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Abstract—We consider the problem of protecting individ-
ual user’s location privacy at the trace-level and study the
privacy-utility tradeoff, which has key applications in privacy-
presreving Location-based Service (LBS). Existing works on
Location Privacy Protection Mechanisms (LPPMs) have mainly
focused on protecting single location, without taking into account
the temporal correlations among locations within the trace, which
can lead to higher privacy leakage when considering the whole
trace. However, to date, there lacks a formal framework to
quantify the trace-level location privacy leakage, and a practical
mechanism to release location traces in an optimal and online
manner. In this paper, we endeavor to solve this problem using
an information-theoretic approach. We first propose a location
trace privacy metric based on the mutual information between
the original and released trace in an offline setting, and formulate
the optimal location trace release problem that minimizes trace-
level privacy leakage given a utility constraint. We also propose a
privacy metric to capture trace-level privacy leakage in an online
setting. As directly computing these metrics incur exponential
complexity w.r.t. the trace length, we obtain upper and lower
bounds on the trace-level privacy leakage by exploiting the
Markov structure of the temporal location correlations, which
are efficiently computable. The proposed upper bounds enable
us to derive efficient online solutions (i.e., LPPMs) by modifying
Blahut-Arimoto algorithm in rate-distortion theory. Then we
validate the proposed upper and lower bounds and the actual
leakage of our LPPM through extensive experiments over both
synthetic and real-world location datasets. Our results show the
superiority of our LPPM over existing LPPMs in terms of trace-
level privacy-utility tradeoff, which is more conspicuous when
the location trace is more correlated.

Index Terms—Privacy metric, location trace privacy, temporal
correlations, information-theoretic privacy, rate-distortion the-
ory.

I. INTRODUCTION

OCATION-Based Service (LBS) has became an indis-

pensable part of people’s daily life [1], [2]. For instance,
a user can take a picture and post it on Facebook with her
current location; a student can find her friends by sharing
locations through Foursquare; an Uber driver can locate the
next passenger and search for the shortest path to a given des-
tination using Google Map. Moreover, the significant amounts
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of data collected through LBS can be used in many other
advanced applications, such as social relationship analysis,
disease tracing, advertising, etc [3]-[5]. A location trace,
which can be utilized in many applications, is a set of locations
reported by a user while using LBS. For example, a user needs
to periodically report her locations to a service provider in a
navigation app (e.g., Google Map), which form a location trace
and are highly correlated [6].

Privacy has been one of the most significant concerns in
LBS applications. This is because the locations people share
and report in LBS can be used to infer users’ sensitive
information, such as home addresses, travel plans, hospital
visits, health conditions, etc., while the service providers
cannot be fully trusted [7]. Many Location Privacy Protection
Mechanisms (LPPMs) have been proposed to protect users’
private locations against an untrusted LBS server [8]. For
example, under a perturbation-based LPPM, a user’s true
location is distorted to a certain extent before being reported
to a service provider. As a result, the user can still access
LBS without sacrificing too much service quality (e.g., query
accuracy), while the untrusted service provider cannot reveal
her exact location.

A. Related work

Unfortunately, most of the existing LPPMs focus on protect-
ing single location privacy [9]-[11], where locations reported
by a user are not (or hardly) temporally correlated. Even
though these approaches are practical and perfectly valid in
single location scenario, they cannot be used to protect location
trace privacy. These works are mainly based on the privacy
definitions such as k-anonymity [12] and differential privacy
[13], which are originally proposed to protect the existence of
a single record in a database. Besides, k-anonymity has been
disregarded as a reasonable privacy metric in [14]. In addition,
cryptographic location privacy approaches apply encryption to
protect user’s locations [15], but those approaches are compu-
tational expensive even though they can provide strict privacy
guarantee. There are also approaches based on spatial cloaking
to protect location privacy [16], but spatial cloaking cannot be
used as a privacy metric to evaluate LPPMs. Independently,
authors in [11] propose to use the conditional entropy and
the mutual information as complementary privacy metrics, and
adopt Blahut-Arimoto algorithm to produce an LPPM that is
almost optimal in terms of conditional entropy. Although it can
be directly applied to a trace setting by releasing locations only
depending on current location, it does not consider location
correlations. Recent studies in [17], [18] have shown that, by
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applying LPPMs for a single timestamp to a location trace,
significant privacy leakage will be incurred due to temporal
correlations within the trace. Moreover, reconstructing user’s
traces from obfuscated individual locations is also possible
[19], [20]. Although a couple of works based on game theory
[21], [22] or extended notions of differential privacy [17] have
been proposed to take into account the temporal correlations
of locations, and there is also some work in which authors
measure the trace-level privacy by averaging individual loca-
tion privacy [23], there still lacks proper privacy metrics that
take the location correlations inside a trace into account when
quantifying the privacy leakage of an entire location trace.

Even though there are some related works on privacy
metrics [24]-[30] used to quantify information leakage based
on information theory, we argue that these privacy metrics are
either not applicable or not practical when used on location
trace privacy. Ma et al. [24] proposed a privacy metric for time-
series data to quantify the amount of information available to
the adversary when he tries to infer the original data given
any range of released data. However, this metric quantifies
the privacy leakage about a single timestamp’s data point
rather than the entire time-series. Besides, they consider an
offline setting instead of an online setting. Shokri et al. in [25],
[26] proposed privacy metrics that quantify attacker’s location
estimation error under specific types of inference attacks, and
these metrics take inherently location correlations into account.
Even so, we believe that the information-theoretic metrics
proposed in our work which also consider correlations into
account are still useful, because they provide another point
of view that complements the average adversary error privacy
metric. Cuff et al. [27] proposed a metric based on conditional
mutual information to interpret differential privacy. However,
the privacy guarantee of this metric is too strong to achieve
for location trace privacy. This is because the adversary in this
setting is assumed to know all the other locations in a location
trace except for one location; since locations are correlated,
much noise has to be added to protect a single location in
a location trace and thus leads to little utility. Theoretically
speaking, the privacy metric proposed in [28] could be applied
to location trace privacy. However, deriving the optimal LPPM
from their metric is impractical, since their optimal mechanism
is based on the achievability of rate distortion, which uses data
compression and joint typical decoding on a large domain size.
The privacy metrics proposed in [29], [30] also face scalability
issues w.r.t. trace length, so they are not practical when applied
to quantify trace privacy.

B. Contributions

In this paper, we propose a novel location trace privacy
metric to quantify the information leakage between the original
and the released trace when any LPPM is adopted. Our
privacy metric helps to further understand the information
leakage of different LPPMs in practice, and offers a formal
way of comparing privacy levels achieved by existing and
future LPPMs. Besides, we derive the optimal LPPM by
formulating the optimal location trace release problem as a
minimization problem over trace-level privacy leakage given
a utility constraint. In addition, we address practical challenges

encountered when directly computing this metric. The major
contributions of this paper are summarized as follows:

o« We propose privacy metrics to quantify trace-level in-
formation leakage both in offfine and online setting. By
leveraging the mutual information in information theory,
we formulate the optimization problem that minimizes
trace-level privacy leakage given a utility constraint to
derive the optimal location trace release mechanism in
the online setting, which is more interesting and practical.
Our metric is generic and independent of any specific
inference attack. The motivation for choosing mutual
information as the privacy metric comes from the fact that
priors and correlations naturally exist in location traces,
and we need a privacy metric to capture the priors and
correlations in location traces in a principle and clear way.

o We address a practical challenge encountered when solv-
ing the above optimization problem in online setting.
Since directly computing the privacy metric leads to
exponential complexity with respect to the trace length,
we derive upper and lower bounds of the privacy leakage
by exploiting the Markov structure of the temporal loca-
tion correlations, which are efficiently computable. The
proposed upper bound enables us to derive efficient online
solutions (LPPMs) by modifying the Blahut-Arimoto
algorithm [31] in rate-distortion theory. In particular, our
LPPM can be pre-computed in advance and then used for
online location release with very high efficiency.

o Using our privacy metric, we compare our LPPM with
two state-of-the-art LPPMs via extensive experiments
over both synthetic and real-world location datasets. Our
results demonstrate that our LPPM reveals the least
amount of information under the same utility constraint.
Moreover, its advantage in the privacy-utility tradeoff
becomes even greater when location traces become more
correlated. We also show the efficiency of our LPPM,
where the offline pre-computation requires a reasonable
time, and the online release is very fast.

The rest of this paper is organized as follows. We present the
problem statement in Section II, and provide the preliminaries
in Section III. Section IV describes the main results for the
online privacy-utility tradeoff for location traces together with
algorithms for generating optimal LPPMs based on upper
bounds in Section V. Section VI presents experimental results,
followed by conclusion and future work in Section VIIL.
Finally, the proofs for all the theoretical results are presented
in Appendix.

II. PROBLEM STATEMENT

In this section, we present the problem setting, describe
the threat model, define the privacy and utility metrics for a
location trace, and formally present our problem. The notations
introduced throughout the paper are summarized in Table I.

A. Location Trace Model

We represent user’s location L; at timestamp i, as a triplet
(x4, v, 1), where x;, y;, and 4 represent the latitude coordinate,
longitude coordinate and timestamp respectively. A location
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Fig. 1. Problem Setting: Online Privacy-preserving Location Release
trace L with length 7' is represented by a sequence of locations
(L1, Lo, ..., L7). The timestamp 4 and length T take integer
values. Furthermore, we assume that the user moves within NV
discrete locations.

