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Abstract—Contour dynamics is a computational technique to solve for the motion of vortices
in incompressible inviscid flow. It is a Lagrangian technique in which the motion of contours
is followed, and the velocity field moving the contours can be computed as integrals along
the contours. Its best-known examples are in two dimensions, for which the vorticity between
contours is taken to be constant and the vortices are vortex patches, and in axisymmetric
flow for which the vorticity varies linearly with distance from the axis of symmetry. This review
discusses generalizations that incorporate additional physics, in particular, buoyancy effects and
magnetic fields, that take specific forms inside the vortices and preserve the contour dynamics
structure. The extra physics can lead to time-dependent vortex sheets on the boundaries, whose
evolution must be computed as part of the problem. The non-Boussinesq case, in which density
differences can be important, leads to a coupled system for the evolution of both mean interfacial
velocity and vortex sheet strength. Helical geometry is also discussed, in which two quantities
are materially conserved and whose evolution governs the flow.
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1. INTRODUCTION

Vortex dynamics forms an important part of fluid dynamics, with a history dating back to the
original paper of Helmholtz [11]. The search for exact solutions to the equations of motion has been
a major part of the evolution of the field. Given the complexity of the nonlinear equations of motion,
simplifications have been an important part of these efforts. Three general types of simplifications
have been pursued: geometric, i. e., working in two-dimensional or axisymmetric geometries;
model reduction, i. e., reducing partial differential equations to ordinary differential equations by
considering singular solutions; and physical, i. e., limiting the physical effects considered. The motion
of point vortices, one of the most important cases of reduced models, is reviewed in [15, 19]. Point
vortices are two-dimensional solutions for which the vorticity is given by a delta function centered
at a set of points whose locations evolve following a self-consistent set of dynamical equations.
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Another important reduced model is that of vortex patches. These are two-dimensional solutions
with piecewise constant vorticity, or equivalently a sum of Heaviside functions. Their evolution can
be reduced to the evolution of the boundary, and this approach is called contour dynamics (CD) [34].
Good reviews are given in [6, 23]. A similar approach for axisymmetric flows was developed in [28]
(see also [27]) and in [22]. Equilibrium solutions were first found in [33] (including rotating solutions
generalizing the Kirchhoff ellipse) and [20] in the two-dimensional and axisymmetric cases. Contour
dynamics allows simulations that are effectively inviscid with very low numerical diffusion or
dissipation. It is found that the boundaries of vortex patches can filament, and techniques like
contour surgery [6] can be used to pursue integrations. A major advantage over other numerical
techniques is in efficiency, since it reduces the dimensionality of the system by one (in this regard
it is similar to boundary element methods for very viscous Stokes flows). Conversely, it is limited
by the very fact that it cannot simulate viscous or three-dimensional flows. One goal of the present
review is to outline how extra physics can be included in the method.

Yet another model is that of vortex sheets, in which the vorticity is made of delta functions
located along curves or surfaces. The resulting velocity field is discontinuous across the sheets.
Again dynamical equations of motion result, which are well-known to be ill-posed: vortex sheets
are susceptible to Kelvin –Helmholtz instability. Regularization methods [12] exist to produce well-
posed equation sets.

These reduced models are reviewed in textbooks on vortex dynamics such as [1, 26, 32]. Contour
dynamics specifically is a broad field; rather than provide an exhaustive bibliography, we refer the
reader to [6, 23, 26] for detailed discussions and to [18] for a comprehensive bibliography of vortex
dynamics as a whole. Our goal in this review article is to present extensions to contour dynamics
that incorporate more physics in various geometric configurations.

We define generalized contour dynamics (GCD) methods as solutions to the Helmholtz vorticity
equations that are fully determined by the evolution of contours or surfaces. In standard contour
dynamics, these contours are vortex jumps, but including additional physics leads to the creation
and evolution of vortex sheets. In such generalizations, two-dimensional, axisymmetric or helical
symmetries are needed to ensure material conservation of vorticity or its close relatives, while the
magnetic field is perpendicular to the contours.

