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ABSTRACT

Heterogeneous information networks (HINs) are ubiquitous in
real-world applications. In the meantime, network embedding has
emerged as a convenient tool to mine and learn from networked
data. As aresult, it is of interest to develop HIN embedding methods.
However, the heterogeneity in HINs introduces not only rich infor-
mation but also potentially incompatible semantics, which poses
special challenges to embedding learning in HINs. With the inten-
tion to preserve the rich yet potentially incompatible information
in HIN embedding, we propose to study the problem of compre-
hensive transcription of heterogeneous information networks. The
comprehensive transcription of HINs also provides an easy-to-use
approach to unleash the power of HINSs, since it requires no ad-
ditional supervision, expertise, or feature engineering. To cope
with the challenges in the comprehensive transcription of HINs, we
propose the HEER algorithm, which embeds HINs via edge repre-
sentations that are further coupled with properly-learned heteroge-
neous metrics. To corroborate the efficacy of HEER, we conducted
experiments on two large-scale real-words datasets with an edge
reconstruction task and multiple case studies. Experiment results
demonstrate the effectiveness of the proposed HEER model and
the utility of edge representations and heterogeneous metrics. The
code and data are available at https://github.com/GentleZhu/HEER.
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Figure 1: To preserve the rich information in HIN embedding, prop-
erly handling the incompatibility introduced by the heterogeneity
is necessary. The upper left part of the figure gives a toy movie-
reviewing HIN, where users review movies and list certain directors,
actors, genres as their favorites. Stan likes both musical and movies
directed by Ang Lee. If all nodes were embedded to one metric space,
Stan would be close to neither musical nor Ang Lee due to the dis-
similarity between musical and Ang Lee. This results in information
loss in the embedding learning process. However, we can alleviate
this problem by employing edge representation and inferring edge-
type-specific metrics, so that Stan can be close to both musical and
Ang Lee under their respective metrics, while not necessarily drag-
ging musical and Ang Lee closer. The two metrics shown in the lower
figure can be achieved by linearly transforming the metric space in
the upper right figure.

1 INTRODUCTION

Heterogeneous information networks (HINs) have received increas-
ing attention in the past decade due to its ubiquity and capabil-
ity of representing rich information [21, 25]. Meanwhile, net-
work embedding has emerged as a scalable representation learn-
ing method [5, 7, 18, 19, 28, 29, 32]. Network embedding learns
low-dimensional vector representations for nodes to encode their
semantic information in the original network. The vectorized rep-
resentations can be easily combined with off-the-shelf machine
learning algorithms for various tasks such as classification and link
prediction [7, 9, 18, 29], which provides a convenient approach for
researchers and engineers to mine and learn from the networked
data. To marry the advantages of HINs and network embedding,


https://github.com/GentleZhu/HEER

researchers have recently started to explore methods to embed
heterogeneous information networks [2, 5, 6, 8, 20, 23, 28], and
have demonstrated the effectiveness of HIN embedding in applica-
tions including author identification [3], name disambiguation [35],
proximity search [11], event detection [36], etc.

However, the heterogeneity in HINs brings in not only rich in-
formation but also potentially incompatible semantics, which poses
special challenges to embed heterogeneous information networks.
Take the movie-reviewing network in Figure 1 as an example, where
users review movies and list certain actors, directors, and genres
as their favorites. Suppose user Stan likes both movies directed by
Ang Lee (director) and musical (genre). Since Ang Lee has never di-
rected any musical, nor is he semantically similar to musical, if this
HIN were embedded into one metric space, musical and Ang Lee
would be distant from each other, while the user Stan would not be
simultaneously close to both of them, due to the triangle inequality
property of metric spaces. We have also observed different extents
of such incompatibility from real-world data as to be discussed in
Section 4, which is consistent with the observation that different
extents of correlation can exist within one HIN as per existing
study [22]. As a result, it can be expected that an algorithm would
generate better embeddings if it additionally models such seman-
tic incompatibility. We hence study the problem of comprehensive
transcription of heterogeneous information networks, which purely
aims to transcribe the rich and potentially incompatible informa-
tion from HINs to the embeddings, without involving additional
expertise, feature engineering, or installation of supervision.

With HINs comprehensives transcribed, one can again pipe the
unsupervisedly learned embeddings to off-the-shelf machine learn-
ing algorithms for a wide range of applications. Therefore, beyond
the capability of preserving rich information, another motivation
to study comprehensive transcription of HINs is to provide an easy-
to-use approach to unleash the power of HINs in a wide variety
of applications with no expertise or supervision required in the
embedding learning process.

