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Abstract

Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a
class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The
basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate
quadratic functions. A complete determination of quadratic functions positive in space and time is given,
and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and
sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and
such polynomial solutions yield lump solutions to nonlinear partial differential equations under the depen-
dent variable transformations # = 2(In f), and u = 2(In f)xx, where x is one spatial variable. Applications
are made for a few generalized KP and BKP equations.
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1. Introduction

The Korteweg—de Vries (KdV) equation and the Kadomtsev—Petviashvili (KP) equation are
nonlinear integrable differential equations, and their Hirota bilinear forms play a crucial role in
generating their soliton solutions, a kind of exponentially localized solutions, describing diverse
nonlinear phenomena [9].

By lump functions, we mean analytical rational functions of spatial and temporal variables,
which are localized in all directions in space. In recent years, there has been a growing interest
in lump function solutions [4,8,10,22], called lump solutions (see, e.g., [1,7,12,25] for typical
examples). The KPI equation

(ur 4+ 6uny +tyxx)x —3uyy =0 (1.1)
admits the following lump solution

—[x +ay +3(@® — b2)1)? + b*(y + 6ar)> + 1/b>
{[x + ay + 3(a? — b>)t12 + b2(y + 6ar)? + 1/b%}2°

(1.2)

where a and b # 0 are free real constants [21]. Lump functions provide appropriate prototypes to
model rogue wave dynamics in both oceanography [23] and nonlinear optics [27]. There are var-
ious discussions on general rational function solutions to integrable equations such as the KdV,
KP, Boussinesq and Toda equations [2,3,17—19]. It has become a very interesting topic to search
for lump solutions or lump-type solutions, rationally localized solutions in almost all directions
in space, to nonlinear partial differential equations, through the Hirota bilinear formulation.

In this paper, we would like to characterize positive quadratic functions and analyze positive
quadratic function solutions to Hirota bilinear equations. Such polynomial solutions generate
lump or lump-type solutions to nonlinear partial differential equations under the dependent vari-
able transformations u = 2(In f), and u = 2(In f),,, where x is one of the spatial variables. We
will present sufficient and necessary conditions for positive quadratic functions to solve Hirota
bilinear equations, and apply the resulting theory to a few generalized KP and BKP equations.

2. From Hirota bilinear equations to nonlinear equations

Let M be a natural number and x = (x1,x2, -+, X M)T in R be a column vector of indepen-
dent variables. For f, g € C OO(RM ), Hirota bilinear derivatives [9] are defined as follows:

M
DY' Dy - Dyt f - g :=[ [y, = 8:)" f (IO, @1
i=1

where x" = (x}, x}, - -+ ,xjw)T and n; >0, 1 <i < M. For example, we have the first-order and
second-order Hirota bilinear derivatives:

Dif'ngxig_fgxiv DiDjf'g:fxi,ng+fgxi,Xj - fX,'ng _fx]'gxi’ (22)

where 1 <i,j <M.
One basic property of the Hirota bilinear derivatives is that
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Dy Di---Diyf-g=(=D*D;D;,---Dyg- f, (2.3)
where 1 <iy,ip,---,ix < M need not be distinct. It thus follows that if k is odd, we have
D“D,‘2~--D,'kf~f=0. 2.4)

We will discuss the following general Hirota bilinear equation
P(D)f-f=P(D1, Dy, . D) f- f=0, (2.5)

where P is a polynomial of M variables and D = (D1, D2, ---, D). Since the terms of odd
powers are all zeros, we assume that P is an even polynomial, i.e., P(—x) = P(x), and to
generate non-zero polynomial solutions, we require that P has no constant term, i.e., P(0) = 0.
Moreover, we set

M M
P(x)= Z DijXiXj + Z DijkiXiX jX;x; + other terms, (2.6)
i,j=1 i,j.k =1

where p;; and p; i are coefficients of terms of second- and fourth-degree, to determine quadratic
function solutions.
For convenience’s sake, we adopt the index notation for partial derivatives of f:

fi — —kJ 1<iy,i ik <M 2.7
, 01,02, , 0k . v
2tk 0Xj; 0Xjy -+ 0Xj !

Using this notation, we have the compact expressions for the second- and fourth-order Hirota
bilinear derivatives:

DiD;f-f=2(fijf— fifj), 1 <i,j<M, (2.8)
and
D;D;DiD(f - f)

=2[fijuif — fijk fi — fijife — fini f
—fixfi + fij fa + fix fj+ fufix) 1<i,j. kI <M. (2.9)

Motivated by Bell polynomial theories on soliton equations [6,14,15], we take the dependent
variable transformations:

u=2(Inf)y, u=200 f)xx,, (2.10)

to formulate nonlinear differential equations from Hirota bilinear equations. All integrable non-
linear equations can be generated this way [5,9].
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Example 2.1. For the KdV equation
U + 06Uy +uyyy =0, (2.11)
the transformation u = 2(In f),, provides a link to the bilinear form
(DD, + DHf- f=0. (2.12)
For the KPI and KPII equations
(ur +6uny +uyey)x +ouyy =0, o =7F1, (2.13)
the transformation u = 2(In f),, makes connection with the bilinear form
(DyD;+ D} +0oD})f - f =0. (2.14)

If a polynomial solution f is positive, then the solution u defined by either of the dependent
variable transformations in (2.10) is analytical, and most likely, rationally localized in space, and
thus it often presents a lump solution to the corresponding nonlinear differential equation. In
what follows, we would like to analyze quadratic function solutions to Hirota bilinear equations
to construct lump solutions to nonlinear differential equations.

3. Positive quadratic function solutions to bilinear equations
3.1. Non-negative and positive quadratic functions
Let us consider a general quadratic function
fx)=xTAx —=2bTx +¢, x eRM, 3.1

where A € RM*M 5 a symmetric matrix, b € RM denotes a column vector, ¢ € R is a constant
and T denotes transpose.

We say that a polynomial f is non-negative (or positive) if f(x) >0, Vx € RM (or f(x) >0,
Vx € RM). We need the pseudoinverse of a matrix to determine the non-negativity (or positivity)
of a quadratic function.

