polynomial solutions, we require that P has no constant term, i.e., P(0) = 0. 
Moreover, we set

P(x) =
M∑

i,j=1

pij xixj +
M∑

i,j,k,l=1

pijklxixj xkxl + other terms, (2.6)

where pij and pijkl are coefficients of terms of second- and fourth-degree, to determine quadratic 
function solutions.

For convenience’s sake, we adopt the index notation for partial derivatives of f :

fi1i2···ik = ∂kf

∂xi1∂xi2 · · ·∂xik

, 1 ≤ i1, i2, · · · , ik ≤ M. (2.7)

Using this notation, we have the compact expressions for the second- and fourth-order Hirota 
bilinear derivatives:

DiDjf · f = 2(fij f − fifj ), 1 ≤ i, j ≤ M, (2.8)

and

DiDjDkDl(f · f )

= 2
[
fijklf − fijkfl − fijlfk − fiklfj

−fjklfi + fijfkl + fikfjl + filfjk

]
, 1 ≤ i, j, k, l ≤ M. (2.9)

Motivated by Bell polynomial theories on soliton equations [6,14,15], we take the dependent 
variable transformations:

u = 2(lnf )x1 , u = 2(lnf )x1x1 , (2.10)

to formulate nonlinear differential equations from Hirota bilinear equations. All integrable non-
linear equations can be generated this way [5,9].



2636 W.X. Ma, Y. Zhou / J. Differential Equations 264 (2018) 2633–2659
Example 2.1. For the KdV equation

ut + 6uux + uxxx = 0, (2.11)

the transformation u = 2(lnf )xx provides a link to the bilinear form

(DxDt + D4
x)f · f = 0. (2.12)

For the KPI and KPII equations

(ut + 6uux + uxxx)x + σuyy = 0, σ = ∓1, (2.13)

the transformation u = 2(lnf )xx makes connection with the bilinear form

(DxDt + D4
x + σD2

y)f · f = 0. (2.14)

If a polynomial solution f is positive, then the solution u defined by either of the dependent 
variable transformations in (2.10) is analytical, and most likely, rationally localized in space, and 
thus it often presents a lump solution to the corresponding nonlinear differential equation. In 
what follows, we would like to analyze quadratic function solutions to Hirota bilinear equations 
to construct lump solutions to nonlinear differential equations.

3. Positive quadratic function solutions to bilinear equations

3.1. Non-negative and positive quadratic functions

Let us consider a general quadratic function

f (x) = xT Ax − 2bT x + c, x ∈ R
M, (3.1)

where A ∈ R
M×M is a symmetric matrix, b ∈ R

M denotes a column vector, c ∈ R is a constant 
and T denotes transpose.

We say that a polynomial f is non-negative (or positive) if f (x) ≥ 0, ∀x ∈R
M (or f (x) > 0, 

∀x ∈ R
M ). We need the pseudoinverse of a matrix to determine the non-negativity (or positivity) 

of a quadratic function.
For a matrix A ∈R

N×M , we call a matrix A+ ∈ R
M×N the Moore–Penrose pseudoinverse of 

A if

AA+A = A, A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A, (3.2)

which uniquely defines A+ for any given matrix A [24]. Obviously, the Moore–Penrose pseu-
doinverse of a zero matrix is its transpose and (A+)T = (AT )+, which implies that if A is 
symmetric, then so is A+. When a square matrix A is non-singular, i.e., |A| = det(A) �= 0, we 
have A+ = A−1, A−1 being the inverse of A.

Suppose that a non-zero matrix A ∈R
N×M has its singular value decomposition

A = U

[
� 0

0 0

]
V T , (3.3)
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where U ∈ R
N×N and V ∈R

M×M are orthogonal matrices, and � reads

� = diag(d1, · · · , dr), d1 ≥ · · · ≥ dr > 0, r = rank(A). (3.4)

Then the Moore–Penrose pseudoinverse of A is given by

A+ = V

[
�−1 0

0 0

]
UT . (3.5)

The Moore–Penrose pseudoinverse can be applied to analysis of linear systems [24]. A linear 
system Aα = b is consistent if and only if AA+b = b. Moreover, if it is consistent, then its 
solution set is given by

{α = A+b + (IM − A+A)β |β ∈R
M},

where IM is the identity matrix of size M .

Lemma 3.1. Let A ∈ R
M×M be symmetric and b ∈ R

M be arbitrary. If α ∈ R
M solves Aα = b, 

then

αT Aα = bT A+b, (3.6)

and further,

(x − α)T A(x − α) = (x − A+b)T A(x − A+b). (3.7)

Proof. Recalling the first property in (3.2) and using AT = A, we have

αT Aα = αT AA+Aα = αT AT A+Aα = bT A+b.

Therefore, (3.6) holds. Now, noting that

αT Ax = (Aα)T x = bT x, xT (Aα) = xT b = bT x,

(A+b)T Ax = bT A+Ax = αT AA+Ax = αT Ax = (Aα)T x = bT x,

and

xT A(A+b) = xT AA+Aα = xT Aα = xT b = bT x,

we see that (3.7) follows directly from (3.6). �
We denote a positive-semidefinite (or positive-definite) matrix A ∈ R

M×M by A ≥ 0 (or 
A > 0). Namely, A ≥ 0 (or A > 0) means that xT Ax ≥ 0 for all x ∈ R

M (or xT Ax > 0 for 
all non-zero x ∈ R

M ). The following theorem gives a description of non-negative (or positive) 
quadratic functions.
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Theorem 3.2. Let a quadratic function f be defined by (3.1). Then (a) if b ∈ range(A), then

f (x) = (x − α)T A(x − α) + c − αT Aα

= (x − A+b)T A(x − A+b) + c − bT A+b, (3.8)

where α ∈ R
M solves Aα = b; and (b) f is non-negative (or positive) if and only if A ≥ 0, 

b ∈ range(A) and

d = c − bT A+b (3.9)

is non-negative (or positive).

Proof. (a) First, based on Lemma 3.1, it is sufficient to show that

f (x) = xT Ax − 2αT Ax + c = (x − α)T A(x − α) + c − αT Aα, (3.10)

where we have made use of b = Aα and AT = A.
(b) Second, we prove part (b).
(⇐) This directly follows from the second equality of (3.8) in part (a).
(⇒) Suppose that A ≥ 0 is false. Then there exists a vector β ∈R

M such that βT Aβ < 0, and 
further for r ∈R, we have

f (rβ) = r2βT Aβ − 2rbT β + c → −∞, as r → ±∞.

This is a contradiction to the assumption on f that f is non-negative (or positive). Therefore, we 
have A ≥ 0.

Now let b = b(1) + b(2) with b(1) ∈ range(A) and b(2) ∈ range(A)⊥. Assume that α ∈ R
M

satisfies Aα = b(1). Consider x = α + rb(2), with r being a positive number. Then we can have

f (x) = xT Ax − 2αT Ax − 2b(2)T x + c

= (x − α)T A(x − α) − 2b(2)T x + c − αT Aα

= r2b(2)T Ab(2) − 2b(2)T α − 2rb(2)T b(2) + c − αT Aα

= −2rb(2)T b(2) − 2b(2)T α + c − αT Aα → −∞, as r → ∞,

if b(2) �= 0. Therefore b(2) = 0, since f is non-negative (or positive). This implies b ∈ range(A). 
Further, d = f (α) ≥ 0 (or > 0). The proof is finished. �

Any two solutions α(1) and α(2) to Aα = b satisfy A(α(1) −α(2)) = Aα(1) −Aα(2) = 0, which 
means that α(1) − α(2) ∈ ker(A) and thus

α(1)T Aα(1) = α(1)T Aα(2) = α(2)T Aα(1) = α(2)T Aα(2).

