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ABSTRACT

Taxonomies are of great value to many knowledge-rich applica-
tions. As the manual taxonomy curation costs enormous human
effects, automatic taxonomy construction is in great demand. How-
ever, most existing automatic taxonomy construction methods can
only build hypernymy taxonomies wherein each edge is limited
to expressing the “is-a” relation. Such a restriction limits their ap-
plicability to more diverse real-world tasks where the parent-child
may carry different relations. In this paper, we aim to construct
a task-guided taxonomy from a domain-specific corpus, and allow
users to input a “seed” taxonomy, serving as the task guidance. We
propose an expansion-based taxonomy construction framework,
namely HiExpan, which automatically generates key term list from
the corpus and iteratively grows the seed taxonomy. Specifically,
HiExpan views all children under each taxonomy node forming a
coherent set and builds the taxonomy by recursively expanding all
these sets. Furthermore, HiExpan incorporates a weakly-supervised
relation extraction module to extract the initial children of a newly-
expanded node and adjusts the taxonomy tree by optimizing its
global structure. Our experiments on three real datasets from differ-
ent domains demonstrate the effectiveness of HiExpan for building
task-guided taxonomies.
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Figure 1: Task-guided taxonomy construction. User provides
a “seed” taxonomy tree as task guidance, and we will extract
key terms from raw text corpus and generates the desired
taxonomy automatically.

1 INTRODUCTION

Taxonomy is the backbone of many knowledge-rich applications
such as question answering [49], query understanding [12], and per-
sonalized recommendation [52]. Most existing taxonomies are con-
structed by human experts or in a crowd-sourcing manner. However,
such manual constructions are labor-intensive, time-consuming,
unadaptable to changes, and rarely complete. As a result, automated
taxonomy construction is in great demand.

Existing methods mostly build taxonomies based on “is-A” rela-
tions (e.g., a “panda” is a “mammal” and a “manmal” is an “animal”)
[42, 43, 48] by first leveraging pattern-based or distributional meth-
ods to extract hypernym-hyponym term pairs and then organizing
them into a tree-structured hierarchy. However, such hierarchies
cannot satisfy many real-world needs due to its (1) inflexible seman-
tics: many applications may need hierarchies carrying more flexible
semantics such as “city-state-country" in a location taxonomy; and
(2) limited applicability: the “universal" taxonomy so constructed is
unlikely to fit diverse and user-specific application tasks.

This motivates us to work on task-guided taxonomy construc-
tion, which takes a user-provided “seed” taxonomy tree (as task
guidance) along with a domain-specific corpus and generates a
desired taxonomy automatically. For example, a user may provide a
seed taxonomy containing only two countries and two states along
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with a large corpus, and our method will output a taxonomy which
covers all the countries and states mentioned in the corpus.

In this study, we propose HiExpan, a framework for task-guided
taxonomy construction. Starting with a tiny seed taxonomy tree
provided by a user, a weakly supervised approach can be developed
by set expansion. A set-expansion algorithm aims to expand a small
set of seed entities into a complete set of entities that belong to the
same semantic class [33, 35]. Recently we developed an interesting
SetExpan algorithm [35], which expands a tiny seed set (e.g., {“Illi-
nois”, “California”}) into a complete set (e.g., U.S. states mentioned
in the corpus) by a novel bootstrapping approach. While such an
approach is intuitive, there are two major challenges by extending
it to generating high-quality taxonomy: (1) modeling global taxon-
omy information: a term that appears in multiple expanded sets
may need conflict resolution and hierarchy adjustment accordingly,
and (2) cold-start with empty initial seed set: as an example, initial
seed set {“Ontario”, “Quebec”} will need to be found once we add
“Canada” at the country level as shown in Figure 1.

HiExpan consists of two novel modules for dealing with the
above two challenges. First, whenever we observe a conflict (i.e.,
the same term appearing in multiple positions on taxonomy) during
the tree expansion process, we measure a “confidence score" for
putting the term in each position and select the most confident
position for it. Furthermore, at the end of our hierarchical tree
expansion process, we will do a global optimization of the whole
tree structure. Second, we incorporate a weakly-supervised relation
extraction method to infer parent-child relation information and
to find seed children terms under a specific parent. Equipped with
these two modules, HiExpan constructs the task-guided taxonomy
by iteratively growing the initial seed taxonomy tree. At each it-
eration, it views all children under a non-leaf taxonomy node as
a coherent set and builds the taxonomy by recursively expanding
these sets. Whenever a node with no initial children nodes found,
it will first conduct seeds hunting. At the end of each iteration,
HiExpan detects all the conflicts and resolves them based on their
confidence scores.

In summary, this study makes the following contributions:

(1) We introduce a new research problem task-guided taxonomy
construction, which takes a user-provided seed taxonomy along
with a domain-specific corpus as input and aims to output a
desired taxonomy that satisfies user-specific application tasks.

(2) We propose HiExpan, a novel expansion-based framework for
task-guided taxonomy construction. HiExpan generates the tax-
onomy by growing the seed taxonomy iteratively. Special mech-
anisms are also taken by HiExpan to leverage global tree struc-
ture information.

