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ABSTRACT

Heterogeneous information networks (HINs) are ubiquitous in

real-world applications. In the meantime, network embedding has

emerged as a convenient tool to mine and learn from networked

data. As a result, it is of interest to develop HIN embeddingmethods.

However, the heterogeneity in HINs introduces not only rich infor-

mation but also potentially incompatible semantics, which poses

special challenges to embedding learning in HINs. With the inten-

tion to preserve the rich yet potentially incompatible information

in HIN embedding, we propose to study the problem of compre-

hensive transcription of heterogeneous information networks. The

comprehensive transcription of HINs also provides an easy-to-use

approach to unleash the power of HINs, since it requires no ad-

ditional supervision, expertise, or feature engineering. To cope

with the challenges in the comprehensive transcription of HINs, we

propose the HEER algorithm, which embeds HINs via edge repre-

sentations that are further coupled with properly-learned heteroge-

neous metrics. To corroborate the efficacy of HEER, we conducted

experiments on two large-scale real-words datasets with an edge

reconstruction task and multiple case studies. Experiment results

demonstrate the effectiveness of the proposed HEER model and

the utility of edge representations and heterogeneous metrics. The

code and data are available at https://github.com/GentleZhu/HEER.
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Figure 1: To preserve the rich information in HIN embedding, prop-

erly handling the incompatibility introduced by the heterogeneity

is necessary. The upper left part of the figure gives a toy movie-

reviewingHIN, where users reviewmovies and list certain directors,

actors, genres as their favorites. Stan likes bothmusical andmovies

directed byAng Lee. If all nodes were embedded to onemetric space,

Stan would be close to neither musical nor Ang Lee due to the dis-

similarity betweenmusical andAng Lee. This results in information

loss in the embedding learning process. However, we can alleviate

this problem by employing edge representation and inferring edge-

type–specific metrics, so that Stan can be close to bothmusical and

Ang Lee under their respective metrics, while not necessarily drag-

gingmusical andAng Lee closer. The twometrics shown in the lower

figure can be achieved by linearly transforming the metric space in

the upper right figure.

1 INTRODUCTION

Heterogeneous information networks (HINs) have received increas-

ing attention in the past decade due to its ubiquity and capabil-

ity of representing rich information [21, 25]. Meanwhile, net-

work embedding has emerged as a scalable representation learn-

ing method [5, 7, 18, 19, 28, 29, 32]. Network embedding learns

low-dimensional vector representations for nodes to encode their

semantic information in the original network. The vectorized rep-

resentations can be easily combined with off-the-shelf machine

learning algorithms for various tasks such as classification and link

prediction [7, 9, 18, 29], which provides a convenient approach for

researchers and engineers to mine and learn from the networked

data. To marry the advantages of HINs and network embedding,

https://github.com/GentleZhu/HEER


researchers have recently started to explore methods to embed

heterogeneous information networks [2, 5, 6, 8, 20, 23, 28], and

have demonstrated the e�ectiveness of HIN embedding in applica-

tions including author identi�cation [3], name disambiguation [35],

proximity search [11], event detection [36], etc.
However, the heterogeneity in HINs brings in not only rich in-

formation but also potentially incompatible semantics, which poses

special challenges to embed heterogeneous information networks.

Take the movie-reviewing network in Figure 1 as an example, where

users review movies and list certain actors, directors, and genres

as their favorites. Suppose user Stan likes both movies directed by

Ang Lee (director) and musical (genre). Since Ang Lee has never di-

rected any musical, nor is he semantically similar to musical, if this

HIN were embedded into one metric space, musical and Ang Lee
would be distant from each other, while the user Stan would not be

simultaneously close to both of them, due to the triangle inequality

property of metric spaces. We have also observed di�erent extents

of such incompatibility from real-world data as to be discussed in

Section 4, which is consistent with the observation that di�erent

extents of correlation can exist within one HIN as per existing

study [22]. As a result, it can be expected that an algorithm would

generate be�er embeddings if it additionally models such seman-

tic incompatibility. We hence study the problem of comprehensive
transcription of heterogeneous information networks, which purely

aims to transcribe the rich and potentially incompatible informa-

tion from HINs to the embeddings, without involving additional

expertise, feature engineering, or installation of supervision.

With HINs comprehensives transcribed, one can again pipe the

unsupervisedly learned embeddings to o�-the-shelf machine learn-

ing algorithms for a wide range of applications. �erefore, beyond

the capability of preserving rich information, another motivation

to study comprehensive transcription of HINs is to provide an easy-

to-use approach to unleash the power of HINs in a wide variety

of applications with no expertise or supervision required in the

embedding learning process.

Traditional homogeneous network embedding methods [7, 18,

19, 29, 32] treat all the nodes and edges equally regardless of their

types, which do not capture the essential heterogeneity of HINs.

A couple of methods have recently been studied for embedding

heterogeneous information networks [2, 5, 6, 8, 20, 23, 28]. Many

of them build their algorithms on top of a set of meta-paths [5, 20],

which o�en require users to specify the meta-paths or leverage

supervision to make the meta-path selection. However, a set of

meta-paths speci�ed or selected in this way o�en only re�ects

certain aspects of the HIN or is suitable for speci�c tasks. As a result,

they are not always capable of transcribing HINs comprehensively.