In our model, we assume user’s location traces are generated
from an underlying probability distribution, which can be
obtained from user’s initial location probability distribution
and a mobility model. Specifically, we denote user’s initial
location probability distribution by an N-length vector pq,
and consider user’s mobility model as a first-order Markov
model denoted by a Markov transition matrix M [17], [25],
[32]. Each element in p; represents the probability that a
user stays in a certain location. In addition, we use py, ., to
denote an element at the mth row and nth column in M,
i.e., pm,n represents the probability that a user moves from
location m to location n. Then the probability distribution of
user’s location at timestamp 7 is p; = p1 M =1 Moreover,
the probability distribution of a location trace with length ¢ is
the joint distribution of all the locations up to timestamp ¢,
i.e., p(ly,l2,...,1;), which can be obtained from user’s initial
location probability distribution p; and the Markov transition
matrix M. In particular, the practicality of using the Markov
mobility model is discussed in [25].

B. Online Privacy-preserving Location Release

We consider the problem setting illustrated in Fig. 1, where
a privacy-conscious user releases a distorted location U; in-
stead of her true location L; to the untrusted service provider
at each timestamp 7 to obtain services. Specifically, the user
releases her locations in an online manner, which means that
at timestamp ¢, the user generates and then releases a distorted
location U; according to the joint probability distribution of
all her true locations available up to timestamp ¢ and the
past distorted locations, i.e., p(l1, ..., l;, u1, ..., u;—1). This can
ensure that the LPPM used at each timestamp ¢ takes the
temporal correlations among a location trace into account.
We assume L; = U; for simplicity, i.e., the alphabet of true
locations and released locations are the same.

C. Threat Model

As we can see from Fig. 1, after a certain time pe-
riod 1,2,...,7T, the untrusted service provider can ob-
serve the released (distorted) location trace in the form of

(U1,Us, ...,Ur). Then the service provider could infer user’s
private location information based on the released location
trace (Uy,Us,...,Ur). We assume that the untrusted service
provider has full statistical knowledge of user’s locations, i.e.,
user’s initial location probability distribution and her mobility
model. Furthermore, we do not make any restriction on the
computational capability of the untrusted service provider. In
principle, it can use this statistical knowledge and the released
location trace to launch any type of inference attack. Now
our goal is to understand the fundamental information leakage
(i.e., privacy leakage) arising from releasing user’s distorted
location trace in such scenarios.

D. Privacy and Utility Metrics for a Location Trace

We use random variables L and U to represent user’s
true location and released location respectively, and their
lower case ! and w are possible values of these two random
variables. Random vectors L = (L1, La,...,Ly) and U =
(Uy,Us, ..., Ur) represent user’s true location trace with length
T and the released location trace with length T respectively,
and the lower case I and u are possible values of these two
random vectors.

Definition 1: Privacy Metric for a location trace. For
a certain time period 1,2,....T, given user’s true location
trace L = (L1, Lo, ..., L) and her released location trace
U = (U1,Us,...,Ur), the information leakage introduced
by the released location trace is defined as I(L;U) =
I(Ly, Lo, ..., L7; Uy, Us, ..., Ur), where I1(L;U) is the mu-
tual information between user’s true location trace and the
distorted location trace she releases to the untrusted service
provider. We use 1(L;U) as the privacy metric for a location
trace.

Remark 1: In the case that the untrusted service provider
has additional background knowledge (e.g., user’s social net-
work information such as her co-locations) other than user’s
initial location probability distribution and her mobility model,
our privacy metric for a location trace can be generalized
as the metric I(L; U, Z) to take the additional background
knowledge into account, where Z is a random variable rep-
resenting the additional background knowledge.

This general definition measures the fundamental infor-
mation leakage of user’s true location trace introduced by
the released trace. By limiting the information leakage for a
location trace to a certain level, an LPPM generated based
on our privacy metric provides the privacy guarantee that the
less information leakage introduced by releasing the distorted
trace, the higher privacy level can be preserved for the user.

We also want to highlight that mutual information and
conditional entropy are two alternative privacy metrics in our
problem. This is because when the prior distribution of a
location trace L ( i.e., the entropy H(L)) is fixed, knowing
that I(L;U) = H(L) — H(L|U), we can conclude that
the less the mutual information I(L;U) is, the larger the
conditional entropy H(L|U) will be. In other words, based
on H(L) and I(L;U), the conditional entropy H(L|U) can
be easily calculated. Since these two metrics are alternative in
our problem, we only use mutual information as the privacy
metric in this paper.
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TABLE I
NOTATIONS
Symbol Description
i, T Timestamp, length of a location trace
LelL UclU Random vectors representing the true and

released location trace with length 7'
Random variables representing the true and
released location at timestamp ¢
Random vectors representing (L1, ...
and ((]17 ceey Ui_1)
Iu,l;,ui, 1", u'=t  Possible values of L, U, L;, U;, L', U'™*

L; € ﬁi,Ui cUu;

Li, Uifl 7Li)v

p(-),r(+) Probability distribution of the true and
released location
q(- 1), p(-,-) Conditional, joint probability distribution
M Markov transition matrix

However, in order to obtain utility from LBS, the distortion
introduced by the released location trace should be limited to
a certain threshold. Hence, in order to capture the utility of an
LPPM, we define the following utility metric.

Definition 2: Utility Metric for a Location Trace. For
a certain time period 1,2,....T, given user’s true location
trace L = (Li,Ls,....,L7) and released location trace
U = (U1,Us,...,Ur), the utility metric for a location
trace is defined as D(L;U) = ZiT:1 D(L;; U;), where
D(L;;U;) is the expected distortion for the released loca-
tion at timestamp i (i.e., U;) and defined as D(L;;U;) =
Zli’uip(li)q(uiﬂi)d(li,ui), where d(l;,u;) is the distortion
function (e.g., Hamming distance or Euclidean distance).
The utility (distortion) constraint for the released location at
timestamp i is defined as D(L;U;) < D;,i = 1,2,...,T,
where D is the distortion assigned to the released location at
timestamp i in a location trace, which implies that the total
distortion for a location trace D < ZiT:1 D;.

The definition of utility metric implies that the total distor-
tion for a location trace actually depends on the individual
distortion of the released location at each timestamp. This
is reasonable since the user obtains utility from LBS in an
online manner, thus the utility for the released location at
each timestamp should be ensured by an individual utility
constraint, which could be different from one another due to
the type of LBS accessed by the user at a specific timestamp.

E. Problem

Intuitively, the less information leakage required by the user,
the less utility the user can get, and vice versa. Therefore, there
exists a privacy-utility tradeoff when designing LPPMs based
on our privacy metric. A natural question arises as what is the
minimum information leakage subject to a utility constraint
from an information-theoretic perspective and how to design
an LPPM to achieve this minimum information leakage. We
formulate this problem in the following proposition.

Proposition 1: Offline Privacy-Utility tradeoff for Lo-
cation Traces. For a certain time period 1,2,....T, given
user’s true location trace L = (L1, Lo, ..., L1), her released
location trace U = (Uy,Us, ..., Ur), and the utility constraint
D < Zle D;, an LPPM q(ul|l) is to say achieving the
minimum information leakage of a location trace subject to
the utility constraint D when it is the solution of the following

optimization problem:

*

ofﬂine(D) = min

I(L; U),
(ull){D(Li;U:) <Di}_,
where 1(L;U) is the privacy metric for a location trace.

Proposition 1 provides a general framework for the offline'
privacy-preserving location trace release, which contains two
parts, i.e., a pre-computing process for generating an optimal
LPPM ¢*(u|l) and a location trace releasing process according
to this LPPM. Specifically, once the optimal LPPM ¢*(u|l)
is obtained, it works in an offline manner: given user’s true
location trace as L, the user will sample from ¢*(u|l) to obtain
the distorted location trace U that achieves the minimum
information leakage subject to the utility constraint D, and
then release U to the service provider.

As we will show in Section IV, although this offline privacy-
utility tradeoff for location traces is theoretically meaningful, it
is actually extremely hard to find in practice. To this end, we
will introduce the problem of online privacy-utility tradeoff
for location traces and the methodology of analyzing and
characterizing this tradeoff in the rest of the paper.

III. PRELIMINARIES

In this section, we present the background for the rate-
distortion function and the algorithms used for its calculation.
The rate distortion problem has been considered for the
problem of lossy compression, where the goal is to minimize
the compression rate subject to a distortion constraint. We
notice that there is a close connection between the privacy-
utility tradeoff in Proposition 1 and the rate distortion problem.
This connection has also been studied in [28], [29]. Specif-
ically, they view the rate and distortion as analogous to the
information leakage and utility respectively when analyzing
the privacy-utility tradeoff. However, these works are looking
at using the principle of rate distortion function on privacy-
utility tradeoff in the setting of databases. Even though the
connection between rate distortion and the privacy-utility
trade-off has also been studied for individual locations in
[11], it has not been studied for the setting of location trace
privacy. Moreover, if we keep using the same principle of this
connection to study the privacy-utility problem for location
traces, there are practical challenges that arise in designing
efficient mechanisms as we will mention in Section IV. In the
following, we briefly present the rate distortion problem, it’s
computation and connection to Proposition 1.

Definition 3: Rate Distortion Function [33]. If the input
of an encoder is X and the output of the corresponding
decoder is X, the rate distortion function R(D) for a source
X~p(x) with distortion measure d(x, %) is defined as

R(D) = I(X; X)
p(&|x):
> p(@)p(2|r)d(z,2)<D

| p(2]z)
p(Z)

= min
p(&|x):
> p(x)p(2|z)d(z,2)<D

x, &

p(z)p(&|z) log ;M

'In contrast to the online setting where a user releases her distorted location
individually at each timestamp, in the offline setting, the user releases her
entire distorted location trace to the service provider once for all.
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where the minimization is over all conditional distributions
q(Z|x) for which the joint distribution p(x,%) = p(z)p(Z|z)
satisfies the expected distortion constraint.