(3) We conduct extensive experiments to verify the effectiveness
of HiExpan on three real-word datasets from different domains.

The remaining of the paper is organized as follows. Section 2
discusses the related work. Section 3 defines our problem. Then,
we present the HiExpan framework in Section 4. In Section 5, we
report and analyze the experimental results. Finally, we conclude
the paper and discuss some future directions in Section 6.

2 RELATED WORK

In this section, we review related work in following three categories.

2.1 Taxonomy Construction

Most existing approaches to taxonomy construction focus on build-
ing hypernym-hyponym taxonomies wherein each parent-child
pair expresses the “is-a” relation. Typically, they consist of two key
steps: (1) hypernymy relation acquisition (i.e., obtaining hypernym-
hyponym pairs), and (2) structured taxonomy induction (i.e., orga-
nizing all hypernymy relations into a tree structure).

Methods for hypernymy relation acquisition fall into two classes:
pattern-based and distributional. One pioneering pattern-based
method is Hearst patterns [11] in which lexical syntactic patterns
(e.g., “NPx such as NP,”) are leveraged to match hypernymy re-
lations. Later studies extend this method by incorporating more
linguistic rules [18, 31, 38] or designing generalized patterns such
as “star-pattern” [24], “SOL pattern” [23], and “meta-pattern” [13].
These methods could achieve high precision in the result pairs but
often suffer low recalls (i.e., many hypernym-hyponym pairs do not
match the pre-defined patterns). Along another line, distributional
methods predict whether a pair of terms (x, y) holds a hypernymy
relation based on their distributional representations. Early studies
first extract statistical features (e.g., the context words of a term),
calculate pairwise term similarity using symmetric metrics (e.g.,
cosine, Jaccard) [15] or asymmetric metrics (e.g., WeedsPrec [47],
SLQS [32]), and predict if (x, y) holds a hypernymy relation. More
recently, a collections of supervised methods [2, 4, 8, 19, 46, 50] are
proposed to leverage pre-trained word embeddings and curated
training data to directly learn a relation classification/prediction
model. However, neither pattern-based nor distributional tech-
niques can be applied to our problem because they are designed
exclusively for acquiring hypernym-hyponym pairs, whereas we
aim to construct a task-guided taxonomy where the parent-child
relations are task-specific and subject to user guidance.

For the structured taxonomy induction step, most methods first
build a graph where edges represent noisy hypernymy relations,
extracted in the former step, and then derive a tree-like taxon-
omy from this graph. Kozareva and Hovy [14] iteratively retain
the longest paths between root and leaf terms and remove other
conflicting edges. Navigli et al. [25] and Velardi et al. [42] use the
same longest-path idea to weigh edges and then find the largest-
weight taxonomy as a Maximum Spanning Tree. Bansal et al. [3]
build a factor graph to model hypernymy relations and regard tax-
onomy induction as a structured learning problem, which can be
inferred with loop belief propagation. Recently, Gupta et al. [9]
propose to build the initial graph using hypernym subsequence
(instead of single hypernym pair) and model taxonomy induction as
a minimum-cost flow problem [26]. Comparing with these methods,
our approach leverages the weak supervision in “seed” taxonomy
and builds a task-specific taxonomy in which two terms can hold
a non-hypernymy relation. Further, our taxonomy construction
framework jointly acquires task-specific relations and induces tax-
onomy structure, instead of performing the two tasks separately.

2.2 Set Expansion

Our work is also closely related to set expansion — the task of
expanding a small set of seed entities into a complete set of entities
that belong to the same semantic class [44]. One line of works,
including Google Set [41], SEAL [45] and Lyretail [7], solves this



task by submitting a query of seed entities to an online search
engine and mining top-ranked webpages. Other works aim to tackle
the task in a corpus-based setting where the set is expanded by
offline processing a given corpus. They either perform a one-time
ranking of all candidate entities [10, 27, 37] or do iterative pattern-
based bootstrapping [33, 35, 36]. In this work, in addition to just
adding new entities into the set, we go beyond one step and aim
to organize those expanded entities in a tree-structured hierarchy
(i.e, a taxonomy).

2.3 Weakly-supervised Relation Extraction

There have been studies on weakly supervised relation extraction,
which aims at extracting a set of relation instances containing cer-
tain semantic relationships. Our method is related to corpus-level
relation extraction that identifies relation instances from the en-
tire text corpora [22, 29, 30, 51]. In the weakly supervised setting,
there are generally two approaches for corpus-level relation ex-
traction. The first is pattern-based [1, 13, 23], which usually uses
bootstrapping to iteratively extract textual patterns and new re-
lation instances. The second approach [21, 28, 40] tries to learn
low-dimensional representations of entities such that entities with
similar semantic meanings have similar representations. Unfortu-
nately, all these existing methods require a considerable amount of
relation instances to train an effective relation classifier, which is
infeasible in our setting as we only have a limited number seeds
specified by users. Furthermore, these studies do not consider orga-
nizing the relation pairs into a taxonomy structure.