For a matrix A € RV*M | we call a matrix AT € R¥*¥ the Moore-Penrose pseudoinverse of
Aif

AATA=A, ATAAT = AT, AADHT = AAT, (ATA)T = ATA, (3.2)
which uniquely defines A for any given matrix A [24]. Obviously, the Moore-Penrose pseu-
doinverse of a zero matrix is its transpose and (AT)T = (AT)*, which implies that if A is
symmetric, then so is AT. When a square matrix A is non-singular, i.e., |A| = det(A) # 0, we

have AT = A~!, A~! being the inverse of A.
Suppose that a non-zero matrix A € RV>*™ has its singular value decomposition

0
A:U[ :|VT, (3.3)
0 0
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where U € R¥*N and V € RM*M are orthogonal matrices, and X reads
Y =diag(dy, -+ ,dy), di = --->d, >0, r =rank(A). (3.4)

Then the Moore—Penrose pseudoinverse of A is given by

>l 0 ’
At=V ul. (3.5)
0 0

The Moore—Penrose pseudoinverse can be applied to analysis of linear systems [24]. A linear

system A« = b is consistent if and only if AA1b = b. Moreover, if it is consistent, then its
solution set is given by

fe=A%b+ Uy — ATAB|p RY),
where I) is the identity matrix of size M.

Lemma 3.1. Let A € RM*M pe symmetric and b € RM be arbitrary. If o € RM solves Aa = b,
then

al Aa=b"ATb, (3.6)
and further,
x—a)Ax —a)=(x— ATH)T A(x — ATh). (3.7)
Proof. Recalling the first property in (3.2) and using AT = A, we have
a’Aa=a’ AATAa =T ATAT Aa =T ATD.
Therefore, (3.6) holds. Now, noting that

al Ax = (Aa) T x =bTx, xT(Aa) =xTb=0b"x,
(A+b)TAx =bTATAx=aTAATAx =T Ax = (Aoz)Tx = bTx,
and
xTAATD) =xTAATAa=xTAa=xTb=b"Tx,
we see that (3.7) follows directly from (3.6). O
We denote a positive-semidefinite (or positive-definite) matrix A € R¥*M by A > 0 (or
A > 0). Namely, A >0 (or A > 0) means that x” Ax > 0 for all x € RM (or xT Ax > 0 for

all non-zero x € RM). The following theorem gives a description of non-negative (or positive)
quadratic functions.
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Theorem 3.2. Let a quadratic function f be defined by (3.1). Then (a) if b € range(A), then

fx) =&~ oe)TA(x —a)+c— al Aa
=(x—ATH)TAx—ATD)+c—bTATD, (3.8)

where o € RM solves Aa = b; and (b) f is non-negative (or positive) if and only if A >0,
b e range(A) and

d=c—bTATb (3.9)
is non-negative (or positive).
Proof. (a) First, based on Lemma 3.1, it is sufficient to show that
f)=xTAx =20 Ax +c=(x —a)TA(x —a) + ¢ — a” A, (3.10)

where we have made use of b = Ax and AT = A.

(b) Second, we prove part (b).

(<) This directly follows from the second equality of (3.8) in part (a).

(=) Suppose that A > 0 is false. Then there exists a vector 8 € RM such that 87 Af < 0, and
further for r € R, we have

fB)=r’BTAB —2rb" B+ ¢ - —o0, as r — Foo.

This is a contradiction to the assumption on f that f is non-negative (or positive). Therefore, we
have A > 0.

Now let b = bV + p®@ with b ¢ range(A) and b? € range(A)J-. Assume that o € RM
satisfies Aa = b1, Consider x = a + rb®, with r being a positive number. Then we can have

x) =xTAx —2aTAx —20PTx 4 ¢

fx)
=(x—o)TAx—a) = 2bPTx + ¢ —aT Ax
=r2p@DT pAp@D _2pDT o — 2pp@DTpD 4 ¢ — o7 Ac

= 2rb@DTp@ _2pDT 4 ¢ — T Aw — —00, asr — 00,

if 5@ = 0. Therefore 5® = 0, since f is non-negative (or positive). This implies b € range(A).
Further, d = f(a) > 0 (or > 0). The proof is finished. O

Any two solutions a1 and «® to Aa = b satisfy A(@V —a@) = AaY — Aa® =0, which
means that o) — @ € ker(A) and thus

T Ag® = T 4@ — 4OT gq D = (@7 4@

This is just a consequence of (3.6). We also point out that all the results presented in an earlier
paper [11] are consequences of our results in Theorem 3.2. For example, we can have the last two
theorems in [11], i.e., Theorems 6 and 7 in [11]: a quadratic function f is bounded from below if
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and only if f reaches its minimum at a point xo € R™ if and only if A > 0 and Axo = b, where f
is assumed to be given by (3.1). Actually, Theorem 3.2 also tells that f achieves its minimum at
any point « € RM, where « is a solution to Aa = b, and its minimum is ¢ — b” A*b. We proves
the result on the extreme value as follows.

Corollary 3.3. If a quadratic function defined by (3.1) reaches its minimum or maximum, then
its extreme value is c — bT ATh.

Proof. If f reaches its maximum y, then g = f — y is non-negative and by Theorem 3.2, we
have g(x) = (x —a)TA(x —a) 4+ (c — y) — bT A*b with A > 0, which says that f(x) > c —
bTA*b and f(e) =c — bT ATh, and so the minimum value of f is ¢ — bT ATh. If f reaches
its maximum, then g = — f reaches its minimum. Therefore, as we just proved, g achieves the
minimum value —c + b7 Atb, and so f has the maximum value ¢ — bT Ath, which completes
the proof. O

3.2. Positive quadratic function solutions

Let o = (1, , @ M)T € RM be a fixed vector. Consider a quadratic function defined as
follows:
M
fO=0-)Ax—a)+d="Y_ a;j(xi — ;) (xj —a)) +d. (3.11)
ij=1

where the real matrix A = (a;;) pxm is symmetric and d € R is a constant. Theorem 3.2 guaran-
tees that when A > 0 and d > 0, this presents the class of positive quadratic functions.
Obviously, we have