In this review we include density differences, which in combination with gravity lead to buoyant
effects, and magnetic fields. It is immediately clear that density differences will lead to baroclinic
generation of vorticity, which will affect the dynamics. Magnetic fields have previously been
considered in [9]. We do not review numerical methods to solve the resulting sets of equations,
nor the question of finding equilibrium solutions. Similarly, while equilibrium solutions can be
obtained for spherically symmetric solutions, with and without swirl [14], since their boundary is
steady they do not really fall within the scope of this review.

Most of the results in this review are already known, but putting them together highlights the
differences and similarities between the different cases. The axisymmetric non-Boussinesq result
appears to be new, although it is formally the same as the 2D result (up to the relation between
vortex sheet strength and circulation; see below). The equations for the helical case appear to be
new, but their existence had been suggested earlier; see [23].

In Section 2 we review the equations of motion and outline the underlying physical and
geometrical assumptions that will be used. In Section 3 we describe a vorticity-based approach
and obtain results that include effects due to buoyancy and magnetic field. In Section 4 we describe
the modifications needed in the non-Boussinesq case, and include the effect of surface tension. In
Section 5 we discuss the case of helical symmetry. Finally we conclude in Section 6.

2. GOVERNING EQUATIONS

2.1. Field Equations

We will define a generalized contour dynamics method as one in which vorticity-like quantities
are conserved materially, so that the evolution of the system is governed by the motion of
boundaries between different regions. In practice this means two-dimensional, axisymmetric or
helical geometries to avoid vortex stretching terms that break the conservation of vorticity-like
quantities. Three features are required: a Lagrangian conservation law, an inversion integral or
operator (via a Green’s function), and a vortex sheet evolution equation that takes into account
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additional physics. Vorticity-like quantities are taken to be piecewise continuous. Vorticity, axial
velocity and magnetic fields are nonzero inside a vortical region and vanish outside. The other
velocity components are nonzero over the whole of space.

We start with the general vorticity equation for three-dimensional inviscid incompressible flow
in the presence of a magnetic field. This requires the induction equation, in which we also assume
infinite magnetic Reynolds number. We have

Du

Dt
= −1

ρ
∇p + g + f +

ρ0

ρ
j × B, (2.1)

∇ · u = 0, (2.2)

DB

Dt
= B · ∇u, (2.3)

∇ · B = 0, (2.4)

Dρ

Dt
= 0, (2.5)

where u is the velocity field, p is the pressure field, ρ is the density field, g is the gravitational
acceleration, taken to be constant, and f stands for the remaining body force (per unit mass). We
require the total body force to be time-independent and conservative so that g + f = −∇Ψ. The
current density is given by j = ∇ × B, where B is the magnetic field, and units have been chosen
to obtain the simplest possible form for the equations, with ρ0 a constant reference density. Density
is materially conserved, i. e., diffusion of density is neglected. The vorticity equation for ω is

Dω

Dt
=

1

ρ2
∇ρ × ∇p + ∇ × ρ0

ρ
(j × B), (2.6)

with ω the vorticity, which does not look immediately promising for Lagrangian conservation.

To simplify matters initially, we introduce the Boussinesq approximation, which corresponds to
neglecting changes in density except in the gravitational term [31]. We will set g = −gl where l is
a unit vector pointing in the opposite direction to gravity and define the buoyancy, b, by

ρ = ρ0(1 − g−1b). (2.7)

(The usual situation is l = ẑ, but we use l to accommodate the two-dimensional case with flow
and gravity in the xy-plane for which g does not point in the negative z-direction.) The resulting
momentum, continuity and buoyancy equations are

Du

Dt
= − 1

ρ0

∇p + bl + f + j × B, ∇ · u = 0,
Db

Dt
= 0, (2.8)

where the pressure has had its hydrostatic component removed. The vorticity equation simplifies
to

