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Abstract—We consider the problem of protecting individ-
ual user’s location privacy at the trace-level and study the
privacy-utility tradeoff, which has key applications in privacy-
presreving Location-based Service (LBS). Existing works on
Location Privacy Protection Mechanisms (LPPMs) have mainly
focused on protecting single location, without taking into account
the temporal correlations among locations within the trace, which
can lead to higher privacy leakage when considering the whole
trace. However, to date, there lacks a formal framework to
quantify the trace-level location privacy leakage, and a practical
mechanism to release location traces in an optimal and online
manner. In this paper, we endeavor to solve this problem using
an information-theoretic approach. We first propose a location
trace privacy metric based on the mutual information between
the original and released trace in an offline setting, and formulate
the optimal location trace release problem that minimizes trace-
level privacy leakage given a utility constraint. We also propose a
privacy metric to capture trace-level privacy leakage in an online
setting. As directly computing these metrics incur exponential
complexity w.r.t. the trace length, we obtain upper and lower
bounds on the trace-level privacy leakage by exploiting the
Markov structure of the temporal location correlations, which
are efficiently computable. The proposed upper bounds enable
us to derive efficient online solutions (i.e., LPPMs) by modifying
Blahut-Arimoto algorithm in rate-distortion theory. Then we
validate the proposed upper and lower bounds and the actual
leakage of our LPPM through extensive experiments over both
synthetic and real-world location datasets. Our results show the
superiority of our LPPM over existing LPPMs in terms of trace-
level privacy-utility tradeoff, which is more conspicuous when
the location trace is more correlated.

Index Terms—Privacy metric, location trace privacy, temporal
correlations, information-theoretic privacy, rate-distortion the-
ory.

I. INTRODUCTION

LOCATION-Based Service (LBS) has became an indis-

pensable part of people’s daily life [1], [2]. For instance,

a user can take a picture and post it on Facebook with her

current location; a student can find her friends by sharing

locations through Foursquare; an Uber driver can locate the

next passenger and search for the shortest path to a given des-

tination using Google Map. Moreover, the significant amounts
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of data collected through LBS can be used in many other

advanced applications, such as social relationship analysis,

disease tracing, advertising, etc [3]–[5]. A location trace,

which can be utilized in many applications, is a set of locations

reported by a user while using LBS. For example, a user needs

to periodically report her locations to a service provider in a

navigation app (e.g., Google Map), which form a location trace

and are highly correlated [6].

Privacy has been one of the most significant concerns in

LBS applications. This is because the locations people share

and report in LBS can be used to infer users’ sensitive

information, such as home addresses, travel plans, hospital

visits, health conditions, etc., while the service providers

cannot be fully trusted [7]. Many Location Privacy Protection

Mechanisms (LPPMs) have been proposed to protect users’

private locations against an untrusted LBS server [8]. For

example, under a perturbation-based LPPM, a user’s true

location is distorted to a certain extent before being reported

to a service provider. As a result, the user can still access

LBS without sacrificing too much service quality (e.g., query

accuracy), while the untrusted service provider cannot reveal

her exact location.

A. Related work

Unfortunately, most of the existing LPPMs focus on protect-

ing single location privacy [9]–[11], where locations reported

by a user are not (or hardly) temporally correlated. Even

though these approaches are practical and perfectly valid in

single location scenario, they cannot be used to protect location

trace privacy. These works are mainly based on the privacy

definitions such as k-anonymity [12] and differential privacy

[13], which are originally proposed to protect the existence of

a single record in a database. Besides, k-anonymity has been

disregarded as a reasonable privacy metric in [14]. In addition,

cryptographic location privacy approaches apply encryption to

protect user’s locations [15], but those approaches are compu-

tational expensive even though they can provide strict privacy

guarantee. There are also approaches based on spatial cloaking

to protect location privacy [16], but spatial cloaking cannot be

used as a privacy metric to evaluate LPPMs. Independently,

authors in [11] propose to use the conditional entropy and

the mutual information as complementary privacy metrics, and

adopt Blahut-Arimoto algorithm to produce an LPPM that is

almost optimal in terms of conditional entropy. Although it can

be directly applied to a trace setting by releasing locations only

depending on current location, it does not consider location

correlations. Recent studies in [17], [18] have shown that, by



ZHANG et al.: ONLINE LOCATION TRACE PRIVACY: AN INFORMATION THEORETIC APPROACH 2

applying LPPMs for a single timestamp to a location trace,

significant privacy leakage will be incurred due to temporal

correlations within the trace. Moreover, reconstructing user’s

traces from obfuscated individual locations is also possible

[19], [20]. Although a couple of works based on game theory

[21], [22] or extended notions of differential privacy [17] have

been proposed to take into account the temporal correlations

of locations, and there is also some work in which authors

measure the trace-level privacy by averaging individual loca-

tion privacy [23], there still lacks proper privacy metrics that

take the location correlations inside a trace into account when

quantifying the privacy leakage of an entire location trace.

