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ABSTRACT

Deep neural networks are gaining increasing popularity for the
classic text classification task, due to their strong expressive power
and less requirement for feature engineering. Despite such attrac-
tiveness, neural text classification models suffer from the lack of
training data in many real-world applications. Although many semi-
supervised and weakly-supervised text classification models exist,
they cannot be easily applied to deep neural models and mean-
while support limited supervision types. In this paper, we propose a
weakly-supervised method that addresses the lack of training data
in neural text classification. Our method consists of two modules:
(1) a pseudo-document generator that leverages seed information
to generate pseudo-labeled documents for model pre-training, and
(2) a self-training module that bootstraps on real unlabeled data for
model refinement. Our method has the flexibility to handle different
types of weak supervision and can be easily integrated into existing
deep neural models for text classification. We have performed ex-
tensive experiments on three real-world datasets from different do-
mains. The results demonstrate that our proposed method achieves
inspiring performance without requiring excessive training data
and outperforms baseline methods significantly.
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1 INTRODUCTION

Text classification plays a fundamental role in a wide variety of
applications, ranging from sentiment analysis [27] to document
categorization [32] and query intent classification [29]. Recently,
deep neural models — including convolutional neural networks
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(CNNss) [11, 12, 35, 36] and recurrent neural networks (RNNs) [22,
23, 32] — have demonstrated superiority for this classic task. The
attractiveness of these neural models for text classification is mainly
two-fold. First, they can largely reduce feature engineering efforts
by automatically learning distributed representations that capture
text semantics. Second, they enjoy strong expressive power and
thus have the potential to better learn from the data and yield better
classification performance.

Despite the attractiveness and increasing popularity of neural
models for text classification, the lack of training data is still a key
bottleneck that prohibits them from being adopted in many practical
scenarios. Indeed, training a deep neural model for text classifica-
tion can easily consume million-scale labeled documents. Collecting
such training data requires domain experts to read through millions
of documents and carefully label them with domain knowledge,
which is often too expensive to realize.

To address the label scarcity bottleneck, we study the problem
of learning neural models for text classification under weak super-
vision. In many scenarios, while users cannot afford to label many
documents for training neural models, they can provide a small
amount of seed information for the classification task. Such seed
information may arrive in various forms: either a set of representa-
tive keywords for each class, or a few (less than a dozen) labeled
documents, or even only the surface names of the classes. Such a
problem is called weakly-supervised text classification.

There have been many studies related to weakly-supervised text
classification. However, training neural models for text classifica-
tion under weak supervision remains an open research problem.
Several semi-supervised neural models have been proposed [18, 31],
but they still require hundreds or even thousands of labeled training
examples, which are not available in the weakly supervised setting
[20]. Along another line, there are existing methods that perform
weakly-supervised text classification, including latent variable mod-
els [14] and embedding-based methods [15, 28]. These models have
the following limitations: (1) supervision inflexibility: they can only
handle one type of seed information, either a collection of labeled
documents or a set of class-related keywords, which restricts their
applicabilities; (2) seed sensitivity: the “seed supervision” from users
completely controls the model training process, making the learned
model very sensitive to the initial seed information; (3) limited
extensibility: these methods are specific to either latent variable
models or embedding methods, and cannot be readily applied to
learn deep neural models based on CNN or RNN.

We propose a new method, named WESTCLass, for Weakly-
Supervised Text Classification. As shown in Figure 1, WESTCLASss
contains two modules to address the above challenges. The first
module is a pseudo-document generator, which leverages seed
information to generate pseudo documents as synthesized training
data. By assuming word and document representations reside in
the same semantic space, we generate pseudo documents for each
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Figure 1: Our proposed weakly-supervised neural text classification model consists of two key modules: (1) a pseudo-document
generator that leverages seed information to generate pseudo-labeled documents for model pre-training, and (2) a self-training
module that bootstraps on real unlabeled data for model refinement.

class by modeling the semantics of each class as a high-dimensional

spherical distribution [7], and further sampling keywords to form

pseudo documents. The pseudo document generator can not only
expand user-given seed information for better generalization, but
also handle different types of seed information (e.g., label surface
names, class-related keywords, or a few labeled documents) flexibly.

The second key module of our method is a self-training mod-
ule that fits real unlabeled documents for model refinement. First,
the self-training module uses pseudo documents to pre-train ei-
ther CNN-based or RNN-based models to produce an initial model,
which serves as a starting point in the subsequent model refining
process. Then, it applies a self-training procedure, which iteratively
makes predictions on real unlabeled documents and leverages high-
confidence predictions to refine the neural model.

In summary, this paper makes the following contributions:

(1) We design WESTCrLass method for addressing the label scarcity
bottleneck of neural text classification. To the best of our knowl-
edge, WESTCLass is the first weakly-supervised text classifica-
tion method that can be applied to most existing neural models
and meanwhile handle different types of seed information.

(2) We propose a novel pseudo document generator by modeling
the class semantic as a spherical distribution. The generator is
able to generate pseudo documents that are highly correlated
to each class, and meanwhile effectively expands user-provided
seed information for better generalization.