We next describe a general algorithm for finding the min-

imum distance between two convex sets, and this algorithm
can be in turn used to find the solution to the optimization
problem for the rate distortion function.
General Algorithm for Finding the Minimum Distance
between Two Convex Sets [33], [34]. Given two convex
sets A and B, the minimum distance between them d,,;,, =
minge 4 minge g d(a, b), where d(a,b) is the Euclidean dis-
tance between a and b, can be found by the following steps:
first we can take any point z € A, and find the y € B that
is closest to it. Then fix this y and find its closest point in
A. Tterative applications of this process decreases the distance
at each step. The result in [34] has shown that if the sets
are convex and if the distance satisfies certain conditions, this
alternating minimization algorithm will indeed converge to
the minimum. In particular, if the sets are sets of probability
distributions and the distance measure is the relative entropy,
the algorithm does converge to the minimum relative entropy
between the two sets of distributions.

Last, we briefly review the technical details of the Blahut-
Arimoto algorithm which utilizes the above idea to compute
the rate distortion function.

Blahut-Arimoto algorithm for Computing the Rate Dis-
tortion Function. Blahut-Arimoto algorithm [31], [33] is an
iterative algorithm that eventually converges to the optimal
solution of the convex optimization problem in the rate distor-
tion function. Specifically, in this algorithm, it first chooses an
initial distribution for r(Z) (e.g., a unif(g(n gl)istribution), then

r(&)e M@

W After obtain-

ing q(&|z), it updates 7(2) by setting (i) = Y. p(x)q(Z]T).
Then it uses 7(%) to update g(Z|z) by setting q(Z|x) =
% The optimal solution ¢(&|) that minimizes
the rate distortion function can be obtained by repeating the
above iteration between r(Z) and ¢(&|z) until convergence.

In principle, the Blahut-Arimoto algorithm can be used to
compute the optimal LPPM ¢*(u/|l) in Proposition 1. However,
as we will discuss in the next section, there are significant
practical challenges when directly using the Blahut-Arimoto
algorithm on our problem.

uses (&) to compute g(&|z) =

IV. ONLINE PRIVACY-UTILITY TRADEOFF FOR LOCATION
TRACES

A. Practical Challenge in Finding the
Privacy-Utility Tradeoff for Location Traces

Optimal Offline

Directly using the Blahut-Arimoto algorithm on the opti-
mization problem in Proposition 1 incurs exponential com-
plexity. This is because we need to characterize the values
of g(ull) for all possible combinations (u,l) € L x U.
In other words, we have to solve the optimization problem
over [U||L]| variables in order to find the optimal solution
q(ul|l). Specifically, if we consider a user moving within N
locations and her distorted locations are also taken from these
N locations, then the number of variables will be N27 when
the user wants to release a location trace with length 7T,

since we have |U| = |£| = N7 in this case. As we can
see, with an increase in the length 7" of a location trace,
the number of variables increases exponentially. In addition
to this computation complexity issue, the problem of the
offline privacy-utility tradeoff also does not tell us about the
information leakage for the online privacy-preserving location
release, i.e., it does not capture the online nature of this setting.

Therefore, in the following, we propose a new problem,
i.e., the online privacy-utility tradeoff, to analyze the minimum
information leakage subject to a certain utility constraint in the
online privacy-preserving location release setting. Even though
the computation complexity issue still remains in finding the
optimal online privacy-utility tradeoff, we will show how to
address this issue by deriving upper and lower bounds on the
tradeoff which are efficiently computable. Interestingly, these
upper and lower bounds derived for the online privacy-utility
tradeoff also provide us an insight to understand and analyze
the offline privacy-utility tradeoff.

B. Privacy-Utility Tradeoff for Online Location Release Mech-
anisms

We first introduce the definition of the privacy leakage for
online location release mechanisms as below,

Definition 4: Privacy Leakage for Online Location Re-
lease Mechanisms. For a certain time period 1,2, ..., T, when
a user is releasing her locations in an online manner (i.e.,
she sequentially releases her locations which form a released
location trace), the actual privacy leakage introduced in this
online location release setting is defined as

T
Lol (LPPM) =y (L U U, )
i=1
where the LPPM could be generated based on any type of
approaches, and Li, U, U1 are described in Table I. We
use LAl (LPPM) as the privacy metric to evaluate the actual
privacy leakage for online location release mechanisms.
We will describe how to evaluate the actual privacy leakage
L£Acual(] PPM) for specific LPPMs in detail in Section V-C.
Next, we present the problem of online privacy-utility
tradeoff for location traces in the following proposition.
Proposition 2: Online Privacy-Utility tradeoff for Lo-
cation Traces. The tradeoff between privacy leakage and

distortion for online release mechanisms is given as follows,

T
caine(D) =

online I(Li; Ui|Ui_1)7 (3)

min
i1 q(ug |V uth):
D(Li;Ui)<D;
where D; represents the distortion assigned to the ith op-
timization problem in the summation in (3), L', U™, I’
and w1 are described in Table I. Furthermore, the online
privacy-utility tradeoff is always greater or equal to the offline
privacy-utility tradeoff, i.e., Ly, (D) < L3, (D).
The proof of Lip. (D) < L% .. .(D) is given in Appendix.
In Proposition 2, we can see that finding the online privacy-
utility tradeoff requires solving the optimization problems
in (3) individually where the objective functions are in the
form of I(L%; U;|U*~1). In addition, by leveraging this online
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location release mechanism, a user can release her location
u; according to the LPPM q(u; |1, w'~!) at each timestamp i,
instead of releasing her whole location trace w according to the
LPPM ¢(ul|l) obtained in Proposition 1 in the offline setting.
Specifically, the optimization problems in (3) are solved in
a sequential manner from timestamp 1 to timestamp 7. In
particular, the LPPM q(u;|l*, u*~!) obtained at timestamp i
(i.e., the solution in the ith optimization problem in (3)) will
be used as an input for the problem at timestamp ¢+ 1 to find
the optimal LPPM q(u; 1[l*"!, w*) that minimize the i + 1th
optimization problem in (3).

However, we notice that we still need to characterize
the value of q(u;|l*,u’~') for all possible combinations
(u',l") € L£L* x U, ie., the length of a location trace is
still involved in the objective function I(L*;U;|U"!) even
though we are considering the online location release setting.
The essential reason is that as long as the number of variables
in the objective function depends on the length of a location
trace, the exponential complexity still exists. If we want to
remove the effect caused by the length of a location trace
in the optimization problem and make the computation for
the optimal solution more efficient, the number of variables
in I(L*;U;|JU*"') needs to be independent of the length of
a location trace. To achieve this goal, we obtain upper and
lower bounds on L} . . (D) by relaxing the objective function,
which leads to the numbers of variables in the new objective
functions in the upper and lower bounds become independent
of the length of a location trace.

In the following, we present the main results for online
privacy-utility tradeoff for location traces.

1) Upper and Lower Bounds on Online Privacy-Utility
Tradeoff with Markov Release Restriction: Intuitively, a lo-
cation is more likely correlated with those that are closer to
it in terms of time span. Based on this intuition, we make
a Markov restriction on the location release mechanisms that
the released location U; at timestamp ¢ only depends on the
current true location L;, the previous released location U;_1,
and the previous true location L; ;. We want to highlight that
our system model allows for potentially more complex mech-
anisms but for complexity issues we focus on Markov release.
The location release mechanism with Markov restriction is
shown in Fig. 2.

Uiz —> U1 —> Ui—> U1 —> Ui

AN

------ Lis—> Li2 — L1 —> L —> Lisa —> Lisz »ee-
Fig. 2. Location release mechanism with Markov restriction

Based on this restriction on the location release mechanisms,
we derive the upper and lower bounds on L} .(D) and
present them in the following theorem.

Theorem 1: Upper and Lower Bounds on online
Privacy-Utility Tradeoff with Markov Release Restriction.
With the Markov restriction on the location release mecha-
nism, the optimal online privacy-utility tradeoff L?,,...(D) can
be upper and lower bounded as follows:

EMarkov(D> S L* (D) S EMarkov(D), (4)

lower online upper

where

T
Lope" (D)= min — I(Li L3 UilUin), (5)
=1 D(L;U:)<D;
T
Ligwe™ (D) = Zq( ! min I(Li; UilUi—1, Li—1). (6)
: willi,wi—1,li—1):
=1 D(L;U:)<D;

The proof of Theorem 1 is given in Appendix.

We want to highlight that we will use L)%V(D) to

generate LPPMs rather than £M%V( D), since we usually care
more about how much information at most will be leaked when
designing privacy-preserving mechanisms.

Definition 5: The optimal LPPM for a T-length loca-
tion trace, generated based on E%?,’ekr‘”(D) from timestamp
1 to T in a online manner, is defined as LPPM* =
{LPPM3,...LPPM,...LPPM}.}, where LPPM is the optimal
solution q(u;|l;, u;—1,1l;—1) obtained from solving the ith op-
timization problem in the summation in (5), i.e.,

min
q(williyws—1,li—1):

D(Li;U;)<D;

LPPM;} = arg I(Li; Li—1; UilUi—1). (D)

Corollary 1: The actual leakage of LPPM* evaluated
by LAcual(pPM) is sandwiched between LM*V(D) and

online lower

,C%;;’ek,""(D), ie.,
EMarkov(D) S ,CACtual(LPPM*) S LMarkov (D) (8)

lower online upper

The proof of Corollary 1 is presented in Appendix.