Even though there are some related works on privacy

metrics [24]–[30] used to quantify information leakage based

on information theory, we argue that these privacy metrics are

either not applicable or not practical when used on location

trace privacy. Ma et al. [24] proposed a privacy metric for time-

series data to quantify the amount of information available to

the adversary when he tries to infer the original data given

any range of released data. However, this metric quantifies

the privacy leakage about a single timestamp’s data point

rather than the entire time-series. Besides, they consider an

offline setting instead of an online setting. Shokri et al. in [25],

[26] proposed privacy metrics that quantify attacker’s location

estimation error under specific types of inference attacks, and

these metrics take inherently location correlations into account.

Even so, we believe that the information-theoretic metrics

proposed in our work which also consider correlations into

account are still useful, because they provide another point

of view that complements the average adversary error privacy

metric. Cuff et al. [27] proposed a metric based on conditional

mutual information to interpret differential privacy. However,

the privacy guarantee of this metric is too strong to achieve

for location trace privacy. This is because the adversary in this

setting is assumed to know all the other locations in a location

trace except for one location; since locations are correlated,

much noise has to be added to protect a single location in

a location trace and thus leads to little utility. Theoretically

speaking, the privacy metric proposed in [28] could be applied

to location trace privacy. However, deriving the optimal LPPM

from their metric is impractical, since their optimal mechanism

is based on the achievability of rate distortion, which uses data

compression and joint typical decoding on a large domain size.

The privacy metrics proposed in [29], [30] also face scalability

issues w.r.t. trace length, so they are not practical when applied

to quantify trace privacy.

B. Contributions

In this paper, we propose a novel location trace privacy

metric to quantify the information leakage between the original

and the released trace when any LPPM is adopted. Our

privacy metric helps to further understand the information

leakage of different LPPMs in practice, and offers a formal

way of comparing privacy levels achieved by existing and

future LPPMs. Besides, we derive the optimal LPPM by

formulating the optimal location trace release problem as a

minimization problem over trace-level privacy leakage given

a utility constraint. In addition, we address practical challenges

encountered when directly computing this metric. The major

contributions of this paper are summarized as follows:

• We propose privacy metrics to quantify trace-level in-

formation leakage both in offline and online setting. By

leveraging the mutual information in information theory,

we formulate the optimization problem that minimizes

trace-level privacy leakage given a utility constraint to

derive the optimal location trace release mechanism in

the online setting, which is more interesting and practical.

Our metric is generic and independent of any specific

inference attack. The motivation for choosing mutual

information as the privacy metric comes from the fact that

priors and correlations naturally exist in location traces,

and we need a privacy metric to capture the priors and

correlations in location traces in a principle and clear way.

• We address a practical challenge encountered when solv-

ing the above optimization problem in online setting.

Since directly computing the privacy metric leads to

exponential complexity with respect to the trace length,

we derive upper and lower bounds of the privacy leakage

by exploiting the Markov structure of the temporal loca-

tion correlations, which are efficiently computable. The

proposed upper bound enables us to derive efficient online

solutions (LPPMs) by modifying the Blahut-Arimoto

algorithm [31] in rate-distortion theory. In particular, our

LPPM can be pre-computed in advance and then used for

online location release with very high efficiency.

• Using our privacy metric, we compare our LPPM with

two state-of-the-art LPPMs via extensive experiments

over both synthetic and real-world location datasets. Our

results demonstrate that our LPPM reveals the least

amount of information under the same utility constraint.

Moreover, its advantage in the privacy-utility tradeoff

becomes even greater when location traces become more

correlated. We also show the efficiency of our LPPM,

where the offline pre-computation requires a reasonable

time, and the online release is very fast.

The rest of this paper is organized as follows. We present the

problem statement in Section II, and provide the preliminaries

in Section III. Section IV describes the main results for the

online privacy-utility tradeoff for location traces together with

algorithms for generating optimal LPPMs based on upper

bounds in Section V. Section VI presents experimental results,

followed by conclusion and future work in Section VII.

Finally, the proofs for all the theoretical results are presented

in Appendix.