Dω

Dt
= ∇b × l + ∇ × (j × B). (2.9)

Contour dynamics is a Lagrangian approach. Points on the boundary X(ξ, t) are advected as
Lagrangian markers:

∂X

∂t
= u(X), (2.10)

where ξ is any parameterization of the boundary (not necessarily arc length). Numerically, the
contours are discretized into points {Xk} and the points are advanced according to the coupled
ordinary differential equations

dXk

dt
= u(Xk). (2.11)

Hence the velocity field on the boundary is needed. Note that while material points move with the
velocity field, the boundary itself is a geometric entity.
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In three dimensions, total energy, helicity and cross helicity are conserved. The general form for
these quantities is

ET =
1

2

∫

(

ρ|u|2 + ρΨ + ρ0|B|2
)

dV, H =

∫

u · ω dV, HC =

∫

u · B dV, (2.12)

respectively. Helicity vanishes in the bulk unless the swirl velocity is nonzero; similarly, cross helicity
is zero unless both swirl and toroidal field are nonzero. Magnetic helicity is also preserved, but the
assumptions made here imply that it vanishes. (In two dimensions, helicity conservation is replaced
by conversation of enstrophy and moments of vorticity.) In general, vortices with different buoyancy
from the outside fluid will keep moving parallel to the gravity vector and will continuously change
shape [3], and no equilibrium solutions are likely in this case.

We now consider possible geometries for contour dynamics. This includes the relation between
vorticity and (part of the) velocity, a kinematic result that does not depend on the momentum or
vorticity equations. Helical geometry is more complicated and is discussed separately in Section 5.

2.2. 21

2
-Dimensional Flows

The usual two-dimensional configuration has u =
(

u(x, y, t), v(x, y, t)
)

and ω = ω(x, y, t)ẑ. Since

the flow is incompressible, a streamfunction ψ exists with (u, v) = (ψy,−ψx). It is possible to add

a third velocity component, and consider a 21

2
-dimensional velocity field [16, 24] when the velocity

components and pressure gradient do not depend on z, so that u =
(

u(x, y, t), v(x, y, t), w(x, y, t)
)

.
The vertical velocity then behaves as a passive scalar. To obtain a CD system, we need ω, w and
density (ρ or b) to be piecewise continuous. We have already required f =

(

fx(x, y, t), fy(x, y, t), 0
)

to be irrotational. We also need the z-component of g to vanish. The induction equation can be
written in a CD form if B =

(

0, 0, B(x, y, t)
)

. Then B, w and ω are materially conserved in the
bulk.

The Poisson equation ∇2ψ = −ω can be solved using a Green’s function approach, giving

ψ = − 1

2π

∫

ω(x′) log |x− x′| dx′. (2.13)

We are taking ω to be a sum of vortex patches and vortex sheets corresponding to Heaviside and
delta functions, respectively. The latter is naturally a contour integral, while the former can be
turned into one for a patch of constant vorticity A. We write uH for the velocity induced by the
patch and uS for the velocity induced by the sheet. The resulting contour integrals can be written
in the form

uH = − A

2π

∮

log |x − x′|∂x′

∂s′
ds′, uS = ẑ× 1

2π

∮

γ
x− x′

|x − x′|2 ds′, (2.14)

where s′ represents arc length along the contour which is described in the positive sense and γ(s, t)
is the vortex sheet strength (the jump in velocity across the contour). In the above we are ignoring
external velocity fields and boundaries. The total velocity in the xy-plane is (ψy,−ψx) = uH + uS .