3 PROBLEM FORMULATION

The input for our taxonomy construction framework includes two
parts: (1) a corpus D of documents; and (2) a “seed” taxonomy
779, The “seed” taxonomy 7 °, given by a user, is a tree-structured
hierarchy and serves as the task guidance. Given the corpus D,
we aim to expand this seed taxonomy 7°° into a more complete
taxonomy 7~ for the task. Each node e € 7 represents a term!
extracted from corpus D and each edge (e1, e2) denotes a pair of

terms that satisfies the task-specific relation. We use & and R to
def

denote all the nodes and edges in 7~ and thus 7~ = (&, R).

Example 3.1. Figure 1 shows an example of our problem. Given
a collection of Wikipedia articles (i.e., D) and a “seed” taxonomy
containing two countries and two states in the “U.S.” (i.e., 70 =
(8%, R)), we aim to output a taxonomy 7~ which covers all coun-
tries and states mentioned in corpus D and connects them based
on the task-specific relation “located in”, indicated by R°.

4 THE HIEXPAN FRAMEWORK

In this section, we first give an overview of our proposed HiExpan
framework in Section 4.1. Then, we discuss our key term extraction
module and hierarchical tree expansion algorithm in Section 4.2
and Section 4.3, respectively. Finally, we present our taxonomy
global optimization algorithm in Section 4.4.

!In this work, we use the word “term” and “entity” interchangeably.

4.1 Framework Overview

In short, HiExpan views all children under each taxonomy node
forming a coherent set, and builds the taxonomy by recursively
expanding all these sets. As shown in Figure 1, two first-level nodes
(i.e, “US.” and “China”) form a set representing the semantic class
“Country” and by expanding it, we can obtain all the other countries.
Similarly, we can expand the set {“California”, “Illinois’} to find all
the other states in the U.S.

Given a corpus D, we first extract all key terms using a phrase
mining tool followed by part-of-speech filter. Since the generated
term list contains many task-irrelevant terms (e.g., people’s names
are totally irrelevant to a location taxonomy), we use a set expan-
sion technique to carefully select best terms, instead of exhaustively
testing all possible terms in the list. We refer this process as width
expansion as it increases the width of taxonomy tree. Furthermore,
to address the challenge that some nodes do not have an initial
child (e.g., the node “Mexico” in Figure 2), we find the “seed” chil-
dren by applying a weakly-supervised relation extraction method,
which we refer as depth expansion. By iteratively applying these
two expansion modules, our hierarchical tree expansion algorithm
will first grow the taxonomy to its full size. Finally, we adjust the
taxonomy tree by optimizing its global structure. In the following,
we describe each module of HiExpan in details.

4.2 Key Term Extraction

We use AutoPhrase, a state-of-the-art phrase mining algorithm
[17, 34], to extract all key terms in the given corpus D. AutoPhrase
outputs a key term list and identifies the in-corpus occurrences of
each key term. After that, we apply a Part-of-Speech (POS) tagger
to the corpus and obtain the POS tag sequence of each key term
occurrence. Then, we retain the key term occurrence whose corre-
sponding POS tag sequence contains a noun POS tag (e.g., “NN”,
“NNS”, “NNP”). Finally, we aggregate the key terms that have at
least one remaining occurrence in the corpus into the key term
list. Although the key term list so generated is noisy and may con-
tain some task-irrelevant terms, recall is more critical for this step
because we can recognize and simply ignore the false positives
at the later stages of HiExpan, but have no chance to remedy the
mistakenly excluded task-relevant terms.

4.3 Hierarchical Tree Expansion

The hierarchical tree expansion algorithm in HiExpan is designed to
first grow the taxonomy tree. It is based on (1) algorithm SetExpan
[35] which expands a small set of seed entities into a complete set
of entities that belong to the same semantic class, and (2) REPEL
[29] which utilizes a few relation instances (i.e., a pair of entities
satisfying a target relation) as seeds to extract more instances of
the same relation. Our choice of these two algorithms is motivated
by their effectiveness to leverage the weak supervision in the tiny
“seed” taxonomy 7 ° specified by a user.

4.3.1  Width Expansion. Width expansion aims to find the sib-
ling nodes of a given set of children nodes which share the same
parent, as demonstrated in the following example.

Example 4.1 (Width Expansion). Figure 2 shows two expected
width expansion results. When given the set {“U.S.”, “China”}, we
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Figure 2: An overview of our hierarchical tree expansion algorithm.

want to find their sibling nodes, “Canada”, “Mexico”, and put them
under parent node “Root”. Similarly, we aim to find all siblings of
{*California”, “Illinois”} and attach them under parent node “U.S.”.

This naturally forms a set expansion problem and thus we adapt
the SetExpan algorithm in [35] for addressing it. Compared with
original SetExpan algorithm, the width expansion algorithm in this
paper incorporates the term embedding feature and better leverages
the entity type feature. In the following, we first discuss different
types of features and similarity measures used, and then describe
the width expansion algorithm in details.