This is just a consequence of (3.6). We also point out that all the results presented in an earlier 
paper [11] are consequences of our results in Theorem 3.2. For example, we can have the last two 
theorems in [11], i.e., Theorems 6 and 7 in [11]: a quadratic function f is bounded from below if 
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and only if f reaches its minimum at a point x0 ∈ R
M if and only if A ≥ 0 and Ax0 = b, where f

is assumed to be given by (3.1). Actually, Theorem 3.2 also tells that f achieves its minimum at 
any point α ∈ R

M , where α is a solution to Aα = b, and its minimum is c − bT A+b. We proves 
the result on the extreme value as follows.

Corollary 3.3. If a quadratic function defined by (3.1) reaches its minimum or maximum, then 
its extreme value is c − bT A+b.

Proof. If f reaches its maximum γ , then g = f − γ is non-negative and by Theorem 3.2, we 
have g(x) = (x − α)T A(x − α) + (c − γ ) − bT A+b with A ≥ 0, which says that f (x) ≥ c −
bT A+b and f (α) = c − bT A+b, and so the minimum value of f is c − bT A+b. If f reaches 
its maximum, then g = −f reaches its minimum. Therefore, as we just proved, g achieves the 
minimum value −c + bT A+b, and so f has the maximum value c − bT A+b, which completes 
the proof. �
3.2. Positive quadratic function solutions

Let α = (α1, · · · , αM)T ∈ R
M be a fixed vector. Consider a quadratic function defined as 

follows:

f (x) = (x − α)T A(x − α) + d =
M∑

i,j=1

aij (xi − αi)(xj − αj ) + d, (3.11)

where the real matrix A = (aij )M×M is symmetric and d ∈R is a constant. Theorem 3.2 guaran-
tees that when A ≥ 0 and d > 0, this presents the class of positive quadratic functions.

Obviously, we have

Di1Di2 · · ·Dikf · f = 0, 1 ≤ ij ≤ M, 1 ≤ j ≤ k, k > 4,

for any quadratic function f . Moreover, because all odd-order Hirota bilinear derivative terms in 
the Hirota bilinear equation (2.5) are zero, the bilinear equation (2.5) is reduced to

Q(D)f · f = 0, (3.12)

where

Q(x) =
M∑

i,j=1

pij xixj +
M∑

i,j,k,l=1

pijklxixj xkxl, (3.13)

since Q(D)f · f = P(D)f · f for P defined by (2.6).
Now we compute the second- and fourth-order Hirota bilinear derivatives of a positive 

quadratic function defined by (3.11). Note that

fi = 2
M∑

aik(xk − αk) = 2AT
i (x − α), fij = 2aij , 1 ≤ i, j ≤ M,
k=1
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where Ai is the ith column vector of A for 1 ≤ i ≤ M . We denote y = x − α. Then using (2.8), 
we have

M∑
i,j=1

pijDiDjf · f = 4
M∑

i,j=1

pij aij f − 8
M∑

i,j=1

pij y
T AiA

T
j y

= 4d

M∑
i,j=1

pij aij + 4yT
[ M∑

i,j=1

pij (aijA − AiA
T
j − AjA

T
i )

]
y. (3.14)

By (2.9), the fourth-order Hirota bilinear derivatives of f in (3.11) read

DiDjDkDlf · f = 2(fij fkl + fikfjl + filfjk) = 8(aij akl + aikajl + ailajk). (3.15)

Thus, if (3.11) solves the Hirota bilinear equation (2.5), i.e., the reduced Hirota bilinear equation 
(3.12), then we have

8
M∑

i,j,k,l=1

pijkl(aij akl + aikajl + ailajk) + 4d

M∑
i,j=1

pij aij

+ yT
[ M∑
i,j=1

pij (aijA − AiA
T
j − AjA

T
i )

]
y = 0. (3.16)

Note x ∈ R
M is arbitrary, and so is y = x − α. Therefore, we obtain the following result.

Theorem 3.4. Let A = (aij )M×M ∈ R
M×M be symmetric and d ∈ R be arbitrary. A quadratic 

function f defined by (3.11) solves the Hirota bilinear equation (2.5) if and only if

2
M∑

i,j,k,l=1

pijkl(aij akl + aikajl + ailajk) + d

M∑
i,j=1

pij aij = 0 (3.17)

and

M∑
i,j=1

pij (aijA − AiA
T
j − AjA

T
i ) = 0, (3.18)

where Ai denotes the ith column vector of the symmetric matrix A for 1 ≤ i ≤ M .

Corollary 3.5. If f (x) = xT Ax + d solves the Hirota bilinear equation (2.5), then for any 
α ∈R

M , f (x − α) solves the Hirota bilinear equation (2.5), too.

Proof. This is because (3.17) and (3.18) only depend on the matrix A and the constant d , but do 
not depend on the shift vector α. �
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We denote the coefficient matrix of the second order Hirota bilinear derivative terms by

P (2) = (pij )M×M ∈ R
M×M, (3.19)

in the Hirota bilinear equation (2.5). When P (2) = 0, the matrix equation (3.18) is automatically 
satisfied and the scalar equation (3.17) reduces to

M∑
i,j,k,l=1

pijkl(aij akl + aikajl + ailajk) = 0. (3.20)

If M ≥ 2, for a fixed matrix A, obviously there exists infinitely many non-zero solutions of pijkl, 
1 ≤ i, j, k, l ≤ M , to the equation (3.20).

Let us now consider quadratic function solutions with |A| �= 0.
If M = 1, then a11 �= 0. Therefore, (3.17) and (3.18) equivalently yield

p11 = p1111 = 0.

This means that a bilinear ordinary differential equation defined by (2.5) has a quadratic function 
solution if and only if the least degree of a polynomial P must be greater than 5.

If M = 2, we have the following example in (1 + 1)-dimensions. Consider the function 

f (x, t) = 3x2 − 2xt + t2 + 27
2 , where A =

[
3 −1

−1 1

]
with |A| = 2 > 0. Obviously, this 

quadratic polynomial is positive, and solves the following (1 + 1)-dimensional Hirota bilinear 
equation:

(D4
x − D2

x − 2DtDx − 3D2
t )f · f = 0,

where the symmetric coefficient matrix P (2) =
[ −1 −1

−1 −3

]
is not zero. This function f leads to 

lump solutions to the corresponding nonlinear equations under u = 2(lnf )x or u = 2(lnf )xx .
When M ≥ 3, there is a totally different situation. What kind of Hirota bilinear equations (2.5)

can possess a quadratic function solution defined by (3.11) with |A| �= 0? The following theorem 
provides a complete answer to this question.

Theorem 3.6. Let M ≥ 3. Assume that a quadratic function f defined by (3.11) solves the Hirota 
bilinear equation (2.5) with P defined by (2.6). If |A| �= 0, i.e., A is non-singular, then

pij + pji = 0, 1 ≤ i, j ≤ M, (3.21)

which means that the Hirota bilinear equation (2.5) doesn’t contain any second-order Hirota 
bilinear derivative term.

Proof. First, assume that P (2)T = P (2). Then, (3.18) becomes

ãA − 2AP (2)A = 0, where ã =
M∑

pij aij . (3.22)

i,j=1
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Since A is symmetric, there exists an orthogonal matrix U ∈ R
M×M such that

Â = UT AU = diag(â1, · · · , âM).

Set P̂ (2) = UT P (2)U , and by (3.22), we have

ãÂ − 2ÂP̂ (2)Â = 0. (3.23)

Since |A| �= 0, we have |Â| �= 0. Thus, (3.23) tells that P̂ (2) = ã
2 Â−1 and further P̂ (2) is diagonal. 