The energy and cross helicity can be written as

ET =
1

2

∫

V

(

ρw2 + ρ|∇ψ|2 + ρΨ + ρ0B
2
)

dV, HC =

∫

V

wB dV, (2.15)

where V is the inside of the vortex. In the Boussinesq limit, we replace ρ by ρ0 in the energy
integral; then ρ0 can be taken out of the integral.
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2.3. Axisymmetric Flows

We use cylindrical coordinates (r, θ, z) with velocity components (u, v, w). Then, for incom-
pressible axisymmetric flow with variables depending on r, z and t, the radial and vertical velocity
components are related to the Stokes streamfunction ψ by

u = −1

r

∂ψ

∂z
, w =

1

r

∂ψ

∂r
. (2.16)

The relation between streamfunction and azimuthal vorticity ω is

ω =
∂u

∂z
− ∂w

∂r
= −1

r

(

∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

)

ψ. (2.17)

The swirl velocity v is separate [14]. To obtain a CD system, we require gravity to point in
the negative z-direction (i. e., l = ẑ) and the magnetic field to be purely azimuthal (also called
toroidal) [9].

The relation (2.17) can be inverted to give

ψ(r, z, t) =

∫∫

ω(r′, z′, t)G(r, z|r′, z′)dr′dz′, (2.18)

where G is the Green’s function

G(r, z|r′, z′) =

√
rr′

2π

[(

2

k
− k

)

K(k) − 2

k
E(k)

]

, (2.19)

K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively, and

k2 =
4rr′

(r + r′)2 + (z − z′)2
. (2.20)

When ω = rA inside a contour, A constant, and vanishes outside, the velocity field can be rewritten
in terms of contour integrals described in the clockwise sense [9, 25, 27]. Again we write uH for the
velocity induced by the patch and uS for the velocity induced by the sheet, so that

uH(r, z, t) = −A

r

∮

G cos θ ds′, wH(r, z, t) = A

∮

[

(z′ − z)H cos θ − G sin θ
]

ds′ (2.21)

for the velocity components. Here θ is the angle between the outward normal to the interface and
the z-axis, while H is given by

H(r, z|r′, z′) =
r′K(k)

π
√

(r + r′)2 + (z − z′)2
. (2.22)

For later use, we require the velocity field induced by a vortex sheet with strength γ

uS(r, z, t) = −1

r

∮

γ
∂G

∂z
ds′, wS(r, z, t) =

1

r

∮

γ
∂G

∂r
ds′. (2.23)

The total poloidal velocity is uP = uH + uS , with |uP |2 = |∇ψ|2, while the toroidal velocity is v.

The energy and cross helicity can be written as

ET =
1

2

∫

V

(

ρv2 +
1

r2
ρ|∇ψ|2 + ρΨ + ρ0B

2

)

dV, HC =

∫

wB dV. (2.24)

In the Boussinesq limit, we replace ρ by ρ0 in the energy integral; then ρ0 can be taken out of the
integral.
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3. VORTICITY-BASED APPROACH FOR BOUSSINESQ FLOWS

3.1. Axisymmetric Case

We now derive contour dynamics equations following [9, 14]. This approach exploits the
Boussinesq approximation to avoid dealing with the baroclinic torque terms in (2.6). We derive
the axisymmetric version, since its simplification to two dimensions is immediate. We consider only
a single contour, but the generalization to more than one is straightforward.

From the form of the solution in Section 2.3, the prognostic equations are the azimuthal
momentum, vorticity and magnetic induction equations, which become

D

Dt
(rv) = 0,

D

Dt

(ω

r

)

=
1

r2

∂

∂z
(v2 − B2) − 1

r

∂b

∂r
,

D

Dt

(

B

r

)

= 0. (3.1)

Take the azimuthal vorticity in the form

ω = r
[

AH(f) + Ω|∇f |δ(f)
]

, (3.2)

where H is the Heaviside step function, δ is the Dirac delta function and Ω is the vortex sheet
strength. The function f(r, z, t) is an indicator function that is negative inside the vortex and
positive outside. Similarly, we take the buoyancy, swirl and magnetic field in the form

b = b0H(f), rv = CH(f), B = rKH(f) (3.3)

for constant b0, C and K. Then the cross helicity is given by HC = KCV , where V is the volume
of the vortex.