(3) We propose a self-training algorithm for training deep neural
models by leveraging pseudo documents. The self-training al-
gorithm can iteratively bootstrap the unlabeled data to obtain
high-quality deep neural models, and is generic enough to be
integrated into either CNN-based or RNN-based models.

(4) We conduct a thorough evaluation of our proposed method on
three real-world datasets from different domains. The experi-
ment results show that our method can achieve inspiring text
classification performance even without excessive training data
and outperforms various baselines.

2 RELATED WORK

In this section, we review existing studies for weakly-supervised
text classification, which can be categorized into two classes: (1)
latent variable models; and (2) embedding-based models.

2.1 Latent Variable Models

Existing latent variable models for weakly-supervised text classifi-
cation mainly extend topic models by incorporating user-provided
seed information. Specifically, semi-supervised PLSA [16] extends
the classic PLSA model by incorporating a conjugate prior based
on expert review segments (topic keywords or phrases) to force
extracted topics to be aligned with provided review segments. [9]
encodes prior knowledge and indirect supervision in constraints on
posteriors of latent variable probabilistic models. Descriptive LDA
[6] uses an LDA model as the describing device to infer Dirichlet
priors from given category labels and descriptions. The Dirichlet
priors guides LDA to induce the category-aware topics. Seed-guided
topic model [14] takes a small set of seed words that are relevant to
the semantic meaning of the category, and then predicts the cate-
gory labels of the documents through two kinds of topic influence:
category-topics and general-topics. The labels of the documents are
inferred based on posterior category-topic assignment. Our method
differs from these latent variable models in that it is a weakly-
supervised neural model. As such, it enjoys two advantages over
these latent variable models: (1) it has more flexibility to handle
different types of seed information which can be a collection of
labeled documents or a set of seed keywords related to each class;
(2) it does not need to impose assumptions on document-topic or
topic-keyword distributions, but instead directly uses massive data
to learn distributed representations to capture text semantics.

2.2 Embedding-based Models

Embedding-based weakly supervised models use seed information
to derive vectorized representations for documents and label names
for the text classification task. Dataless classification [5, 24] takes
category names and projects each word and document into the same
semantic space of Wikipedia concepts. Each category is represented
with words in the category label. The document classification is
performed based on the vector similarity between a document and a
category using explicit semantic analysis [8]. Unsupervised neural
categorization [15] takes category names as input and applies a
cascade embedding approach: First the seeded category names and
other significant phrases (concepts) are embedded into vectors for
capturing concept semantics. Then the concepts are embedded into



a hidden category space to make the category information explicit.
Predictive text embedding [28] is a semi-supervised algorithm that
utilizes both labeled and unlabeled documents to learn text em-
bedding specifically for a task. Labeled data and different levels of
word co-occurrence information are first represented as a large-
scale heterogeneous text network and then embedded into a low
dimensional space that preserves the semantic similarity of words
and documents. Classification is performed by using one-vs-rest
logistic regression model as classifier and the learned embedding as
input. Compared with our method, these embedding-based weakly
supervised methods cannot be directly applied to deep neural mod-
els (CNN, RNN) for the text classification task. Furthermore, while
they allow the seed information to directly control the model train-
ing process, we introduce a pseudo document generation paradigm
which is generalized from the seed information. Hence, our model
is less prone to seed information overfitting and enjoys better gen-
eralization ability.

3 PRELIMINARIES

In this section, we formulate the problem of weakly-supervised text
classification, and give an overview of our proposed method.

3.1 Problem Formulation

Given a text collection D = {Dy,...,Dp} and m target classes
C = {Cy,...,Cnp}, text classification aims to assign a class label
Cj € C to each document D; € D. To characterize each class, tradi-
tional supervised text classification methods rely on large amounts
of labeled documents. In this work, we focus on the text classi-
fication under weakly-supervised setting where the supervision
signal comes from one of the following sources: (1) label surface
names: L = {Lj}|j";1, where L; is the surface name for class Cj, (2)
class-related keywords: S = {Sj}lj’zl, where Sj = {wj 1,....,wj i}
represents a set of k keywords in class C;, and (3) labeled documents:
Dl = {Z)}‘}|j”;1, where Z)jL = {Dj,1,...,Dj 1} denotes a set of |
(I < n)labeled documents in class C;. In many scenarios, the above
weak supervision signals can be easily obtained from users. Finally,

we define our problem as follows:

Definition 3.1 (Problem Formulation). Given a text collection D =
{D1,...,Dp}, target classes C = {Cy,...,Cn }, and weak supervi-
sion from either £, S or DL, the weakly-supervised text classifica-
tion task aims to assign a label Cj € C to each D; € D.

3.2 Method Overview

Our proposed weakly-supervised text classification method con-
tains two key modules. The first one is a pseudo-document genera-
tor that unifies seed information and outputs pseudo documents
for model training. We assume words and documents share a joint
semantic space which provides flexibility for handling different
types of seed information. Then, we model each class as a high-
dimensional spherical distribution from which keywords are sam-
pled to form pseudo documents as training data. The second key
module of our method is a self-training module that can be eas-
ily integrated into existing deep neural models, either CNN-based
or RNN-based. It first uses the generated pseudo documents to
pre-train neural models, which allows the model to start with a

good initialization. Then, a self-training procedure is applied to
iteratively refine the neural model using unlabeled real documents
based on the model’s high-confidence predictions. We show the
entire process of our method in Figure 1.