Therefore, we can express

P̂ (2) = diag(p̂1, · · · , p̂M).

Plugging the two diagonal matrices Â and P̂ (2) into (3.23) engenders

ã = 2âkp̂k, 1 ≤ k ≤ M. (3.24)

On the other hand, a direct calculation can show that ã = ∑M
i,j=1 aijpij is an invariant under 

an orthogonal similarity transformation, and thus, from Â = UT AU and P̂ (2) = UT P (2)U , we 
have

ã =
M∑

k=1

âkp̂k. (3.25)

Now a combination of (3.24) and (3.25) tells that Mã = 2ã. Since M ≥ 3, we see ã = 0, and 
so, P̂ (2) = 0, which implies that P (2) = 0.

Second, if P (2) is not symmetric, noting that

N∑
i,j=1

pij xixj =
N∑

i,j=1

p̄ij xixj , p̄ij = pij + pji

2
, 1 ≤ i, j ≤ M.

we can begin with a symmetric coefficient matrix of second order Hirota bilinear derivative terms, 
P̄ (2) = (p̄ij )M×M , to analyze quadratic function solutions. Thus, as we just showed, P̄ (2) = 0. 
This is exactly what we need to get. The proof is finished. �

Theorem 3.6 tells us about the case of |A| �= 0, which says that if a Hirota bilinear equation 
admits a quadratic function solution determined by (3.11) with |A| �= 0, then it cannot contain 
any second-order Hirota bilinear derivative term.

For the KPI and KPII equations, since the corresponding symmetric coefficient matrix P (2) is 
not zero, Theorem 3.6 tells that any quadratic function solution f cannot be expressed as a sum 
of squares of three linear functions and a constant: f = g2

1 + g2
2 + g2

3 + d , where

gi = ci1x + ci2y + ci3t + αi, 1 ≤ i ≤ 3,

with (cij )3×3 being non-singular, which will also be showed clearly later.



W.X. Ma, Y. Zhou / J. Differential Equations 264 (2018) 2633–2659 2643
The other case is |A| = 0, for which there is no requirement on inclusion of second-order 
Hirota bilinear derivative terms. Obviously, when A = diag(a1, · · · , aM−1, 0) �= 0, (3.22) has 
a non-zero symmetric matrix solution P (2) = diag(0, · · · ,0︸ ︷︷ ︸

M−1

, 1) �= 0 with ã = 0, and (3.17) has 

infinitely many non-zero solutions for {pijkl| 1 ≤ i, j, k, l, ≤ M}. Therefore, we can have both 
second- and fourth-order Hirota bilinear derivative terms in the Hirota bilinear equation (2.5).

3.3. Solutions as sums of squares of linear functions

We will explore relations between quadratic function solutions and sums of squares of linear 
functions, and discuss quadratic function solutions which can be written as sums of squares of 
linear functions.

Theorem 3.7. Let a quadratic function f be defined by (3.11). Suppose r = rank(A). Then there 
exist b(j) ∈ R

M , cj ∈ R, 1 ≤ j ≤ r , such that

f (x) =
r∑

j=1

(b(j)T x + cj )
2 + d. (3.26)

Proof. We assume that the symmetric matrix A has the singular value decomposition:

A = V

[
� 0

0 0

]
V T , (3.27)

where V ∈ R
M×M is orthogonal and

� = diag(d1, · · · , dr ), d1 ≥ · · · ≥ dr > 0.

Upon denoting V = (v(1), v(2), · · · , v(M)) and setting

b(j) = √
dj v(j), cj = −αT b(j), 1 ≤ j ≤ r, (3.28)

we have

A =
r∑

j=1

djv
(j)v(j)T =

r∑
j=1

(
√

dj v(j))(
√

dj v(j))T =
r∑

j=1

b(j)b(j)T ,

and thus

f (x) =
r∑

j=1

(x − α)T b(j)b(j)T (x − α) + d

=
r∑

[(x − α)T b(j)][(x − α)T b(j)]T + d
j=1
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=
r∑

j=1

(b(j)T x + cj )
2 + d.

The proof is finished. �
Based on Theorem 3.2, and noting that constant functions are particular linear functions, the 

following result is a direct consequence of Theorem 3.7.

Corollary 3.8. Any non-negative quadratic function can be written as a sum of squares of linear 
functions.

This corollary guarantees that completing squares can transform non-negative quadratic func-
tions into sums of squares of linear functions. It also proves Hilbert’s 17th problem for quadratic 
functions.

Lemma 3.9. Let N be a natural number, and b(j) ∈ R
M , cj ∈ R, 1 ≤ j ≤ N , be arbitrary. Then 

the linear system

( N∑
j=1

b(j)b(j)T
)
α = −

N∑
j=1

cj b
(j), (3.29)

is consistent, where α ∈ R
M an unknown vector.

Proof. Note that the columns of the coefficient matrix 
∑N

j=1 b(j)b(j)T read

N∑
j=1

b
(j)

1 b(j), · · · ,

N∑
j=1

b
(j)
M b(j),

where b(j)
i is the ith component of b(j). It follows that the dimension of the column space of the 

coefficient matrix is equal to the rank of the M ×N matrix (b(j)
i )1≤i≤M,1≤j≤N . This implies that 

the column space of the coefficient matrix is just the space spanned by b(j), 1 ≤ j ≤ N . On the 
other hand, the given vector − 

∑N
j=1 cj b

(j) belongs to the space spanned by b(j), 1 ≤ j ≤ N . 
Therefore, the linear system is consistent. �
Theorem 3.10. Let N be a natural number, and b(j) ∈ R

M , cj ∈ R, 1 ≤ j ≤ N , h ∈ R be arbi-
trary. Suppose that a quadratic function f is given by

f (x) =
N∑

j=1

(b(j)T x + cj )
2 + h. (3.30)

Then (a) we have

f (x) = xT Ax − 2bT x + c = (x − A+b)T A(x − A+b) + d, (3.31)
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where

A =
N∑

j=1

b(j)b(j)T , b = −
N∑

j=1

cj b
(j), c =

N∑
j=1

c2
j + h, d = c − bT A+b; (3.32)

(b) f is non-negative (or positive) if and only if d ≥ 0 (or d > 0); and (c) f solves the Hirota 
bilinear equation (2.5), or equivalently (3.12), if and only if (3.17) and (3.18) are true for the 
matrix A and the constant d defined in (3.32).

Proof. To prove part (a), we begin by computing that

f (x) =
N∑

j=1

(b(j)T x + cj )
2 + h

=
N∑

j=1

(b(j)T x)T (b(j)T x) + 2
N∑

j=1

(b(j)T x)cj +
N∑

j=1

c2
j + h

= xT
( N∑

j=1

b(j)b(j)T
)
x + 2

( N∑
j=1

cjb
(j)T

)
x +

N∑
j=1

c2
j + h

= xT Ax − 2bT x + c, (3.33)

where A, b and c are defined in (3.32). It then follows from Lemma 3.9 and Theorem 3.2 that

f (x) = (x − α)T A(x − α) + d = (x − A+b)T A(x − A+b) + d,

where α solves Aα = b and d is defined in (3.32). Therefore, part (a) is true.
Now, based on part (a) and noting that A is positive-semidefinite, parts (b) and (c) are just 

consequences of Theorem 3.2 and Theorem 3.4. The proof is finished. �
This theorem tells us the way of constructing positive quadratic function solutions through 

taking sums of squares of linear functions. It also leads to the following inequality involving the 
Moore–Penrose pseudoinverse.