Corollary 1 provides us the privacy guarantee that the exact
information leakage for an entire location trace released by
LPPM* sequentially from timestamp 1 to 7" is sandwiched
between L)1ak¥(D) and LM45Y(D). Therefore, even though
directly computing the exact information leakage for an en-
tire location trace is computationally challenging, we can
still know the approximate information leakage by sandwich-
ing the exact information leakage between LM¥V(D) and
CUMP?,%}OV(D). Besides, Corollary 1 strengthens our statement
again that we should generate LPPM according to Eﬂ’[p‘gekr""(D)

rather than £M%V(D), since the actual leakage for an entire

location trace is upper bounded by Li%t"(D). Here we need
to mention that Theorem 1 and Corollary 1 are only valid
under the Markov release restriction.

Corollary 2: Given the LPPM for a T-length location
trace that releases locations only depending on the current
location at each timestamp, i.e., the LPPM at timestamp 1 is in
the form of q(u;|l;), where “cl” is shorted for current location,
the actual leakage of LPPM*! evaluated by LA"!(LPPM) is

online
upper and lower bounded as below,
Ilower S Eérfltl?]il (LPPMCI) S Iuppen (9)

where Iupper = Z?:l I(LivLi—U UilUi—l)’ and figwer =
S H(Li UilU—, Lic)-

Since LPPMs that release locations only depending on the
current location also satisfy the Markov release restriction,
Corollary 2 can be easily proved based on the proof of
Corollary 1. Thus we omit its proof for space limitation.
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We want to mention that the previous LPPMs designed for
single location scenario (e.g., [10], [11]) can be straightfor-
wardly applied to location traces by releasing locations only
depending on the current location. One take away from Corol-
lary 2 is that it provides us the upper and lower bounds on the
actual online leakage for a location trace when LPPMs release
locations only depending on the current location. Therefore,
calculating Iupper and liower is also meaningful for this type
of LPPMs, especially when their actual leakage is difficult
to calculate due to the exponential computation complexity,
which we will explain in detail in Section V-C.

Now we briefly analyze the generating process for LPPM*.
As we can see from Theorem 1, this process is quite
efficient, since we only need to characterize the val-
ues of q(u;|l;,u;_1,l;_1) for N* possible combinations in
EUMP%ZI}OV(D), which will make the computation much more ef-
ficient compared with characterizing g(u|l) for N?7 possible
combinations in £* . (D). Moreover, Theorem 1 provides a
framework for privacy-preserving location trace release under
the Markov release restriction . This framework is similar
in spirit to the one in Proposition 2, since both of them
contain the pre-computation part for generating LPPM and
location trace release part according to this LPPM. In terms
of how to use this LPPM to release locations in an online
manner, the user follows the following procedure: after she
obtains LPPM; at timestamp ¢, she can sample from the
conditional probability distribution q(u;|l;,u;—1,1;—1) based
on her current true location L;, the previous released and true
locations U;_; and L;_; to obtain the released location Uj;.
Next, in order to obtain the LPPM; | q(uiq1|liz1,us,1;) to
release her location U, at the next timestamp ¢+ 1, the user
will input her current LPPM? q(u;|l;, wi—1,1;—1) to the i+ 1th
optimization problem in (5), which we will explain in detail
in Section V.

As we can see from Theorem 1, we address the computation
challenge by deriving the upper and lower bounds on the
online privacy-utility tradeoff by making a Markov restriction
on location release mechanism. To make our analysis more
general, we also prove the upper and lower bounds without
making this restriction and the result is shown as below.

2) Upper and Lower Bounds on Online Privacy-Utility
Tradeoff for Generic Online Location Release Mechanisms:
In the case of generic online location release, i.e., when we
do not make the Markov restriction on the release mechanism,
the result is shown in the following theorem.

Theorem 2: Upper and Lower Bounds on online
Privacy-Utility Tradeoff for Generic Online Location Re-
lease Mechanisms. For generic online LPPMs, the optimal
online privacy-utility tradeoff L. .(D) can be upper and
lower bounded as follows:

‘ClOWﬁl’(D) S ‘C’zfﬂine(D) S ‘C’znline(D) S £UPPCF(D)7 (10)
where
T
Luper(D) =" min  I(L;;Uy), (11)

prt q(uill;):
~ " D(LUi)<D;

Liower(D) = T - min (miln)
i wil|l;):
D(qLi;UL')SDi,

I(Li; Uy). (12)

The proof of Theorem 2 is presented in Appendix.

Interestingly, this result naturally connects the online
privacy-utility tradeoff with the offline privacy-utility tradeoff,
which further enables us to understand the information leakage
in the offline setting. In addition, the above result is generic in
the sense that Liower(D) and Lypper(D) are true for any kind
of online location release mechanism. Moreover, Theorem 2
also provides a framework to pre-compute the optimal LPPM
q(ui|l;) at every timestamp according to Lypper(D) and then
release location u; at timestamp ¢ by sampling from ¢(u;|l;).
We only need to characterize the values of q(u;|l;) for N2
possible combinations in Lypper (D), which leads to high
computation efficiency.

However, we notice that Lypper(D) only captures the mutual
information between the true location L; and the released loca-
tion U; without taking any correlation into account. Therefore,
Lypper(D) may be too weak to be a privacy metric to quantify
location trace privacy, where correlations naturally happen.

Last, as mentioned above, Theorem 1 and Corollary 1 are
only valid under the Markov release restriction. On the other
hand, Theorem 2 provides the generic bounds for any optimal
online LPPM, since we did not make the Markov release
restriction when deriving the main results in this Theorem.

V. ALGORITHMS FOR GENERATING OPTIMAL LPPMS
BASED ON UPPER BOUNDS

In this section, we propose algorithms to obtain the optimal
LPPMs based on the upper bounds LY2%'(D) (i.e., LPPM*)
and Lypper(D). Since generating LPPM based on Lypper(D)
has already been proposed in [11], we will mainly focus
on presenting the algorithm used to solve the optimization
problem in LYX*V(D) to generate LPPM*.

Note that the objective function in L)*V(D) is in the form
of conditional mutual information, thus solving the optimiza-
tion problem in L)XOV(D) comes down to the problem of
minimizing conditional mutual information subject to a utility

constraint, which can be solved by our proposed algorithm.

A. Algorithm for Minimizing Conditional Mutual Information
subject to a Utility Constraint

First, we define the problem of minimizing conditional
mutual information subject to a utility constraint as below.
Definition 6: If X X and S are random variables,
the problem of minimizing conditional mutual information
I(X; X|S) subject to a utility constraint D is
min  I(X;X]9),
q(&|x,s):D<D

where D = Z p(z|s)q(&|z, s)p(s)d(x, &).

Noticing ﬁi:&sthe problem in Definition 6 is similar to the
rate distortion function, therefore, we can follow the main idea
of computing the rate distortion function to solve this problem.
We start with rewriting the optimization problem in Definition
6 as a minimum of the relative entropy between two sets, and
then apply the process of alternating minimization to obtain
the optimal solution ¢(#|z, s).



ZHANG et al.: ONLINE LOCATION TRACE PRIVACY: AN INFORMATION THEORETIC APPROACH 8

1) Rewrite the Optimization Problem in Definition 6: We
begin with the following lemma.

Lemma 1: Let p(z|s)p(Z|x, s) be a given joint distribution.
Then the distribution r(&|s) that minimizes the relative entropy
D(p(x, s)p(&|x, s)||(p(x, s)r(z|s)) is the marginal distribu-
tion r*(&|s) corresponding to p(&|x, s):

D(p(x, s)p(&|z, s)||p(x, s)r" (&]s))
= min Dlp(z. p(ala,o)|(p(z, )7 (21s)

where 7*(Z|s) = Y p(z|s)p(z|z, s).

The proof of Lemma 1 is similar to the main idea in the
proof of Lemma 10.8.1 in [33], thus we omit this proof for
space limitation.

According to the definition of mutual information, we have

I(X; X|8) = > plw, s)g(il, s) log%'

T,T,s
Based on Lemma 1 and Eq. (13), we can rewrite the
optimization problem in Definition 6 as a double minimization
as below,

(13)

I(X; X|S)

(212, 5)

p(m)q(ilx,s)logqr@‘s) (14)

2) Alternating Minimization Between Two Sets to Obtain
the Optimal Solution: If A is the set of all joint distributions
over X,X,S with marginal p(z,s) that satisfy the distor-
tion constraint and if B is the set of product distributions
p(z, s)r(&|s) with arbitrary r(Z|s), we can rewrite Eq. (14)
as the following,

min

15)
q(&|x,s):D<D

I(X; X]8) = minmin D(p|lg).

Until now, we have converted the problem of minimizing
conditional mutual information into the problem of finding the
minimum of the relative entropy between two sets. Similar to
the algorithm for finding the minimum distance between two
convex sets mentioned in Section III, we can use an alternating
minimization process on the double minimization problem in
(15) to obtain the optimal solution ¢(Z|x, s).

We begin with an initial output distribution r(z|s) and
calculate the ¢(Z|x, s) that minimizes the conditional mutual
information I(X;X|S) subject to the distortion constraint.
We can use the method of Lagrange multipliers for this
minimization to obtain
T(in‘s)eflf/\d(w,aﬁ)
S, r(#]s)e 1A @)

The parameter A in Eq. (16) is the Lagrange multiplier,
which is related to how much we favor information leakage
versus distortion (higher A means less distortion).