4 PSEUDO DOCUMENT GENERATION

In this section, we describe the details of the pseudo-document
generator, which leverages seed information to generate a bunch
of pseudo documents that are correlated to each class. Below, we
first introduce how to model class distributions in a joint semantic
space with words and documents, and then describe the pseudo
document generation process.

4.1 Modeling Class Distribution

To effectively leverage user-provided seed information and capture
the semantic correlations between words, documents and classes,
we assume words and documents share a joint semantic space, based
on which we learn a generative model for each class to generate
pseudo documents.

Specifically, we first use the Skip-Gram model [17] to learn p-
dimensional vector representations of all the words in the corpus.
Furthermore, since directional similarities between vectors are more
effective in capturing semantic correlations [2, 13, 25], we normalize
all the p-dimensional word embeddings so that they reside on a
unit sphere in R?, which is the joint semantic space. We call it
“joint” because we assume pseudo document vectors reside on the
same unit sphere as well, which we will explain in Section 4.2. We
retrieve a set of keywords in the semantic space that are correlated
to each class based on the seed information. We describe how to
handle different types of seed information as follows:

e Label surface names: When only label surface names £ are
given as seed information, for each class j we use the embedding
of its surface name L; to retrieve top-t nearest words in the
semantic space. We set t to be the largest number that does not
results in shared words across different classes.

e Class-related keywords: When users provide a list of related
keywords S; for each class j, we use the embeddings of these
seed keywords to find top-t keywords in the semantic space,
by measuring the average similarity to the seed keywords.

e Labeled documents: When users provide a small number of
documents Z)].L that are correlated with class j, we first extract

t representative keywords in Z)]L using tf-idf weighting, and
then consider them as class-related keywords.

After obtaining a set of keywords that are correlated with each
class, we model the semantic of each class as a von Mises Fisher
(VMF) distribution [2, 10], which models word embeddings on a
unit sphere in R? and has been shown effective for various tasks
[3, 34]. Specifically, we define the probability distribution of a class
as:

om0 = ep()et
where k > 0, ||u|| = 1, p > 2 and the normalization constant ¢, ()
is given by
kP21

cp(x) = —(Zn)P/ZIP/Z,l(K)’



where I,-(-) represents the modified Bessel function of the first kind
at order r. We justify our choice of the vMF distribution as follows:
the vMF distribution has two parameters—the mean direction p
and the concentration parameter x. The distribution of keywords
on the unit sphere for a specific class concentrates around the mean
direction g, and is more concentrated if k is large. Intuitively, the
mean direction p acts as a semantic focus on the unit sphere, and
produces relevant semantic embeddings around it, where concen-
tration degree is controlled by the parameter .

Now that we have leveraged the seed information to obtain a
set of keywords for each class on the unit sphere, we can use these
correlated keywords to fit a vMF distribution f(x; g, k). Specifically,
let X be a set of vectors for the keywords on the unit sphere, i.e.,

X = {x; € RP | x; drawn from f(x; p,x),1 <i < t},

then we use the maximum likelihood estimates [2, 26] for finding
the parameters fi and K of the vMF distribution:

. XX
IRl
and
L@ I1E, il
Lpja-1(R) t

Obtaining an analytic solution for & is infeasible because the for-
mula involves an implicit equation which is a ratio of Bessel func-
tions. We thus use a numerical procedure based on Newton’s method
[2] to derive an approximation of k.

4.2 Generating Pseudo Documents

To generate a pseudo document D} (we use D} instead of D; to
denote it is a pseudo document) of class j, we propose a genera-
tive mixture model based on class ;’s distribution f(x; pj, x;). The
mixture model repeatedly generates a number of terms to form a
pseudo document; when generating each term, the model chooses
from a background distribution with probability « (0 < a < 1) and
from the class-specific distribution with probability 1 — a.

The class-specific distribution is defined based on class j’s distri-
bution f(x; pj, x;). Particularly, we first sample a document vector
d; from f(x; pj,x;), then build a keyword vocabulary V;, for d;
that contains the top-y words with most similar word embedding
with d;. These y words in Vy, are highly semantically relevant with
the topic of pseudo document D and will appear frequently in
D7. Each term of a pseudo document is generated according to the
following probability distribution:

app(w)
app(w) + (1 - a)5

ey, O] v

W¢Vdi

plw | di) = 1)

exp(diT-vW) we Vd

where v,, is the word embedding for w and pg(w) is the background
distribution for the entire corpus.

Note that we generate document vectors from f(x; pj, kj) in-
stead of fixing them to be p;. The reason is that some class (e.g.,
Sports) may cover a wide range of topics (e.g., athlete activities,
sport competitions, etc.), but using p; as the pseudo document
vector will only attract words that are semantically similar to the
centroid direction of a class. Sampling pseudo document vectors

Algorithm 1: Pseudo Documents Generation.

Input: Class distributions {f(x; pj, x;)} |j”;l;
document length dI; number of pseudo documents
to generate for each class.

Output: A set of m X ff pseudo documents D*.