The vortex sheet strength Ω evolves in time, while A, b0, C and K are constant. We find

DΩ

Dt
+

Ω

|∇f |
D|∇f |

Dt
=

1

|∇f |

(

C2

r4
− K2

)

∂f

∂z
− b0

|∇f |
∂f

∂r
. (3.4)

The function f is materially conserved. We take the boundary of the vortex to be (r, z) =
(

R(ξ, t), Z(ξ, t)
)

. Then the results

L2(ξ, t) =

(

∂R

∂ξ

)2

+

(

∂Z

∂ξ

)2

, n =
∇f

|∇f | ,
1

|∇f |
D|∇f |

Dt
=

1

L

∂L

∂t
+

u

r
, (3.5)

which in particular define L, can be used to obtain a simple dynamical equation for γ = ΩLR,
where dγ is the circulation in a small area which includes a portion ds of the boundary [9]:

∂γ

∂t
=

(

K2R − C2

R3

)

∂R

∂ξ
− b0

∂Z

∂ξ
. (3.6)

This is a generalization of the results of [9, 10, 14] to include swirl, magnetic field and buoyancy.

3.2. Two-dimensional Case

Without loss of generality take l to point in the y-direction (see the discussion in Section 2).
The governing equations simplify to

Dw

Dt
= 0,

Dω

Dt
= − ∂b

∂x
,

DB

Dt
= 0. (3.7)

We see that the magnetic field and the vertical velocity have no dynamical impact on the evolution
of ω. If we set

ω = AH(f) + Ω|∇f |δ(f), b = b0H(f), w = CH(f), B = KH(f), (3.8)

the relation between Ω and γ is now γ = ΩL. The evolution equation for γ becomes

∂γ

∂t
= −b0

∂Y

∂ξ
, (3.9)

where the contour is now given by (x, y) =
(

X(ξ, t), Y (ξ, t)
)

.

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 5 2018



GENERALIZED CONTOUR DYNAMICS: A REVIEW 513

4. NON-BOUSSINESQ EFFECTS

The vorticity approach above seems thwarted in the non-Boussinesq case because of the
baroclinic torque term in (2.6). It is still true that the (appropriately modified) vorticity and
buoyancy are materially conserved, so a CD formulation works, but the evolution equation for the
vortex sheet needs to be obtained in a different manner. This has been done in the irrotational
case by several authors. The case for different densities has been derived a number of times. [30]
gives references and outlines a general approach, which says nothing about the fluid away from the
interface.

Once again we start with the axisymmetric case. Our approach is similar to that of [2], but we
do not assume irrotational flow. The unit tangent and outward normal to the contour X = (R,Z)
parameterized by ξ are

t =
∂X/∂ξ

|∂X/∂ξ| , n = κ−1
∂t

∂s
, (4.1)

where κ is the curvature of the interface and s is the arc length.
Take the densities on the inside and outside of the contour to be ρ1 and ρ2, respectively. The

velocity of the fluid approaching the contour from the inside and outside will be written as u1

and u2, respectively. Then the vortex sheet strength is defined as γ = L(u1 − u2) · t. The average
velocity on the interface is ū = (u1 + u2)/2. We can then define a Lagrangian velocity for the
interface by

ũ = ū + α
γ

2L
t, (4.2)

where |α| � 1 can be chosen. This degree of freedom is possible because the contour is a curve in
space and not a material object. For α = 1, −1, points on the curve follow the inside and outside
fluid, respectively; for α = 0 points follow the average velocity.