Traditional homogeneous network embedding methods [7, 18,
19, 29, 32] treat all the nodes and edges equally regardless of their
types, which do not capture the essential heterogeneity of HINs.
A couple of methods have recently been studied for embedding
heterogeneous information networks [2, 5, 6, 8, 20, 23, 28]. Many
of them build their algorithms on top of a set of meta-paths [5, 20],
which often require users to specify the meta-paths or leverage
supervision to make the meta-path selection. However, a set of
meta-paths specified or selected in this way often only reflects
certain aspects of the HIN or is suitable for specific tasks. As a result,
they are not always capable of transcribing HINs comprehensively.
These methods are not as easy-to-use either because it involves the
additional meta-path generation process that entails expertise or
supervision. Besides using meta-paths, some approaches have been
proposed to embed specific kinds of HINs [8, 28] for certain tasks or
HINs with additional side information [2]. These methods cannot be
applied to comprehensively transcribe general HINs. Additionally,
most existing HIN embedding methods [5, 8, 20, 28] employ only
one metric space for embedding learning. This approach may suit
downstream tasks that are related to certain partial information of
an HIN with compatible semantics but could lead to information
loss if the objective is to comprehensively transcript the entire HIN.

The problem of comprehensive transcription of HINs is chal-
lenging because it requires the modeling of heterogeneity that
can be complex and incompatible. Besides, without the availabil-
ity of supervision, proposed solutions need to capture the latent
structure of the HINs and distinguish potentially incompatible se-
mantics in an unsupervised way. To cope with these challenges,
we propose heterogeneous information network embedding via
edge representations, which is henceforth referred to as HEER.
HEER builds edge embeddings atop node embeddings, which are
further coupled with inferred heterogeneous metrics for each edge
type. The inferred metrics capture which dimensions of the edge
embeddings are more important for the semantic carried by their
corresponding edge types. In turn, the information carried by edges
of different types updates the node embeddings and edge embed-
dings with emphases on different type-specific manifolds. In this
way, we can preserve different semantics even in the presence of
incompatibility. Still take the movie-reviewing network as example,
by adopting heterogeneous metrics as in the lower part of Figure 1,
Stan could be close to both musical(genre) and Ang Lee(director)
under their respective metrics. Furthermore, the heterogeneous
metrics are inferred by fitting the input HIN, so that semantic in-
compatibility is captured without additional supervision.

Specifically, with the availability of edge representations and
coupled metrics, we derive loss function that reflects both the ex-
istence and the type of an edge. By minimizing the loss, the node
embeddings, edge embeddings, and heterogeneous metrics are up-
dated simultaneously, and thereby retain the heterogeneity in the
input HIN. Different extents of incompatibility can also be modeled,
where the more compatible two edge types are, the more similar
their corresponding metrics would be.

Lastly, we summarize our contributions as follows:

(1) We propose to study the problem of comprehensive tran-
scription of HINs in embedding learning, which preserves
the rich information in HINs and provides an easy-to-use
approach to unleash the power of HINs.

(2) We identify that different extents of semantic incompatibil-
ity exist in real-world HINs, which pose challenges to the
comprehensive transcription of HIN.

(3) We propose an algorithm, HEER, for the comprehensive
transcription of HINs that leverages edge representations
and heterogeneous metrics.

(4) Experiments with real-world large-scale datasets demon-
strate the effectiveness of HEER and the utility of edge rep-
resentations and heterogeneous metrics.

2 RELATED WORK

Homogeneous network embedding. Meanwhile, network em-
bedding has emerged as an efficient and effective representation
learning approach for networked data [4, 7, 9, 16, 18, 19, 19, 29, 32,
37], which significantly spares the labor and sources in transform-
ing networks into features that are more machine-actionable. Early
network embedding algorithms start from handling the simple, ho-
mogeneous networks, and many of them trace to the skip-gram
model [13] that aims to learn word representations where words
with similar context have similar representation [7, 18, 19, 29].



Besides skip-gram, algorithms for preserving certain other homoge-
neous network properties have also been studied [10, 15, 16, 31-33].
The use of edge representations for homogeneous network embed-
ding is discussed in a recent work [1], but such edge representations
are designed to distinguish the direction of an edge, instead of en-
coding richer semantics such as edge type in our case.

Heterogeneous network embedding. Heterogeneous informa-
tion network (HIN) has been extensively studied since the past
decade for its ubiquity in real-world data and efficacy in fulfill-
ing tasks, such as classification, clustering, recommendation, and
outlier detection [21, 25, 27, 34, 38]. To marry the advantages of
HIN and network embedding, a couple of algorithms have been
proposed very recently for embedding learning in heterogeneous
information networks [2, 5, 6, 8, 20, 23, 28]. One line of work first
uses human expertise or supervision to select meta-paths for a given
task or limit the scope of candidate meta-paths, and then proposes
methods to transfer the semantics encoded in meta-paths to the
learned embedding [5, 6, 20]. While this direction has been showed
to be effective in solving problems that fit the semantics of the cho-
sen meta-paths, it differs from the research scope of ours because
they mostly focus on providing quality representations for down-
stream tasks concerning the node types on the two ends of chosen
meta-paths, while we aim at developing methods to transcribe the
entire HIN to embeddings as comprehensively as possible. Beyond
meta-paths, some approaches have been proposed to embed specific
kinds of HINSs [8, 28] with specific objectives such as representing
event data or learning predictive text embeddings. Some other
approaches study HINs with additional side information [2] that
cannot be generalized to all HINs. Besides, all of these approaches
embed the input HIN into only one metric space. Embedding in
the context of HIN has also been studied for tasks with additional
supervision [3, 11, 17]. These methods either yield features specific
to given tasks, and are outside of the scope of unsupervised HIN
embedding that we study.