1 Initialize D* « 0;

2 for class index j from 1 to m do

average

3 Initialize Z)j* — 0;

4 for pseudo document index i from 1to ff do

5 Sample document vector d; from f(x; p;, ;);

6 D} « empty string;

7 for word index k from 1 to dl do

8 Sample word w; ;. ~ p(w | d;) based on Eq. (1);
9 L D} = D} ® w; i // concatenate w; j after D7;
10 | D*.append(D;);
1n | D<= D"UD;;

12 Return D*;

from the distribution, however, allows the generated pseudo doc-
uments to be more semantically diversified and thus cover more
information about the class. Consequently, models trained on such
more diversified pseudo documents are expected to have better
generalization ability.

Algorithm 1 shows the whole process of generating a collection
of  pseudo documents per class. For each class j, given the learned
class distributions and the average length of pseudo documents dl,
we draw a document vector d; from class j’s distribution f(x; pj, k).
After that, we generate dl words sequentially based on d; and add
the generated document into the pseudo document collection Z)}k
of class j. After the above process repeats f§ times, we finally obtain
Z); which contains f pseudo documents for class j.

5 NEURAL MODELS WITH SELF-TRAINING

In this section, we present the self-training module that trains
deep neural models with the generated pseudo documents. The
self-training module first uses the pseudo documents to pre-train
a deep neural network, and then iteratively refines the trained
model on the real unlabeled documents in a bootstrapping fashion.
In the following, we first present the pre-training and the self-
training steps in Section 5.1 and 5.2, and then demonstrate how
the framework can be instantiated with CNN and RNN models in
Section 5.3.

5.1 Neural Model Pre-training

As we have obtained pseudo documents for each class, we use them
to pre-train a neural network M2. A naive way of creating the label
for a pseudo document D7 is to directly use the associated class
label that D7 is generated from, i.e. using one-hot encoding where
the generating class takes value 1 and all other classes are set to
0. However, this naive strategy often causes the neural model to

The length of each pseudo document can be either manually set or equal to the
average document length in the real document collection.

2When the supervision source is labeled documents, these seed documents will be
used to augment the pseudo document set during the pre-training step.



overfit to the pseudo documents and have limited performance
when classifying real documents, due to the fact that the generated
pseudo documents do not contain word ordering information. To
tackle this problem, we create pseudo labels for pseudo documents.
In Equation (1), we design pseudo documents to be generated from
a mixture of background and class-specific word distributions, con-
trolled by a balancing parameter a. Such a process naturally leads
to our design of the following procedure for pseudo label creation:
we evenly split the fraction of the background distribution into all
m classes, and set the pseudo label I; for pseudo document D} as

Lo (1-a) +a/m Dj is generated from class j
Y7« /m otherwise

After creating the pseudo labels, we pre-train a neural model M
by generating f pseudo documents for each class, and minimizing
the KL divergence loss from the neural network outputs Y to the
pseudo labels L, namely

l..
loss = KL(L||Y) = Z Z l;jlog yi
J Y

i
We will detail how we instantiate the neural model M shortly in
Section 5.3.

5.2 Neural Model Self-training

While the pre-training step produces an initial neural model M, the
performance of the M is not the best one can hope for. The major
reason is that the pre-trained model M only uses the set of pseudo
documents but fails to take advantage of the information encoded in
the real unlabeled documents. The self-training step is designed to
tackle the above issues. Self-training [19, 21] is a common strategy
used in classic semi-supervised learning scenarios. The rationale
behind self-training is to first train the model with labeled data, and
then bootstrap the learning model with its current highly-confident
predictions.

After the pre-training step, we use the pre-trained model to
classify all unlabeled documents in the corpus and then apply a
self-training strategy to improve the current predictions. During
self-training, we iteratively compute pseudo labels based on current
predictions and refine model parameters by training the neural net-
work with pseudo labels. Given the current outputs Y, the pseudo
labels are computed using the same self-training formula as in [30]:

_ ylzj/f}
Zj’ yf]//f]'

where f; = 3; yij is the soft frequency for class .

Self-training is performed by iteratively computing pseudo labels
and minimizing the KL divergence loss from the current predictions
Y to the pseudo labels L. This process terminates when less than
0% of the documents in the corpus have class assignment changes.

Although both pre-training and self-training create pseudo labels
and use them to train neural models, it is worth mentioning the
difference between them: in pre-training, pseudo labels are paired
with generated pseudo documents to distinguish them from given
labeled documents (if provided) and prevent the neural models from
overfitting to pseudo documents; in self-training, pseudo labels are

paired with every unlabeled real documents from corpus and reflect
current high confidence predictions.

5.3 Instantiating with CNNs and RNNs

As mentioned earlier, our method for text classification is generic
enough to be applied to most existing deep neural models. In this
section, we instantiate the framework with two mainstream deep
neural network models: convolution neural networks (CNN) and
recurrent neural networks (RNN), by focusing on how they are
used to learn document representations and perform classification.