We now write down the Euler equation on both sides of the interface,

∂uj

∂t
+ (uj · ∇)uj = − 1

ρj

∇p + g (4.3)

(j = 1, 2), and work on eliminating pressure. Subtracting and re-expressing the velocity in terms
of ũ gives

d

dt

( γ

L
t
)

+
γ

L
t · ∇ũ− αγ

L
t · ∇

( γ

L
t
)

= −
(

1

ρ1

− 1

ρ2

)

∇p, (4.4)

where the total derivative now represents points following ũ, so that

d

dt
=

∂

∂t
+ ũ · ∇. (4.5)

Adding the two equations in (4.3) gives

2
dū

dt
− αγ

L
t · ∇ū +

γ

2L
t · ∇

( γ

L
t
)

= −
(

1

ρ2

+
1

ρ1

)

∇p + 2g. (4.6)

We can now eliminate the pressure, which is continuous in the absence of surface tension, obtaining

d

dt

( γ

L
t
)

+
γ

L
t · ∇ũ− αγ

L
t · ∇

( γ

L
t
)

= −2A

[

dū

dt
− αγ

2L
t · ∇ū +

γ

4L
t · ∇

( γ

L
t
)

− g

]

, (4.7)

where the Atwood number is defined to be

A =
ρ1 − ρ2

ρ1 + ρ2

(4.8)

(not to be confused with the constant A defining the patch strength). Using the results

1

L

dL

dt
= t · [(t · ∇)ũ], t · ∇ =

1

L

∂

∂ξ
,

1

L

∂t

∂ξ
= κn,

1

L

∂n

∂ξ
= −κt (4.9)
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(the latter are the Frenet – Serret formulas) leads to

dγ

dt
− α

2L

∂

∂ξ

( γ

L

)2

= −2AL

[

t ·
dū

dt
− αγ

2L

∂ū

∂ξ
· t +

1

8L

∂

∂ξ

( γ

L

)2

− t · g

]

. (4.10)

This agrees with (2.15) in [2], although their result was for irrotational flow (see also, e.g., [21]).
Setting α = 0 gives

dγ

dt
= −2AL

[

t ·
dū

dt
+

1

8L

∂

∂ξ

( γ

L

)2

− t · g

]

. (4.11)

This is consistent with the results of [29], which does not include gravity.

This is not a standard CD method, because the equation for dγ/dt couples with that for t ·dū/dt.
This system can be turned into a Fredholm integral equation of the second kind, as shown in [2],
where a convergence proof for the equation is given. The derivation above carries through in two
dimensions.

The Boussinesq limit gives dγ/dt = 2ALt · g, which is the gravitational part of (3.6). Surface
tension can also be added. The pressure is then discontinuous at the interface, with p2 − p1 =
κρ0Ts, with Ts the coefficient of surface tension. Similarly, one can add a toroidal magnetic field
component B inside the vortex as above, giving

dγ

dt
= −2AL

[

t ·
dū

dt
+

1

8L

∂

∂ξ

( γ

L

)2

− t · g

]

+ Ts
∂κ

∂ξ
+

1

2

∂B2

∂ξ
, (4.12)

where we now take ρ0 = (ρ1 + ρ2)/2. Surface tension leads to a term that modifies the vortex sheet
strength proportional to the curvature of the contour, while the magnetic term is as before. Further
details and numerical solutions can be found in [3].

5. HELICAL CONTOUR DYNAMICS

Helical geometry refers to a situation in which a function depends only on r and φ = θ + εz,
the radial and helical coordinates, respectively. The φ coordinate defines a helix, with ε giving the
pitch of the helix. The symmetry direction is given by the helical vector, h, which is defined in
cylindrical coordinates to be

h = h2(ẑ − εrθ̂), (5.1)

with h2 = (1 + ε2r2)−1 (so not a unit vector). We are following the presentation of [17] for the
geometry (see also [13]); the notation for velocity components differs from that in previous sections.

The goal of this section is to describe a contour dynamics approach in which this symmetry
constraint is satisfied. Density is taken to be constant and there are no body forces acting. Flows
with helical symmetry have velocity, vorticity and pressure fields that are invariant in the direction
of h. Helical symmetry also implies that h · ∇ = 0 for functions of r, φ and t.