For this conditional distribution ¢(Z|z,s), we calculate
the output distribution 7(Z|s) that minimizes the conditional
mutual information, which by Lemma 1 is

r(&ls) =Y plz|s)g(@]z,s).

(16)

q(Elz,s) =

a7

Since the proofs of Eq. (16) and (17) are similar to those
of Eq. (10.142) and (10.143) in [33], we omit these proofs
for space consideration.

We use the output distribution 7 (:|s) as the starting point of
the next iteration. Each step in the iteration, minimizing over
q(&|z, s) and then over r(&|s), reduces the right-hand side of
(14). The limit of this process has been shown in [34].

The algorithm used to obtain the optimal solution ¢(&|z, s)
to the problem in Definition 6 is presented in Algorithm 1.

Algorithm 1: Minimizing Conditional Mutual Infor-
mation
Input: \: Lagrange multiplier, p(z, s): joint probability
distribution of z and s, d(x,Z): distortion matrix,
0: threshold for convergence of the algorithm
Output: ¢(Z|z, s): optimal solution, /*: minimum of
I(X; X|S), D: distortion corresponding to I*
1: Initialize ro(Z|s) as a uniform distribution
2: Calculate go(&|z, s) using 7 (Z|s) by Eq.(16)
Calculate Iy = I(X; X|S) using ro(&]s), qo(Z|z, s),
and p(z, s) by Eq.(13)

e

4: Calculate r(Z|s) using qo(Z|z, s) by Eq.(17)

5: while true do

6:  Calculate ¢(Z|z, s) using r(Z|s) by Eq.(16)

7. Calculate I = I(X; X|S) using r(&|s), q(Z|x, s),
and p(z, s) by Eq.(13)

8. if (Iop — I <) then

9: I* 1

10: Calculate D = )" _ . p(x,s)q(Z|z, s)d(x, &)

11 return ¢(Z|z, s), I*.D

12 else

13: Iy 1

14: Calculate r(&|s) using ¢(Z|x, s) by Eq.(17)

15 end if

16: end while

Remark 2: We analyze the computation complexity of
Algorithm 1 by giving an expression for the computation
complexity of one iteration in the algorithm. In each iteration,
the computation complexity is dominated by the calculation
for q(Z|x,s) and r(&|s). Complexity of computing q(&|x,s)
as given in (16): For each combination of (x,s), we need | X |
multiplications for a specific |&| in the denominator and then
use this denominator for every other |Z|, thus the calculation
needs O(|X|) operations. Considering of all the combina-
tions of (x,s), the complexity of computing q(Z|x,s) will be
O(|X||X|S]). Complexity of computing r(&|s) as given in
(17): Similarly, for each s, we need | X | multiplications for a
specific ||, so the calculation for all the s requires O(|X||S])
operations for a specific ||. Considering of the calculation
for all the |Z|, the complexity of computing r(Z|s) will also
be O(|X||X||S|). Therefore, each iteration in Algorithm 1
requires about O(|X || X||S|) computations. We can easily see
that the computation complexity grows with the size of X, X
and S. However, in practice, it is almost impossible for a
user to move to a location far away from her current location
within a certain time period due to the speed constraint. As a
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result, when we use Algorithm I to generate LPPMSs, the size
of X, X and S will not be arbitrarily large and are actually
limited to a small region.

In the following, we show how to leverage Algorithm 1
as a building block to generate LPPM*, i.e., by generating
LPPM7,....LPPM;,...LPPMZ. in an online manner.

B. Generating LPPMs based on the Upper Bounds

1) Generating LPPM;: Now we leverage algorithm
1 to design the algorithm used to generate LPPMY
q(u;|l;,wi—1,1;—1). Basically, we replace X, X and S with
(Li, Li—1), U; and U;_ respectively in Eq.(16) and Eq.(17)
to obtain the ¢(Z|x, s) and r(&|s) used in Algorithm 1, which
are shown as the following:

r(u;|lui—1)e
>, (U ui—y eI

> o lica|ui)q(uilli, wioa, i), (19)
li—1

isbi—

Q(uiuiaui—lali—l) = (18)

r(u|ui—1) =
l

From Eq.(19), we can see that the essential step for cal-
culating r(u;|u;—1) is to calculate p(l;,l;—1|u;—1), which
equals to p(u;_1,li—1,1;) / p(ui—1). where p(u;_1) is the
marginal distribution of the released locations at timestamp
1 — 1. Before we present the algorithm for generating the
optimal q(u;|l;,u;—1,0;—1), we want to show how to calculate
p(u;—1,l;—1,1;) first, since this is an essential step to under-
stand what should be the input parameters of our algorithm.
More importantly, this calculation also indicates that our
optimal LPPM for a location trace (i.e., LPPM*) should be
generated sequentially in terms of time span, i.e., the opti-
mal LPPM at timestamp ¢ (i.e., LPPM} q(u;|l;, ui—1,li—1))
depends on the optimal LPPM at the previous timestamp
(i.e., LPPM!_; q(u;—1|li—1,u;—2,l;—2)), which has already
been highlighted in Section IV-B. For example, if we want to
generate the optimal LPPM for a location trace with length 4,
first we should generate LPPM} ¢(u1]l;) at the first timestamp,
then we can generate LPPM} q(uz|la, u1,1;) based on LPPMj
at the second timestamp, and the processes at timestamps 3
and 4 are similar to this. Now, we expand the calculation for
p(ui—1,l;-1,1;) as the following:

P(wi—1,lie 175'):]3(%' Lli—)p(lilui—1,liz)  (20)
p(uz 17 i— 1) (l ‘lz 1 (21)
- Z p(uz 17l7, 1, Ui— 27 i— 2) (l ‘lz 1 (22)

Wi—2,li—2

In the probability calculation above, the reason that
(20) equals to (21) is because of the property of the
first order markov transition in location traces, i.e., the
current location [; only depends on the previous loca-
tion /;_;. Now we can easily see that p(u;—1,li—1,0;)
can be directly calculated by the joint probability distribu-
tion in the previous timestamp p(w;_1,l;—1,u;—2,l;_2) (i.e.,
q(ui—1|li—1,wi—o,li—o)p(li—1,u;—2,1;_2)) and the location
transition probability p(l;|l;—1). Therefore, in order to generate
LPPM; at the current timestamp ¢, we need to use one of
the outputs (e.g., p(u;—1,l;—1,u;—2,l;—2)) from the previous

Algorithm 2: Generating LPPM; at timestamp ¢

Input: \: Lagrange multiplier, p(u;_1,l;—1, ui—2,l;i—2):
joint probability distribution obtained from the previous
timestamp ¢ — 1, p(u;_1): marginal distribution of the
released location w;_1, d(l;,u;): distortion matrix,

0: threshold for convergence of the algorithm

Output: g(u;|l;, u;—1,l;—1): LPPM} at timestamp 4, I}
minimum leakage at timestamp ¢, D;: distortion
corresponding to I}, p(u;): marginal distribution of
the released location u;, q(u;,l;,u;—1,1;—1): joint
probability distribution of the true and released
locations w;, l;, u;_1,0;_1

1: Initialize ro(u;|u;—1) as a uniform distribution
2: Calculate go(w;|l;, wi—1,1;—1) using 7o (u;|u;—1) by
Eq.(18)
3: Calculate p(li, Ui—1, Zifl) by Eq.(22)
4: Calculate IZO = I(Li, L; q; Ui|Ui_1) using ro(ui|ui_1),
QO(Uq',Uz‘,Ui—l,lz'—l), and P(li, Ui—1, li—l) by Eq.(23)
5: Calculate 7(u;|u;—1) using qo(u;|l;, wi—1,li—1),
p(lisui—1,1;—1) and p(u;—1) by Eq.(19)
6: while true do
7: Calculate q(u;|l;, w;—1,0;—1) using r(u;|u;—1) by
Eq.(18)
8:  Calculate I; = I(L;, L;—1;U;|U;—1) using r(u;|u;—1),
q(ui|li;ui—1,1li—1), and p(l;, u;—1,1;—1) by Eq.(23)

9: if (I — I; < J) then

10: I+ I;

11: Calculate p(ui, lisui—1, li—l) =
Q(Ui\li,ui—l,li—1)p(li,ui—1,lz‘—1)

12: Calculate

Di =3t yitiy P Ly, Lioa)d(l;, ug)

13: Calculate p(u;) = ZliyuiflJi—l pug, Ly wi—1,lio1)
14: return q(ui\li,ui_l, li—l)’ Iz*’ D;,
p(wi, iy, ui—q,li—1) and p(u;)
15:  else
16: I9 « I,
17: Calculate T(ui|ui_1) using q(ui|li,ui_1, li_1),

p(li,ui_l, li—l) and p(ui_l) by Eq(19)
18:  end if
19: end while

timestamp 7 — 1, i.e., this proves the statement above that the
optimal LPPM for an entire location trace (i.e., LPPM*) should
be generated sequentially in terms of time span.
After we obtain LPPM; at each timestamp ¢,
calculate its minimum information leakage as below,

I(Li, Li—1; Ui Ui 1)
= Z p(ui, liyui—1,li—1) log

Wi, ls,
Wi—1,li—1

we can

q(ui|li, wim1, lizr)
r(ui|ui_1)

(23)

We present the algorithm used to generate LPPM; at
timestamp ¢ in a location trace in Algorithm 2.
By adding up all the I and D; derived at each timestamp

i, we obtain the Eﬂ\fgg‘f} (D) (i.e., an information leakage-

distortion pair in the form of (ZZ e ,ZZ 1 D;)) of an entire
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trace for a fixed A. By changing to different \s, we can obtain
the privacy-utility tradeoff curve of LYWXoV(D).