5.3.1 CNN-Based Models. CNNs have been explored for text clas-
sification [12]. When instantiating our framework with CNN, the
input to a CNN is a document of length dI represented by a con-
catenation of word vectors, i.e.,

d=x10x20 - ®xyy,

where x; € RP is the p dimensional word vector of the ith word
in the document. We use x;.;+; to represent the concatenation of
word vectors X, Xj+1, . . . , Xj+;. For window size of h, a feature c;
is generated from a window of words x;.;,,_1 by the following
convolution operation

¢i = f(w-Xjjpp—q +b),

where b € R is a bias term, w € R/ is the filter operating on h
words. For each possible size-h window of words, a feature map is
generated as
c = [C], C2y. . ’Cdl*h“’l]‘

Then a max-over-time pooling operation is performed on ¢ to out-
put the maximum value ¢ = max(c) as the feature corresponding
to this particular filter. If we use multiple filters, we will obtain
multiple features that are passed through a fully connected softmax
layer whose output is the probability distribution over labels.

5.3.2 RNN-Based Models. Besides CNNs, we also discuss how to
instantiate our framework with RNNs. We choose the Hierarchical
Attention Network (HAN) [33] as an exemplar RNN-based model.
HAN consists of sequence encoders and attention layers for both
words and sentences. In our context, the input document is repre-
sented by a sequence of sentences s;, i € [1, L] and each sentence is
represented by a sequence of words w;;,t € [1,T]. At time ¢, the
GRU [1] computes the new state as

hi=(1-2z)Ohs1 +2z; Ohy,
where the update gate vector
zr = o(Wzxt + Uzhi-1 + bz),
the candidate state vector
h; = tanh(Wy,x; + r;y © (Uphi—1) + by),
the reset gate vector
ry = c(Wpxy + Urhy—1 + by),

and x; is the sequence vector (word embedding or sentence vector)
at time ¢. After encoding words and sentences, we also impose the
attention layers to extract important words and sentences with
the attention mechanism, and derive their weighted average as
document representations.



6 EXPERIMENTS

In this section, we evaluate the empirical performance of our method
for weakly supervised text classification.

6.1 Datasets

We use three corpora from different domains to evaluate the per-
formance of our proposed method: (1) The New York Times: We
crawl 13,081 news articles using the New York Times API®. This
corpus covers 5 major news topics; (2) AG’s News: We use the
same AG’s News dataset from [36] and take its training set portion
(120, 000 documents evenly distributed into 4 classes) as the corpus
for evaluation; (3) Yelp Review: We use the Yelp reviews polarity
dataset from [36] and take its testing set portion (38,000 docu-
ments evenly distributed into 2 classes) as the corpus for evaluation.
Table 1 provides the details of these datasets.

6.2 Baselines

We compare WESTCLass with a wide range of baseline models,
described as follows.

o IR with tf-idf: this method accepts either label surface name
or class-related keywords as supervision. We treat the label
name or keyword set for each class as a query, and score the
relevance of document to this class using the tf-idf model. The
class with highest relevance score is assigned to the document.
Topic Model: this method accepts either label surface name
or class-related keywords as supervision. We first train the
LDA model [4] on the entire corpus. Given a document, we
compute the likelihood of observing label surface names or
the average likelihood of observing class-related keywords.
The class with maximum likelihood will be assigned to the
document.

e Dataless [5, 24]: this method 4 accepts only label surface
name as supervision. It leverages Wikipedia and uses Explicit
Semantic Analysis [8] to derive vector representations of both
labels and documents. The final document class is assigned
based on the vector similarity between labels and documents.
UNEC [15]: this method takes label surface name as its weak
supervision. It categorizes documents by learning the semantics
and category attribution of concepts inside the corpus. We use
the authors’ original implementation of this model.

PTE [28]: this method > uses labeled documents as supervi-
sion. It first utilizes both labeled and unlabeled data to learn
text embedding and then applies logistic regression model as
classifier for text classification.

CNN [12]: the original CNN model is a supervised text classi-
fication model and we extend it to incorporate all three types
of supervision sources. If labeled documents are given, we
directly train CNN model on the given labeled documents and
then apply it on all unlabeled documents. If label surface
names or class-related keywords are given, we first use the
above “IR with tf-idf” or “Topic Modeling” method (depending
on which one works better) to label all unlabeled documents.
Then, we select § labeled documents per class to pre-train CNN.

3http://developer.nytimes.com/
4https://cogcomp.org/page/software_view/Descartes
Shttps://github.com/mnqu/PTE

Finally, we apply the same self-training module as described in
Section 5 to obtain the final classifier.

e HAN [33]: similar to the above CNN model, we extend the orig-
inal HAN model ° to incorporate all three types of supervision
sources.

e NoST-(CNN/HAN): this is a variant of WESTCLrass without
the self-training module, i.e., after pre-training CNN or HAN
with pseudo documents, we directly apply it to classify unla-
beled documents.

o WESTCLAss-(CNN/HAN): this is the full version of our pro-
posed framework, with both pseudo-document generator and
self-training module enabled.