Di1Diz"'Dikf'f=07 1§ij§M, 15]5](, k >4,

for any quadratic function f. Moreover, because all odd-order Hirota bilinear derivative terms in
the Hirota bilinear equation (2.5) are zero, the bilinear equation (2.5) is reduced to

oMD)f-f=0, (3.12)

where

M M
o) = Z PijXixj + Z PijkiXiXjXpXy, (3.13)
ij=1 i.j.k =1

since Q(D)f - f=P(D)f - f for P defined by (2.6).
Now we compute the second- and fourth-order Hirota bilinear derivatives of a positive
quadratic function defined by (3.11). Note that

M
fi=2) aiu(n—o) =247 (x — ), fij =2aij, 1<i,j <M,
k=1
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where A; is the ith column vector of A for 1 <i < M. We denote y = x — «. Then using (2.8),
we have

M M M
> piiDiDif - f=4Y pijaiif =8> pijy" AiAly

i,j=1 i,j=1 i,j=1

M M
—4d 3" pijai; +4yT[ 3 pijaiA— AAT —AinT)]y. (3.14)
ij=1 ij=1

By (2.9), the fourth-order Hirota bilinear derivatives of f in (3.11) read
DiD;DiD;f - f=2(fij fu+ fic fi1 + fi fjx) = 8(aijan + aixaji + ajaji). (3.15)

Thus, if (3.11) solves the Hirota bilinear equation (2.5), i.e., the reduced Hirota bilinear equation
(3.12), then we have

M M
8 Z pijki(aijai + aixaji + aiajk) +4d Z Pijaij
i,j,k,l=1 i,j=1
M
+yT[Z Pij(aijA_AiAjT'_AinT)]YZO. (3.16)
ij=1

Note x € RM is arbitrary, and so is y = x — . Therefore, we obtain the following result.

Theorem 3.4. Let A = (a;j)mxm € RM*M pe symmetric and d € R be arbitrary. A quadratic
Sfunction f defined by (3.11) solves the Hirota bilinear equation (2.5) if and only if

M M
2 Z pijri(aijan + aixaj +ajajx) +d Z pijaij =0 (3.17)
i,j.k,l=1 i,j=I
and
M
Z pij(aijA— AiAT — A;AT) =0, (3.18)
ij=1

where A; denotes the ith column vector of the symmetric matrix A for 1 <i < M.

Corollary 3.5.If f(x) = xT Ax + d solves the Hirota bilinear equation (2.5), then for any
a e RM, f(x — a) solves the Hirota bilinear equation (2.5), too.

Proof. This is because (3.17) and (3.18) only depend on the matrix A and the constant d, but do
not depend on the shift vector «. O
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We denote the coefficient matrix of the second order Hirota bilinear derivative terms by
P® = (pij)mxm € RN, (3.19)

in the Hirota bilinear equation (2.5). When P =0, the matrix equation (3.18) is automatically
satisfied and the scalar equation (3.17) reduces to

M

Z pijki(aijag + aixajr + ajjajp) = 0. (3.20)
i jki=1

If M > 2, for a fixed matrix A, obviously there exists infinitely many non-zero solutions of p;j,
1<i,j,k,1 <M,tothe equation (3.20).

Let us now consider quadratic function solutions with |A| # 0.

If M =1, then ay; # 0. Therefore, (3.17) and (3.18) equivalently yield

pi1=pii1 =0.

This means that a bilinear ordinary differential equation defined by (2.5) has a quadratic function
solution if and only if the least degree of a polynomial P must be greater than 5.

If M =2, we have the following example in (1 + 1)-dimensions. Consider the function
_31 _11 with |A| =2 > 0. Obviously, this
quadratic polynomial is positive, and solves the following (1 4 1)-dimensional Hirota bilinear
equation:

flx,t) = 3x2 — 2xt + 2 + 277, where A =

(DY — D?—2D,D, —3D})f - f =0,

-1 -1
-1 =3
lump solutions to the corresponding nonlinear equations under # =2(In f), or u = 2(In f),.

When M > 3, there is a totally different situation. What kind of Hirota bilinear equations (2.5)
can possess a quadratic function solution defined by (3.11) with |A| 7% 0? The following theorem
provides a complete answer to this question.

where the symmetric coefficient matrix P = [ is not zero. This function f leads to

Theorem 3.6. Let M > 3. Assume that a quadratic function f defined by (3.11) solves the Hirota
bilinear equation (2.5) with P defined by (2.6). If |A| # 0, i.e., A is non-singular, then

pij+pji=0,1<i,j <M, (3.21)

which means that the Hirota bilinear equation (2.5) doesn’t contain any second-order Hirota
bilinear derivative term.

Proof. First, assume that P@T = p@  Then, (3.18) becomes

M
GA—2APPA =0, where a = Z pijaij. (3.22)
ij=1
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Since A is symmetric, there exists an orthogonal matrix U € RM*™ sych that
A=UT AU =diag(ay, -, am).
Set P@ = UTP(2)U, and by (3.22), we have
GA—2APPA=0. (3.23)

Since |A| # 0, we have |A| # 0. Thus, (3.23) tells that P® = %A’l and further 2@ is diagonal.
Therefore, we can express

P@ =diag(p1,--- , pm).

Plugging the two diagonal matrices A and P® into (3.23) engenders
a=2apr, 1 <k <M. (3.24)

On the other hand, a direct calculation can show that a = Zle:l a;j pij is an invariant under
an orthogonal similarity transformation, and thus, from A=UTAU and P® =UT p@®y , We

have
M
a= Z&kﬁk. (3.25)
k=1

Now a combination of (3.24) and (3.25) tells that Ma = 2a. Since M > 3, we see a =0, and
so, P® =0, which implies that P® = 0.
Second, if P is not symmetric, noting that

N N pii + pii
- — ] 1 ..
D puxixj = ) piyxixj, pij=— 5 1 =i j <M.
i,j=1 i,j=1
we can begin with a symmetric coefficient matrix of second order Hirota bilinear derivative terms,
P@ = (Pij) Mxm, to analyze quadratic function solutions. Thus, as we just showed, P@ =0.
This is exactly what we need to get. The proof is finished. O

Theorem 3.6 tells us about the case of |A| # 0, which says that if a Hirota bilinear equation
admits a quadratic function solution determined by (3.11) with |A]| # 0, then it cannot contain
any second-order Hirota bilinear derivative term.