�ese methods are not as easy-to-use either because it involves the

additional meta-path generation process that entails expertise or

supervision. Besides using meta-paths, some approaches have been

proposed to embed speci�c kinds of HINs [8, 28] for certain tasks or

HINs with additional side information [2]. �ese methods cannot be

applied to comprehensively transcribe general HINs. Additionally,

most existing HIN embedding methods [5, 8, 20, 28] employ only

one metric space for embedding learning. �is approach may suit

downstream tasks that are related to certain partial information of

an HIN with compatible semantics but could lead to information

loss if the objective is to comprehensively transcript the entire HIN.

�e problem of comprehensive transcription of HINs is chal-

lenging because it requires the modeling of heterogeneity that

can be complex and incompatible. Besides, without the availabil-

ity of supervision, proposed solutions need to capture the latent

structure of the HINs and distinguish potentially incompatible se-

mantics in an unsupervised way. To cope with these challenges,

we propose heterogeneous information network embedding via

edge representations, which is henceforth referred to as HEER.

HEER builds edge embeddings atop node embeddings, which are

further coupled with inferred heterogeneous metrics for each edge

type. �e inferred metrics capture which dimensions of the edge

embeddings are more important for the semantic carried by their

corresponding edge types. In turn, the information carried by edges

of di�erent types updates the node embeddings and edge embed-

dings with emphases on di�erent type-speci�c manifolds. In this

way, we can preserve di�erent semantics even in the presence of

incompatibility. Still take the movie-reviewing network as example,

by adopting heterogeneous metrics as in the lower part of Figure 1,

Stan could be close to both musical(genre) and Ang Lee(director)

under their respective metrics. Furthermore, the heterogeneous

metrics are inferred by ��ing the input HIN, so that semantic in-

compatibility is captured without additional supervision.

Speci�cally, with the availability of edge representations and

coupled metrics, we derive loss function that re�ects both the ex-

istence and the type of an edge. By minimizing the loss, the node

embeddings, edge embeddings, and heterogeneous metrics are up-

dated simultaneously, and thereby retain the heterogeneity in the

input HIN. Di�erent extents of incompatibility can also be modeled,

where the more compatible two edge types are, the more similar

their corresponding metrics would be.

Lastly, we summarize our contributions as follows:

(1) We propose to study the problem of comprehensive tran-

scription of HINs in embedding learning, which preserves

the rich information in HINs and provides an easy-to-use

approach to unleash the power of HINs.

(2) We identify that di�erent extents of semantic incompatibil-

ity exist in real-world HINs, which pose challenges to the

comprehensive transcription of HINs.

(3) We propose an algorithm, HEER, for the comprehensive

transcription of HINs that leverages edge representations

and heterogeneous metrics.

(4) Experiments with real-world large-scale datasets demon-

strate the e�ectiveness of HEER and the utility of edge rep-

resentations and heterogeneous metrics.

2 RELATEDWORK

Homogeneous network embedding. Meanwhile, network em-

bedding has emerged as an e�cient and e�ective representation

learning approach for networked data [4, 7, 9, 16, 18, 19, 19, 29, 32,

37], which signi�cantly spares the labor and sources in transform-

ing networks into features that are more machine-actionable. Early

network embedding algorithms start from handling the simple, ho-

mogeneous networks, and many of them trace to the skip-gram

model [13] that aims to learn word representations where words

with similar context have similar representation [7, 18, 19, 29].



Besides skip-gram, algorithms for preserving certain other homoge-

neous network properties have also been studied [10, 15, 16, 31–33].

The use of edge representations for homogeneous network embed-

ding is discussed in a recent work [1], but such edge representations

are designed to distinguish the direction of an edge, instead of en-

coding richer semantics such as edge type in our case.

Heterogeneous network embedding. Heterogeneous informa-

tion network (HIN) has been extensively studied since the past

decade for its ubiquity in real-world data and efficacy in fulfill-

ing tasks, such as classification, clustering, recommendation, and

outlier detection [21, 25, 27, 34, 38]. To marry the advantages of

HIN and network embedding, a couple of algorithms have been

proposed very recently for embedding learning in heterogeneous

information networks [2, 5, 6, 8, 20, 23, 28]. One line of work first

uses human expertise or supervision to select meta-paths for a given

task or limit the scope of candidate meta-paths, and then proposes

methods to transfer the semantics encoded in meta-paths to the

learned embedding [5, 6, 20]. While this direction has been showed

to be effective in solving problems that fit the semantics of the cho-

sen meta-paths, it differs from the research scope of ours because

they mostly focus on providing quality representations for down-

stream tasks concerning the node types on the two ends of chosen

meta-paths, while we aim at developing methods to transcribe the

entire HIN to embeddings as comprehensively as possible. Beyond

meta-paths, some approaches have been proposed to embed specific

kinds of HINs [8, 28] with specific objectives such as representing

event data or learning predictive text embeddings. Some other

approaches study HINs with additional side information [2] that

cannot be generalized to all HINs. Besides, all of these approaches

embed the input HIN into only one metric space. Embedding in

the context of HIN has also been studied for tasks with additional

supervision [3, 11, 17]. These methods either yield features specific

to given tasks, and are outside of the scope of unsupervised HIN

embedding that we study.