Last, the computation complexity of Algorithm 2 can be
analyzed similarly as in Remark 2. Therefore, each iteration
in Algorithm 2 requires about O(|U;||L;||U;—1||L;—1|) com-
putations.

2) Generating Optimal LPPM based on Lyper(D): As
mentioned before, generating the optimal LPPM ¢(u;|l;) based
on Lypper(D) which only protects the current location, i.e.,
deriving the optimal solution by solving the ith optimization
problem in the summation in (11), has already been done in
[11]. Therefore, details about the generating process of this
LPPM can be referred to [11].

Since the LPPM generated based on Lypper(D) does not
capture location correlations, this may not be very helpful
when designing LPPM for location traces. However, this
method works very well in the single location scenario (i.e.,
the released location w; only depends on the current true
location [; at timestamp ¢), since it can guarantee the minimum
information leakage. Besides, the authors in [11] have already
shown its advantage over other schemes. Later, instead of
evaluating the optimal LPPM ¢(u;|l;) generated based on
Luypper(D), we will show the results for the LPPM proposed
in [11] in Section VI, because they are the same.

Remark 3:  Since the lower bounds LY“*(D) and
Liower(D) only capture the least amount of information leak-
age when user releases her location trace, the actual leakage
may be higher than the leakage quantified by LY“*"(D) and

lower
Liower(D). Therefore, generating LPPMs based on C%fvzkr”v(D)
and Lipywer(D) may not be meaningful in the sense that they
cannot provide any privacy guarantee about the upper bound
of the information leakage. However, for completeness, we still
calculate the LY (D) in Section VI to help us have a clear
understanding about the actual information leakage when user
releases her distorted location trace. Technically, L% (D)
can be solved based on Algorithm 1. For space consideration,

we will not show the results for Lipyer(D).

C. Evaluating LPPMs based on the Actual Online Leakage
We use the actual online leakage LA%“4(LPPM) in defini-

online
tion 4 as the privacy metric to evaluate our LPPM and other
proposed LPPMs. This actual online leakage can be used as
a general metric to evaluate existing and future LPPMs. Now
we describe how to use this metric to evaluate LPPMs by

expanding the formulation of LA (LPPM) as the following,

online

online

T
LAl ppM) = ZI(Ll, o L Ui | U, .. UiZy)
=1

T
=Y (H(U|Uy, ...,Ui1) = HU|Uy, ... Uiy, L, ..., Li)).
=1

(24)

We want to highlight that the calculation for both terms in
(24) can be simplified depending on how a specific LPPM
is designed. We take the calculation for LA (LPPM) of our

proposed LPPM (i.e., LPPM™) and the LPPM proposed in [11]
as examples to illustrate this point.

For the second term in (24), because we have made

the restriction on location releasing mechanism that
U; only depends on L;, U;—; and L; ;, we have
H(Ui|U17"'7Ui717L1a"'7Li) = H(Ui|L’L’7Ui717Li71)

in (ie., LPPM7); since the LPPM proposed in [11]
is used in the single location scenario, then we have
H(Ui|U1, ceuy Ui—la Ll, vaey Lz) = H(UL|LZ) in their scheme.
Similar simplification can also be made when evaluating other
existing or future LPPMs which are designed in different ways.
We know that calculating H (U;|L;, U;—1, L;—1) only requires
the conditional probability distribution ¢ (u;|l;,w;—1,l;—1)
(i.e., LPPM) and the joint distribution p(u;,l;, w;—1,1;-1),
which can be obtained from Algorithm 1. Similarly, the
calculation for H(U;|L;) only depends on conditional
probability distribution ¢(u;|l;) (i.e., the optimal LPPM in
[11]) and the joint distribution p(u;, ;).

As for the first term in (24), the computation complexity
for its calculation grows exponentially with the location trace
length 7', since this calculation needs the joint distribution
for all the released locations wq,us...,u;. As an illustrating
example, we consider calculating the actual online leakage for
a location trace with length 3 (i.e., 7' = 3). As for a longer
location trace, the calculation needs more time.

When T = 3, we have Zle H(U;|Uy,....U;i—1) =
H(U1) + H(U2|U1) + H(U3|U2,U1). We know
that H(Ul) = fzulp(ul)logp(ul), H(UQ‘Ul) =

= 2wy P(uz|ur)p(ur) log p(uzlus), and H(Us|Usz,Ur) =
- ul,ug,u:;P(u3|U17U2)P(U2\U1)P(U1)10gp(“3|ul7u2)- We
can see that the essential parts for those calculation are
calculating p(usg|uq) and p(ug|ui,us).

For our scheme, we have

pluzlur) =Y pluslu, b, lo)p(ly, lofur)

l1,l2
_ Z puzlu, i1, 12)p(us|ly)p(ly, l2)
p(u1)

) (25)
l1,l2

and similarly we can also obtain
plusluy, uz)

_ Z plus|ug, la, 13)p(us|uy, i, l2)p(ur[l)p(ly, l2, Is)
p(uz|u)p(ur)

11,0213
(26)
From (25) and (26), we can see that the calculation only
needs all the LPPMs derived up to the current timestamp 4,
i.e., p(uslus,la,l3), p(us|uy,l1,l2) and p(uq|l1), and the joint
probability distribution of all the true locations p(l1,l2,13).
Similarly, for the scheme in [11], the calculations are

plughr) = 3 P LR ELR) o)

l1,l2

3|l l I)p(ly, o,
pluslur ) = 3 p(us|ls)p(uz|l2)p(ur|l)p(ls, b2, ls)
4 p(uz|u1)p(ur)
1,562,503
(28)
The calculation in (27) and (28) also only requires all the
LPPMs derived up to the current timestamp 4, i.e., p(us|ls),
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p(uz|l2) and p(uqlly), and the joint probability distribution of
all the true locations p(ly,l2,13).

Finally, by combining the calculation for both terms in (24),
we can calculate the actual online leakage for any type of
LPPMs. Therefore, the actual online leakage LASM3(LPPM)
can be used as a generic privacy metric to evaluate and
compare existing and future LPPMs, which is extremely mean-
ingful in terms of designing privacy-preserving mechanisms.
The calculation of Iypper and Ijower can be done similarly as

the process presented above.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the actual online leak-
age LAS(LPPM) of different LPPMs, LMakov(D)) and

online upper

LYa%¥(D) on a synthetic dataset; also evaluate LY2*V(D)

and LMaXV( D)) on a real-world dataset. Specifically, we eval-
vate the actual online leakage of our LPPM (i.e., LPPM"),
the LPPM proposed in [11] (denoted by OTP17) and another
LPPM proposed in [10] (denoted by ABCP13). OTP17 has
been briefly mentioned in Section V-B2, and ABCPI13 is
based on differential privacy and also works in single loca-
tion scenario. We did not evaluate the LPPM proposed in
[17] which considers temporal correlations when protecting
location privacy, since deriving the probability distributions
for calculating the actual online leakage from their LPPM is
non-trival. All experiments were conducted on a desktop with
3.6 GHz Intel i7 CPU and 8GB memory.

A. Evaluation on Synthetic Dataset

Since our privacy metric defined as the actual online leakage
LA<ual(1 pPPM) is designed for evaluating trace-level privacy,
intuitively, this metric should capture different correlation
levels among location traces inherently. In order to explore
how different correlation levels will affect the privacy leakage,
we need to make sure that the location traces have the
intended correlation levels by design. Therefore, we start with
a synthetic dataset to properly evaluate this effect. We use
specifically designed Markov models on a synthetic dataset to
generate location traces. An illustration of the synthetic dataset
is presented in Fig. 3. In this dataset, we consider a map with
6 locations, which is divided by 2 x 3 grids, and the width
and length of each grid are both defined as 1 without loss of
generality. The number located inside a grid is an index for
that grid/location; for example, the index of the location (3, 2)
is 6.

y

214|15(6

1]11(2(3
1 2 3 «x

Fig. 3. Synthetic dataset: a map with 6 locations.

In this synthetic dataset, we use four different types of
Markov transition matrices to model the different correlation
levels among location traces. These are all 6 x 6 matrices and
denoted by M;, M, M3 and M, respectively. Specifically,
each row in M has one element as 1 and the others as 0;
each row in M5 has two elements as 1/2 and the others as 0;
all elements in M3 are generated randomly and then each row

is normalized to form a probability distribution; all elements
in M, are the same (i.e., 1/6). Then My, M>, M3 and M,
can be used to generated location traces which are correlated
in a decreased manner, i.e., location traces generated based on
M, are fully correlated, while traces generated based on M,
are fully independent.

Besides, we adopt Euclidean distance as the distortion func-
tion since the distortion between two locations is sensitive to
the their distance, i.e., d(l,u) = \/|(le — us)? + (I, — uy)?],
where (I, 1,) and (ug, u,) are the two coordinates for location
l and u respectively.

We consider a location trace with length of 4, i.e., L =
{L1, Lo, L3, Ly}. Each location is represented by an index
k in {1,2,...,6}. Given the location distribution for the 1st
timestamp p; as {p},p?,p3,pi,p3, P} (PF represents the
probability when user’s location index is & at the ith times-
tamp), the location probability distribution for the subsequent
timestamps can be calculated based on p; and the Markov
transition matrix M by equation p; = p,_1 M. We generate
location traces for the synthetic dataset according to the joint
probability distribution of all the locations, i.e., p(l1,l2, 3, 14).