Features. We use the following three types of features:

o skip-pattern®: Given a target term e; in a sentence, one of its
skip-pattern features is “w_; _ w;” where w_; and wy are two
context words and e; is replaced with a placeholder. One advan-
tage of skip-pattern feature is that it imposes strong positional
constraints. For example, one skip-pattern of term “California”
in sentence “We need to pay California tax.” is “pay __ tax”. Fol-
lowing [33, 35], we extract up to six skip-patterns of different
lengths for one target term e; in each sentence.

o term embedding: We use either the SkipGram model in word2vec
[21] or REPEL [29] (described in Section 4.3.2) to learn the term
embeddings. We will first use “_” to concatenate tokens in a multi-
gram term (e.g., “Baja California”) and then learn the embedding
of this term. The advantage of term embedding feature is that it
captures the semantics of each term.

e entity type: We obtain each entity’s type information by linking
it to Probase [48]. The return types serve as the features of that
entity. For entities that are not linkable, they simply do not have
this entity type feature.

Similarity Measures. A key component in width expansion algo-
rithm is to compute the sibling similarity of two entities e; and ey,
denoted as simg;p (e1, e2). We first assign the weight between each
pair of entity and skip-pattern as follows:

feusk = 10g(1+ X ok) [log IV | = log(>” Xer sk) | » )
e/
where X, i is the raw co-occurrence count between entity e and
skip-pattern sk, and |V is the total number of candidate entities.
2This feature was originally referred as “skip-gram" feature in [35]. Here we change the

terminology to avoid the confusion with the SkipGram model used in word2vec [21]
for training word embeddings.

Similarly, we can define the association weight between an entity
and a type as follows:

fe.ry =10g(1 + Ce,1y) |log [V = log(}  Cer. 1) 2)
el

where Ce, 1y is the confidence score returned by Probase and indi-
cates how confident it believes that entity e has a type ty.

After that, we calculate the similarity of two sibling entities using
skip-pattern features as follows:

2skeSK min(fel,s/a fez,sk)
ZskESK max(fel,sk’ fez,sk> ’

where SK denotes a selected set of “discriminative” skip-pattern fea-

. k
szmiib(el, ey |SK) =

®)

tures (see below for details). Similarly, we can calculate si m?: b (e1,€2)
using all the type features. Finally, we use the cosine similarity to
compute the similarity between two entities based on their embed-
ding features szme”,;b (e1,€2).

To combine the above three similarities, we notice that a good
pair of sibling entities should appear in similar contexts, share
similar embeddings, and have similar types. Therefore, we use a
multiplicative measure to calculate the sibling similarity as follows:

simg;p(e1, €2|SK) = \/(1 +simsk (e1, e|SK)) - sim¢7b (e, €2)
1
1+ stmsfb(el, e2).

The Width Expansion Process. Given a seed entity set S and
a candidate entity list V, a straightforward idea to compute each
candidate entity’s average similarity with all entities in the seed set
S using all the features. However, this approach can be problematic
because (1) the feature space is huge (i.e., there are millions of pos-
sible skip-pattern features) and noisy, and (2) the candidate entity
list V is noisy in the sense that many entities in V are completely
irrelevant to S. Therefore, we take a more conservative approach
by first selecting a set of quality skip-pattern features and then
scoring an entity only if it is associated with at least one quality
skip-pattern feature.

Starting with the seed set S, we first score each skip-pattern
feature based on its accumulated strength with entities in S (i.e.,
score(sk) = Y ees fe,sk)- and then select top 200 skip-pattern fea-
tures with maximum scores. After that, we use sampling without
replacement method to generate 10 subsets of skip-pattern features
SK:,t =1,2,...,10. Each subset SK; has 120 skip-pattern features.



Given an SK;, we will consider a candidate entity in V only if it
has association will at least one skip-pattern feature in SK;. The
score of a considered entity is calculated as follows:

1 . ’
score(e|S, SK;) = s e/zelsszms,-b(e, e'|SKy). (5)
For each SK;, we can obtain a rank list of candidate entities L;
based on their scores. We use rti to denote the rank of entity e;
in L; and if e; does not appear in L;, we set rti = oo. Finally, we
calculate the mean reciprocal rank (mrr) of each entity e; and add
those entities with average rank above r into the set S as follows:

10
1 1 1
mrr(e;) = m E o S=5SU{eilmrr(e;) > ;}. (6)
=1"t

The key insight of above aggregation mechanism is that an irrele-
vant entity will not appear frequently in multiple L; at top positions
and thus likely has a low mrr score. The same idea in proved effec-
tive in [35]. In this paper, we set r = 5.

4.3.2  Depth Expansion. The width expansion algorithm requires
an initial seed entity set to start with. This requirement is satis-
fied for nodes in the initial seed taxonomy 7°° as their children
nodes can naturally form such a set. However, for those newly-
added nodes in taxonomy tree (e.g., the node “Canada” in Figure
2), they do not have any child node and thus we cannot directly
apply the width expansion algorithm. To address this problem, we
use depth expansion algorithm to acquire a target node’s initial
children by considering the relations between its sibling nodes and
its niece/nephew nodes. A concrete example is shown below.