6.3 Experiment Settings

We first describe our parameter settings as follows. For all datasets,
we use the Skip-Gram model [17] to train 100-dimensional word
embeddings on the corresponding corpus. We set the background
word distribution weight ¢ = 0.2, the number of pseudo docu-
ments per class for pre-training = 500, the size of class-specific
vocabulary y = 50 and the self-training stopping criterion § = 0.1.
We apply our proposed framework on two types of state-of-
the-art text classification neural models: (1) CNN model, whose
filter window sizes are 2, 3, 4, 5 with 20 feature maps each. (2) HAN
model, which uses a forward GRU with 100 dimension output for
both word and sentence encoding. Both the pre-training and the
self-training steps are performed using SGD with batch size 256.
The seed information we use as weak supervision for different
datasets are described as follows: (1) When the supervision source
is label surface name, we directly use the label surface names of
all classes; (2) When the supervision source is class-related key-
words, we manually choose 3 keywords which do not include the
class label name for each class. The selected keywords are shown
in Tables 2, 3 and 4, and we evaluate how our model is sensitive
to such seed keyword selection in Section 6.6.1; (3) When the su-
pervision source is labeled documents, we randomly sample ¢
documents of each class from the corpus (¢ = 10 for The New
York Times and AG’s News; ¢ = 20 for Yelp Review) and use
them as the given labeled documents. To alleviate the randomness,
we repeat the document selection process 10 times and show the
performances with average and standard deviation values.

6.4 Experiment Results

In this subsection, we report our experimental results and our
findings.

6.4.1 Overall Text Classification Performance. In the first set of
experiments, we compare the classification performance of our
method against all the baseline methods on the three datasets. Both
macro-F1 and micro-F1 metrics are used to quantify the perfor-
mance of different methods. As shown in Tables 5 and 6, our pro-
posed framework achieves the overall best performances among
all the baselines on three datasets with different weak supervi-
sion sources. Specifically, in almost every case, WESTCLASs-CNN
yields the best performance among all methods; WESTCLASss-
HAN performs slightly worse than WESTCrLAss-CNN but still

Ohttps://github.com/richliao/textClassifier
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Table 1: Dataset Statistics.

Corpus name Classification type Class name (Number of documents in the class) Average document length
The New York Times Topic Politics (1451), Arts (1043), Business (1429), Science (519), Sports (8639) 778
AG’s News Topic Politics (30000), Sports (30000), Business (30000), Technology (30000) 45
Yelp Review Sentiment Good (19000), Bad (19000) 155
Table 2: Keyword Lists for The New York Times Dataset. T e Kemords oo -eor Micro-F1  —— Macro-F1
o 0.9
Class Keyword List o 08 7
Politics {democracy, religion, liberal} g 7 g 0‘? /,/’/_ _______
Arts {music, movie, dance} E 0.801 g ::: L /,/"
Business  {investment, economy, industry} * - 04
Science  {scientists, biological, computing} 0751 03
Sports {hockey, tennis, basketball} 0.704 02t
0 200 400 600 800 1000 0 100 200 300 400 500 600

Table 3: Keyword Lists for AG’s News Dataset.

Class Keyword List
Politics {government, military, war}
Sports {basketball, football, athletes}

Business {stocks, markets, industries}

Technology {computer, telescope, software}

Table 4: Keyword Lists for Yelp Review Dataset.

Class Keyword List

Good {terrific, great, awesome}
Bad  {horrible, disappointing, subpar}

outperforms other baselines. We discuss the effectiveness of WEST-
Crass from the following aspects:

(1) When labeled documents are given as the supervision source,
the standard deviation values of WESTCrAss-CNN and WEST-
Crass-HAN are smaller than those of CNN and HAN, respec-
tively. This shows that WESTCLass can effectively reduce the
seed sensitivity and improve the robustness of CNN and HAN
models.

(2) When the supervision source is label surface name or class-
related keywords, we can see that WESTCrass-CNN and
WESTCrass-HAN outperform CNN and HAN, respectively.
This demonstrates that pre-training with generated pseudo doc-
uments results in a better neural model initialization compared
to pre-training with documents that are labeled using either IR
with tf-idf or Topic Modeling.

(3) WESTCrLass-CNN and WESTCLass-HAN always outperform
NoST-CNN and NoST-HAN, respectively. Note that the only
difference between WESTCrLAss-CNN/WESTCrLass-HAN and
NoST-CNN/NoST-HAN is that the latter two do not include
the self-training module. The performance gaps between them
thus clearly demonstrate the effectiveness of our self-training
module.

6.4.2  Effect of self-training module. In this set of experiments, we
conduct more experiments to study the effect of self-training mod-
ule in WESTCLass, by investigating the performance of difference
models as the number of iterations increases. The results are shown
in Figure 2. We can see that the self-training module can effectively
improve the model performance after the pre-training step. Also,

Iterations Iterations
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Figure 2: Effect of self-training modules on three datasets.

we find that the self-training module generally has the least effect
when supervision comes from labeled documents. One possible
explanation is that when labeled documents are given, we will use
both pseudo documents and provided labeled documents to pre-
train the neural models. Such mixture training can often lead to
better model initialization, compared to using pseudo documents
only. As a result, there is less room for self-training module to make
huge improvements.