A recent study [23] proposes a method by decomposing an HIN
into multiple aspects before learning embedding, which also attains
quality representations of HINs by alleviating the information loss
arising from the rich, yet heterogeneous, and potentially conflict-
ing semantics within the given networks. However, this approach
embeds the derived aspects independently and completely forbids
joint learning across aspects while our proposed method allows net-
work components of varied compatibility to collaborate to different
extents in the joint learning process.

3 PRELIMINARIES

In this section, we define related concepts and notations.

Definition 3.1 (Heterogeneous Information Network). An infor-
mation network is a directed graph G = (V, &) with a node type
mapping ¢ : V — 7 and an edge type mapping ¥ : & —» R.
Particularly, when the number of node types |7°| > 1 or the num-
ber of edge types |R| > 1, the network is called a heterogeneous
information network (HIN).

Given the typed essence of HINs, the network schema G =
(7, R) [25] is used to abstract the meta-information regarding the
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Figure 2: The schema of a toy movie-reviewing HIN with six node
types, seven undirected edge types, and one directed edge type.

director

node types and edge types in an HIN. Figure 2 illustrates the schema
of a toy movie-reviewing HIN.

In addition, we require that only one node type can be associated
with a certain end of an edge type. That is, once an edge type is
given, we would deterministically know the node types on its two
ends. As an example, consider two edges with one representing
director Fatih Akin living in Germany and another representing
movie In the Fade being produced in Germany. Such requirement
implies that these two edges must have distinct types — livesin
and isProducedIn — instead of just one type — isIn. For edge type
r € R, we denote P’ = {(u, v) eVXV | (p(u)~r~go(v))}, where
¢@(u) ~r ~@(v) means the node type pair (¢(u), ¢(v))) is consistent
with edge type r. Additionally, define P}, = {f} € (Vi(u, 0) € Pr}
and I, = {ii € V|, v) € PT}.

Moreover, when the network is weighted and directed, we use
ng,) to denote the weight of an edge e € & with type r € R
that goes out from node u toward v. DS(’) and Di(r) respectively
represent the outward degree of node u (i.e., the sum of weights of
all type-r edges going outward from u) and the inward degree of
node u (i.e., the sum of weights of all type-r edges going inward to
u). For an unweighted edge, W,E;) is trivially 1. For an undirected
edge, we always have Wu(;) = WZSL) and DSW = D{t(r).

Definition 3.2 (Node and Edge Representations in HIN Embedding).
Given an HIN G = (V, &; ¢, ), the problem of HIN embedding via
edge representations learns a node embedding mapping f : V —
R% and an edge embedding mapping f : V XV — R%, where
dqy and dg are the dimensions for node and edge embeddings,
respectively. A node u € V is thereby represented by a node
embedding f;, := f(u) and anode pair (u,v) € VXYV isrepresented
by an edge embedding gyo = g(u,v).

With this definition, a node pair has its edge embedding even if
no edge of any type has been observed between them. On the other
hand, it is possible for node pair (u, v) to be associated by multiple
edges with different types, and we expect edge embedding g, to
encapsulate such information of an HIN.

Finally, we define the problem of comprehensive transcription
of a heterogeneous information network in embedding learning.

Definition 3.3 (Comprehensive Transcription of an HIN). The com-
prehensive transcription of an HIN aims to learn the representations
of the input HIN that retains the rich in the HIN as comprehen-
sively as possible, in an approach that does not require additional
expertise, feature engineering, or supervision.
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4 VARIED EXTENTS OF INCOMPATIBILITY
DUE TO HETEROGENEITY

In this section, we look into the incompatibility in HINs using
real-world data, and we take DBLP as an example.

DBLP is a bibliographical information network in the computer
science domain [30], where authors write papers that are further
associated with nodes of other attribute types. Since the measurable
incompatibility in an HIN arises from the co-existence of multiple
edge types, we dive down to the minimal case that involves two
different edge types (r; and ry) joined by a common node type
(). To quantify the incompatibility for this minimal case, we use
the widely used generalized Jaccard coefficient to measure the
similarity between the node groups reachable from a given node
of type t via the two edge types. Specifically, given node u of
type t, the Jaccard coefficient for edge types r; and ry is given

. ming(o)=¢ {H(u, v;r1), (u, v;r2) }
by J(u;ri,r2) =

maXg(o)=r {L(w, v;r1), (w,v3r2) }°

P}, (P}, )7 is the reachability between nodes u and v via edge type
r and P" is the row-normalized adjacency matrix of edge type r.
Generalized Jaccard coefficient has a range of [0, 1], and greater
value implies more similarity, or equivalently, less incompatibility.