Example 4.2 (Depth Expansion). Consider the node “Canada” in
Figure 2 as an example. This node is generated by the previous
width expansion algorithm and thus does not have any child node.
We aim to find its initial children (i.e., “Ontario” and “Quebec”)
by modeling the relation between the siblings of node “Canada”
(e.g., “US.”) and its niece/nephew node (e.g., “California”, “Illinois”).
Similarly, given the target node “Mexico”, we want to find its initial
children such as node “Sonora”.

Our depth expansion algorithm relies on term embeddings, which
encode the term semantics in a fix-length dense vector. We use v(t)
to denote the embedding vector of term t. As shown in [8, 19, 21],
the offset of two terms’ embeddings can represent the relation-
ship between them, which leads to the following observation that
v(“U.S”) = v(“California”) ~ v(“Canada”) — v(“Ontario”). There-
fore, given a target parent node e;, a set of reference edges E =
{{ep, ec)} where e is the parent node of e., we calculate the “good-
ness” of putting node ey under parent node e; as follows:

Sitmpar (er,ex) = cos | vier) ~V(ex) o= ) Viep) =vlee) | ()
(ep,ec)
where cos(v(x), v(y)) denotes the cosine similarity between vector
v(x) and v(y). Finally, we score each candidate entity e; based on
simpqar({es, €;)) and select top-3 entities with maximum score as
the initial children nodes under node e;.

The term embedding is learned from REPEL [29], a model for
weakly-supervised Relation Extraction using Pattern-enhanced Em-
bedding Learning. It takes a few seed relation mentions (e.g. “US-
Illinois” and “US-California”) and outputs term embeddings as well

as reliable relational phrases for target relation type(s). REPEL con-
sists of a pattern module which learns a set of reliable textual pat-
terns, and a distributional module, which learns a relation classifier
on term representations for prediction. As both modules provide
extra supervision for each other, the distributional module learns
term embeddings supervised by more reliable patterns from the
pattern module. By doing so, the learned term embeddings carry
more useful information than those obtained from other embedding
models like word2vec [21] and PTE [39], specifically for finding
relation tuples of the target relation type(s).

4.3.3 Conflict Resolution. Our hierarchical tree expansion al-
gorithm iteratively applies width expansion and depth expansion
to grow the taxonomy tree to its full size. As the supervision sig-
nal from the user-specified seed taxonomy 77° is very weak (i.e.,
only few nodes and edges are given), we need to make sure those
nodes introduced in the first several iterations are of high quality
and will not mislead the expansion process in later iterations to a
wrong direction. In this work, for each task-related term, we aim
to find its single best position on our output task-guided taxonomy
7. Therefore, when finding a term appears in multiple positions
during our tree expansion process, we say a “conflict” happens and
aim to resolve such conflict by finding the best position that term
should reside in.

Given a set of conflicting nodes C which corresponds to different
positions of a same entity, we apply the following three rules to
select the best node out of this set. First, if any node is in the seed
taxonomy 7 0, we directly select this node and skip the following
two steps. Otherwise, for each pair of nodes in C, we check whether
one of them is the ancestor of the other and retain only the ances-
tor node. After that, we calculate the “confidence score” of each
remaining node e € C as follows:

conf(e) = !

= ] Z simg;p (e, €’'|SK)

e’esib(e) (8)
. Simpar ({par(e), e}),

where sib(e) denotes the set of all sibling nodes of e and par(e)
represents its parent node. The skip-pattern feature in SK is se-
lected based on its accumulated strength with entities in sib(e).
This equation essentially captures a node’s joint similarity with
its siblings and its parent. The node with highest confidence score
will be selected. Finally, for each node in C that is not selected, we
will delete the whole subtree rooted by it, cut all the sibling nodes
added after it, and put it in its parent node’s “children backlist". A
concrete example is shown below.

Example 4.3 (Conflict Resolution). InFigure 2, we can see there are
two “Texas” nodes, one under “U.S.” and the other under “Mexico”.
As none of them is from initial “seed” taxonomy and they do not
hold an ancestor-descendant relationship, we need to calculate
each node’s confidence score based on Eq. (8). Since “Texas” has a
stronger relation with other states in U.S., comparing with those in
Mexico, we will select the “Texas” node under “U.S.”. Then, for the
other node under “Mexico”, we will delete it and cut “Coahuila”, a
sibling node added after “Texas”. Finally, we let the node “Mexico”
to remember that “Texas” is not one of its children, which prevents
the “Texas” node being added back later. Notice that although the



Algorithm 1: Hierarchical Tree Expansion.