A recent study [23] proposes a method by decomposing an HIN

into multiple aspects before learning embedding, which also attains

quality representations of HINs by alleviating the information loss

arising from the rich, yet heterogeneous, and potentially conflict-

ing semantics within the given networks. However, this approach

embeds the derived aspects independently and completely forbids

joint learning across aspects while our proposed method allows net-

work components of varied compatibility to collaborate to different

extents in the joint learning process.

3 PRELIMINARIES

In this section, we define related concepts and notations.

Definition 3.1 (Heterogeneous Information Network). An infor-

mation network is a directed graphG = (V,E) with a node type

mapping φ : V → T and an edge type mapping ψ : E → R.
Particularly, when the number of node types |T | > 1 or the num-

ber of edge types |R | > 1, the network is called a heterogeneous

information network (HIN).

Given the typed essence of HINs, the network schema G̃ =
(T ,R ) [25] is used to abstract the meta-information regarding the

user
movie

genre
director

actor
country

follows

Figure 2: The schema of a toy movie-reviewing HIN with six node

types, seven undirected edge types, and one directed edge type.

node types and edge types in an HIN. Figure 2 illustrates the schema

of a toy movie-reviewing HIN.

In addition, we require that only one node type can be associated

with a certain end of an edge type. That is, once an edge type is

given, we would deterministically know the node types on its two

ends. As an example, consider two edges with one representing

director Fatih Akin living in Germany and another representing

movie In the Fade being produced in Germany. Such requirement

implies that these two edges must have distinct types – livesIn

and isProducedIn – instead of just one type – isIn. For edge type

r ∈ R , we denote Pr �
{
(u,v ) ∈ V ×V ���φ (u)∼r ∼φ (v ))

}
, where

φ (u)∼r ∼φ (v ) means the node type pair (φ (u),φ (v ))) is consistent

with edge type r . Additionally, define Pru∗ �
{
ṽ ∈ V ���(u, ṽ ) ∈ Pr

}
and Pr∗v �

{
ũ ∈ V ���(ũ,v ) ∈ Pr

}
.

Moreover, when the network is weighted and directed, we use

W
(r )
uv to denote the weight of an edge e ∈ E with type r ∈ R

that goes out from node u toward v . D
O (r )
u and D

I (r )
u respectively

represent the outward degree of node u (i.e., the sum of weights of

all type-r edges going outward from u) and the inward degree of

node u (i.e., the sum of weights of all type-r edges going inward to

u). For an unweighted edge,W
(r )
uv is trivially 1. For an undirected

edge, we always haveW
(r )
uv =W

(r )
vu and D

O (r )
u = D

I (r )
u .

Definition 3.2 (Node and Edge Representations in HIN Embedding).

Given an HING = (V, E;φ,ψ ), the problem of HIN embedding via

edge representations learns a node embedding mapping f : V →
R
dV and an edge embedding mapping f : V ×V → RdE , where

dV and dE are the dimensions for node and edge embeddings,

respectively. A node u ∈ V is thereby represented by a node

embedding fu � f (u) and a node pair (u,v ) ∈ V×V is represented

by an edge embedding guv � д(u,v ).

With this definition, a node pair has its edge embedding even if

no edge of any type has been observed between them. On the other

hand, it is possible for node pair (u,v ) to be associated by multiple

edges with different types, and we expect edge embedding guv to

encapsulate such information of an HIN.

Finally, we define the problem of comprehensive transcription

of a heterogeneous information network in embedding learning.

Definition 3.3 (Comprehensive Transcription of an HIN). The com-

prehensive transcription of anHIN aims to learn the representations

of the input HIN that retains the rich in the HIN as comprehen-

sively as possible, in an approach that does not require additional

expertise, feature engineering, or supervision.



(a) The CDF of the generalized jaccard
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Figure 3: Varied extents of incompatibility exist between different

pairs of edge types in the DBLP network.

4 VARIED EXTENTS OF INCOMPATIBILITY
DUE TO HETEROGENEITY

In this section, we look into the incompatibility in HINs using

real-world data, and we take DBLP as an example.

DBLP is a bibliographical information network in the computer

science domain [30], where authors write papers that are further

associated with nodes of other attribute types. Since the measurable

incompatibility in an HIN arises from the co-existence of multiple

edge types, we dive down to the minimal case that involves two

different edge types (r1 and r2) joined by a common node type

(t ). To quantify the incompatibility for this minimal case, we use

the widely used generalized Jaccard coefficient to measure the

similarity between the node groups reachable from a given node

of type t via the two edge types. Specifically, given node u of

type t , the Jaccard coefficient for edge types r1 and r2 is given

by J (u; r1, r2) �
minφ (v )=t {l (u,v ;r1 ),l (u,v ;r2 ) }
maxφ (v )=t {l (u,v ;r1 ),l (u,v ;r2 ) }

, where l (u,v; r ) �

Pru, : (P
r
v, :)
� is the reachability between nodes u and v via edge type

r and Pr is the row-normalized adjacency matrix of edge type r .
Generalized Jaccard coefficient has a range of [0, 1], and greater

value implies more similarity, or equivalently, less incompatibility.