Upon decomposing the velocity and vorticity fields into components tangential and normal to
the vector h, for incompressible flow, we have

u = h× ∇ψ + hv, ω = h × ∇χ + hζ, (5.2)

where ∇ = r̂∂/∂r + φ̂(rh)−1∂/∂φ. The quantities ψ and v, which depend only on r and φ, have
different meanings from previously. This leads to

ur = −1

r

∂ψ

∂φ
, uθ = h2

(

∂ψ

∂r
− εrv

)

, uz = h2

(

v + εr
∂ψ

∂r

)

. (5.3)

The streamfunction-vorticity relation becomes

1

r

∂

∂r

(

rh2
∂ψ

∂r

)

+
1

r2

∂2ψ

∂φ2
= ω + 2εh4v, (5.4)

where ω = h · ω = h2ζ. In addition, χ = −v has to be satisfied.
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The governing inviscid equations can be written as

Dv

Dt
= 0,

Dω

Dt
= 2εh4

(

J(ψ, v) − εv
∂v

∂φ

)

, (5.5)

where J(f, g) is the Jacobian in helical coordinates:

J(f, g) =
1

r

(

∂f

∂r

∂g

∂φ
− ∂f

∂φ

∂g

∂r

)

. (5.6)

It is clear that v is materially conserved. If we take v to be piecewise constant, the quantity ω
is also materially conserved except on boundaries, where a vortex sheet will be induced. Hence we
again write

ω = AH(f) + Ω|∇f |δ(f), v = CH(f) + v∞. (5.7)

Nonzero v is needed outside the vortex to obtain appropriate decay at infinity. Proceeding as before
shows that A and C are materially conserved and that f is a material contour, once again. The
vortex sheet strength is governed by

DΩ

Dt
+

Ω

|∇f |
D|∇f |

Dt
= 2εh4

(

CJ(ψ, f) − 1

2
εC2

∂f

∂φ

)

. (5.8)

We again introduce γ = ΩLR, where now

L2(ξ, t) =

(

∂R

∂ξ

)2

+

(

rh
∂Φ

∂ξ

)2

, (5.9)

and obtain

∂γ

∂t
= 2εh5R

[

C

(

1

h

∂R

∂s
uφ − R

∂Φ

∂s
ur

)

− 1

2
εC2R

∂R

∂s

]

. (5.10)

The Lagrangian advection equations for the contour (R,Φ) in helical coordinates are

∂R

∂t
= ur(R,Φ, t),

∂Φ

∂t
=

1

Rh(R)
uφ(R,Φ, t). (5.11)

We now use the approach of [6] to obtain a contour dynamics formulation. We write the Green’s
function solution to (5.4) as

ψ =

∫

G(r, φ; r′, φ′)F (r′, φ′)r′h(r′) dr′ dφ′, (5.12)

where G(r, φ; r′, φ′) is an appropriate Green’s function and F (r, φ) = ω + 2εh4v, where ω and v are
piecewise constant. The vortex sheet leads to the following contour integral for ψ:

ψS =

∮

G(r, φ; r′, φ′)Ω(r′, φ′)r′h(r′) ds′, (5.13)

which can then be differentiated to recover the velocity uS .
To obtain the rest of the velocity field, we start with Green’s theorem in the form

∫

V

(

1

r′h′

∂(r′h′Q)

∂r′
− 1

r′h′

∂P

∂φ′

)

r′h′ dr′ dφ′ =

∮

C

(P dr′ + r′h′Q dφ′), (5.14)

where h′ = h(r′) and so on. On defining new functions using

rh
∂P

∂φ′
= r′h′

∂G

∂φ
,

1

r′h′

∂(r′h′Q)

∂r′
=

1

h′5

∂(r′h′S)

∂r′
=

∂G

∂r
, (5.15)

we can obtain
∂ψH

∂φ
= −rh

∮

C

P (A + 2εh′4C) dr′,

∂ψH

∂r
= A

∮

C

Qr′h′ dφ′ + 2εC

∮

C

Sr′h′ dφ′ +
2

ε
v∞rh2

∫ r

0

r′h′4 dr′.