Input: A seed taxonomy 7 °; a candidate term list V;
maximum expansion iteration max_iter.
Output: A task-guided taxonomy 7 .
1T «TY%
2 for iter from 1 to max_iter do

3 q < queue([T .rootNode));

4 while g is not empty do

5 et < q.pop();

6 L] Depth Expansion;

7 if e;.children is empty then

8 S < DEPTH-EXPANSION(e;);

9 es.children « S;

10 q.push(S);

11 L] Width Expansion;

12 Cnew < WIDTH-EXPANSION(e;.children);
13 e;.children = e;.children & Cheny;

14 q-push(Cnew);

15 L] Conflict Resolution;

16 Identify conflicting nodes in 7~ and resolve the conflicts;
17 Return 77

“Coahuila” node is cut here, it may be added back in a later iteration
by our tree expansion algorithm.

Summary. Algorithm 1 shows the whole process of hierarchical
tree expansion. It iteratively expands the children of every node on
a currently expanded taxonomy tree, starting from the root of this
tree. Whenever a target node e; with no children is found, it first
applies depth expansion to obtain the initial children nodes S and
then uses width expansion to acquire more children nodes Cy ey .
At the end of each iteration, it resolves all the conflicting nodes.
The iterative process terminates after expanding the tree max_iter
times and the final expanded taxonomy tree 7~ will be returned.

4.4 Taxonomy Global Optimization

In Algorithm 1, a node will be selected and attached onto the tax-
onomy based on its “local” similarities with other sibling nodes
and its parent node. While modeling only the “local” similarity can
simplify the tree expansion process, we find the resulting taxonomy
may not be the best from a “global" point of view. For example,
when expanding the France regions, we find that the entity “Molise”,
an Italy region, will be mistakenly added under the “France” node,
likely because it shares many similar contexts with some other
regions of France. However, when we take a global view of the
taxonomy and ask the following question—which country is Molise
located in?, we can easily put “Molise” under “Italy” as it shares
more similarities with those in Italy than in France.

Motivated by the above example, we propose a taxonomy global
optimization module in HiExpan. The key idea is to adjust each two
contiguous levels of the taxonomy tree and to find the best “parent”
node at the upper level for each “child” node at the lower level. In
Figure 2, for example, the upper level consists of all the countries

while the lower level contains each country’ first-level administra-
tive divisions. Intuitively, our taxonomy global optimization makes
the following two hypotheses: (1) entities that have the same parent
are similar to each other and form a coherent set, and (2) each entity
is more similar to its correct parent compared with other siblings
of its correct parent.

Formally, suppose there are m “parent” nodes at the upper level
and n “child” nodes at the lower level, we use W € R™™" to model
the entity-entity sibling similarity and use Y¢ € R"*? to capture
the two entities’s parenthood similarity. We let Wij = simg;;, (e;, €j)
if i # j, otherwise we set Wy = 0. We set Yicj = simpar((ej, €:)).
Furthermore, we define another n X p matrix Y* with Yisj =1lifa
child node e; is under parent node e; and Y§. = 0 otherwise. This
matrix captures the current parent assignment of each child node.
We use F € R™? to represent the child nodes’ parent assignment
we intend to learn. Given a F, we can assign each “child” node e; to
a “parent” node e; = arg max; Fjj. Finally, we propose the following
optimization problem to reflect the previous two hypotheses:

n
mFinZwij +yZZ”F1 i
ij
©)
where Dj; is the sum of i-th row of W, and i1, y2 are two nonnega-
tive model hyper-parameters. The first term in Eq. (9) corresponds
to our first hypothesis and models two entities’ sibling similarity.
Namely, if two entities are similar to each other (i.e., large Wij),
they should have similar parent node assignments. The second term
in Eq. (9) follows our second hypothesis to model the parenthood
similarity. Finally, the last term in Eq. (9) serves as the smooth-
ness constraints and captures the taxonomy structure information
before the global adjustment.
To solve the above optimization problem, we take the deriva-
tive of its objective function with respect to F and can obtain the
following closed form solution:

F = (I - aS (ﬁch + ﬁgYs
S = D—1/2WD—1/2’

1 _ H1
1+y1+,uz’ﬁ1 T I+t and ﬁz
tion procedure is similar to the one in [53].

n

2
+}llz F,
i=1

2

i~

||Yc llx

Fl F_]
VDi Dy

(10)

The calcula-

where ar = W

5 EXPERIMENTS
5.1 Experimental Setup

5.1.1 Datasets. We use three corpora from different domains
to evaluate the performance of HiExpan: (1) DBLP contains about
156 thousand paper abstracts in computer science field; (2) Wiki is
a subset of English Wikipedia pages used in [16, 35]; (3) PubMed-
CVD contains a collection of 463 thousand research paper abstracts
regarding cardiovascular diseases retrieved from the PubMed?. Ta-
ble 1 lists the details of these datasets used in our experiment. All
datasets are available for download at: http://bit.ly/2]bilte.

5.1.2  Compared Methods. To the best of our knowledge, we are
the first to study the problem of task-guided taxonomy construction
with user guidance, and thus there is no suitable baseline to com-
pare with directly. Therefore, here we evaluate the effectiveness

Shttps://www.ncbinlm.nih.gov/pubmed.
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Table 1: Datasets statistics.