Corollary 3.11. Let N be a natural number, and b(j) ∈ R
M , cj ∈ R, 1 ≤ j ≤ N , be arbitrary. 

Then

( N∑
j=1

cj b
(j)T

)
A+( N∑

j=1

cj b
(j)

)
≤

N∑
j=1

c2
j , (3.34)

where A+ is the Moore–Penrose pseudoinverse of A = ∑N
j=1 b(j)b(j)T .

Proof. In Theorem 3.10, we assume that h ≥ 0, and then the quadratic function f defined by 
(3.30) is non-negative, which means that
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N∑
j=1

c2
j + h − bT A+b ≥ 0,

where b = − 
∑N

j=1 cjb
(j). The required result in the corollary follows immediately from taking 

a limit of the above inequality as h → 0. �
If the linear system (3.29) has a particular solution α ∈ R

M determined by

b(j)T α = −cj , 1 ≤ j ≤ N,

then we have

( N∑
j=1

cjb
(j)T

)
A+( N∑

j=1

cjb
(j)

)
=

N∑
j=1

c2
j .

This is because by (3.6), we can compute that

( N∑
j=1

cjb
(j)T

)
A+( N∑

j=1

cjb
(j)

)
= αT Aα

= αT
( N∑

j=1

b(j)b(j)T
)
α = −αT

N∑
j=1

b(j)cj =
N∑

j=1

c2
j .

Next, we are going to present a basic characteristic of sums of squares of linear functions.

Theorem 3.12. Let N be a natural number, and b(j) ∈ R
M , cj ∈ R, 1 ≤ j ≤ N , h ∈ R be arbi-

trary. Suppose that a quadratic function f is defined by (3.30), i.e.,

f (x) =
N∑

j=1

(b(j)T x + cj )
2 + h,

and set A = ∑N
j=1 b(j)b(j)T and r = rank(A). Then (a) there exist b̃(j) ∈R

M , c̃j ∈ R, 1 ≤ j ≤ r , 
such that

f (x) =
r∑

j=1

(b̃(j)T x + c̃j )
2 +

N∑
j=1

c2
j + h − bT A+b, (3.35)

where b = − 
∑N

j=1 cj b
(j); (b) if f (x) =

s∑
j=1

(b̂(j)T x + ĉj )
2 + ĥ, where b̂(j) ∈ R

M , ĉj ∈ R, 1 ≤

j ≤ s, ĥ ∈ R, then s ≥ r .
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Proof. (a) A combination of Theorem 3.7 and Theorem 3.10 leads to part (a).
(b) Note that we can rewrite

f (x) =
s∑

j=1

(b̂(j)T x + ĉj )
2 + ĥ = xT Âx − 2b̂T x + ĉ,

where

Â =
s∑

j=1

b̂(j)b̂(j)T , b̂ = −
s∑

j=1

ĉj b̂
(j), ĉ =

s∑
j=1

ĉ2
j + ĥ.

Compared with (3.30), (3.31) and (3.32), we see Â = A. Set B̂ = (b̂(1), b̂(2), · · · , b̂(s)). Then 
Â = B̂B̂T and so

r = rank(A) = rank(Â) = rankB̂ ≤ s.

This completes the proof. �
The result (b) of Theorem 3.12 tells the largest number of squares of linearly independent 

non-constant linear functions in a sum for a non-negative quadratic function.
When x = (x1, · · · , xM−1, t), where t denotes time and xi , 1 ≤ i ≤ M − 1, are spatial vari-

ables, positive quadratic function solutions determined by (3.11) with a non-zero (M, M) minor 
of A lead to lump solutions, and otherwise, lump-type solutions to the corresponding nonlinear 
equations under either of the two transformations in (2.10).

4. Applications to generalized KP and BKP equations

4.1. Generalized KP equations in (N + 1)-dimensions

Let us first consider the generalized Kadomtsev–Petviashvili (gKP) equations in (N + 1)-di-
mensions:

(ut + 6uux1 + ux1x1x1)x1 + σ(ux2x2 + ux3x3 + · · · + uxNxN
) = 0, (4.1)

where σ = ∓1 and N ≥ 2. When σ = −1, it is called the gKPI equation, and when σ = 1, the 
gKPII equation.

Denote x = (x1, x2, · · · , xN, t)T ∈R
N+1. Take a positive quadratic function:

f (x) = xT Ax + d (4.2)

with A = AT ∈R
(N+1)×(N+1), A ≥ 0 and d > 0. For any x ∈R

N+1, the rational function

u = 2(lnf )x1x1 = 2(ff11 − f 2
1 )

f 2

is analytical in RN+1. Substituting it into (4.1), we have
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(ut + 6uux1 + ux1x1x1)x1 + σ

N∑
j=2

uxj xj

= ∂2

∂x2
1

[
f −2(D4

1 + D1DN+1 + σ

N∑
j=2

D2
j )f · f

]
= 0, σ = ∓1,

where DN+1 is the Hirota bilinear derivative with respect to time t . Therefore, if f solves the 
bilinear gKPI or gKPII equation:

(D4
1 + D1DN+1 + σ

N∑
j=2

D2
j )f · f = 0, σ = ∓1, (4.3)

then u = 2(lnf )x1x1 solves the gKPI or gKPII equation in (4.1). Such a solution process provides 
us with lump or lump-type solutions to the gKPI or gKPII equation.

Theorem 4.1. A positive quadratic function f defined by (4.2) solves the bilinear gKPI or gKPII 
equation by (4.3) if and only if

6a2
11 + dã = 0, (4.4)

and

ãA − (A1A
T
N+1 + AN+1A

T
1 ) − 2σ

N∑
i=2

AiA
T
i = 0, (4.5)

where

ã := a1N+1 + σ

N∑
i=2

aii ≤ 0. (4.6)

Proof. An application of Theorem 3.4 to the bilinear gKPI and gKPII equations in (4.3) tells 
(4.4) and (4.5). The property ã ≤ 0 in (4.6) follows from (4.4) and d > 0. The proof is fin-
ished. �

If ã = 0, then we have a11 = 0 by (4.4). Since A ≥ 0, we have a1,N+1 = 0. Further

σ

N∑
i=2

aii = ã − a1N+1 = 0.

However, σ �= 0 and aii ≥ 0 for i = 1, · · · , N + 1. Thus, a22 = · · · = aNN = 0, and there exists 
only a non-zero solution A = (aij )(N+1)×(N+1) with all aij = 0 except aN+1,N+1. The corre-
sponding solution is u = 2(lnf )x1x1 ≡ 0, a trivial solution.

Now let us introduce
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B = 2P̄ (2) =
⎡
⎣ 0 0 1

0 2σIN−1 0
1 0 0

⎤
⎦

(N+1)×(N+1)

, (4.7)

where IN−1 is the identity matrix of size N − 1, and then the algebraic equation (4.5) can be 
written in a compact form:

ãA − ABA = 0, (4.8)

where ã is defined by (4.6).

Corollary 4.2. If a positive-semidefinite matrix A satisfies the condition (4.8), then |A| = 0.

Proof. If |A| �= 0, then ãIN+1 − AB = 0, and so A = ãB−1. The matrix B has two eigenvalues 
±1 (and an eigenvalue 2σ of multiplicity N − 1), and thus B−1 also has two eigenvalues ±1. 
Therefore, A is not positive-semidefinite unless ã = 0. In this case, ABA = 0, and then |ABA| =
|A|2|B| = 0, which leads to |A| = 0. A contradiction! �

This corollary is also a consequence of Theorem 3.6. For the (N + 1)-dimensional KP equa-
tions, since the corresponding symmetric coefficient matrix P (2), defined by (3.19), is not zero, 
their corresponding Hirota bilinear equations in (4.3) do not possess any quadratic function so-
lution which can be written as a sum of squares of N + 1 linearly independent linear functions.