II. PROBLEM STATEMENT

In this section, we present the problem setting, describe

the threat model, define the privacy and utility metrics for a

location trace, and formally present our problem. The notations

introduced throughout the paper are summarized in Table I.

A. Location Trace Model

We represent user’s location Li at timestamp i, as a triplet

(xi, yi, i), where xi, yi, and i represent the latitude coordinate,

longitude coordinate and timestamp respectively. A location
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Fig. 1. Problem Setting: Online Privacy-preserving Location Release

trace L with length T is represented by a sequence of locations

(L1, L2, ..., LT ). The timestamp i and length T take integer

values. Furthermore, we assume that the user moves within N
discrete locations.

In our model, we assume user’s location traces are generated

from an underlying probability distribution, which can be

obtained from user’s initial location probability distribution

and a mobility model. Specifically, we denote user’s initial

location probability distribution by an N -length vector p1,

and consider user’s mobility model as a first-order Markov

model denoted by a Markov transition matrix M [17], [25],

[32]. Each element in p1 represents the probability that a

user stays in a certain location. In addition, we use pm,n to

denote an element at the mth row and nth column in M ,

i.e., pm,n represents the probability that a user moves from

location m to location n. Then the probability distribution of

user’s location at timestamp i is pi = p1M
i−1. Moreover,

the probability distribution of a location trace with length i is

the joint distribution of all the locations up to timestamp i,
i.e., p(l1, l2, ..., li), which can be obtained from user’s initial

location probability distribution p1 and the Markov transition

matrix M . In particular, the practicality of using the Markov

mobility model is discussed in [25].

B. Online Privacy-preserving Location Release

We consider the problem setting illustrated in Fig. 1, where

a privacy-conscious user releases a distorted location Ui in-

stead of her true location Li to the untrusted service provider

at each timestamp i to obtain services. Specifically, the user

releases her locations in an online manner, which means that

at timestamp i, the user generates and then releases a distorted

location Ui according to the joint probability distribution of

all her true locations available up to timestamp i and the

past distorted locations, i.e., p(l1, ..., li, u1, ..., ui−1). This can

ensure that the LPPM used at each timestamp i takes the

temporal correlations among a location trace into account.

We assume Li = Ui for simplicity, i.e., the alphabet of true

locations and released locations are the same.

C. Threat Model

As we can see from Fig. 1, after a certain time pe-

riod 1, 2, ..., T , the untrusted service provider can ob-

serve the released (distorted) location trace in the form of

(U1, U2, ..., UT ). Then the service provider could infer user’s

private location information based on the released location

trace (U1, U2, ..., UT ). We assume that the untrusted service

provider has full statistical knowledge of user’s locations, i.e.,

user’s initial location probability distribution and her mobility

model. Furthermore, we do not make any restriction on the

computational capability of the untrusted service provider. In

principle, it can use this statistical knowledge and the released

location trace to launch any type of inference attack. Now

our goal is to understand the fundamental information leakage

(i.e., privacy leakage) arising from releasing user’s distorted

location trace in such scenarios.

D. Privacy and Utility Metrics for a Location Trace
We use random variables L and U to represent user’s

true location and released location respectively, and their

lower case l and u are possible values of these two random

variables. Random vectors L = (L1, L2, ..., LT ) and U =
(U1, U2, ..., UT ) represent user’s true location trace with length

T and the released location trace with length T respectively,

and the lower case l and u are possible values of these two

random vectors.
Definition 1: Privacy Metric for a location trace. For

a certain time period 1, 2, ..., T , given user’s true location
trace L = (L1, L2, ..., LT ) and her released location trace
U = (U1, U2, ..., UT ), the information leakage introduced
by the released location trace is defined as I(L;U) =
I(L1, L2, ..., LT ;U1, U2, ..., UT ), where I(L;U) is the mu-
tual information between user’s true location trace and the
distorted location trace she releases to the untrusted service
provider. We use I(L;U) as the privacy metric for a location
trace.

Remark 1: In the case that the untrusted service provider
has additional background knowledge (e.g., user’s social net-
work information such as her co-locations) other than user’s
initial location probability distribution and her mobility model,
our privacy metric for a location trace can be generalized
as the metric I(L;U , Z) to take the additional background
knowledge into account, where Z is a random variable rep-
resenting the additional background knowledge.