For the KPI and KPII equations, since the corresponding symmetric coefficient matrix P is
not zero, Theorem 3.6 tells that any quadratic function solution f cannot be expressed as a sum
of squares of three linear functions and a constant: f = g% + g% + g% + d, where

g =citx +cipy+cint+o;, 1 <i <3,

with (c;j)3x3 being non-singular, which will also be showed clearly later.
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The other case is |A| = 0, for which there is no requirement on inclusion of second-order

Hirota bilinear derivative terms. Obviously, when A = diag(aj,---,am—1,0) # 0, (3.22) has
a non-zero symmetric matrix solution P@® = diag(0,---,0,1) # 0 with a =0, and (3.17) has
———
M—1

infinitely many non-zero solutions for {p;;x|1 < i, j,k,I, < M}. Therefore, we can have both
second- and fourth-order Hirota bilinear derivative terms in the Hirota bilinear equation (2.5).

3.3. Solutions as sums of squares of linear functions

We will explore relations between quadratic function solutions and sums of squares of linear
functions, and discuss quadratic function solutions which can be written as sums of squares of
linear functions.

Theorem 3.7. Let a quadratic function f be defined by (3.11). Suppose r = rank(A). Then there
exist b)) e RM, cj €R, 1< j<r, such that
r
f)=> Vx4 +d. (3.26)
j=1

Proof. We assume that the symmetric matrix A has the singular value decomposition:

0y .
A=V Ve, (3.27)
0 0
where V € RM*M i orthogonal and
¥ =diagd, - ,dr), di>--->d, > 0.
Upon denoting V = (vD, v@ ... vy and setting
b = JdjvD, ¢;=—aTbV 1<j<r, (3.28)
we have
r r r
A= Zdjv(/)v(J)T — Z( /dj v(/))( /dj v(J))T — Zb(J)b(J)T,
j=1 j=1 j=1
and thus

fx) = Z(x —a)TPDPIDT (x — ) +d
j=1

=Y [ =) bDN[(x — )b +d
j=1
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r
=Y 0V Tx +¢j)* +d.
Jj=1
The proof is finished. O

Based on Theorem 3.2, and noting that constant functions are particular linear functions, the
following result is a direct consequence of Theorem 3.7.

Corollary 3.8. Any non-negative quadratic function can be written as a sum of squares of linear
functions.

This corollary guarantees that completing squares can transform non-negative quadratic func-
tions into sums of squares of linear functions. It also proves Hilbert’s 17th problem for quadratic
functions.

Lemma 3.9. Let N be a natural number, and b)) € RM, cj €R, 1 <j <N, bearbitrary. Then
the linear system

N

N
(Z b(j)b(j)T)a __ chbm’ (3.29)
j=1 j=1

is consistent, where « € R™ an unknown vector.

Proof. Note that the columns of the coefficient matrix Z;V:l bPpIT read

N N

(DG (D,
Zb] b(j)""’ZbM b(J),
j=1 j=1

where bg"' ) is the ith component of /). It follows that the dimension of the column space of the

coefficient matrix is equal to the rank of the M x N matrix (bfj ))15,-5 M,1<j<N- This implies that
the column space of the coefficient matrix is just the space spanned by /), 1 < j < N. On the
other hand, the given vector — Z?’: 1C jb(f ) belongs to the space spanned by b(), 1 < j < N.
Therefore, the linear system is consistent. O

Theorem 3.10. Let N be a natural number, and b)) € RM, c;je€R,1<j<N, heR be arbi-
trary. Suppose that a quadratic function f is given by

N
fx) = Z(b(j)Tx +¢j)? +h. (3.30)
j=1
Then (a) we have

f)=xTAx=2b"x+c=@x—ATH)TAx — ATD) +d, (3.31)
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where

N N N
A=Y b==3"c;pD, c=Y cI+h, d=c—b"ATb; (3.32)
j=1 j=1 j=1

(b) f is non-negative (or positive) if and only if d > 0 (or d > 0); and (c) f solves the Hirota
bilinear equation (2.5), or equivalently (3.12), if and only if (3.17) and (3.18) are true for the
matrix A and the constant d defined in (3.32).

Proof. To prove part (a), we begin by computing that

N
f)=> " 0VTx+cj)*>+h
j=1

N N Al
=Y VT GPTx) +2Y P x)c;+ Y +h
j=1 /= =

N N Y
:xT<Zb(j)b(j)T>x + Z(chb(j)T)x + Zc? +h
j=1

j=1 j=1
=xTAx —2bTx +c, (3.33)

where A, b and c are defined in (3.32). It then follows from Lemma 3.9 and Theorem 3.2 that
f=x—-a)TAx—a)+d=x—ATD)TA(x — ATb) +d,

where o solves Ao = b and d is defined in (3.32). Therefore, part (a) is true.
Now, based on part (a) and noting that A is positive-semidefinite, parts (b) and (c) are just
consequences of Theorem 3.2 and Theorem 3.4. The proof is finished. O

This theorem tells us the way of constructing positive quadratic function solutions through
taking sums of squares of linear functions. It also leads to the following inequality involving the
Moore—Penrose pseudoinverse.

Corollary 3.11. Let N be a natural number, and b € RM, cj €R, 1 <j <N, be arbitrary.
Then

N

N
BT\ 4+
(Sewma

cib?) =3 (3.34)
1

Jj=1

where A" is the Moore—Penrose pseudoinverse of A = Z?]:l b T,

Proof. In Theorem 3.10, we assume that # > 0, and then the quadratic function f defined by
(3.30) is non-negative, which means that
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N
> cG+h—bTATb>0,
j=1

where b = — Z;V:] c jb(j ). The required result in the corollary follows immediately from taking
a limit of the above inequality as h — 0. O

If the linear system (3.29) has a particular solution @ € RM determined by
pIT g = —cj, 1<j <N,
then we have
N ' N _ N
(Sep)ar(Len?) =3
j=1 j=1 j=1

This is because by (3.6), we can compute that

N N
(X:cjb(j)T)AJr (Z cjb(j)> =a! Aa
j=1 j=1
N N
j 2
b(f)cj = ch.
" °

N
—aof (Z b(j)b(j)T>a — T
j=1 J j=1

Next, we are going to present a basic characteristic of sums of squares of linear functions.