We remark that it is not easy to find all solutions to the system of quadratic equations in (4.8). 
The following examples show us that the gKPI equations have lump or lump-type solutions. It 
is also direct to observe that any lump or lump-type solution to an (N + 1)-dimensional gKPI 
equation is a lump-type solution to an ((N +1) +1)-dimensional gKPI equation of the same type 
as well.

Example 4.3. Let us consider the simplest case: N = 2. This corresponds to the (2 + 1)-dimen-
sional KPI and KPII equations:

(ut + 6uux + uxxx)x + σuyy = 0, σ = ∓1, (4.9)

where we set x1 = x and x2 = y. By using Maple, we can have

A =
⎡
⎣ a b σ(ac − 2b2)/a

b c −σbc/a

σ(ac − 2b2)/a −σbc/a σ 2c2/a

⎤
⎦ with a > 0, c > 0, ac − b2 > 0.

This leads to

f (x, y, t) = ax2 + cy2 + σ 2c2

a
t2 + 2bxy − 2σbc

a
yt + 2σ

a
(ac − 2b2)xt + d

= a[x + b

a
y + σ

a2 (ac − 2b2)t]2 + ac − b2

a
(y − 2σb

a
t)2 + d, (4.10)

which reduces to
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f (x, y, t) = ax2 + cy2 + σ 2c2

a
t2 + 2σcxt + d = a(x + σct

a
)2 + cy2 + d,

when b = 0. The condition (4.4) now reads

6a2 + d[σ(ac − 2b2)

a
+ σc] = 6a2 + 2d

σ(ac − b2)

a
= 0,

which yields

d = − 3a3

σ(ac − b2)
> 0. (4.11)

By Corollary 3.5, for any constants γ1, γ1, γ3 ∈ R, we have the following quadratic function 
solutions:

f (x, y, t) = a[(x − γ1) + b

a
(y − γ2) + σ

a2 (ac − 2b2)(t − γ3)]2

+ ac − b2

a
[(y − γ2) − 2σb

a
(t − γ3)]2 + d

= a[x + b

a
y + σ

a2 (ac − 2b2)t − δ1]2

+ ac − b2

a
(y − 2σb

a
t − δ2)

2 + d, (4.12)

with δ1 and δ2 being defined by

δ1 = γ1 + b

a
γ2 + σ

a2 (ac − 2b2)γ3, δ2 = γ2 − 2σb

a
γ3.

Because γ1, γ2, γ3 are arbitrary, so are δ1 and δ2. Furthermore, the corresponding lump solutions 
to the (2 + 1)-dimensional KPI equation in (4.9) read

u(x, y, t) = 2(lnf )xx

=
4
{ − a2[x + b

a
y + σ

a2 (ac − 2b2)t − δ1]2 + (ac − b2)(y − 2σb

a
t − δ2)

2 + ad
}

{
a[x + b

a
y + σ

a2 (ac − 2b2)t − δ1]2 + ac − b2

a
(y − 2σb

a
t − δ2)

2 + d
}2

,

where d is defined by (4.11), a, b, c ∈ R satisfy a > 0, c > 0, ac − b2 > 0, and δ1 and δ2 are 
arbitrary. When taking

a = 1, b = √
3a, c = 3(a2 + b2), d = 1

b2 , δ1 = δ2 = 0, y → 1√
3
y,

the resulting lump solutions reduce to the solutions in (1.2).
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Remark 4.4. The condition in (4.11) implies that σ = −1 in order to have lump solutions gen-
erated from positive quadratic functions. This shows that the (2 + 1)-dimensional KPI equation 
(σ = −1) possesses the discussed lump solutions whereas the (2 +1)-dimensional KPII equation 
(σ = 1) does not.

Example 4.5. We consider the (3 + 1)-dimensional gKPI equation

(ut + 6uux + uxxx)x − uyy − uzz = 0. (4.13)

By using Maple, we have two classes of lump-type solutions below. Moreover, we will prove 
that there is no lump solution from quadratic functions.

Case I – Sum of two squares: In this case, by Maple, we can have

f (x, y, z, t) = (f1(x, y, z, t))2 + (f2(x, y, z, t))2 + d, (4.14)

with {
f1(x, y, z, t) = x + l1y + m1z + ω1t − δ1,

f2(x, y, z, t) = k2x + l2y + m2z + ω2t − δ2,
(4.15)

where k2, l1, l2, m1, m2, δ1, δ2 ∈R are arbitrary, l1m2 �= l2m1 and

ω1 = 2k2(l1l2 + m1m2) + (l2
1 − l2

2) + (m2
1 − m2

2)

k2
2 + 1

,

ω2 = −k2[(l2
1 − l2

2) + (m2
1 − m2

2)] − 2(l1l2 + m1m2)

k2
2 + 1

,

d = 3(k2
2 + 1)3

(k2l1 − l2)2 + (k2m1 − m2)2 .

The corresponding lump-type solutions read

u(x, y, z, t) = 4[(1 + k2
2)d + (k2

2 − 1)(f 2
1 − f 2

2 ) − 4k2f1f2]
(f 2

1 + f 2
2 + d)2

,

where f1 and f2 are defined by (4.15).

Case II – Sum of three squares: In this case, by Maple, we can have

f (x, y, z, t) = (f1(x, y, z, t))2 + (f2(x, y, z, t))2 + (f3(x, y, z, t))2 + d, (4.16)

with ⎧⎪⎨
⎪⎩

f1(x, y, z, t) = x + l1y + m1z + ω1t − δ1,

f2(x, y, z, t) = k2x + l2y + m2z + ω2t − δ2,

f (x, y, z, t) = l y + m z + ω t − δ ,

(4.17)
3 3 3 3 3
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where k2, l1, l2, l3 �= 0, m1, m3, δ1, δ2, δ3 ∈ R are arbitrary, and

ω1 = − ρ1

(k2
2 + 1)l2

3

, ω2 = ρ2

(k2
2 + 1)l2

3

, ω3 = 2ρ3

(k2
2 + 1)l3

,

m2 = −k2l1m3 + k2l3m1 + l2m3

l3
, d = 3(k2

2 + 1)3l2
3

(l2
3 + m2

3)[(k2l1 − l2)2 + (k2
2 + 1)l2

3 ] ,

with

ρ1 = k2
2(l2

1m2
3 − l2

3m2
1) − l2

3(l2
1 + m2

1) + (l2
2 − 2k2l1l2 + l2

3)(l2
3 + m2

3),

ρ2 = k3
2(l1m3 − l3m1)

2 − 2k2
2 l2(l1m3 − l3m1)m3

− k2(l
2
1 l2

3 − l2
2 l2

3 + 2l1l3m1m3 − l2
2m2

3 − l2
3m2

1 + l2
3m2

3 + l4
3)

+ 2l2l3(l1l3 + m1m2),

ρ3 = −k2
2(l1m3 − l3m1)m3 + k2l2(l

2
3 + m2

3) + l3(l1l3 + m1m3).

The corresponding lump-type solutions read

u(x, y, z, t) = 4[(1 + k2
2)(f 2

3 + d) + (k2
2 − 1)(f 2

1 − f 2
2 ) − 4k2f1f2]

(f 2
1 + f 2

2 + f 2
3 + d)2

,

where f1, f2 and f3 are defined by (4.17).