As an example, we consider four node types — author, paper,
key term, and year — and two pairs of edge types — (i) authorship
vs. publishing year of papers and (ii) authorship vs. term usage
of papers. We illustrate the distributions over Jaccard coefficient
using cumulative distribution function (CDF) for each of the two
pairs in Figure 3a. It can be seen that over 95% of nodes have a gen-
eralized Jaccard coefficient smaller than 5e~> between authorship
and publishing year, while less than 25% of nodes fall in the same
category when it comes to authorship vs. term usage. In other
words, we observe more incompatibility between authorship and
publishing year than between authorship and term usage. However,
this relationship is actually not surprising because papers published
in the same year can be authored by any researchers who are active
at that time, while key terms associated to certain research topics
are usually used by authors focusing on these topics. With the
presence of such varied extent of incompatibility, we would expect
an embedding algorithm tailored for comprehensive transcription
of HINs to be able to capture this semantic subtlety in HINs.

In fact, by employing edge representation and heterogeneous
metrics, the inferred metrics could be learned to be different for

where [(u,v;r) =

incompatible edge types. In turn, the information carried by these
two edge types would be updating the node embeddings and edge
embeddings with emphases on different manifolds. On the other
hand, the subtlety of the different extent of incompatibility could
also be captured in a way that the more compatible two edge types
are, the more similar their inferred metrics should be.

5 PROPOSED METHOD

To provide an general-purpose, easy-to-use solution to HIN em-
bedding, we describe the HEER model in this section, where HEER
stands for Heterogeneous Information Network Embedding via
Edge Representations. Afterward, the model inference method is
described subsequently.

5.1 The HEER Model

A learned embedding that effectively encodes the semantics of
an HIN should be able to reconstruct this HIN. With the use of
edge representation, we expect the embedding to infer not only the
existence but also the type of edge between each pair of nodes. For
edge type r € R, we formulate the typed closeness of node pair
(u, v) atop their edge embedding gy, as

exp(p) guw) o) e pr
Ty - > , ,
sp(u,v) = ’[JEZP;* exp(Hy Bus) + ﬁ‘:‘z?:)fv exp(py iv)
9 (w,0) & P,
1

where p, € R4 is a edge-type—specific vector to be inferred
that represents the metric coupled with this type. Edge types with
compatible semantics are expected to share similar y,, while incom-
patible edge types make use of different p1, to avoid the embedding
learning on respective semantics to dampen each other.

To measure the capability of the learned embedding in recon-
structing the input HIN, the difference between the observed weights
and the typed closeness inferred from embedding are used, which
leads to the objective to be minimized for edge type r

Z WIEZ) log sy (u,v) + const,
(u,v)ePr
@)

0" = KL(W.) . s;(u,v)) = —

where KL(-) stands for the Kullback-Leibler divergence.
Further, substituting Eq. (1) into Eq. (2) and taking all edge types
into account and, the overall objective function becomes

_ (r) exp(p; guo)
0= Z Wi log —— o s ep(igas)” O
(u,v)eP’ oePl, iePl,

To formulate edge embeddings required by Eq. (3), we derive
from the same embeddings of the associated nodes regardless of
the involved edge type, so that we reach a unified model where the
learning process involving multiple edge types can work together
and mutually enhance each other if they embody compatible se-
mantics. While there are many options to build edge embedding
from node embedding, we expect our formulation not to be over-
complicated, so that the overall model could be computationally
efficient and thereby easy-to-use. Moreover, in order for HEER to
handle general HINS, it must also be able to handle directed and
undirected edges accordingly. Considering these requirements, we
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where o represents the Hadamard product. Besides Hadamard
product, on can also build g, in a way similar to Eq. (4) using
addition, subtraction, or outer-product. We leave the exploration
of this direction to future works.

Taking Eq. (4) into account, learning node and edge embedding
from an HIN by minimizing Eq. (3) is equivalent to the following
optimization problem

min 0. (5)

{fu Yuev, {IJr Jrer

5.2 Model Inference

The HEER model in Eq. (5) that we aim to infer can be struc-
tured as a neural network as illustrated in Figure 4, where F =
[fl,fg, L. ,f|(v|] e RWVXIVIand M = [[11,[,[2, L. ,p‘r]g‘] € RIeXIRI,
Each pair of nodes gets their respective embeddings through the
dense layer F, which further compose edge embedding by function
g(,-). The raw scores for all edge types are obtained through an-
other dense layer M, followed by a type filter where the neuron for
an edge type is connected to its corresponding neuron in the next
layer only if this type is compatible with the node types of the input
node pairs. Lastly, the loss is calculated by the typed closeness and
the existence of edges in between the input node pair.