Theorem 3.12. Let N be a natural number, and b7 € R, c; R, 1<j<N, heR bearbi-
trary. Suppose that a quadratic function f is defined by (3.30), i.e.,

N
f@) =Y 0 x+cp)*+h,

j=1

and set A = Zjv:l bDbDT gnd r = rank(A). Then (a) there exist b)) e RM, c;eR 1<j<r,
such that

r N
fE =Y "BV x+é)*+) G +h—b"AD, (3.35)
j=1 j=1

N
where b = —Z?’:l cibP; (b) if f(x) = Z(l;(j)Tx + 6{;)2 + h, where b € RM, cjeR 1<
j=I
jfs,fze]R, thens >r.
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Proof. (a) A combination of Theorem 3.7 and Theorem 3.10 leads to part (a).
(b) Note that we can rewrite

S
fx) = Z(l;(j)Tx +é)+h=xTAx —2b"x + ¢,
j=1
where
s s N
A= X:b(J)b(J)T7 b= _Zéjb(j)’ o= Zé? +h.
j=1 j=1 j=1

Compared with (3.30), (3.31) and (3.32), we see A = A. Set B = (bV, 6, ... 5). Then
A = BBT and so

r =rank(A) = rank(A) = rankB <s.
This completes the proof. O

The result (b) of Theorem 3.12 tells the largest number of squares of linearly independent
non-constant linear functions in a sum for a non-negative quadratic function.

When x = (x1,---,xpy—1,1), where ¢ denotes time and x;, 1 <i < M — 1, are spatial vari-
ables, positive quadratic function solutions determined by (3.11) with a non-zero (M, M) minor
of A lead to lump solutions, and otherwise, lump-type solutions to the corresponding nonlinear
equations under either of the two transformations in (2.10).

4. Applications to generalized KP and BKP equations

4.1. Generalized KP equations in (N + 1)-dimensions

Let us first consider the generalized Kadomtsev—Petviashvili (gKP) equations in (N + 1)-di-
mensions:

(ul + 6uux1 + uxlxlxl)xl + U(szxz + Uxsxs +--- 4+ uxNxN) = O, (41)
where 0 = F1 and N > 2. When o = —1, it is called the gKPI equation, and when o = 1, the

gKPII equation.
Denote x = (x1, x2, -+, XN, t)T e RVt Take a positive quadratic function:

fx)=xTAx+d 4.2)
with A = AT ¢ RWV+DXWN+D A > (0 and d > 0. For any x € R¥*! | the rational function
y

2(ffu — )

uzz(lnf)xlxl = f2

is analytical in RV *!. Substituting it into (4.1), we have
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N
(ut + 6““)61 + uxlxlxl)xl + o Z uijj

j=2
92 N

= [/ 7O+ DDy +o Yo DD f]=0. 0 =1,
1 j=2

where Dy is the Hirota bilinear derivative with respect to time ¢. Therefore, if f solves the
bilinear gKPI or gKPII equation:

N
(D} +D\Dyyi+0 Y DHf-f=0, 0=l 4.3)
j=2

then u = 2(In f),,, solves the gKPI or gKPII equation in (4.1). Such a solution process provides
us with lump or lump-type solutions to the gKPI or gKPII equation.

Theorem 4.1. A positive quadratic function f defined by (4.2) solves the bilinear gKPI or gKPII
equation by (4.3) if and only if

6a3, +da =0, (4.4)
and
N
aA— (M AL+ AnnA]) =20 ) AA] =0, (4.5)
i=2
where
N
a:=aiy1+0 ) ai <0, 4.6)
i=2

Proof. An application of Theorem 3.4 to the bilinear gKPI and gKPII equations in (4.3) tells
(4.4) and (4.5). The property a < 0 in (4.6) follows from (4.4) and d > 0. The proof is fin-
ished. O

If a = 0, then we have aj; =0 by (4.4). Since A > 0, we have a; y+1 = 0. Further

N
o Zaii =a—ains+1=0.
i—2

However, 0 20 and q;; >0fori=1,---, N 4+ 1. Thus, apy = --- = ayy = 0, and there exists
only a non-zero solution A = (a;;)(N+1)x(n+1) With all a;; = 0 except ay41,n+1. The corre-
sponding solution is # = 2(In f),», =0, a trivial solution.

Now let us introduce
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i 0 0 1
B=2P®=|0 20Iy_; O , 4.7)
1 0 0

(N+1)x(N+1)

where Iy_ is the identity matrix of size N — 1, and then the algebraic equation (4.5) can be
written in a compact form:

aA— ABA =0, (4.8)
where a is defined by (4.6).
Corollary 4.2. If a positive-semidefinite matrix A satisfies the condition (4.8), then |A| = 0.

Proof. If |[A| #0, then aly+; — AB =0,andso A = aB~!. The matrix B has two eigenvalues
+1 (and an eigenvalue 20 of multiplicity N — 1), and thus B~ also has two eigenvalues =+1.
Therefore, A is not positive-semidefinite unless a = 0. In this case, ABA =0, and then |[ABA| =
|A|?|B| = 0, which leads to |A| = 0. A contradiction! O

This corollary is also a consequence of Theorem 3.6. For the (N + 1)-dimensional KP equa-
tions, since the corresponding symmetric coefficient matrix P@  defined by (3.19), is not zero,
their corresponding Hirota bilinear equations in (4.3) do not possess any quadratic function so-
lution which can be written as a sum of squares of N + 1 linearly independent linear functions.

We remark that it is not easy to find all solutions to the system of quadratic equations in (4.8).
The following examples show us that the gKPI equations have lump or lump-type solutions. It
is also direct to observe that any lump or lump-type solution to an (N 4 1)-dimensional gKPI
equation is a lump-type solution to an ((N + 1) + 1)-dimensional gKPI equation of the same type
as well.