Based on this synthetic dataset, we show the performance
of LYv(D) and L}a%Y(D), and evaluate the actual online
leakage of the LPPM proposed in our paper (i.e., LPPM*), the
LPPMs in OTP17 and ABCP13. In particular, the later two
LPPMs are derived under the same initial location probability
distribution, Markov mobility model and distortion as ours.
Besides, we choose A\ from the range of 0.01 to 10 to draw
the privacy-utility tradeoff curve. Since we know that the less
A is, the larger the distortion. Therefore, by choosing A in
an increasing manner from the range, we can draw privacy-
utility tradeoff curve quite smoothly (one point in the figures
corresponds to one \). We set the threshold for convergence in
Algorithm 2 as 1078, All experiments are conducted average
on 5 Markov matrices, and the results are shown in Fig. 4.

Now we describe how we derive the curves shown in the
figures in detail. Remember that each point on the curve
is corresponding to a fixed A. For a fixed A\, given the
initial location probability distribution and a Markov transition
matrix, we can obtain the information leakage-distortion pair
(e, (X1, 17 305, Dy)) of LYa%¥(D) by Algorithm 2. For
each )\, we save the distortion D; which is one of the outputs of
Algorithm 2 at each timestamp ¢. When changing to different
As, we can smoothly draw the information leakage-distortion
curve of LYXXV(D). For every A, we use D;, the same initial
location probability distribution and Markov transition matrix
as inputs to derive the LPPMs in OTP17 and ABCP13 at each
timestamp, and then calculate their actual online leakage for
the entire trace following the calculation procedure presented
in Section V-C. By enumerating all the As, we derive the actual
online leakage curves for the LPPMs in OTP17 and ABCP13.
In addition, we also calculate the actual online leakage of the
LPPM proposed in our paper (i.e., LPPM™*) and compare it
with the actual leakage of the other two LPPMs. Similarly,
we can also derive the curve of £LMakev(D),

As we can see from Fig. 4, the actual leakage of the LPPM
proposed in our paper (i.e., LPPM*) is lower than the other
two LPPMs in all the cases we considered. In particular, this
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(d) Markov matrices are in type of M4.

Fig. 4. Makov( D) gMarkov( D) and actual leakage of different LPPMs evaluated under different types of Markov matrices.

upper lower

advantage becomes even greater when location trace is more
correlated. The reason that LPPM™* has the least information
leakage is because it considers U;_; when releasing locations.
Specifically, when the comparison was done on M1, the
location trace is mostly a single static location over time
(.., L; = L;_1 ), if we do not consider U;_4, the LPPM
will output a new U; as a noisy version of L; (which equals
to L;_1) independent of the previous U;_;, with the same
probability distribution as U;_; since the inputs are the same,
so an attacker can better infer L; by combining the two noisy
outputs. In this case, our leakage will be similar to the LPPM
in OTP17 since they only consider L; in their LPPM. But
if we consider U;_1, we can now output the same value
U; = U;_1, which will still satisfy the distortion constraint
but less leakage than the case which do not consider U;_;.
Since the the LPPM in ABCP13 considers neither correlations
nor minimizing information leakage, its leakage is the largest
compared with our LPPM and the one in OTP17.

Besides, the actual leakage-distortion curve of our LPPM
is always upper bounded by EuMpfekr""(D), which follows the
main result from Corollary 1. In other words, the experimental
results further strengthen the statement that our LPPM can pro-
vide the privacy guarantee that its actual leakage is sandwiched
between LYY (D) and LY150¥ (D). Therefore, even though
generating LPPM for location traces directly from £} ;..(D)
is exponentially expensive, we can still use LY>*V(D) to
efficiently generate LPPM* with strict privacy guarantee and
remain lower leakage compared with other LPPMs in terms
of trace-level privacy.

We want to highlight one important take away from the
results in Fig. 4, which is that the actual leakage is very
close to the upper bound £M¥*V(D) This is intuitive since

upper

£%§§OV(D) generates the LPPM in a way such that the released

location U; at timestamp ¢ depends on the current true location
L;, the previous released location U;_1, and the previous true
location L;_1; and we only consider the first-order Markov
mobility model (i.e., the current location L; only depends
on the previous location L; 1), therefore, designing LPPM
based on EuMpif(fr"V(D) may be already enough to capture the
full correlations among locations, which leads to the actual
leakage of our LPPM to be quite close to the upper bound
,C{}’[p;gkrov(D).

In addition, to understand how LPPM* works in an intuitive
way, we analyze how the location traces are distorted based
on LPPM*. Specifically, we show the true location trace and
its corresponding distorted location trace (both of length of
8) on M; and M, when A = 0.5 in Fig. 5. We can see
that when the Markov transition matrix is M7, the distorted
locations remain almost the same with the true locations.
Remember that the user’s locations are highly correlated when
the Markov transition matrix is M. In this case, it is not
necessary to distort the locations by a large extent, because
this will decrease the utility and is not very helpful to decrease
the information leakage. The reason for not being helpful to
decrease the information leakage is that the initial location
distribution and the Markov transition matrix have already leak
a significant amount of information, even though we do not
release the distorted locations. Hence, LPPM™* ensures good
utility by not distorting the locations by a large amount in
this case. When the Markov transition matrix is My, the true
locations are distorted by a very large extent to ensure less
information leakage, only very few distorted location remains
the same with the true location. The results are intuitive
since the optimization problem used to generate LPPMs in
LMarkov(1)) consider information leakage and utility at the

upper
same time.
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Fig. 5. True location trace and released location trace generated from

our LPPM on M and M4 when A = 0.5.

B. Evaluation on Real-world Dataset

Since directly calculating the actual online leakage
La<ual(1 PPM) on a real-world dataset leads to exponential
complexity, in this subsection, we evaluate L}*V(D) and
LMakov (1)) based on a real-world dataset Geolife [35] col-
lected by Microsoft Research Asia. Geolife dataset contains
182 users’ location trace data in a period of over five years.
In this dataset, user’s GPS trace is represented by a sequence
of tuples, each of which contains latitude, longitude and
timestamp. The majority of this dataset was created in Beijing,
China. In our experiment, we pre-processed the dataset by
extracting a part of the data within the 3rd ring of Beijing of
size 7.2km x 7.2km, and divided this area into 12 x 12 grids
of 0.6km x 0.6km. For simplicity, we evaluate user’s location
trace with length 8. Markov transition matrix for this real-
world dataset is learned by the EM method [36]. We also adopt
Euclidean distance to calculate the distortion function. We
randomly choose 5 users out of the entire dataset to train their
personal Markov transition matrices and location probability
distributions, and the results are averaged on those 5 users.
We choose A\ from the same range with the one used in the
synthetic dataset and set the threshold as 0.0001.

1) Evaluating ngg‘;ﬁ (D), LMarkov( D), and Lpper and Tipwer
of other LPPMs: After we derive LPPM* on the real-world
dataset, by using similar process as the experiments in the
synthetic dataset, we can use the same distortion to derive the
LPPMs in OTP17 and ABCP13. Since we know that calculat-
ing the actual online leakage on the real-world dataset leads
to exponential complexity even for the LPPMs proposed for
protecting single location, we calculate Iypper and Ijgwer for the
LPPMs in OTP17 and ABCP13. We show the results in Fig. 6.
From this figure, the first thing we know is that LM&kov( D)) jg

upper
lower than the Iypper Of the other two LPPMs, and zlo\i‘é""(D)
is lower than the Ijoyer Of the other two LPPMs. Even though
we cannot directly compare the actual online leakage of these
LPPMs because of the exponential complexity problem, we
still know that the actual online leakage of LPPM* should
be very close to LYV(D), based on the results shown
in synthetic dataset. Besides, we know that the information
leakage of LPPM* should be sandwiched between L)%Y (D)
and LMakov(D) since we have theoretically proved that the
actual online leakage is sandwiched between the upper and
lower bounds in Corollary 1. In addition, the actual online
leakage of LPPM* should be no worse than the one in

OTP17 from a theoretical point of view, this is because

T T
Markov,

-©-L ")

0,0, Of the LPPM in OTP17 | -

“8 1,5, Of the LPPM in ABCP13

Markov 4
Lo ©)
B, Of the LPPM in OTP17
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Fig. 6. Lyakv(D) and LM2%¥(D) of our LPPM, Tupper and Tioyer

of other LPPMs on the real-world dataset.

we are trying to minimize privacy leakage over a larger
distribution g(u;|l;, u;—1,1;—1) instead of a smaller distribution
q(u;|l;). Last, we want to highlight that even though we cannot
evaluate the actual online leakage of LPPM* on the real-world
dataset directly due to the exponential complexity problem, our
advantage is that LPPM* can still provide reasonable privacy
guarantee in a scenario where locations are correlated, since
its actual online leakage is no larger than LYY (D).

2) Impact of Threshold on Real-world Dataset: We also
analyze the computation time for Algorithm 2 on real-world
dataset, i.e., the time that Algorithm 2 needs to converge. As
we can see from Algorithm 2, when fixing the trace length and
the size of locations, the time of convergence only depends
on the threshold. To evaluate how the time of convergence
changes with different thresholds, we run our algorithm on 4
different thresholds, i.e., 0.000001, 0.00001, 0.0001 and 0.001
respectively when A = 0.5,1.0,2.0. Besides, when Algorithm
2 converges at different iterations, the minimum information
leakage and the corresponding distortion may also be different
and thus need to be evaluated to see the extent of differences.