This general definition measures the fundamental infor-

mation leakage of user’s true location trace introduced by

the released trace. By limiting the information leakage for a

location trace to a certain level, an LPPM generated based

on our privacy metric provides the privacy guarantee that the

less information leakage introduced by releasing the distorted

trace, the higher privacy level can be preserved for the user.
We also want to highlight that mutual information and

conditional entropy are two alternative privacy metrics in our

problem. This is because when the prior distribution of a

location trace L ( i.e., the entropy H(L)) is fixed, knowing

that I(L;U) = H(L) − H(L|U), we can conclude that

the less the mutual information I(L;U) is, the larger the

conditional entropy H(L|U) will be. In other words, based

on H(L) and I(L;U), the conditional entropy H(L|U) can

be easily calculated. Since these two metrics are alternative in

our problem, we only use mutual information as the privacy

metric in this paper.
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TABLE I
NOTATIONS

Symbol Description
i, T Timestamp, length of a location trace

L ∈ L,U ∈ U Random vectors representing the true and
released location trace with length T

Li ∈ Li, Ui ∈ Ui Random variables representing the true and
released location at timestamp i

Li, U i−1 Random vectors representing (L1, ..., Li),
and (U1, ..., Ui−1)

l,u, li, ui, l
i,ui−1 Possible values of L, U , Li, Ui, L

i, U i−1

p(· ), r(· ) Probability distribution of the true and
released location

q(· |· ), p(· , · ) Conditional, joint probability distribution
M Markov transition matrix

However, in order to obtain utility from LBS, the distortion

introduced by the released location trace should be limited to

a certain threshold. Hence, in order to capture the utility of an

LPPM, we define the following utility metric.

Definition 2: Utility Metric for a Location Trace. For
a certain time period 1, 2, ..., T , given user’s true location
trace L = (L1, L2, ..., LT ) and released location trace
U = (U1, U2, ..., UT ), the utility metric for a location
trace is defined as D(L;U) =

∑T
i=1 D(Li;Ui), where

D(Li;Ui) is the expected distortion for the released loca-
tion at timestamp i (i.e., Ui) and defined as D(Li;Ui) =∑

li,ui
p(li)q(ui|li)d(li, ui), where d(li, ui) is the distortion

function (e.g., Hamming distance or Euclidean distance).
The utility (distortion) constraint for the released location at
timestamp i is defined as D(Li;Ui) ≤ Di, i = 1, 2, ..., T ,
where Di is the distortion assigned to the released location at
timestamp i in a location trace, which implies that the total
distortion for a location trace D ≤ ∑T

i=1 Di.
The definition of utility metric implies that the total distor-

tion for a location trace actually depends on the individual

distortion of the released location at each timestamp. This

is reasonable since the user obtains utility from LBS in an

online manner, thus the utility for the released location at

each timestamp should be ensured by an individual utility

constraint, which could be different from one another due to

the type of LBS accessed by the user at a specific timestamp.

E. Problem

Intuitively, the less information leakage required by the user,

the less utility the user can get, and vice versa. Therefore, there

exists a privacy-utility tradeoff when designing LPPMs based

on our privacy metric. A natural question arises as what is the

minimum information leakage subject to a utility constraint

from an information-theoretic perspective and how to design

an LPPM to achieve this minimum information leakage. We

formulate this problem in the following proposition.

Proposition 1: Offline Privacy-Utility tradeoff for Lo-
cation Traces. For a certain time period 1, 2, ..., T , given
user’s true location trace L = (L1, L2, ..., LT ), her released
location trace U = (U1, U2, ..., UT ), and the utility constraint
D ≤ ∑T

i=1 Di, an LPPM q(u|l) is to say achieving the
minimum information leakage of a location trace subject to
the utility constraint D when it is the solution of the following

optimization problem:

L∗
offline(D) = min

q(u|l):{D(Li;Ui)≤Di}T
i=1

I(L;U),

where I(L;U) is the privacy metric for a location trace.
Proposition 1 provides a general framework for the offline1

privacy-preserving location trace release, which contains two

parts, i.e., a pre-computing process for generating an optimal

LPPM q∗(u|l) and a location trace releasing process according

to this LPPM. Specifically, once the optimal LPPM q∗(u|l)
is obtained, it works in an offline manner: given user’s true

location trace as L, the user will sample from q∗(u|l) to obtain

the distorted location trace U that achieves the minimum

information leakage subject to the utility constraint D, and

then release U to the service provider.
As we will show in Section IV, although this offline privacy-

utility tradeoff for location traces is theoretically meaningful, it

is actually extremely hard to find in practice. To this end, we

will introduce the problem of online privacy-utility tradeoff

for location traces and the methodology of analyzing and

characterizing this tradeoff in the rest of the paper.