Example 4.3. Let us consider the simplest case: N = 2. This corresponds to the (2 4 1)-dimen-
sional KPI and KPII equations:

(s + Outty + Uyxxx)x + OUyy = 0, o =1, 4.9)

where we set x| = x and xp = y. By using Maple, we can have

a b o(ac —2b%)/a
A= b c —obc/a witha >0, ¢ >0, ac—b*>0.
o(ac—2b%*)/a —obc/a o%c?/a
This leads to
2 2 o2c? 5 20bc 20 2
fx,y,t) =ax”+cy"+ ——1t°+2bxy — yt + —(ac —2b*)xt +d
a a a
ac — b? 20b

b
—alx + 2y + 2 (ac — 2671 + =222 44, (4.10)
a a a

which reduces to
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2.2
t
f(x,y,t)=ax2+cy2+gtz—i—Zacxt—i—d:a(x—i—E)z—i—cyz—}—d,
a a

when b = 0. The condition (4.4) now reads

o (ac — b?)

o (ac —2b?%) )
——~+oc]l=6a"4+2d——= =0,
a a

6a* +d[
which yields

3a’ 0 4.11)
=——>0. .
o(ac — b?)
By Corollary 3.5, for any constants y1, y1, 3 € R, we have the following quadratic function
solutions:

b
feyn=alc=y)+ -0 =)+ %(ac —2b%)(t — 13) 2

ac — b?

20b
[y —y2) — %(t — P +d

+

b o
=alx + -y + —(ac = 2b")1 — &7
a a

ac — b?
+

20b
(v— 22— 6% +d, (4.12)
a

with 81 and §, being defined by

b o 5 20b
Si=y1+ 5V2+ a—z(ac—2b )3, bo=y2 — s

Because yi, y»2, y3 are arbitrary, so are §; and ;. Furthermore, the corresponding lump solutions
to the (2 + 1)-dimensional KPI equation in (4.9) read

u(x,y, 1) =2(In f)yx
5 b o 2 5 5 20b 5
4{—a [x—i—;y—l—a—z(ac—Zb )t —361]"+ (ac—»b )(y—Tt—Sz) —l—ad}

ac —b? 20b
(y— 71 —8)? +d}2

3

b o
{a[x +-y+ —z(ac — 2b2)t — 81]2 +
a a

where d is defined by (4.11), a, b, c € R satisfy a > 0, ¢ > 0, ac — b? >0, and &; and &, are
arbitrary. When taking

1

1
=1,b=+3a, c=3@>+b>,d=—, §, =8 =0, —y,
a V3a, ¢ =3 +b?) 3 S1=5 a3

the resulting lump solutions reduce to the solutions in (1.2).
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Remark 4.4. The condition in (4.11) implies that o = —1 in order to have lump solutions gen-
erated from positive quadratic functions. This shows that the (2 + 1)-dimensional KPI equation
(0 = —1) possesses the discussed lump solutions whereas the (2 + 1)-dimensional KPII equation

(o0 =1) does not.
Example 4.5. We consider the (3 + 1)-dimensional gKPI equation

(g +6utty + Uyxy)y — Uyy —Uzz = 0.

(4.13)

By using Maple, we have two classes of lump-type solutions below. Moreover, we will prove

that there is no lump solution from quadratic functions.

Case I — Sum of two squares: In this case, by Maple, we can have
vz =iy, 207 + (ol y,z.0) +d,
with

filx,y,z,t)=x+1Ly+miz+ w1t =5y,
Lo, y,z,t) =kox + Ly +moz + wat — 82,

where k>, [, lp,m1, ma, 81, 82 € R are arbitrary, [ymy # lm| and

_ 2ka(ily + mymp) + (1 — 13) + (m? — m3)
B k3 +1 ’
kol = 15) + (m] —=m3)] = 2(lila + mim2)

wy = :
k3 +1

w1

g 3(k3 4+ 1)°
" (kaly — )2 + (kamy — ma)?’

The corresponding lump-type solutions read

A1+ EDd + (k3 — D(fE — f3) — dka f1 2]
(fE+ f2+d)? ’

M(}C, Y.z, t):

where f1 and f> are defined by (4.15).
Case II — Sum of three squares: In this case, by Maple, we can have

O,y 20 =i, y, 2,00 + (o, 3, 2,00 + (f3(x, y,2,0)* +4,
with

fix,y,z,t)=x+1Ly+miz+ w1t =0,
falx,y,z,t) =kox + Ly +moz + wat — 82,
f3(x,y,2,) =13y + m3z + w3t — 83,

4.14)

(4.15)

(4.16)

4.17)
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where k», [1, 2,13 # 0, m1,m3, 61, 82, 83 € R are arbitrary, and

w1 Z_L’ LL)ZZL, w3=i’
(k3 + D3 (k3 + D3 (k3 + D3
oy = —kolim3 + kolsmy + [ym3 _ 3(k3+ 133
I3 ' (2 +mD)[(kaly — )2 + (k3 + DIZ]

with

p1=ky(Ifm3 — 3m}) — 345 +mD) + (15 — 2kal1 1o + 3) (15 + m3),
p2 = k3 (lims — lsmy)? — 2k312(lyms — lymy)ms

— k(13 = 1313 + 2l smyms — 3m3 — m3 + 3m3 +13)

+ 2Lz +mimy),
p3 = —k3(Lim3z — lsm))m3 + kalo (I3 + m3) + 31113 + mim3).

The corresponding lump-type solutions read

A[A+ kD (f2+d) + (3 — D(fE = D) —4ka f1 /]

b bl 7t =
ute v 0 2+ 2+ f2+d)?

where f1, f> and f3 are defined by (4.17).

The formula for m» in the above example means the corresponding first minor M4 is zero,
and so, the presented solution is not a lump solution. Generally, when N > 3, there is no solu-
tion to the matrix equation (4.8) with a non-zero first minor My 41, n+1, indeed. Therefore, the
above gKP equations in (N + 1)-dimensions with N > 3 have no lump solutions generated from
quadratic functions. We prove a more general result as follows.

Theorem 4.6. Let N > 3. Then there is no symmetric matrix solution A € RWVADXWN+D 44 the
matrix equation (4.8) with rank(A) = N, which implies that the (N + 1)-dimensional gKP equa-
tions (4.1) have no lump solution generated from quadratic functions under the transformation
u=2(In f)yxx.