The formula for m2 in the above example means the corresponding first minor M44 is zero, 
and so, the presented solution is not a lump solution. Generally, when N ≥ 3, there is no solu-
tion to the matrix equation (4.8) with a non-zero first minor MN+1,N+1, indeed. Therefore, the 
above gKP equations in (N + 1)-dimensions with N ≥ 3 have no lump solutions generated from 
quadratic functions. We prove a more general result as follows.

Theorem 4.6. Let N ≥ 3. Then there is no symmetric matrix solution A ∈ R
(N+1)×(N+1) to the 

matrix equation (4.8) with rank(A) = N , which implies that the (N + 1)-dimensional gKP equa-
tions (4.1) have no lump solution generated from quadratic functions under the transformation 
u = 2(lnf )xx .

Proof. Suppose that there is a symmetric matrix A ∈ R
(N+1)×(N+1) which solves the equation 

(4.8) and whose rank is N . Then, since A is symmetric and rank(A) = N , there exists an orthog-
onal matrix U ∈R

(N+1)×(N+1) such that

Â = UT AU =
[

Â1 0

0 0

]
, Â1 = diag(λ1, · · · , λN),

where λi �= 0, 1 ≤ i ≤ N . Set

B̂ = UT BU =
[

B̂1 B̂2

B̂ B̂

]
, B̂1 = (b̂ij )N×N ∈R

N×N.
3 4
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Upon noting that ã is an invariant under an orthogonal similarity transformation, it follows from 
(4.8) that

ãÂ1 − Â1B̂1Â1 = 0, ã =
N+1∑
i,j=1

aijpij = 1

2

N∑
k=1

λkb̂kk.

Then, based on this sub-matrix equation, using the same idea in the proof of Theorem 3.6 shows 
that Nã = 2ã, which leads to ã = 0 since N ≥ 3. Further, we have B̂1 = 0, and thus, rank(B̂) ≤ 2, 
which is a contradiction to rank(B̂) = rank(B) = N + 1. Therefore, there is no symmetric matrix 
solution A to the equation (4.8) with rank(A) = N .

Finally, note that the existence of a non-zero (N +1, N +1) minor of A implies that rank(A) ≥
N , and thus, by Theorem 3.6, we have rank(A) = N . Now, it follows that there is no symmetric 
matrix solution A to the equation (4.8) with a non-zero (N + 1, N + 1) minor. This means that 
the gKP equations, defined by (4.1), in (N + 1)-dimensions with N ≥ 3 have no lump solution, 
which are generated from quadratic functions under the transformation u = 2(lnf )xx . The proof 
is finished. �
4.2. Generalized KP and BKP equations with general 2nd-order derivatives

Let us next consider generalized KP and BKP equations with a general sum of second-order 
Hirota derivative terms. We will present lump solutions to those two generalized KP and BKP 
equations.

Example 4.7. We consider the following generalized KP (gKP) equation:

KgKP 1(u) = (6uux +uxxx)x + c1uxx + 2c2uxy + 2c3uxt + c4uyy + 2c5uyt + c6utt = 0, (4.18)

with arbitrary constant coefficients ci , 1 ≤ i ≤ 6. Under the typical transformation u = 2(lnf )xx , 
this general equation itself has a Hirota bilinear form:

BgKP 1(f ) = (D4
x +c1D

2
x +2c2DxDy +2c3DxDt +c4D

2
y +2c5DyDt +c6D

2
t )f ·f = 0, (4.19)

since we have

KgKP 1(u) =
(BgKP 1(f )

f 2

)
xx

.

The equation (4.18) reduces to the (2 + 1)-dimensional KPI and KPII equations in (4.9), upon 
taking

c1 = c2 = 0, c3 = 1

2
, c4 = σ, c5 = c6 = 0.

To search for quadratic function solutions to the (2 + 1)-dimensional bilinear gKP equation 
(4.19), we start with

f = g2 + g2 + a9, g1 = a1x + a2y + a3t + a4, g2 = a5x + a6y + a7t + a8, (4.20)
1 2
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where ai , 1 ≤ i ≤ 9, are real parameters to be determined. A direct Maple symbolic computation 
with this function f generates the set of three constraining equations for the parameters and the 
coefficients: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a9 = − 3(a2
1 + a2

5)3

μ1c4 + μ2c5 + μ3c6
,

c1 = ν1,1c3 + ν1,2c4 + ν1,3c5 + ν1,4c6

(a2
1 + a2

5)(a1a6 − a2a5)
,

c2 = −ν2,1c3 + ν2,2c4 + ν2,3c5 + ν2,4c6

(a2
1 + a2

5)(a1a6 − a2a5)
,

(4.21)

with ⎧⎪⎪⎨
⎪⎪⎩

μ1 = (a1a6 − a2a5)
2,

μ2 = 2(a1a6 − a2a5)(a1a7 − a3a5),

μ3 = (a1a7 − a3a5)
2,

(4.22)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν1,1 = 2(a2
1 + a2

5)(a2a7 − a3a6),

ν1,2 = (a2
2 + a2

6)(a1a6 − a2a5),

ν1,3 = 2(a2
2 + a2

6)(a1a7 − a3a5),

ν1,4 = 2a3a7(a1a2 − a5a6) − (a2
3 − a2

7)(a1a6 + a2a5)

(4.23)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν2,1 = (a2
1 + a2

5)(a1a7 − a3a5),

ν2,2 = (a1a2 + a5a6)(a1a6 − a2a5),

ν2,3 = (a2
1 − a2

5)(a2a7 + a3a6) − 2a1a5(a2a3 − a6a7),

ν2,4 = (a1a3 + a5a7)(a1a7 − a3a5),

(4.24)

where all involved other parameters and coefficients are arbitrary provided that the expressions 
make sense.

When a determinant condition

a1a6 − a2a5 =
∣∣∣∣∣ a1 a2

a5 a6

∣∣∣∣∣ �= 0, (4.25)

is satisfied, the above quadratic function f will be positive if and only if a9 > 0, i.e.,

μ1c4 + μ2c5 + μ3c6 < 0, (4.26)

and the resulting class of positive quadratic function solutions generates lump solutions to the 
(2 + 1)-dimensional gKPI equation (4.18) through the transformation u = 2(lnf )xx :
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u = 4(a2
1 + a2

5)f − 8(a1g1 + a5g2)
2

f 2 , (4.27)

where the functions f , g1, g2 are determined above.
In this class of lump solutions, all involved eight parameters ai , 1 ≤ i ≤ 8, and four coeffi-

cients ci , 3 ≤ i ≤ 6, are arbitrary provided that the two conditions, (4.25) and (4.26), are satisfied. 
The determinant condition (4.25) precisely means that two directions (a1, a2) and (a5, a6) in the 
(x, y)-plane are not parallel, which guarantees, together with (4.26), that the resulting solutions 
in (4.27) are lump solutions.

For the standard KPI and KPII equations in (4.9), we have

a9 = − 3σ(a2
1 + a2

5)3

(a1a6 − a2a5)2 ,

and obtain

a3 = −σ(a1a2
2 − a1a6

2 + 2a2a5a6)

a1
2 + a5

2 , a7 = −σ(2a1a2a6 − a2
2a5 + a5a6

2)

a1
2 + a5

2 ,

upon solving the system

c1 = 1

2
v1,1 + σv1,2 = 0, c2 = 1

2
v2,1 + σv2,2 = 0,

for a3 and a7. This exactly produces to the lump solution presented in [16] for the KPI equation, 
but the resulting solution to the KPII equation has pole singularity in the (x, y)-plane at any time, 
due to a9 < 0.