As an example, we consider four node types – author, paper,

key term, and year – and two pairs of edge types – (i) authorship

vs. publishing year of papers and (ii) authorship vs. term usage

of papers. We illustrate the distributions over Jaccard coefficient

using cumulative distribution function (CDF) for each of the two

pairs in Figure 3a. It can be seen that over 95% of nodes have a gen-

eralized Jaccard coefficient smaller than 5e−5 between authorship

and publishing year, while less than 25% of nodes fall in the same

category when it comes to authorship vs. term usage. In other

words, we observe more incompatibility between authorship and

publishing year than between authorship and term usage. However,

this relationship is actually not surprising because papers published

in the same year can be authored by any researchers who are active

at that time, while key terms associated to certain research topics

are usually used by authors focusing on these topics. With the

presence of such varied extent of incompatibility, we would expect

an embedding algorithm tailored for comprehensive transcription

of HINs to be able to capture this semantic subtlety in HINs.

In fact, by employing edge representation and heterogeneous

metrics, the inferred metrics could be learned to be different for

incompatible edge types. In turn, the information carried by these

two edge types would be updating the node embeddings and edge

embeddings with emphases on different manifolds. On the other

hand, the subtlety of the different extent of incompatibility could

also be captured in a way that the more compatible two edge types

are, the more similar their inferred metrics should be.

5 PROPOSED METHOD

To provide an general-purpose, easy-to-use solution to HIN em-

bedding, we describe the HEER model in this section, where HEER

stands for Heterogeneous Information Network Embedding via

Edge Representations. Afterward, the model inference method is

described subsequently.

5.1 The HEER Model

A learned embedding that effectively encodes the semantics of

an HIN should be able to reconstruct this HIN. With the use of

edge representation, we expect the embedding to infer not only the

existence but also the type of edge between each pair of nodes. For

edge type r ∈ R, we formulate the typed closeness of node pair

(u,v ) atop their edge embedding guv as

sr (u,v ) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(μ�r guv )∑
ṽ ∈Pru∗

exp(μ�r guṽ ) +
∑

ũ ∈Pr∗v
exp(μ�r gũv )

, (u,v ) ∈ Pr ,

0, (u,v ) � Pr ,
(1)

where μr ∈ RdV is a edge-type–specific vector to be inferred

that represents the metric coupled with this type. Edge types with

compatible semantics are expected to share similar μr , while incom-

patible edge types make use of different μr to avoid the embedding

learning on respective semantics to dampen each other.

To measure the capability of the learned embedding in recon-

structing the inputHIN, the difference between the observedweights

and the typed closeness inferred from embedding are used, which

leads to the objective to be minimized for edge type r

Or = KL(W
(r )
uv , st (u,v )) = −

∑

(u,v )∈Pr
W

(r )
uv log sr (u,v ) + const,

(2)

where KL(·) stands for the Kullback-Leibler divergence.
Further, substituting Eq. (1) into Eq. (2) and taking all edge types

into account and, the overall objective function becomes

O = −
∑

(u,v )∈Pr
r ∈R

W
(r )
uv log

exp(μ�r guv )∑
ṽ∈Pru∗

exp(μ�r guṽ )+
∑

ũ∈Pr∗v
exp(μ�r gũv )

. (3)

To formulate edge embeddings required by Eq. (3), we derive

from the same embeddings of the associated nodes regardless of

the involved edge type, so that we reach a unified model where the

learning process involving multiple edge types can work together

and mutually enhance each other if they embody compatible se-

mantics. While there are many options to build edge embedding

from node embedding, we expect our formulation not to be over-

complicated, so that the overall model could be computationally

efficient and thereby easy-to-use. Moreover, in order for HEER to

handle general HINs, it must also be able to handle directed and

undirected edges accordingly. Considering these requirements, we
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Figure 4: An illustration of the HEER architecture for learning HIN embedding via edge representation.

decompose node embedding into two sections fu =
[
fOu
f Iu

]
, where fOu

and f Iu are two column vectors of the same dimension, and build

edge embedding on top of node embedding as

guv �
⎧⎪⎨⎪⎩
2 · fOu ◦ f Iv , directed representation from u to v,

fOu ◦ fOv + f Iu ◦ f Iv , undirected representation,

(4)

where ◦ represents the Hadamard product. Besides Hadamard

product, on can also build guv in a way similar to Eq. (4) using

addition, subtraction, or outer-product. We leave the exploration

of this direction to future works.

Taking Eq. (4) into account, learning node and edge embedding

from an HIN by minimizing Eq. (3) is equivalent to the following

optimization problem

min
{fu }u∈V, {μr }r ∈R

O. (5)

5.2 Model Inference

The HEER model in Eq. (5) that we aim to infer can be struc-

tured as a neural network as illustrated in Figure 4, where F =[
f1, f2, . . . , f |V |

]
∈ RdV×|V | andM =

[
μ1, μ2, . . . , μ |R |

]
∈ RdE×|R | .