Proof. Suppose that there is a symmetric matrix A € RV+DXWNV+D which solves the equation
(4.8) and whose rank is N. Then, since A is symmetric and rank(A) = N, there exists an orthog-
onal matrix U € RVHD>xWV+D qych that

A

A=UTAU =
0

0 n
}7 Alzdiag()\’lv'v)"N)v
0

where A; #0, 1 <i < N. Set

. By By | . -
B:UTBU=|: R . ], By = (bij)NxnN e RVXN,
Bz By



W.X. Ma, Y. Zhou / J. Differential Equations 264 (2018) 2633-2659 2653

Upon noting that a is an invariant under an orthogonal similarity transformation, it follows from
(4.8) that

N+1 1 N
aA1—A1B1A1 =0, a= _Zlaijpij = Egkkbkk.
i,j= =

Then, based on this sub-matrix equation, using the same idea in the proof of Theorem 3.6 shows
that Na = 2a, which leads to a = 0 since N > 3. Further, we have él =0, and thus, rank(é) <2,
which is a contradiction to rank(é ) =rank(B) = N + 1. Therefore, there is no symmetric matrix
solution A to the equation (4.8) with rank(A) = N.

Finally, note that the existence of a non-zero (N + 1, N 4+ 1) minor of A implies that rank(A) >
N, and thus, by Theorem 3.6, we have rank(A) = N. Now, it follows that there is no symmetric
matrix solution A to the equation (4.8) with a non-zero (N + 1, N 4+ 1) minor. This means that
the gKP equations, defined by (4.1), in (N + 1)-dimensions with N > 3 have no lump solution,
which are generated from quadratic functions under the transformation u = 2(In ). The proof
is finished. O

4.2. Generalized KP and BKP equations with general 2nd-order derivatives

Let us next consider generalized KP and BKP equations with a general sum of second-order
Hirota derivative terms. We will present lump solutions to those two generalized KP and BKP
equations.

Example 4.7. We consider the following generalized KP (gKP) equation:
KgKPl(”) = (6uny +Uxxy)x +Cruxy + 2C2uxy +2c3u x4 +cquyy + 2CSI/‘yt +couy =0, (4.18)

with arbitrary constant coefficients ¢;, 1 <i < 6. Under the typical transformation u = 2(In f),,
this general equation itself has a Hirota bilinear form:

Bgk p1(f) = (D}+c1D;+2c2Dy Dy +2¢3Dy Dy +caDy+2¢5sDy Dy +c6 DY) f - f =0, (4.19)

since we have

B
Kexpi(u) = (—gK;Z] (/) )xx.

The equation (4.18) reduces to the (2 + 1)-dimensional KPI and KPII equations in (4.9), upon
taking

1
cir=0=0, 3=+

, c4=0, cs=ce=0.
2

To search for quadratic function solutions to the (2 + 1)-dimensional bilinear gKP equation
(4.19), we start with

f=gl+g +ao, g1 =aix +axy+ast +as, g =asx +aey +ast +as, (4.20)
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where a;, 1 <i <9, are real parameters to be determined. A direct Maple symbolic computation
with this function f generates the set of three constraining equations for the parameters and the
coefficients:

2, .2\3
o= — 3(aj +a3)
Hica + pacs + (3ce
V1,163 + V1,2€4 + V13¢5 + V1,4C6
c1 = —5 : (4.21)
(a7 +as)(aiae — azas)
o= — V2,163 + V2,24 + V2, 3¢5 4 V3 4C6
(a} + a2)(aias — aras)
with
_ 2
w1 = (ara¢ — azxas)”,
w2 = 2(a1a6 — azas)(aja; — azas), 4.22)
w3 = (a1a7 — azas)?,
V.1 = 2(a} + a2)(aa7 — azag),
o= (a3 + aé)(alaﬁ —azas), “423)
V1,3 = 2(0% + afz))(ala7 — asas),
V1,4 = 2aza7(a1a2 — asag) — (a§ — a?)(araq + azas)
and
2, 2
V2,1 = (ay + as)(ar1a7 — azas),
V22 = (a1a2 + asag)(a1as — azas),
4.24)

2_ 2
V2.3 = (ay — a5)(axa7 + azae) — 2ayas(azaz — agar),
V2,4 = (a1a3 + asaz)(a1a7 — azas),
where all involved other parameters and coefficients are arbitrary provided that the expressions
make sense.

When a determinant condition

ay ap
aijag — aras = #0, 4.25)
as dae

is satisfied, the above quadratic function f will be positive if and only if ag > 0, i.e.,
mics + pocs + pace <0, (4.26)

and the resulting class of positive quadratic function solutions generates lump solutions to the
(2 + 1)-dimensional gKPI equation (4.18) through the transformation u = 2(In f),y:
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L 4(af +a3) f —8(a1g1 + asgr)?
= = ,

where the functions f, g1, g2 are determined above.

In this class of lump solutions, all involved eight parameters a;, 1 <i <8, and four coeffi-
cients ¢;, 3 <i < 6, are arbitrary provided that the two conditions, (4.25) and (4.26), are satisfied.
The determinant condition (4.25) precisely means that two directions (ay, az) and (as, ag) in the
(x, y)-plane are not parallel, which guarantees, together with (4.26), that the resulting solutions
in (4.27) are lump solutions.

For the standard KPI and KPII equations in (4.9), we have

4.27)

30 (a% + a%)3

ag=————"—
(a1a6 — aras)?
and obtain
o(aja? — 242 2 — a2 2
1a2° — ayae” + 2 azasaeg) o(Qayazas — ar“as + asag”)
== 21 g2 A1 = 2 g2 ’
air“ +as ai“+as

upon solving the system

1 1
€1 =3VL1 +ovi2=0, 2= Fv21 +ov2 =0,

for a3 and ay. This exactly produces to the lump solution presented in [ 16] for the KPI equation,
but the resulting solution to the KPII equation has pole singularity in the (x, y)-plane at any time,

due to ag < 0.