Dataset File Size # of Sentences # of Entities
Wiki 1.02GB 1.50M 41.2K
DBLP 520MB 1.10M 17.1K

PubMed-CVD  1.60GB 4.48M 36.1K

of HiExpan by comparing it with a heuristic set-expansion based
method and its own variations as follows:

e HSetExpan is a baseline method which iteratively applies SetExpan
algorithm [35] at each level of taxonomy. For each lower level
node, this method finds its best parent node to attach according
to the children-parent similarity measure defined in Eq. (7).

e NoREPEL is a variation of HiExpan without the REPEL [29]
module which jointly leverages pattern-based and distributional
methods for embedding learning. Instead, we use the SkipGram
model [21] for learning term embeddings.

e NoGTO is a variation of HiExpan without the taxonomy global
optimization module. It directly outputs the taxonomy generated
by hierarchical tree expansion algorithm.

e HiExpan is the full version of our proposed framework, with
both REPEL embedding learning module and taxonomy global
optimization module enabled.

5.1.3  Parameter Setting. We use the above methods to generate
three taxonomies, one for each corpus. When extracting the key
term list using AutoPhrase [34], we treat phrases that occur over
15 times in the corpus to be frequent. The embedding dimension
is set to 100 in both REPEL [29] and SkipGram model [21]. The
maximum expansion iteration number max_iter is set to 5 for all
above methods. Finally, we set the two hyper-parameters used in
taxonomy global optimization module as 1 = 0.1 and pp = 0.01.

5.2 Qualitative Results

In this subsection, we show the taxonomy trees generated by HiExpan
across three text corpora with different user-guidances. Those seed
taxonomies are shown in the left part of Figure 3.

o As shown in Figure 3(a), the “seed” taxonomy containing three
countries and six states/provinces. At the first level, we have
“United States”, “China” as well as “Canada”. Under the node
"United States", we are given “California”, “Illinois”, as well as
“Florida” as initial seeds. We do the same for “Shandong”, “Zhe-
jlang” and “Sichuan” under node “China”. Our goal is to out-
put a taxonomy which covers all countries and state/provinces
mentioned in the corpus and connects them based the “country-
state/province” relation. On the right part of Figure 3(a), we show
a fragment of the taxonomy generated by HiExpan which con-
tains the expanded countries and Canadian provinces. HiExpan
first uses the depth expansion algorithm to find initial children
under “Canada” (i.e., “Alberta” and “Manitoba”) and then, starting
from the set {“Alberta”, “Manitoba’}, it applies the width expan-
sion algorithm to obtain more Canadian provinces. These steps
are repeated and finally HiExpan is able to find countries like
“England”, “Australia”, “Germany” in the first-level of taxonomy

and to discover states/provinces of each country.

o Figure 3(b) shows parts of the taxonomy generated by HiExpan
on the DBLP dataset. Given the initial seed taxonomy (the left
part of Figure 3(b)), HiExpan automatically discovers many com-
puter science subareas such as “information retrieval”, “wireless
networks” and “image processing”. We can also zoom in to look at
the taxonomy at a more granular level. Taking the node “natural
language processing” as an example, HiExpan successfully finds
major subtopics in natural language processing such as “question
answering”, “text summarization”, and “word sense disambigua-
tion”. HiExpan can also find subtopics under image processing
even without any initial seeds entities. As shown on the right part
of Figure 3(b), we have obtained high-quality subtopics of “image
processing” such as “image enhancement”, “image compression”,
“skin detection”, and etc.

e In Figure 3(c), we let HiExpan to run on the PubMed-CVD data
and show parts of the resulting taxonomy. We feed the model
with 3 seeds at the top level, namely “cardiovascular abnormali-
ties”, “vascular diseases” and “heart disease” along with 3 seeds
under each top-level node. At the top level, HiExpan generates
labels such as “coronary artery diseases”, “heart failures”, “heart
diseases”, and “cardiac diseases”. Here, we notice that many labels,
e.g., ‘heart disease” and “cardiac disease” are actually synonyms.
These synonyms are put at the same level in the taxonomy gen-
erated by HiExpan since they share same semantics and appear
in similar contexts. We leave synonyms discovery and resolution
as an important future work.

Table 2 shows the effect of taxonomy global optimization module
in HiExpan. From the experiment on the Wiki dataset, we observe
that ‘the node ‘London” was originally attached to “Australia”, but
after applying the taxonomy global optimization module, this node
is correctly moved under “England”. Similarly, in the DBLP dataset,
the term “unsupervised learning” was initially located under “data
mining” but later being moved under the parent node “machine
learning”. This demonstrates the effectiveness of our taxonomy
global optimization module.

5.3 Quantitative Results

In this subsection, we quantitatively evaluate the quality of the
taxonomies constructed by different methods.

5.3.1 Evaluation Metrics. Evaluating the quality of an entire
taxonomy is challenging due to the existence of multiple aspects
that should be considered and the difficulty of obtaining gold stan-
dard [43]. Following [5, 6, 20], we use Ancestor-F1 and Edge-F1 for
taxonomy evaluation in this study.