Each pair of nodes gets their respective embeddings through the

dense layer F , which further compose edge embedding by function

д(·, ·). The raw scores for all edge types are obtained through an-

other dense layerM , followed by a type filter where the neuron for

an edge type is connected to its corresponding neuron in the next

layer only if this type is compatible with the node types of the input

node pairs. Lastly, the loss is calculated by the typed closeness and

the existence of edges in between the input node pair.

Since it is computationally expensive to compute the denom-

inator in Eq. (1), we adopt the widely used negative sampling

method [13], which enjoys linear-time computation. Specifically,

each time, an edge between (u,v ) with type r is sampled from the

HIN with probability proportional to its weight. Then K negative

node pairs (u, ṽi ) and K negative node pairs (ũi ,v ) are sampled,

where each ũi has the same type as u and each ṽi has the same

type as v . The loss function computed from this sample becomes

logσ (μ�r guv )+
K∑

i=1

Eṽi logσ (−μ
�
r guṽi )+

K∑

i=1

Eũi logσ (−μ
�
r gũiv ),

where σ (·) is the sigmoid function σ (x ) = exp(x )/
(
1 + exp(x )

)
.

We adopt mini-batch gradient descent with the PyTorch imple-

mentation to minimize the loss function with negative sampling,

where each mini-batch contains B sampled edges. We also use the

node embeddings pretrained by the homogeneous network em-

bedding algorithm LINE [29] to initialize the node embeddings in

HEER. The edge-type–specific scoring vector μr is initialized to be

all-one vectors.

6 EXPERIMENTS

In this section, we evaluate the embedding quality of the proposed

method and analyze the utility of employing edge representation

and heterogeneous metric using two large real-world HINs. We

first perform an edge reconstruction task to directly quantify how

well the embedding algorithms can preserve the information in the

input HINs. Then, we conduct in-depth case studies to analyze the

characteristics of the proposed method.

6.1 Baselines

We compare the proposed HEER algorithm with baseline methods

that fit the setting of our problem, i.e., the methods should be appli-

cable to general HINs without the help of additional supervision or

expertise.

• Pretrained (LINE [29]). This baseline uses the LINE algorithm

to generate node embeddings, which are also used to initialize

HEER. LINE is a homogeneous network embedding algorithm

based on the skip-gram model [13]. We use inner product to

compute the score of observing an edge between a pair of node

embeddings following the original paper [29].

• AspEm [23]. AspEm is a heterogeneous network embedding

method that captures the incompatibility inHINs by decompos-

ing the input HIN into multiple aspects with an unsupervised



measure using dataset-wide statistics. Embeddings are further

learned independently for each aspect. This method considers

the incompatibility in HINs but does not model different extent

of incompatibility. Furthermore, it does not allow joint learn-

ing of embeddings across different aspects. Out of fairness,

we let the number of aspects in AspEm to be two, in order to

generate the final embedding with dimension that is identical

to other methods. Inner product is also used to compute the

score for this baseline.

• UniMetrics (metapath2vec++ [5]). This is a partial model

of HEER, where the metrics {μr }r ∈R are not updated in the

training process, i.e., they remain uniform as initialized. It is

equivalent to the metapath2vec++ [5] using all edges as length-

1 meta-paths without further selection. This method restricts

the negative sampling to be done within the consistent node

types, i.e., performs heterogeneous negative sampling, but still

embeds all nodes into the same metric space regardless of

types.

• Pretrained + Logit. On top of the embeddings from the pre-

vious Pretrained model, we train a logistic regression (Logit)

model for each edge type using the input network. Then, we

compute scores for test instances of each edge type using the

corresponding Logit model. This method models heteroge-

neous metrics but does not allow the node embeddings and

the edge embeddings to be further improved according to the

inferred metrics.

6.2 Data Description and Experiment Setups

In this section, we describe the two real-world HINs used in our

experiments as well as experiment setups.

Datasets. We use two publicly available real-world HIN datasets:

DBLP and YAGO.

• DBLP is a bibliographical network in the computer science

domain [30]. There are five types of nodes in the network:

author, paper, key term, venue, and year. The key terms are

extracted and released by Chen et al. [3]. The edge types

include authorship (aut.), term usage (term), publishing venue

(ven.), and publishing year (year) of a paper, and the reference

relationship from a paper to another (ref.). We consider the

first four edge types as undirected, and the last one as directed.

The corresponding network schema is depicted in Figure 3b

on page 4.

• YAGO is a large-scale knowledge graph derived fromWikipedia,

WordNet, and GeoNames [24]. There are seven types of nodes

in the network: person, location, organization, piece of work,

prize, position, and event. A total of 24 edge types exist in the

network, with five being directed and others being undirected.

These edge types are illustrated together with the schema of

the network in Figure 5.

We summarize the statistics of the datasets including the total

number of nodes, the total number of edges, and the counts of each

node type in Table 1.