Since it is computationally expensive to compute the denom-
inator in Eq. (1), we adopt the widely used negative sampling
method [13], which enjoys linear-time computation. Specifically,
each time, an edge between (u, v) with type r is sampled from the
HIN with probability proportional to its weight. Then K negative
node pairs (u,9;) and K negative node pairs (i;,v) are sampled,
where each #; has the same type as u and each 0; has the same

type as v. The loss function computed from this sample becomes

K K
log o (i) guv) + ) | Ba, log o (~p1] gus, )+ Eq, log o(~p1] gi,0),
i=1 i=1
where o (-) is the sigmoid function o (x) = exp(x)/ (1 + exp(x)).
We adopt mini-batch gradient descent with the PyTorch imple-
mentation to minimize the loss function with negative sampling,
where each mini-batch contains B sampled edges. We also use the
node embeddings pretrained by the homogeneous network em-
bedding algorithm LINE [29] to initialize the node embeddings in
HEER. The edge-type-specific scoring vector p, is initialized to be
all-one vectors.

6 EXPERIMENTS

In this section, we evaluate the embedding quality of the proposed
method and analyze the utility of employing edge representation
and heterogeneous metric using two large real-world HINs. We
first perform an edge reconstruction task to directly quantify how
well the embedding algorithms can preserve the information in the
input HINs. Then, we conduct in-depth case studies to analyze the
characteristics of the proposed method.

6.1 Baselines

We compare the proposed HEER algorithm with baseline methods
that fit the setting of our problem, i.e., the methods should be appli-
cable to general HINs without the help of additional supervision or
expertise.

o Pretrained (LINE [29]). This baseline uses the LINE algorithm
to generate node embeddings, which are also used to initialize
HEER. LINE is a homogeneous network embedding algorithm
based on the skip-gram model [13]. We use inner product to
compute the score of observing an edge between a pair of node
embeddings following the original paper [29].

o AspEm [23]. AspEm is a heterogeneous network embedding
method that captures the incompatibility in HINs by decompos-
ing the input HIN into multiple aspects with an unsupervised



measure using dataset-wide statistics. Embeddings are further
learned independently for each aspect. This method considers
the incompatibility in HINs but does not model different extent
of incompatibility. Furthermore, it does not allow joint learn-
ing of embeddings across different aspects. Out of fairness,
we let the number of aspects in AspEm to be two, in order to
generate the final embedding with dimension that is identical
to other methods. Inner product is also used to compute the
score for this baseline.

e UniMetrics (metapath2vec++ [5]). This is a partial model
of HEER, where the metrics {y,},cg are not updated in the
training process, i.e., they remain uniform as initialized. It is
equivalent to the metapath2vec++ [5] using all edges as length-
1 meta-paths without further selection. This method restricts
the negative sampling to be done within the consistent node
types, i.e., performs heterogeneous negative sampling, but still
embeds all nodes into the same metric space regardless of
types.

e Pretrained + Logit. On top of the embeddings from the pre-
vious Pretrained model, we train a logistic regression (Logit)
model for each edge type using the input network. Then, we
compute scores for test instances of each edge type using the
corresponding Logit model. This method models heteroge-
neous metrics but does not allow the node embeddings and
the edge embeddings to be further improved according to the
inferred metrics.

6.2 Data Description and Experiment Setups

In this section, we describe the two real-world HINs used in our
experiments as well as experiment setups.

Datasets. We use two publicly available real-world HIN datasets:
DBLP and YAGO.

e DBLP is a bibliographical network in the computer science
domain [30]. There are five types of nodes in the network:
author, paper, key term, venue, and year. The key terms are
extracted and released by Chen et al. [3]. The edge types
include authorship (aut.), term usage (term), publishing venue
(ven.), and publishing year (year) of a paper, and the reference
relationship from a paper to another (ref.). We consider the
first four edge types as undirected, and the last one as directed.
The corresponding network schema is depicted in Figure 3b
on page 4.

e YAGO isalarge-scale knowledge graph derived from Wikipedia,
WordNet, and GeoNames [24]. There are seven types of nodes
in the network: person, location, organization, piece of work,
prize, position, and event. A total of 24 edge types exist in the
network, with five being directed and others being undirected.
These edge types are illustrated together with the schema of
the network in Figure 5.

We summarize the statistics of the datasets including the total
number of nodes, the total number of edges, and the counts of each
node type in Table 1.

Experiment Setups. For all experiments and all methods, we set
the total embedding dimension to be 256. That is, for HEER and its
related baselines, f,, € R%%° and flﬂ, f,? € R128_ and each of the two
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Figure 5: The schema of the YAGO network.

Table 1: Basic statistics for the DBLP and YAGO networks.

Dataset Node Edge Node type | Edge type
DBLP 3,170,793 | 27,126,718 5 5
YAGO 579,721 2,191,464 7 24

aspects in AspEm uses a 128-dim embedding space. The pretrained
model is always tuned to the best according to the performance in
the edge reconstruction task to be introduced in Section 6.3. The
negative sampling rate is always set to K = 5 for all applicable
models. We always rescale the pretrained embedding by a constant
factor of 0.1 before feeding them into HEER to improve the learning
of heterogeneous metrics, which shares intuition with a previous
study [14] in improving angular layout at the early stage of model
training. The learning rate for gradient descent for HEER is set to 10
on both datasets. Note that we use the same set of hyperparameters
for HEER on both DBLP and YAGO in order to provide an easy-
to-use solution to the problem of comprehensive transcription of
HINs without the hassle of extensive parameter tuning.