6.4.3  Effect of the number of labeled documents. When weak super-
vision signal comes from labeled documents, the setting is similar
to semi-supervised learning except that the amount of labeled docu-
ments is very limited. In this set of experiments, we vary the number
of labeled documents per class and compare the performances of
five methods on the AG’s News dataset: CNN, HAN, PTE, WEST-
Crass-CNN and WESTCrass-HAN. Again, we run each method
10 times with different sets of labeled documents, and report the
average performances with standard deviation (represented as error



Table 5: Macro-F1 scores for all methods on three datasets. LABELS, KEYWORDS, and DOCS means the type of seed supervision
is label surface name, class-related keywords, and labeled documents, respectively.

Methods The New York Times AG’s News Yelp Review
LABELS KEYWORDS DOCS LABELS KEYWORDS DOCS LABELS KEYWORDS DOCS
IR with tf-idf 0.319 0.509 - 0.187 0.258 - 0.533 0.638 -
Topic Model 0.301 0.253 - 0.496 0.723 - 0.333 0.333 -
Dataless 0.484 - - 0.688 - - 0.337 - -
UNEC 0.690 - - 0.659 - - 0.602 - -
PTE - - 0.834 (0.024) - - 0.542 (0.029) - - 0.658 (0.042)
HAN 0.348 0.534 0.740 (0.059) 0.498 0.621 0.731 (0.029) 0.519 0.631 0.686 (0.046)
CNN 0.338 0.632 0.702 (0.059) 0.758 0.770 0.766 (0.035) 0.523 0.633 0.634 (0.096)
NoST-HAN 0.515 0.213 0.823 (0.035) 0.590 0.727 0.745 (0.038) 0.731 0.338 0.682 (0.090)
NoST-CNN 0.701 0.702 0.833 (0.013) 0.534 0.759 0.759 (0.032) 0.639 0.740 0.717 (0.058)
WESTCrass-HAN 0.754 0.640 0.832 (0.028) 0.816 0.820 0.782 (0.028) 0.769 0.736 0.729 (0.040)
WESTCLAss-CNN 0.830 0.837 0.835 (0.010) 0.822 0.821 0.839 (0.007) 0.735 0.816 0.775 (0.037)

Table 6: Micro-F1 scores for all methods on three datasets. LABELS, KEYWORDS, and DOCS means the type of seed supervision
is label surface name, class-related keywords, and labeled documents, respectively.

Methods The New York Times AG’s News Yelp Review
LABELS KEYWORDS DOCS LABELS KEYWORDS DOCS LABELS KEYWORDS DOCS
IR with tf-idf 0.240 0.346 - 0.292 0.333 - 0.548 0.652 -
Topic Model 0.666 0.623 - 0.584 0.735 - 0.500 0.500 -
Dataless 0.710 - - 0.699 - - 0.500 - -
UNEC 0.810 - - 0.668 - - 0.603 - -
PTE - - 0.906 (0.020) - - 0.544 (0.031) - - 0.674 (0.029)
HAN 0.251 0.595 0.849 (0.038) 0.500 0.619 0.733 (0.029) 0.530 0.643 0.690 (0.042)
CNN 0.246 0.620 0.798 (0.085) 0.759 0.771 0.769 (0.034) 0.534 0.646 0.662 (0.062)
NoST-HAN 0.788 0.676 0.906 (0.021) 0.619 0.736 0.747 (0.037) 0.740 0.502 0.698 (0.066)
NoST-CNN 0.767 0.780 0.908 (0.013) 0.553 0.766 0.765 (0.031) 0.671 0.750 0.725 (0.050)
WESTCrass-HAN 0.901 0.859 0.908 (0.019) 0.816 0.822 0.782 (0.028) 0.771 0.737 0.729 (0.040)
WESTCLAss-CNN 0.916 0.912 0.911 (0.007) 0.823 0.823 0.841 (0.007) 0.741 0.816 0.776 (0.037)
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Figure 3: The performances of different methods on AG’s
News dataset when the number of labeled documents varies.

bars) in Figure 3. We can see that when the amount of labeled docu-
ments is relatively large, the performances of the five methods are
comparable. However, when fewer labeled documents are provided,
PTE, CNN and HAN not only exhibit obvious performance drop,
but also become very sensitive to the seed documents. Nevertheless,
WESTCLass-based models, especially WESTCrass-CNN, yield
stable performance with varying amount of labeled documents.
This phenomenon shows that our method can more effectively take
advantage of the limited amount of seed information to achieve
better performance.

6.5 Parameter Study

In this section, we study the effects of different hyperparameter
settings on the performance of WESTCrLass with CNN and HAN
models, including (1) background word distribution weight «, (2)
number of generated pseudo documents S for pre-training and (3)
keyword vocabulary size y used in equation (1) where y = |V, |.
When studying the effect of one parameter, the other parameters are
set to their default values as described in Section 6.3 . We conduct
all the parameter studies on the AG’s News dataset.