Example 4.8. We consider the following generalized BKP (gBKP) equation:

KgBKP (u) = (15u3
x + 15uxu3x + u5x)x + c1[u3x,y + 3(uxuy)x]

+ c2uxx + 2c3uxy + 2c4uxt + c5uyy + 2c6uyt + c7utt = 0, (4.28)

with arbitrary constant coefficients ci , 1 ≤ i ≤ 7. Under the other typical transformation u =
2(lnf )x , this general equation itself has a Hirota bilinear form:

BgBKP (f ) = (D6
x + c1D

3
xDy + c2D

2
x + 2c3DxDy

+ 2c4DxDt + c5D
2
y + 2c6DyDt + c7D

2
t )f · f = 0, (4.29)

since we have

KgBKP (u) =
(BgBKP (f )

f 2

)
x
.

The equation (4.28) reduces to the (2 + 1)-dimensional BKP equations:

(ut + 15u3 + 15uxu3x − 15uxuy + u5x)x − 5u3x,y + 5σuyy = 0, σ = ∓1, (4.30)
x
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upon taking

c1 = −5, c4 = 1

2
, c5 = 5σ, c2 = c3 = c6 = c7 = 0. (4.31)

To search for quadratic function solutions to the (2 + 1)-dimensional bilinear gBKP equation 
(4.29), we begin with the same class of quadratic functions defined by (4.20). A similar direct 
Maple symbolic computation with f leads to the set of three constraining equations for the 
parameters and the coefficients:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a9 = −3(a1a2 + a5a6)(a
2
1 + a2

5)2c1

μ1c5 + μ2c6 + μ3c7
,

c2 = ν1,1c4 + ν1,2c5 + ν1,3c6 + ν1,4c7

(a2
1 + a2

5)(a1a6 − a2a5)
,

c3 = −ν2,1c4 + ν2,2c5 + ν2,3c6 + ν2,4c7

(a2
1 + a2

5)(a1a6 − a2a5)
,

(4.32)

with μi , 1 ≤ i ≤ 3, ν1,i , 1 ≤ i ≤ 4, and ν2,i , 1 ≤ i ≤ 4, being defined by (4.22), (4.23) and (4.24). 
All involved parameters and coefficients are arbitrary provided that the expressions make sense.

When we require a determinant condition in (4.25), the presented quadratic function f will 
be positive if and only if a9 > 0, which means

(a1a2 + a5a6)c1

μ1c5 + μ2c6 + μ3c7
< 0, (4.33)

and the resulting class of positive quadratic function solutions yields lump solutions to the 
(2 + 1)-dimensional gBKP equation (4.28) through the transformation u = 2(lnf )x :

u = 4(a1g1 + a5g2)

f
, (4.34)

where the functions f , g1, g2 are defined above.
In this presented class of lump solutions, all involved eight parameters ai , 1 ≤ i ≤ 8, and five 

coefficients c1, ci , 4 ≤ i ≤ 7, are arbitrary provided that the two conditions, (4.25) and (4.33), 
are satisfied. The determinant condition (4.25) exactly requires that two directions (a1, a2) and 
(a5, a6) in the (x, y)-plane are not parallel, which similarly guarantees, together with (4.33), that 
the presented solutions in (4.34) are lump solutions.

The coefficient constraints (4.31) engender the standard BKP equations in (4.30). In this case, 
similarly we have

a9 = 3σ(a1a2 + a5a6)(a
2
1 + a2

5)2

(a1a6 − a2a5)2 ,

and obtain

a3 = −5σ(a1a2
2 − a1a6

2 + 2a2a5a6)

2 2 , a7 = −5σ(2a1a2a6 − a2
2a5 + a5a6

2)

2 2 ,

a1 + a5 a1 + a5
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upon solving the system

c2 = 1

2
v1,1 + 5σv1,2 = 0, c3 = 1

2
v2,1 + 5σv2,2 = 0,

for a3 and a7. This generates lump solutions to the BKP equations in (4.30), when (a1a2 +
a5a6) < 0 with minus sign (σ = −1) or (a1a2 + a5a6) > 0 with plus sign (σ = 1). This solution 
phenomenon is pretty different from what we presented for the standard KP equations in the 
previous example. The solution case with minus sign also covers the lump solution presented 
in [7]. Actually, if we take

a1 = 1, a2 = 3(α2 − β2), a5 = 0, a6 = 6αβ,

where α and β are arbitrary but β2 < α2, which leads to

a3 = 45(α4 − 6α2β2 + β2), a7 = 180αβ(α2 − β2), a9 = β2 − α2

4α2β2 ,

then the resulting lump solution is exactly the one in [7].

5. Concluding remarks

In this paper, we studied positive quadratic function solutions to Hirota bilinear equations. 
Sufficient and necessary conditions for the existence of such polynomial solutions were given. 
In turn, positive quadratic function solutions generate lump or lump-type solutions to nonlinear 
partial differential equations possessing Hirota bilinear forms. Applications were made for a few 
generalized KP and BKP equations.

We remark that putting Theorem 3.2 and Theorem 3.7 together proves Hilbert’s 17th prob-
lem for quadratic functions, but the conjecture is not true for higher-order polynomial functions. 
Moreover, Theorem 3.2 provides a criterion for the positivity of quadratic functions. It, how-
ever, still remains open how to determine the positivity of higher-order multivariate polynomials, 
which is a further problem of Hilbert’s 17th problem. It should be also interesting to look for pos-
itive polynomial solutions to generalized bilinear equations [13], which generate exact rational 
function solutions to novel types of nonlinear differential equations [26,28,29]. The first example 
of such solutions one can try could be positive quartic function solutions.

It is evident that if A is positive-definite in the quadratic function f defined by (3.11), then 
f → ∞ when |x| → ∞ in any direction in RM . This guarantees that u = 2(lnf )x1 → 0 and 
u = 2(lnf )x1x1 → 0 as |x| → ∞ in any direction in RM , and so they yield lump solutions, 
rationally localized solutions in all directions in space and time. If A is positive-semidefinite, 
then u = 2(lnf )x1 and u = 2(lnf )x1x1 do not go to zero in all directions in RM but may go to 
zero in all directions in a subspace of RM . Therefore, they usually lead to lump-type solutions, 
and lump solutions if the subspace is the actual space which the spatial variables belong to. Three 
of such examples about the generalized KP and BKP equations were just discussed.

Through Theorem 3.2, we can obtain a by-product, which partially answers an open question 
in [14,15,20]: how to determine a real multivariate polynomial which has only one zero? By 
Theorem 3.2, a quadratic function f has only one zero at α ∈ R

M if and only if

f (x) = (x − α)T A(x − α), x ∈R
M,
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where A ∈ R
M×M is positive-definite or negative-definite, since a multivariate polynomial is 

either non-negative or non-positive if it has one zero. If A above is only positive-semidefinite, 
then there must exist infinitely many zeros.

Moreover, Theorem 3.2 tells that if a quadratic function f is positive on RM , i.e., f (x) > 0
for all x ∈ R

M , then there is a positive constant d such that f (x) ≥ d for all x ∈ R
M . But this is 

not the case for higher order multivariate polynomials. There are counterexamples:

fmn(x, y) = x2m + (xnyn − 1)2, m,n ∈N,

for which fmn(x, y) > 0 since fmn(0, y) = 1 and fmn(x, y) ≥ x2m > 0 for x �= 0. It is apparent 
that lim

k→∞fmn(k
−1, k) = 0. This clearly implies that fmn cannot be bounded from below by any 

positive constant.