(5.16)

These can then be substituted into (5.3).
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Obtaining the Green’s function is more challenging than for the previous cases. Taking the source
point to have coordinates r0 and φ0 = 0 (general φ0 follows immediately), Fourier transforming in
the azimuthal direction leads to a decomposition of G into azimuthal modes of the form

G(r, φ; r0, 0) =
∑

m

Ĝm(r; r0)e
imφ, (5.17)

while (5.4) leads to the following set of ordinary differential equations

d

dr

(

rh2
dĜm

dr

)

− m2

r
Ĝm =

δ(r − r0)

h
. (5.18)

The modes with nonzero m satisfy

r

1 + ε2r2
Ĝ′′

m +
1 − ε2r2

(1 + ε2r2)2
Ĝ′

m − m2

r
Ĝm =

δ(r − r0)

h
. (5.19)

It can be shown that Ĝm takes the form

Ĝm(r; r0) =

{

−εrr0I
′

m(εmr)K ′

m(εmr0) for r < r0,

−εrr0K
′

m(εmr)I ′m(εmr0) for r > r0,
(5.20)

where Im and Km are modified Bessel functions of the first and second kind of order m. The solution
for the axisymmetric mode can be obtained in closed form following [17]. Further details can be
found in [4].

Swirl along the vortex axis is naturally included in the form of v. Buoyancy cannot be introduced
in a helically symmetric form that is consistent with a CD formulation. Gravity is a constant, so
its component in the x and y directions cannot be helically symmetric, while its z-component does
not allow a CD formulation (as in two dimensions). However, a magnetic field along the vortex
can be introduced. The Euler and induction equation in helical geometry can be found in [35].
The magnetic field then takes the form Ch−2h, which is consistent with the two-dimensional and

axisymmetric forms (C ẑ and Crθ̂, respectively).

6. CONCLUSIONS

To compute the motion, one needs an inversion relation linking vortex patch and sheet strength
to velocity, (2.14), (2.21) and (2.23), and (5.13) and (5.16) in the two-dimensional, axisymmetric
and helical cases, respectively; an advection equation for the material points on the boundary (2.11);
and finally evolution equations for the vortex sheet strength, (3.6) and (3.9) in the two-dimensional
and axisymmetric Boussinesq cases, and (5.10) in the helical case. In the non-Boussinesq case, one
solves (4.12) coupled to an equation for dū/dt obtained by taking time derivatives of the velocity
field evaluated on the interface.

It is clear that all of the derivations above can be generalized to multiple contours. The notation
becomes more complicated, and the velocity is given by integrals around all of the contours.
Similarly, simple geometries such as half-plane, right-angle corners, and inside and outside circles
can be handled in planar geometry by using the method of images. Periodic and general orientable
two-dimensional surfaces and multiply-connected geometries can be tackled using appropriate
Green’s functions [5, 6]. A half-space with a horizontal boundary can similarly be considered in
axisymmetric geometry.

One message is that irrotational flow is not needed to obtain equations for vortex sheet motion
even in the presence of density differences: the component of the momentum equation tangent to
the sheet suffices and the unsteady Bernoulli equation is not needed.

As pointed out by [23], extensions of contour dynamics to compressible situations are problematic
because the velocity is no longer solenoidal. The case of a fluid with background stratification
similarly suffers because vorticity is generated everywhere in the bulk by baroclinic torques.
Asymptotic approaches have been attempted [8], but they are limited to small times. The approach
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of [7] may show promise, but has so far only been developed in two dimensions and for small
perturbations to boundaries.

A final conclusion is that when contour dynamics can be extended to include additional physics,
the outcome is a coupled vortex patch-vortex sheet system, and numerical simulations of the
evolution of vortex sheets are known to be complicated by the existence of singularities.
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