6.5.1 Background Word Distribution Weight. The background word
distribution weight « is used in both the language model for pseudo
documents generation and pseudo-labels computation. When «
becomes smaller, the generated pseudo documents contain more
topic-related words and fewer background words, and the pseudo-
labels become similar to one-hot encodings. We vary a from 0 to
1 with interval equal to 0.1. The effect of « is shown in Figure 4.
Overall, different « values result in comparable performance, except
when « is close to 1, pseudo documents and pseudo-labels become
uninformative: pseudo documents are generated directly from back-
ground word distribution without any topic-related information,
and pseudo-labels are uniform distributions. We notice that when
a = 1, labeled documents as supervision source results in much
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Figure 5: Effect of pseudo documents amount per class f for
pre-training on AG’s News dataset.

better performance than label surface name and class-related
keywords. This is because pre-training with labeled documents
is performed using both pseudo documents and labeled documents,
and the provided labeled documents are still informative. When «
is close to 0, the performance is slightly worse than other settings,
because pseudo documents only contain topic-related keywords
and pseudo-labels are one-hot encodings, which can easily lead to
model overfitting to pseudo documents and behaving worse on real
documents classification.

6.5.2  Number of pseudo documents for pre-training. The effect of
pseudo documents amount f is shown in Figure 5. We have the
following findings from Figure 5: On the one hand, if the amount of
generated pseudo documents is too small, the information carried
in pseudo documents will be insufficient to pre-train a good model.
On the other hand, generating too many pseudo documents will
make the pre-training process unnecessarily long. Generating 500
to 1000 pseudo documents of each class for pre-training will strike
a good balance between pre-training time and model performance.

6.5.3 Size of Keyword Vocabulary. Recall the pseudo document
generation process in Section 4.2, after sampling a document vector
d;, we will first construct a keyword vocabulary Vg, that contains
the top-y words with most similar word embedding with d;. The
size of the keyword vocabulary y controls the number of unique
words that appear frequently in the generated pseudo documents.
If y is too small, only a few topical keywords will appear frequently
in pseudo documents, which will reduce the generalization ability
of the pre-trained model. As shown in Figure 6, y can be safely set
within a relatively wide range from 50 to 500 in practice.

6.6 Case Study

In this subsection, we perform a set of case studies to further un-
derstand the properties of our proposed method.
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Figure 6: Effect of keyword vocabulary size y on AG’s News
dataset.
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Figure 7: (a) Performances on AG’s News dataset under dif-
ferent sets of seed keywords. (b) Class prediction probability
during self-training procedure for a sample document.

6.6.1 Choice of Seed Keywords. In the first set of case studies, we
are interested in how sensitive our model is to the selection of
seed keywords. In Section 6.3, we manually select class-related
keywords, which could be subjective. Here we explore the sensi-
tivity of WESTCrLass-CNN and WESTCLass-HAN to different
sets of seed keywords. For each class j of AG’s News dataset, we
first collect all documents belonging to class j, and then compute
the tf-idf weighting of each word in each document of class j. We
sort each word’s average tf-idf weighting in these documents from
high to low. Finally we form the seed keyword lists by finding
words that rank at top 1% (most relevant), 5% and 10% based on the
average tf-idf value. The keywords of each class at these percent-
ages are shown in Table 7; the performances of WESTCrAss-CNN
and WESTCrass-HAN are shown in Figure 7(a). At top 5% and
10% of the average tf-idf weighting, although some keywords are
already slightly irrelevant to their corresponding class semantic,
WESTCLass-CNN and WESTCrass-HAN still perform reason-
ably well, which shows the robustness of our proposed framework
to different sets of seed keywords.

6.6.2  Self-training Corrects Misclassification. In the second set of
case studies, we are interested in how the self-training module be-
haves to improve the performance of our model. Figure 7(b) shows
WESTCLAss-CNN’s prediction with label surface name as su-
pervision source on a sample document from AG’s News dataset:
The national competition regulator has elected not to oppose Telstra’s
3G radio access network sharing arrangement with rival telco Hutchi-
son. We notice that this document is initially misclassified after the
pre-training procedure, but it is then corrected by the subsequent
self-training step. This example shows that neural models have
the ability of self-correcting by learning from its high-confidence
predictions with appropriate pre-training initialization.



Table 7: Keyword Lists at Top Percentages of Average Tf-idf.

5%

10%

Class 1%
Politics {government, president, minister}
Sports {game, season, team}
Business {profit, company, sales}
Technology {internet, web, microsoft}

{mediators, criminals, socialist}
{judges, folks, champagne}
{refunds, organizations, trader}
{biologists, virtually, programme}

{suspending, minor, lawsuits}
{challenging, youngsters, stretches}
{winemaker, skilling, manufactured}

{demos, microscopic, journals}

7 DISCUSSIONS AND CONCLUSIONS

We have proposed a weakly-supervised text classification method
built upon neural classifiers. With (1) a pseudo document generator
for generating pseudo training data and (2) a self-training mod-
ule that bootstraps on real unlabled data for model refining, our
method effectively addresses the key bottleneck for existing neural
text classifiers—the lack of labeled training data. Our method is not
only flexible in incorporating difference sources of weak supervi-
sion (class label surface names, class-related keywords, and labeled
documents), but also generic enough to support different neural
models (CNN and RNN). Our experimental results have shown that
our method outperforms baseline methods significantly, and it is
quite robust to different settings of hyperparameters and different
types of user-provided seed information.

An interesting finding based on the experiments in Section 6
is that different types of weak supervision are all highly helpful
for the good performances of neural models. In the future, it is
interesting to study how to effectively integrate different types of
seed information to further boost the performance of our method.
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