6.3 Edge Reconstruction Experiment

In order to directly quantify the extent to which an embedding
algorithm can preserve the information in the input HINs, we devise
the edge reconstruction experiments for both datasets. For each
HIN, we first knock out a portion of edges uniformly at random,
with a certain knock-out rate k € (0, 1). Embedding of the network
after knock-out is then learned using each compared method. The



Table 2: Per-edge-type, micro-average, and macro-average MRR achieved by each model in the edge reconstruction task.

Dataset DBLP
Metric (MRR) Aut. ‘ Term ‘ Ref. ‘ Pub. venue ‘ Pub. year ‘ Micro-avg. ‘ Macro-avg. | Micro-avg. ‘ Macro-avg.
Pretrained (LINE [29]) 0.7053 | 0.4830 | 0.8729 0.7488 0.4986 0.6307 0.6617 0.7454 0.6890
AspEm [23] 0.7068 | 0.6010 | 0.8648 0.7612 0.6791 0.6976 0.7225 0.7832 0.6825
UniMetrics (len-1 metapath2vec++ [5]) | 0.7040 | 0.5772 | 0.8466 0.7534 0.6781 0.6812 0.7119 0.7437 0.6884
Pretrained + Logit 0.8187 | 0.6996 | 0.8072 0.8379 0.4889 0.7310 0.7304 0.8233 0.7012
HEER [ 0.8964 [ 0.7188 | 0.9573 | 0.9132 07421 [ 0.8189 0.8456 0.8635 0.7185
task is to reconstruct the edges being knocked out using the learned 10, ' '
. W Fretrz acd
embed(%lng models. . e N Fretaied + Logit
Specifically, for each edge that is knocked out from the network, = = HEEF
suppose it is between node pair (1, v) and of edge type r, we ran- Ty bE l
domly sample 10 negative pairs (u, 0) that do not have type-r edges fl: A _— —-—
in the original full network, where o is of the same node type as v. ; T II .
For any model after training, a score can be calculated to reflect the £ el .
likelihood for each of the 11 node pairs to be associated by type-r =
edge in the current model. The reciprocal rank is then computed oz II I. . -
to measure the quality of the model, where the reciprocal rank is - | | . -
the reciprocal of the rank of the positive pair among all 11 node. ) a2 2.4 1 1E
Similarly, another reciprocal rank is computed for the same node Eriik-ul 1ale
pair (u, v) and 10 other randomly sampled negative pairs (i, v) with (a) DBLP.
fixed v but sampled #. Finally, we report the mean reciprocal rank 1.0, ' .
(MRR), which is computed by the mean of reciprocal ranks for the - Hretmained
target test instances. In particular, the micro-average MRR and the = v B drctrancs +Llegt
macro-average MRR are reported for both DBLP and YAGO, where £ 0E E HFFA
the micro-average MRR is computed by the mean of all reciprocal %
ranks computed regardless of edge types, while the macro-average s 0T ]
MRR is derived by first computing the mean of reciprocal ranks for E
each edge type, and then averaging all these means across different £ i
edge types. Additionally, we also report the MRR for each edge type ST
for DBLP, since DBLP involves only 5 edge types, while YAGO has
as many as 24 edge types. We present the results with knock-out 0.4

rate x = 0.4 in Table 2.

Modeling incompatibility benefits embedding quality. As
shown in Table 2, the proposed HEER model outperformed all
baselines in both datasets under both micro-average MRR and
macro-average MRR, which demonstrated the effectiveness of the
proposed method. Even when looking at each edge type in DBLP,
the MRR achieved by HEER was still the best. Besides, in DBLP,
AspEm outperformed Pretrained and UniMetrics on most metrics.
Recall that AspEm decomposed the HIN into distinct aspects using
dataset-wide statistics. As a result, it forbade semantically incom-
patible edge types to negatively affect each other in the embedding
learning process and thereby achieved better results. In YAGO, the
baselines considering heterogeneity did not always clearly outper-
form the simplest baseline Pretrained. We interpret this result by
that YAGO has much more edge types than DBLP, which introduces
even more varied extent of incompatibility, and the relatively simple
approaches adopted by AspEm and UniMetrics in modeling incom-
patibility may not be enough to bring in significant performance
boost. In contrast, armed with heterogeneous metrics fine-grained
to the edge type level, HEER outperformed Pretrained by a clear
margin even in YAGO.

(b) YAGO.

Figure 6: Micro-average MRR under multiple knock-out rate x in
the egde reconstruction tasks.