Experiment Setups. For all experiments and all methods, we set

the total embedding dimension to be 256. That is, for HEER and its

related baselines, fu ∈ R256 and f Iu , fOu ∈ R128, and each of the two
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Figure 5: The schema of the YAGO network.

Table 1: Basic statistics for the DBLP and YAGO networks.

Dataset Node Edge Node type Edge type

DBLP 3,170,793 27,126,718 5 5

YAGO 579,721 2,191,464 7 24

aspects in AspEm uses a 128-dim embedding space. The pretrained

model is always tuned to the best according to the performance in

the edge reconstruction task to be introduced in Section 6.3. The

negative sampling rate is always set to K = 5 for all applicable

models. We always rescale the pretrained embedding by a constant

factor of 0.1 before feeding them into HEER to improve the learning

of heterogeneous metrics, which shares intuition with a previous

study [14] in improving angular layout at the early stage of model

training. The learning rate for gradient descent for HEER is set to 10

on both datasets. Note that we use the same set of hyperparameters

for HEER on both DBLP and YAGO in order to provide an easy-

to-use solution to the problem of comprehensive transcription of

HINs without the hassle of extensive parameter tuning.

6.3 Edge Reconstruction Experiment

In order to directly quantify the extent to which an embedding

algorithm can preserve the information in the input HINs, we devise

the edge reconstruction experiments for both datasets. For each

HIN, we first knock out a portion of edges uniformly at random,

with a certain knock-out rate κ ∈ (0, 1). Embedding of the network

after knock-out is then learned using each compared method. The



Table 2: Per-edge-type, micro-average, and macro-average MRR achieved by each model in the edge reconstruction task.

Dataset DBLP YAGO

Metric (MRR) Aut. Term Ref. Pub. venue Pub. year Micro-avg. Macro-avg. Micro-avg. Macro-avg.

Pretrained (LINE [29]) 0.7053 0.4830 0.8729 0.7488 0.4986 0.6307 0.6617 0.7454 0.6890

AspEm [23] 0.7068 0.6010 0.8648 0.7612 0.6791 0.6976 0.7225 0.7832 0.6825

UniMetrics (len-1 metapath2vec++ [5]) 0.7040 0.5772 0.8466 0.7534 0.6781 0.6812 0.7119 0.7437 0.6884

Pretrained + Logit 0.8187 0.6996 0.8072 0.8379 0.4889 0.7310 0.7304 0.8233 0.7012

HEER 0.8964 0.7188 0.9573 0.9132 0.7421 0.8189 0.8456 0.8635 0.7185

task is to reconstruct the edges being knocked out using the learned

embedding models.

Specifically, for each edge that is knocked out from the network,

suppose it is between node pair (u,v ) and of edge type r , we ran-
domly sample 10 negative pairs (u, ṽ ) that do not have type-r edges
in the original full network, where ṽ is of the same node type as v .
For any model after training, a score can be calculated to reflect the

likelihood for each of the 11 node pairs to be associated by type-r
edge in the current model. The reciprocal rank is then computed

to measure the quality of the model, where the reciprocal rank is

the reciprocal of the rank of the positive pair among all 11 node.

Similarly, another reciprocal rank is computed for the same node

pair (u,v ) and 10 other randomly sampled negative pairs (ũ,v ) with
fixed v but sampled ũ. Finally, we report the mean reciprocal rank

(MRR), which is computed by the mean of reciprocal ranks for the

target test instances. In particular, the micro-average MRR and the

macro-average MRR are reported for both DBLP and YAGO, where

the micro-average MRR is computed by the mean of all reciprocal

ranks computed regardless of edge types, while the macro-average

MRR is derived by first computing the mean of reciprocal ranks for

each edge type, and then averaging all these means across different

edge types. Additionally, we also report the MRR for each edge type

for DBLP, since DBLP involves only 5 edge types, while YAGO has

as many as 24 edge types. We present the results with knock-out

rate κ = 0.4 in Table 2.

Modeling incompatibility benefits embedding quality. As

shown in Table 2, the proposed HEER model outperformed all

baselines in both datasets under both micro-average MRR and

macro-average MRR, which demonstrated the effectiveness of the

proposed method. Even when looking at each edge type in DBLP,

the MRR achieved by HEER was still the best. Besides, in DBLP,

AspEm outperformed Pretrained and UniMetrics on most metrics.

Recall that AspEm decomposed the HIN into distinct aspects using

dataset-wide statistics. As a result, it forbade semantically incom-

patible edge types to negatively affect each other in the embedding

learning process and thereby achieved better results. In YAGO, the

baselines considering heterogeneity did not always clearly outper-

form the simplest baseline Pretrained. We interpret this result by

that YAGO has much more edge types than DBLP, which introduces

evenmore varied extent of incompatibility, and the relatively simple

approaches adopted by AspEm and UniMetrics in modeling incom-

patibility may not be enough to bring in significant performance

boost. In contrast, armed with heterogeneous metrics fine-grained

to the edge type level, HEER outperformed Pretrained by a clear

margin even in YAGO.

(a) DBLP.

(b) YAGO.