Ancestor-F1 measures correctly predicted ancestral relations. It
enumerates all the pairs on the predicted taxonomy and compares
these pairs with those in the gold standard taxonomy.
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Figure 3: Qualitative results: we show the taxonomy trees generated by HiExpan across three different corpora.

where Py, Ry, F1, denote the ancestor precision, ancestor recall,
and ancestor Fl-score, respectively.

Edge-F1 compares edges predicted by different taxonomy con-
struction methods with edges in the gold standard taxonomy. Simi-
larly, we denote edge-based metrics as P, R, and F1,, respectively.

To construct the gold standard, we extract all the parent-child
edges in taxonomies generated by different methods in table 3. Then
we pool all the edges together and ask five people, including the
second and third author of this paper as well as three volunteers, to
judge these pairs independently. We show them seed parent-child



Table 2: NoGTO shows the parent of an entity before applying taxonomy structure optimization. HiExpan shows the parent

node of this entity after optimizing the taxonomy structure.

Dataset Entity NoGTO HiExpan
London Australia England
Chiba China Japan
Wiki Molise Frances Italy
New_South Wales England Australia
Shropshire Scotland England
unsupervised_learning data_mining machine_learning
social_network_analysis natural_language_processing data_mining
DBLP multi-label_classification information_retrieval machine_learning

pseudo-relevance_feedback
function_approximate

computational_biology

information_retrieval

data_analysis machine_learning

Table 3: Quantitative results: we show the quantitative results of the taxonomies constructed by HSetExpan, NoREPEL, NoGTO,
and HiExpan. Py, Ry, F1, denote the ancestor-Precision, ancestor-Recall, and ancestor-F1-score, respectively. Similarly, we de-

note edge-based metrics as P, R., and F1,, respectively.

Wwiki DBLP PubMed-CVD
Methed —p " %, F, P R F.| P, R, Fl, P. R Fl. | P R. Fla P. R Fl
HSetExpan 0740 0444 0555 0759 0471 0581 | 0743 0448 0559 0739 0448 0558 | 0.524 0438 0477 0513 0450 0484
NOoREPEL 0696 0596 0642 0697 0576 0631 | 0722 0384 0502 0705 0.464 0560 | 0583 0.473 0522 0593 0541 0.566
NoGTO 0827 0708 0763 0810 0671 0734 | 0821 0366 0506 0779 0433 0556 | 0.729 0443 0551 0735 0506 0.599
HiExpan 0.847 0725 0.781 0.848 0.702 0768 | 0.843 0376 0520 0.829 0460 0.592 | 0.733 0446 0.555 0744 0512 0.606

pairs as well as the generated parent-child pairs, and ask them to
evaluate whether the generated parent-child pairs have the same
relation as the given seed parent-child pairs. After collecting these
answers from the annotators, we simply use majority voting to label
the pairs. We then use these annotated data as the gold standard.
The labeled dataset is available at: http://bit.ly/2]bilte.

5.3.2  Evaluation Results. Table 3 shows both the ancestor-based
and edge-based precision/recalls as well as F1-scores of different
methods. We can see that HiExpan achieves the best overall per-
formance, and outperforms other methods, especially in terms of
the precision. Comparing the performance of HiExpan, NoREPEL,
and NoGTO, we see that both the REPEL and the taxonomy global
optimization modules play important roles in improving the qual-
ity of the generated taxonomy. Specifically, REPEL learns more
discriminative representations by iteratively letting the distribu-
tional module and pattern module mutually enhance each other,
and the taxonomy global optimization module leverages the global
information from the entire taxonomy tree structure. In addition,
HiExpan resolves the “conflicts” at the end of each tree expansion
iteration by cutting many nodes on a currently expanded taxonomy.
This leads HiExpan to generate a smaller tree comparing with the
one generated by HSetExpan, given that both methods running
the same number of iterations. However, we can see that HiExpan
still beats HSetExpan on Wiki dataset and PubMed-CVD dataset,
in terms of the recall. This further demonstrates the effectiveness
of our HiExpan framework.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a new research problem task-guided
taxonomy construction and propose a novel expansion-based frame-
work HiExpan for solving it. HiExpan views all children under a
taxonomy node as a coherent set and builds the taxonomy by recur-
sively expanding these sets. Furthermore, HiExpan incorporates a
weakly-supervised relation extraction module to infer parent-child
relation and adjusts the taxonomy tree by optimizing its global
structure. Experimental results on three public datasets corroborate
the effectiveness of HiExpan.

As a first-punch solution for constructing a task-guided taxon-
omy, HiExpan can be improved in many ways. First, we find in
the experiments that HiExpan places synonyms at the same level
of taxonomy since they share same semantic meanings and ap-
pear in similar contexts. These synonyms will make generated
taxonomy less informative, with reduced overall quality. It is an
interesting direction to extend HiExpan to automatically discover
and resolve those synonyms. Further, as an expansion-based frame-
work, HiExpan may facilitate interactive user guidance in taxonomy
construction, which is another interesting task in the future.
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