Heterogeneous metrics helps improving embedding quality.
As a sanity check, the Pretrained + Logit model helps rule out
the possibility that HEER archives better results only by learning
edge-type—specific metrics without actually improving embedding
quality. From Table 2, it can be observed that by coupling with
the additional edge-type—specific logistic regression and modeling
heterogeneous metrics, the performance was improved on top of
the Pretrained mode. This observation further consolidated the
necessity of employing heterogeneous metrics for different edge
types in solving the problem of comprehensive transcription of
heterogeneous information networks. However, Pretrained + Logit
still performed worse than the proposed HEER mode, which implies
that the inferred heterogeneous metrics of HEER indeed in return
improved the quality of the node and edge embedding.
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Figure 7: The learned heterogeneous metrics of the HEER model sensed the heterogeneous semantics of the HINs.

Heterogeneous negative sampling is not always enough to
capture incompatibility. UniMetric performed better than the
Pretained model in DBLP, it failed to make an absolute win over
Pretained as other methods did in the YAGO dataset. Our inter-
pretation of this result is that while the heterogeneous negative
sampling as used by UniMetric does leverage certain type-specific
information in HINs, it may not be always enough to model incom-
patibility and resolve the negative impact it brings to embedding
quality. This observation is to be further corroborated in Section 6.4
by examining the capability of transcribing information implied by
meta-paths in each model.

Varying Knock-Out Rate in Edge Reconstruction. Addition-
ally, we vary the knock-out rate x on both datasets and report the
micro-average MRR for the proposed HEER model and two baseline
models that require less training time. As presented in Figure 6,
HEER outperformed all baselines under at most knock-out rates,
which demonstrated the robustness of the proposed model. Besides,
Pretrained + Logit outperformed Pretrained at all knock-out rates,
which is also in line with the previous results we have presented.
Notably, HEER did not outperform Pretrained + Logit when the
knock-out rate ¥ = 0.8. This is explainable because only a very
small portion (20%) of the original HIN was used for learning em-
bedding when x = 0.8. With a bigger model size than Pretrained +
Logit, HEER was more prone to suffering from over-fitting.

6.4 Case Studies

In this section, we conduct a series of in-depth case studies to
understand the characteristics of the proposed HEER model.

Learned heterogeneous metrics. HEER leverages heterogeneous
metrics to model the different extent of incompatible semantics
carried by different edge types. In this section, we analyzed the
learned metrics {py },eg in HEER to verify if they indeed captured
the different semantics and thereby enriched the model capability.

To this end, we use heat maps to illustrate {p,},cg that are
learned in the edge reconstruction experiments on both HINs.
Specifically, for each dataset, we first standardize the elements
of each y, to have zero mean and unit deviation, so that p,’s have

i John Irving
Florence Dugdale 0.60
Thomas Hardyo g Jom ining Florence Dugdale
" 6 oy 0 pA i Thomas Hardy 0.01
hoihgs Har ! 1
John Irving 0.9 0.97 0.99/0.99 0.05
John Fowles :
0.96 Charles Dickens 0.00 CravaiDickens
0.96 0.97 ; ’
FlorenceDugdale
Charles Dickens 960
Jehn Fowles
(a) Pretrained. (b) HEER under @. ! (b) HEER under ©.

Figure 8: The subnetwork surrounding Thomas Hardy in YAGO in
multiple embedding models under potentially different metrics.

comparable scales after standardization for all » € R. Then, we
re-order the dg dimensions for better visualization and plot the
heat maps in Figure 7.

Recall that the inferred metrics {y,},cg Were set to be all-one
vectors in initialization, whereas Figure 7 shows that different met-
rics have generally reached different distributions over the dg di-
mensions after training. This implies that the inferred metrics of
the HEER model indeed sensed the heterogeneity of the HINs, and
were using different projected metric spaces to embed different se-
mantics of the input network. Notably, it can be seen from the heat
map of YAGO that edge types @ (isAffiliatedTo) and (8) (playsFor)
have similar inferred metrics. This is actually expected because
these edge types are often associated with the relationship between
professional sports players and their associated teams in YAGO.
Besides, similar phenomenon can be observed between @ (isMar-
riedTo) and edge type @ (hasChild).

Embedded subnetwork with different edge types. In order to
understand how the network is impacted by the introduction of het-
erogeneous metrics, we took a closer look at a subnetwork surround-
ing the British writer Thomas Hardy in the YAGO dataset. Multiple
other writers having the influences relationship (@, colored gray)
with Thomas Hardy include Charles Dickens, John Fowles, and
John Irving, while Florence Dugdale and Thomas Hardy enjoyed
the isMarriedTo relationship (@, colored red). Besides, Fowles and



(a) UniMetrics.

(b) HEER.

Figure 9: Visualization using t-SNE of 2, 370 paper nodes that are
linked to a given paper via four different meta-paths in DBLP. Each
node is colored according to the meta-path it uses to reach the given
paper. In Figure 9b, the nodes with same meta-path are clustered to-
gether, which implies HEER can preserve the information carried
by different meta-paths in embedding learning even without the
use of any meta-path. As a comparison, UniMetrics (len-1 meta-
path2vec++) yields less distinct clusters, with red, cyan, and blue
nodes mingled together, showing adopting heterogeneous negative
sampling without learned heterogeneous metrics is not sufficient to
preserve the heterogeneity in the HIN embedding process.