Figure 6: Micro-average MRR under multiple knock-out rate κ in

the egde reconstruction tasks.

Heterogeneous metrics helps improving embedding quality.

As a sanity check, the Pretrained + Logit model helps rule out

the possibility that HEER archives better results only by learning

edge-type–specific metrics without actually improving embedding

quality. From Table 2, it can be observed that by coupling with

the additional edge-type–specific logistic regression and modeling

heterogeneous metrics, the performance was improved on top of

the Pretrained mode. This observation further consolidated the

necessity of employing heterogeneous metrics for different edge

types in solving the problem of comprehensive transcription of

heterogeneous information networks. However, Pretrained + Logit

still performed worse than the proposed HEERmode, which implies

that the inferred heterogeneous metrics of HEER indeed in return

improved the quality of the node and edge embedding.
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Figure 7: �e learned heterogeneous metrics of the HEER model sensed the heterogeneous semantics of the HINs.

Heterogeneous negative sampling is not always enough to

capture incompatibility. UniMetric performed be�er than the

Pretained model in DBLP, it failed to make an absolute win over

Pretained as other methods did in the YAGO dataset. Our inter-

pretation of this result is that while the heterogeneous negative

sampling as used by UniMetric does leverage certain type-speci�c

information in HINs, it may not be always enough to model incom-

patibility and resolve the negative impact it brings to embedding

quality. �is observation is to be further corroborated in Section 6.4

by examining the capability of transcribing information implied by

meta-paths in each model.

Varying Knock-Out Rate in Edge Reconstruction. Addition-

ally, we vary the knock-out rate κ on both datasets and report the

micro-average MRR for the proposed HEER model and two baseline

models that require less training time. As presented in Figure 6,

HEER outperformed all baselines under at most knock-out rates,

which demonstrated the robustness of the proposed model. Besides,

Pretrained + Logit outperformed Pretrained at all knock-out rates,

which is also in line with the previous results we have presented.

Notably, HEER did not outperform Pretrained + Logit when the

knock-out rate κ = 0.8. �is is explainable because only a very

small portion (20%) of the original HIN was used for learning em-

bedding when κ = 0.8. With a bigger model size than Pretrained +

Logit, HEER was more prone to su�ering from over-��ing.

6.4 Case Studies

In this section, we conduct a series of in-depth case studies to

understand the characteristics of the proposed HEER model.

Learnedheterogeneousmetrics. HEER leverages heterogeneous

metrics to model the di�erent extent of incompatible semantics

carried by di�erent edge types. In this section, we analyzed the

learned metrics {µr }r ∈R in HEER to verify if they indeed captured

the di�erent semantics and thereby enriched the model capability.

To this end, we use heat maps to illustrate {µr }r ∈R that are

learned in the edge reconstruction experiments on both HINs.

Speci�cally, for each dataset, we �rst standardize the elements

of each µr to have zero mean and unit deviation, so that µr ’s have

(a) Pretrained. (b) HEER under  ꋸ. (b) HEER under  ɨ.

Figure 8: �e subnetwork surrounding �omas Hardy in YAGO in

multiple embedding models under potentially di�erent metrics.

comparable scales a�er standardization for all r ∈ R. �en, we

re-order the dE dimensions for be�er visualization and plot the

heat maps in Figure 7.

Recall that the inferred metrics {µr }r ∈R were set to be all-one

vectors in initialization, whereas Figure 7 shows that di�erent met-

rics have generally reached di�erent distributions over the dE di-

mensions a�er training. �is implies that the inferred metrics of

the HEER model indeed sensed the heterogeneity of the HINs, and

were using di�erent projected metric spaces to embed di�erent se-

mantics of the input network. Notably, it can be seen from the heat

map of YAGO that edge types 6 (isA�liatedTo) and 8 (playsFor)

have similar inferred metrics. �is is actually expected because

these edge types are o�en associated with the relationship between

professional sports players and their associated teams in YAGO.

Besides, similar phenomenon can be observed between 9 (isMar-

riedTo) and edge type 11 (hasChild).

Embedded subnetwork with di�erent edge types. In order to

understand how the network is impacted by the introduction of het-

erogeneous metrics, we took a closer look at a subnetwork surround-

ing the British writer �omas Hardy in the YAGO dataset. Multiple

other writers having the in�uences relationship ( 12 , colored gray)

with �omas Hardy include Charles Dickens, John Fowles, and

John Irving, while Florence Dugdale and �omas Hardy enjoyed

the isMarriedTo relationship ( 9 , colored red). Besides, Fowles and
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Figure 9: Visualization using t-SNE of 2, 370 paper nodes that are

linked to a given paper via four di�erent meta-paths in DBLP. Each

node is colored according to themeta-path it uses to reach the given

paper. In Figure 9b, the nodes with samemeta-path are clustered to-

gether, which implies HEER can preserve the information carried

by di�erent meta-paths in embedding learning even without the

use of any meta-path. As a comparison, UniMetrics (len-1 meta-

path2vec++) yields less distinct clusters, with red, cyan, and blue

nodes mingled together, showing adopting heterogeneous negative

samplingwithout learned heterogeneousmetrics is not su�cient to

preserve the heterogeneity in the HIN embedding process.