As we can see from Fig. 7, with the increase of threshold
from 0.000001 to 0.001, the time of convergence for Algo-
rithm 2 decreases by a large extent when A = 0.5, 1.0, 2.0, how-
ever, the minimum information leakage and the corresponding
distortion change very slightly. This means that a user can
choose a slightly larger threshold to reduce a large amount of
computation time while only sacrificing little privacy.

In addition, we can also know the approximate time for
pre-computing LPPM* to release a location trace with length
of 8 from Fig. 7(a), which is around 22,000 seconds (i.e.,
about 6 hours, i.e., 45 minutes for each location on average).
We argue that this pre-computation time is reasonable, since
a user usually releases her location trace at daytime and
does not do so during nighttime, thus the pre-computation
can be finished at night based on her current initial location
distribution and Markov transition matrix. As a user does
not change her mobility profile very often, once the pre-
computation is completed, the user can release her distorted
location trace using the pre-computed LPPM* very efficiently,
until her mobility profile is changed.

VII. CONCLUSION AND FUTURE WORK

We have proposed privacy metrics to quantify location
trace privacy independent of any specific attack based on an
information-theoretic approach in both an offline setting and
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(a) Impact of threshold on convergence time.
Fig. 7.
an online setting. Specifically, our privacy metrics quantify the
inherent information leakage when releasing user’s distorted
location trace instead of her true location trace to the untrusted
service provider. We have formulated the problem to obtain
the optimal LPPM used to release user’s locations to get
services while achieving the minimum information leakage
in an online setting. To address the computation challenge
occurred when computing the optimal LPPM directly from
the online problem, we obtain the upper and lower bounds on
the online privacy-utility tradeoff with and without Markov
restriction on release mechanisms, and thus we can obtain the
LPPM based on the upper bounds with very high efficiency.
In particular, the offline privacy-utility tradeoff has a natural
connection with the online tradeoff when there is no Markov
release restriction. Experiments have shown the advantage of
our LLPM over existing LLPMs in terms of privacy-utility
tradeoff, which is greater when the location trace is more
correlated. In addition, the proposed privacy metrics can also
be used as standard measures to evaluate and compare other
privacy-preserving mechanisms for time-series data and not
limited to LBS, which is very meaningful in many real-world
applications. We direct this to future work.

Impact of threshold.

APPENDIX

A Pl"OOf Of l:oﬁ‘lme( ) < [’onlme( )

We start with proving the connection between the objective
function of L. (D) and the summation of the objective

functions in £ ;..(D) as follows,

I(L;U)

T
DL vut
=1
T . .
=Y {AILHUUY) + I(Liga, oy

i=1

T
DN v,

i=1

Lp;UJU™ L)}

where (a) follows from the chain rule of mutual information,
and (b) follows from the fact in an online location release set-
ting, which is the current released location U; is independent
of the future true locations L; 1, ..., Ly given U*~!, L*.

As we can see from the above proof, the objective function
in L%..(D) is equal to the summation of the objective func-
tions in £ ...(D). Since the variables where the optimization
takes place are different for each term of the summation, we
can conclude that minimizing the summation is less than or

Threshold (log scale)

(b) Impact of threshold on information leakage.

o® g

10 10 10°® 10° 10 10°
Threshold (log scale)

(c) Impact of threshold on distortion.

equal to the summation of the individual minimizations, thus
we have £ofﬂme( ) < £on1me( )

B. Proof of Theorem 1
1) L. (D) < EM“”“’V(D): We prove the upper bound of

the objective function ET L U;|UY) as follows,
I(L: U U
1L 1, L U |01, Us, ., Us )
+ I(L1, Loy ...y Li—2; U;|U1, Usy oo, U1, L1, Ly)
D(Ls 1, L Ui|UL, Us, .., Us 1)

=H(U;|U1,Us, ...,U;—1) — H(U;|Li, Li—1,U; 1)
(e)
<HU;|U;i—1) — H(U;|Li, Li—1,U; 1)

=I(L;, Li—1; Ui|U;—1),

where (c) follows from the chain rule of mutual information,
(d) follows from that the second term equals to zero since we
made the restriction on location releasing mechanism that U;
only depends on L;, U;—; and L;_1, and (e) follows from the
fact that conditioning does not increase entropy.

Since the objective function in L} ;..(D) is less than or
equal to the one in £LMOV( D) the constraint remains the

upper
same, and we also replace the probability distribution set

q(u;|l', w'=1) with a smaller set q(u;|l;,u;—1,l;—1), the proof
of ‘Conlme( ) de;;k;y (D) is completed.

2) Larkov(py < £ (D): Similar to the proof
above, we show the lower bound of the objective function

I(L%U;JU1) as the following.

I(L;U; | U™
DH(U|Uy, Usy ..., Ui1) — H(U|Ui—1, Li, Li—1)
S WU Uss o Us 1 L) — HUIUs 1. Li. L 1)
CH U1, Licy) — BU U1, Li, Li)

ZI(LZ-; Ui|UZ‘717 7;71)7

where (f) follows the same proofs as those in (c¢) and (d),
(g) follows from the fact that conditioning does not increase
entropy, and (h) follows from fact that U; only depends on
U;,_1 and L;_q. This is because we have the restriction on
location releasing mechanism that U; only depends on L;,
U;—1 and L;_1, and L; only depends on L;_; according to
the property of the first order markov transition in location
traces, then the fact that U, only depends on U;_; and L;
is true, thus (h) holds.
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Because the objective function in £M2%V(D) is less than or
equal to the one in £ . (D), and the constraint remains the
same, the proof of LMakv(D) < £* . (D) is completed.

Proofs in B1 and B2 complete the proof of Theorem 1.

C. Proof of Corollary 1

1) Proof of LAGU!(LPPM*) < L}akov(D): From the
proof for I(L%;U;|UY) < I(L;,L; 1;U;|U;_1) in Ap-
pendix B1, we can easily see that ZZT (LU Ut <
Zl 1I(Li, Li—1; U;|U;—1) is always true under the Markov
release restriction. Therefore, when we use the same
q(uglli,ui—1,1;i—1) generated based on L}25V(D) to cal-
culate the actual leakage ZZ L I(L5U;|UY), the actual
leakage "1, I(L%; U;|U1) is always less than or equal to

Eﬁgekrov (D) according to the proof in Appendix B1. That is to

say, the actual leakage evaluated by S, I(L%; U;|U"Y) of
the LPPMs generated based on £M¥XV( D) is upper bounded

Mark upper
‘Cup%rerov (D) N
2) Proof of LMarkov(D) - < cAqual(LPPAL*): Since we

know that Zi:l I(L%:U,JUY) is always greater or equal
t0 L 1ine (D), and we also have LMakov(D) < £* . (D), thus
we have LMkov(D) < ST (L% U U Y).

Proofs in C1 and C2 complete the proof of Corollary 1.

D. Proof of Theorem 2

1) L} ine(D) < Lupper(D): The key idea of this proof is
based on the fact that minimizing an objective function over a
subset of certain constraint is less than or equal to minimizing
it over the original constraint.

T
znline(D) = Z ( ‘Ilrzllnz71) I(Ll;Ui|Ul_1)
T q(ui|l",u :
=t {D(Li§Ui)§Dv/}zH:1
(i) & . . .
< min I(L:;U; U
q(ui|li):

{D(L:;U)<Di}Y,

min {I(L; UJU™Y)

i=1
() &
<
- ; q(ui|li):
T {D(LiUNSDYL,

+I(Ly,...Li_1; U; U L)

T
&) Z q(run‘i‘?.)' I(L; U U™
i=1 N
{

D(Li;U) <D},

min
q(uills):
" (D(L;U)<DYL,

(Li; Uz) - Eupper(D)7

0 ZT:

where (i) follows from the fact that g(u;|l;) is a subset
of q(u;|l*,u*=1), (j) follows from the chain rule of con-
ditional mutual information, (k) follows from the fact that
I(Ly,...L;i—1; U U L;) equals to zero when choosing
q(u;|l;) in the minimization problem, and (1) follows from
that fact that U*~!, L,, U, forms a Markov chain (denoted by
U'~! — L; — U;) when choosing q(u;|l;).

2) Ligwer(D) < L}, (D): We start with proving the lower
bound on the objective function I(L;U) in Ligwer(D).

I(L;U)
" [(Li;U) + I(L1, ooy Lic1, Ligr, s L U L)
(L U) + I(Li; Uvy oo Ui 1, U1 oo Uz U3

S I(Lusos Ly, Lisay o L UILY) 2 1(Li U3)

where (m) and (n) follow from the chain rule of mutual
information, and (o) follows from the fact that mutual infor-
mation is always nonnegative.
Then we have
min

I(L;U)
q(u|l):{D(Li;U:) <D},

offtine (D) =
()
> T- min min

t q(ull):{D(Li;U;)<D; }_,

I(L; Uy)

I(Ls; U;)

@ T - min min = Liower(D)
t q(ug|ly):D(Ls;Us ) <Dy

Where (p) follows from the proof of I(L;U) > I(L;;U;)
for any integer ¢ between 1 and 7', (q) follows from the
fact that the objective function I(L;;U;) only depends on L;
and Uj;, therefore, when choosing the conditional probability
distribution as q(u;|l;) rather than g(u|l), the results of the
minimization problems remain the same.

Proofs in D1 and D2 complete the proof of Theorem 2.
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