Acknowledgments

The work was supported in part by NSFC under the grants 11371326, 11271008, 11301331 
and 11371086, NSF under the grant DMS-1664561, a university grant XKY2016112 from 
Xuzhou Institute of Technology, Natural Science Fund for Colleges and Universities of Jiangsu 
Province under the grant 17KJB110020, and the Distinguished Professorships by Shanghai Uni-
versity of Electric Power and Shanghai Second Polytechnic University. The authors would also 
like to thank X. Gu, X. Lü, H.C. Ma, S. Manukure, M. McAnally, B. Shekhtman, F.D. Wang, 
X.L. Yang, Y.Q. Yao and Y.J. Zhang for their valuable discussions about lump solutions.

References

[1] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univer-
sity Press, Cambridge, 1991.

[2] M.J. Ablowitz, J. Satsuma, Solitons and rational solutions of non-linear evolution equations, J. Math. Phys. 19 
(1978) 2180–2186.

[3] M. Adler, J. Moser, On a class of polynomials connected with the Korteweg–de Vries equation, Comm. Math. Phys. 
61 (1978) 1–30.

[4] K.M. Berger, P.A. Milewski, The generation and evolution of lump solitary waves in surface-tension-dominated 
flows, SIAM J. Appl. Math. 61 (2000) 731–750.

[5] D.Y. Chen, Introduction to Solitons, Science Press, Beijing, 2006.
[6] C. Gilson, F. Lambert, J. Nimmo, R. Willox, On the combinatorics of the Hirota D-operators, Proc. R. Soc. Lond. 

Ser. A Math. Phys. Eng. Sci. 452 (1996) 223–234.
[7] C. Gilson, J. Nimmo, Lump solutions of the BKP equation, Phys. Lett. A 147 (1990) 472–476.
[8] K.A. Gorshkov, D.E. Pelinovsky, Yu.A. Stepanyants, Normal and anormal scattering, formation and decay of bound 

states of two-dimensional solitons described by the Kadomtsev–Petviashvili equation, J. Exp. Theor. Phys. 77 
(1993) 237–245.

[9] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.
[10] K. Imai, Dromion and lump solutions of the Ishimori-I equation, Progr. Theoret. Phys. 98 (1997) 1013–1123.
[11] V. Jankovic, Quadratic functions in several variables, Teach. Math. 8 (2005) 53–60.
[12] D.J. Kaup, The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant 

interaction, J. Math. Phys. 22 (1981) 1176–1181.
[13] W.X. Ma, Generalized bilinear differential equations, Stud. Nonlinear Sci. 2 (2011) 140–144.
[14] W.X. Ma, Bilinear equations, Bell polynomials and linear superposition principle, J. Phys., Conf. Ser. 411 (2013) 

012021.
[15] W.X. Ma, Integrable couplings and matrix loop algebras, in: W.X. Ma, D. Kaup (Eds.), Nonlinear and Modern 

Mathematical Physics, in: AIP Conference Proceedings, vol. 1562, American Institute of Physics, Melville, NY, 
2013, pp. 105–122.

http://refhub.elsevier.com/S0022-0396(17)30577-6/bib41626C6F7769747A432D626F6F6B31393931s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib41626C6F7769747A432D626F6F6B31393931s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib41626C6F7769747A532D4A4D5031393738s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib41626C6F7769747A532D4A4D5031393738s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib41646C65724D2D434D5031393738s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib41646C65724D2D434D5031393738s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4265726765724D2D5349414D4A414D32303030s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4265726765724D2D5349414D4A414D32303030s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4368656E2D626F6F6B32303036s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib47696C736F6E4C4E572D5052534C4131393936s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib47696C736F6E4C4E572D5052534C4131393936s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib47696C736F6E4E2D504C4131393930s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib476F7273686B6F7650532D4A45545031393933s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib476F7273686B6F7650532D4A45545031393933s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib476F7273686B6F7650532D4A45545031393933s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4869726F74612D626F6F6B32303034s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib496D61692D50545031393937s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4A616E6B6F7669632D544D32303035s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4B6175702D4A4D5031393831s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4B6175702D4A4D5031393831s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D612D534E5332303131s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D612D4A504132303133s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D612D4A504132303133s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D612D626F6F6B32303133s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D612D626F6F6B32303133s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D612D626F6F6B32303133s1


W.X. Ma, Y. Zhou / J. Differential Equations 264 (2018) 2633–2659 2659
[16] W.X. Ma, Lump solutions to the Kadomtsev–Petviashvili equation, Phys. Lett. A 379 (2015) 1975–1978.
[17] W.X. Ma, C.X. Li, J.S. He, A second Wronskian formulation of the Boussinesq equation, Nonlinear Anal. TMA 70 

(2009) 4245–4258.
[18] W.X. Ma, Y. You, Rational solutions of the Toda lattice equation in Casoratian form, Chaos Solitons Fractals 22 

(2004) 395–406.
[19] W.X. Ma, Y. You, Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. 

Math. Soc. 357 (2005) 1753–1778.
[20] W.X. Ma, Y. Zhang, Y.N. Tang, J.Y. Tu, Hirota bilinear equations with linear subspaces of solutions, Appl. Math. 

Comput. 218 (2012) 7174–7183.
[21] S.V. Manakov, V.E. Zakharov, L.A. Bordag, V.B. Matveev, Two-dimensional solitons of the Kadomtsev–Petviashvili 

equation and their interaction, Phys. Lett. A 63 (1977) 205–206.
[22] A.A. Minzoni, N.F. Smyth, Evolution of lump solutions for the KP equation, Wave Motion 24 (1996) 291–305.
[23] P. Müller, C. Garrett, A. Osborne, Rogue waves, Oceanography 18 (2005) 66–75.
[24] R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc. 51 (1955) 406–413.
[25] J. Satsuma, M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys. 20 (1979) 

1496–1503.
[26] C.G. Shi, B.Z. Zhao, W.X. Ma, Exact rational solutions to a Boussinesq-like equation in (1 + 1)-dimensions, Appl. 

Math. Lett. 48 (2015) 170–176.
[27] D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves, Nature 450 (2007) 1054–1057.
[28] Y. Zhang, W.X. Ma, Rational solutions to a KdV-like equation, Appl. Math. Comput. 256 (2015) 252–256.
[29] Y.F. Zhang, W.X. Ma, A study on rational solutions to a KP-like equation, Z. Naturforsch. A 70 (2015) 263–268.

http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D612D504C4132303135s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D614C482D4E4132303039s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D614C482D4E4132303039s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D61592D43534632303034s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D61592D43534632303034s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D61592D54414D5332303035s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D61592D54414D5332303035s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D615A54542D414D4332303132s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D615A54542D414D4332303132s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D616E616B6F765A424D2D504C4131393737s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D616E616B6F765A424D2D504C4131393737s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D696E7A6F6E69532D574D31393936s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib4D756C6C6572474F2D4F6365616E6F67726170687932303035s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib50656E726F73652D4D5043505331393535s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib53617473756D61412D4A4D5031393739s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib53617473756D61412D4A4D5031393739s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib5368695A4D2D414D4C32303135s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib5368695A4D2D414D4C32303135s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib536F6C6C69524B4A2D4E32303037s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib5A68616E674D2D414D4332303135s1
http://refhub.elsevier.com/S0022-0396(17)30577-6/bib5A68616E674D2D5A4E4132303135s1

	Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
	1 Introduction
	2 From Hirota bilinear equations to nonlinear equations
	3 Positive quadratic function solutions to bilinear equations
	3.1 Non-negative and positive quadratic functions
	3.2 Positive quadratic function solutions
	3.3 Solutions as sums of squares of linear functions

	4 Applications to generalized KP and BKP equations
	4.1 Generalized KP equations in (N+1)-dimensions
	4.2 Generalized KP and BKP equations with general 2nd-order derivatives

	5 Concluding remarks
	Acknowledgments
	References