Example 4.8. We consider the following generalized BKP (gBKP) equation:

KgBKP(u) = (15”}2 + Suyusy +usy)x + Cl[“3x,y + 3(”xuy)x]
+ Cottyy + 2¢3Uyy + 24y + C5Uyy + 206Uy + U =0, (4.28)

with arbitrary constant coefficients ¢;, 1 <i < 7. Under the other typical transformation u =
2(In f)y, this general equation itself has a Hirota bilinear form:

Bepxp(f) = (DS +c1DIDy + c2D? +2¢3D, Dy

+2¢4D. Dy + csD} +2¢6Dy Dy +¢71D7) f - f =0, (4.29)
since we have
Bgpgp(f)
Kepkp(u)= <T>x

The equation (4.28) reduces to the (2 4 1)-dimensional BKP equations:

(uy + 15”)3; + 15uyusy — 15uxuy +usy)y — Suzy,y +5S0uyy, =0, 0 =FI, (4.30)
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upon taking

1
c1=-5, 6425, cs=50, cp=c3=cg=c7=0. 4.31)

To search for quadratic function solutions to the (2 4+ 1)-dimensional bilinear gBKP equation
(4.29), we begin with the same class of quadratic functions defined by (4.20). A similar direct
Maple symbolic computation with f leads to the set of three constraining equations for the
parameters and the coefficients:

3(a1az + asag)(a} + a?)’cy
r1¢s5 + pace + 13cy
o = V1,1€4 + V1,265 + V1,3C6 + V1,4C7
(a} + a2)(a1a6 — azas)

ag =

: (4.32)

V2,164 + V2,205 +12,3C6 + V2,4€7
2, 2
(aj +a35)(aras — azxas)

c3 =

with u;, 1 <i <3,v1;,1<i <4,andvy;, 1 <i <4, being defined by (4.22), (4.23) and (4.24).
All involved parameters and coefficients are arbitrary provided that the expressions make sense.

When we require a determinant condition in (4.25), the presented quadratic function f will
be positive if and only if ag > 0, which means

(araz + asag)cy
nics + pace + n3cy

<0, (4.33)

and the resulting class of positive quadratic function solutions yields lump solutions to the
(2 4+ 1)-dimensional gBKP equation (4.28) through the transformation # = 2(In f),:

. 4(a181 +a582)’ 4.34)
f
where the functions f, g1, g» are defined above.

In this presented class of lump solutions, all involved eight parameters a;, 1 <i <8, and five
coefficients c1, ¢;j, 4 <i <7, are arbitrary provided that the two conditions, (4.25) and (4.33),
are satisfied. The determinant condition (4.25) exactly requires that two directions (a1, a2) and
(as, ag) in the (x, y)-plane are not parallel, which similarly guarantees, together with (4.33), that
the presented solutions in (4.34) are lump solutions.

The coefficient constraints (4.31) engender the standard BKP equations in (4.30). In this case,
similarly we have

3o (ajaz + a5a6)(a% + a%)2
ag =
(a1a6 — azas)?

’

and obtain

50 (a1a2® — arag?® + 2 arasag)
6112 + 6152

50 (2ajaras — ar’as + asag?)
, A7 = — 2 2 ’
a1” +as

az =
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upon solving the system

= %Ul,l +350v12=0, c3= %Uz,l +50v22 =0,
for a3 and a7. This generates lump solutions to the BKP equations in (4.30), when (aja; +
asae) < 0 with minus sign (o = —1) or (ajaz + asae) > 0 with plus sign (o = 1). This solution
phenomenon is pretty different from what we presented for the standard KP equations in the
previous example. The solution case with minus sign also covers the lump solution presented
in [7]. Actually, if we take

ar=1, ar=3(*— %), as =0, ag = 6B,
where « and B are arbitrary but 82 < o, which leads to

2 2
—a
a3 =45("* — 62’ + B?), a7 = 180af(a” — B*), ag = '840[2,32 ’

then the resulting lump solution is exactly the one in [7].
5. Concluding remarks

In this paper, we studied positive quadratic function solutions to Hirota bilinear equations.
Sufficient and necessary conditions for the existence of such polynomial solutions were given.
In turn, positive quadratic function solutions generate lump or lump-type solutions to nonlinear
partial differential equations possessing Hirota bilinear forms. Applications were made for a few
generalized KP and BKP equations.

We remark that putting Theorem 3.2 and Theorem 3.7 together proves Hilbert’s 17th prob-
lem for quadratic functions, but the conjecture is not true for higher-order polynomial functions.
Moreover, Theorem 3.2 provides a criterion for the positivity of quadratic functions. It, how-
ever, still remains open how to determine the positivity of higher-order multivariate polynomials,
which is a further problem of Hilbert’s 17th problem. It should be also interesting to look for pos-
itive polynomial solutions to generalized bilinear equations [13], which generate exact rational
function solutions to novel types of nonlinear differential equations [26,28,29]. The first example
of such solutions one can try could be positive quartic function solutions.

It is evident that if A is positive-definite in the quadratic function f defined by (3.11), then
f — 0o when |x| — oo in any direction in RM. This guarantees that u = 2(In f)x, — 0 and
u=2(nf)xx, = 0 as |x| = oo in any direction in RM, and so they yield lump solutions,
rationally localized solutions in all directions in space and time. If A is positive-semidefinite,
then u =2(In f),, and u =2(In f),,,, do not go to zero in all directions in RM but may go to
zero in all directions in a subspace of RM . Therefore, they usually lead to lump-type solutions,
and lump solutions if the subspace is the actual space which the spatial variables belong to. Three
of such examples about the generalized KP and BKP equations were just discussed.

Through Theorem 3.2, we can obtain a by-product, which partially answers an open question
in [14,15,20]: how to determine a real multivariate polynomial which has only one zero? By
Theorem 3.2, a quadratic function f has only one zero at & € RM if and only if

fO) =(x—a)A(x — ), x eRM,
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where A € RM*M is positive-definite or negative-definite, since a multivariate polynomial is
either non-negative or non-positive if it has one zero. If A above is only positive-semidefinite,
then there must exist infinitely many zeros.

Moreover, Theorem 3.2 tells that if a quadratic function f is positive on RM je., f(x)>0
for all x € RM | then there is a positive constant d such that f(x) > d for all x € RM  But this is
not the case for higher order multivariate polynomials. There are counterexamples:

S (e, ) =x2" 4 (x"y" = 12, m,neN,

for which f;,,;,(x,y) > 0 since f,;,,(0,y) =1 and fy,(x,y) > x> 0 for x # 0. It is apparent
that klim Jmn (k=', k) = 0. This clearly implies that f,,, cannot be bounded from below by any
—00

positive constant.
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