Irving are also influenced by Dickens. In Figure 8, we visualized
this subnetwork under each embedding model with the inferred
possibility of edge existence marked, where the embedding models
are training using the entire network. It can be seen from Figure 8a
that without distinguishing edge types, Pretrained assigned high
possibilities to all edges. Meanwhile, with the learned heteroge-
neous metrics, the HEER model assigned a relatively low probability
for Dugdale and Hardy under the metric for influences as in Fig-
ure 8b (note that Dugdale was also a writer), and a clearly higher
probability under the metric for isMarriedTo as in Figure 8c.

Transcription of information implied by meta-paths. When
embedding each of the HINSs, no meta-paths of length greater than
1 (i.e.., besides edges) were used, where a meta-path is the concate-
nation of certain edge types used to reflect certain semantics of
an HIN [21, 25, 26]. We would like to verify whether the input
HIN can be transcribed so comprehensively that the signals implied
by meta-paths are also preserved in the embedding process, even
without the use of guidance from meta-paths.

To this end, we visualize the embedding results considering four

ven. ven.

different meta-paths: [paper] — [venue] — [paper] (colored red),

aut.

f. .
[paper] = [paper] (colored cyan), [paper]ﬂ[author]—[paper]

year

(colored blue), and [paper] — [year] = [paper] (colored yellow).

In particular, we consider a given paper node and find all paper
nodes connected to this given paper by the aforementioned four
meta-paths. Then we visualize the embeddings of all the nodes
found in this way using the popular t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [12] algorithm. Each node is colored ac-
cording to the meta-path it uses to connect to the given paper
node. Additionally, we randomly downsampled the group of nodes

reached by meta-path [paper] = [year] = [paper] because a year
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Figure 10: The relative loss and the micro-average MRR against the
number of epochs for the proposed HEER model and the UniMetrics
(len-1 metapath2vec) model.

can have edges with tens of thousands of paper nodes. The visual-
ization results are shown in Figure 9.

In Figure 9b, the nodes with the same color are generally clus-
tered together, which implies HEER can preserve the information
implied by different meta-paths in embedding learning even with-
out the use of any meta-path. As a comparison, we also visualized
the same set of nodes in Figure 9a using embedding generated
by UniMetrics (len-1 metapath2vec++), which yields less distinct
clusters, with red, cyan, and blue nodes mingled together. Recall
that UniMetrics also considers edge types when conducting nega-
tive sampling, and is different from HEER only in that the former
does not employ heterogeneous metrics leaning. This result again
demonstrated that adopting heterogeneous negative sampling with-
out learned heterogeneous metrics is not sufficient to preserve the
heterogeneity in the HIN embedding process, and is therefore not
ideal for solving the problem of comprehensive transcription of
heterogeneous information networks.

6.5 Efficiency Study

For efficiency study, we plot out the loss and the performance of
the proposed HEER algorithm against the number of epochs in the
edge reconstruction experiment. We also illustrate the same curves
of the UniMetrics (len-1 metapath2vec++) model for comparison.
The results are presented in Figure 10.

Judging from the curve for the loss again the number of epochs
in Figure 10, HEER converges at a comparable rate with the skip-
gram-based UniMetrics (metapath2vec++). Besides, HEER took less
than twice as much time to finish each epoch as metapath2vec++
did. This is expected because HEER only additionally requires one-
step gradient descent for one y,- when training on each sampled
training example. As a result, the time complexity of HEER for
each epoch differs from that of metapath2vec++ by a small constant
factor. Combining the above two properties, HEER enjoys over-
all complexity linear to the number of nodes as skip-gram-based
algorithms do [1, 5, 7].



7 CONCLUSION AND FUTURE WORKS

We studied the problem of the comprehensive transcription of HINs
in embedding learning, which preserves the rich information in
HINs and provides an easy-to-use approach to unleash the power
of HINs. To tackle this problem, we identify that different extents of
semantic incompatibility exist in real-world HINs, which pose chal-
lenges to the comprehensive transcription of HINs. To cope with
these challenges, we propose an algorithm, HEER, that leverages
edge representations and heterogeneous metrics. Experiments and
in-depth case studies with large real-world datasets demonstrate
the effectiveness of HEER and the utility of edge representations
and heterogeneous metrics.

With the availability of edge representations proposed this pa-
per, future works include exploration of more loss functions over
edge representation, such as regression to model edges associated
with ratings on HINs that have user-item reviews, or soft-max
to model HINs where at most one edge type can exist between a
pair of node types. One may also explore alternate ways to build
edge embedding g,,, using addition, subtraction, outer-product, or
deeper architectures. We leave the exploration of this direction to
future works. Besides, it is also worthy of studying further boost
the performance of HEER by incorporating higher-order structures
such as network motifs, while retaining the advantage of HEER for
being able to preserve the rich semantics from HINs.
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