Irving are also in�uenced by Dickens. In Figure 8, we visualized

this subnetwork under each embedding model with the inferred

possibility of edge existence marked, where the embedding models

are training using the entire network. It can be seen from Figure 8a

that without distinguishing edge types, Pretrained assigned high

possibilities to all edges. Meanwhile, with the learned heteroge-

neous metrics, the HEER model assigned a relatively low probability

for Dugdale and Hardy under the metric for in�uences as in Fig-

ure 8b (note that Dugdale was also a writer), and a clearly higher

probability under the metric for isMarriedTo as in Figure 8c.

Transcription of information implied by meta-paths. When

embedding each of the HINs, no meta-paths of length greater than

1 (i.e.., besides edges) were used, where a meta-path is the concate-

nation of certain edge types used to re�ect certain semantics of

an HIN [21, 25, 26]. We would like to verify whether the input

HIN can be transcribed so comprehensively that the signals implied

by meta-paths are also preserved in the embedding process, even

without the use of guidance from meta-paths.

To this end, we visualize the embedding results considering four

di�erent meta-paths: [paper]

ven.

[venue]

ven.

[paper] (colored red),

[paper]

ref .
−−−→ [paper] (colored cyan), [paper]

aut.

[author]

aut.

[paper]

(colored blue), and [paper]

year

[year]

year

[paper] (colored yellow).

In particular, we consider a given paper node and �nd all paper

nodes connected to this given paper by the aforementioned four

meta-paths. �en we visualize the embeddings of all the nodes

found in this way using the popular t-Distributed Stochastic Neigh-

bor Embedding (t-SNE) [12] algorithm. Each node is colored ac-

cording to the meta-path it uses to connect to the given paper

node. Additionally, we randomly downsampled the group of nodes

reached by meta-path [paper]

year

[year]

year

[paper] because a year

Figure 10: �e relative loss and the micro-average MRR against the

number of epochs for the proposedHEERmodel and theUniMetrics

(len-1 metapath2vec) model.

can have edges with tens of thousands of paper nodes. �e visual-

ization results are shown in Figure 9.

In Figure 9b, the nodes with the same color are generally clus-

tered together, which implies HEER can preserve the information

implied by di�erent meta-paths in embedding learning even with-

out the use of any meta-path. As a comparison, we also visualized

the same set of nodes in Figure 9a using embedding generated

by UniMetrics (len-1 metapath2vec++), which yields less distinct

clusters, with red, cyan, and blue nodes mingled together. Recall

that UniMetrics also considers edge types when conducting nega-

tive sampling, and is di�erent from HEER only in that the former

does not employ heterogeneous metrics leaning. �is result again

demonstrated that adopting heterogeneous negative sampling with-

out learned heterogeneous metrics is not su�cient to preserve the

heterogeneity in the HIN embedding process, and is therefore not

ideal for solving the problem of comprehensive transcription of

heterogeneous information networks.

6.5 E�ciency Study

For e�ciency study, we plot out the loss and the performance of

the proposed HEER algorithm against the number of epochs in the

edge reconstruction experiment. We also illustrate the same curves

of the UniMetrics (len-1 metapath2vec++) model for comparison.

�e results are presented in Figure 10.

Judging from the curve for the loss again the number of epochs

in Figure 10, HEER converges at a comparable rate with the skip-

gram–based UniMetrics (metapath2vec++). Besides, HEER took less

than twice as much time to �nish each epoch as metapath2vec++

did. �is is expected because HEER only additionally requires one-

step gradient descent for one µr when training on each sampled

training example. As a result, the time complexity of HEER for

each epoch di�ers from that of metapath2vec++ by a small constant

factor. Combining the above two properties, HEER enjoys over-

all complexity linear to the number of nodes as skip-gram–based

algorithms do [1, 5, 7].



7 CONCLUSION AND FUTUREWORKS

We studied the problem of the comprehensive transcription of HINs

in embedding learning, which preserves the rich information in

HINs and provides an easy-to-use approach to unleash the power

of HINs. To tackle this problem, we identify that different extents of

semantic incompatibility exist in real-world HINs, which pose chal-

lenges to the comprehensive transcription of HINs. To cope with

these challenges, we propose an algorithm, HEER, that leverages

edge representations and heterogeneous metrics. Experiments and

in-depth case studies with large real-world datasets demonstrate

the effectiveness of HEER and the utility of edge representations

and heterogeneous metrics.

With the availability of edge representations proposed this pa-

per, future works include exploration of more loss functions over

edge representation, such as regression to model edges associated

with ratings on HINs that have user-item reviews, or soft-max

to model HINs where at most one edge type can exist between a

pair of node types. One may also explore alternate ways to build

edge embedding guv using addition, subtraction, outer-product, or

deeper architectures. We leave the exploration of this direction to

future works. Besides, it is also worthy of studying further boost

the performance of HEER by incorporating higher-order structures

such as network motifs, while retaining the advantage of HEER for

being able to preserve the rich semantics from HINs.
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