III. PRELIMINARIES

In this section, we present the background for the rate-

distortion function and the algorithms used for its calculation.

The rate distortion problem has been considered for the

problem of lossy compression, where the goal is to minimize

the compression rate subject to a distortion constraint. We

notice that there is a close connection between the privacy-

utility tradeoff in Proposition 1 and the rate distortion problem.

This connection has also been studied in [28], [29]. Specif-

ically, they view the rate and distortion as analogous to the

information leakage and utility respectively when analyzing

the privacy-utility tradeoff. However, these works are looking

at using the principle of rate distortion function on privacy-

utility tradeoff in the setting of databases. Even though the

connection between rate distortion and the privacy-utility

trade-off has also been studied for individual locations in

[11], it has not been studied for the setting of location trace

privacy. Moreover, if we keep using the same principle of this

connection to study the privacy-utility problem for location

traces, there are practical challenges that arise in designing

efficient mechanisms as we will mention in Section IV. In the

following, we briefly present the rate distortion problem, it’s

computation and connection to Proposition 1.
Definition 3: Rate Distortion Function [33]. If the input

of an encoder is X and the output of the corresponding
decoder is X̂ , the rate distortion function R(D) for a source
X∼p(x) with distortion measure d(x, x̂) is defined as

R(D) = min
p(x̂|x):∑

x,x̂

p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂)

= min
p(x̂|x):∑

x,x̂

p(x)p(x̂|x)d(x,x̂)≤D

p(x)p(x̂|x) log p(x̂|x)
p(x̂)

, (1)

1In contrast to the online setting where a user releases her distorted location
individually at each timestamp, in the offline setting, the user releases her
entire distorted location trace to the service provider once for all.
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where the minimization is over all conditional distributions
q(x̂|x) for which the joint distribution p(x, x̂) = p(x)p(x̂|x)
satisfies the expected distortion constraint.

We next describe a general algorithm for finding the min-

imum distance between two convex sets, and this algorithm

can be in turn used to find the solution to the optimization

problem for the rate distortion function.

General Algorithm for Finding the Minimum Distance
between Two Convex Sets [33], [34]. Given two convex

sets A and B, the minimum distance between them dmin =
mina∈A minb∈B d(a, b), where d(a, b) is the Euclidean dis-

tance between a and b, can be found by the following steps:

first we can take any point x ∈ A, and find the y ∈ B that

is closest to it. Then fix this y and find its closest point in

A. Iterative applications of this process decreases the distance

at each step. The result in [34] has shown that if the sets

are convex and if the distance satisfies certain conditions, this

alternating minimization algorithm will indeed converge to

the minimum. In particular, if the sets are sets of probability

distributions and the distance measure is the relative entropy,

the algorithm does converge to the minimum relative entropy

between the two sets of distributions.

Last, we briefly review the technical details of the Blahut-

Arimoto algorithm which utilizes the above idea to compute

the rate distortion function.

Blahut-Arimoto algorithm for Computing the Rate Dis-
tortion Function. Blahut-Arimoto algorithm [31], [33] is an

iterative algorithm that eventually converges to the optimal

solution of the convex optimization problem in the rate distor-

tion function. Specifically, in this algorithm, it first chooses an

initial distribution for r(x̂) (e.g., a uniform distribution), then

uses r(x̂) to compute q(x̂|x) = r(x̂)e−λd(x,x̂)

∑
x̂ r(x̂)e−λd(x,x̂) . After obtain-

ing q(x̂|x), it updates r(x̂) by setting r(x̂) =
∑

x p(x)q(x̂|x).
Then it uses r(x̂) to update q(x̂|x) by setting q(x̂|x) =

r(x̂)e−λd(x,x̂)

∑
x̂ r(x̂)e−λd(x,x̂) . The optimal solution q(x̂|x) that minimizes

the rate distortion function can be obtained by repeating the

above iteration between r(x̂) and q(x̂|x) until convergence.

In principle, the Blahut-Arimoto algorithm can be used to

compute the optimal LPPM q∗(u|l) in Proposition 1. However,

as we will discuss in the next section, there are significant

practical challenges when directly using the Blahut-Arimoto

algorithm on our problem.

IV. ONLINE PRIVACY-UTILITY TRADEOFF FOR LOCATION

TRACES

A. Practical Challenge in Finding the Optimal Offline
Privacy-Utility Tradeoff for Location Traces

Directly using the Blahut-Arimoto algorithm on the opti-

mization problem in Proposition 1 incurs exponential com-

plexity. This is because we need to characterize the values

of q(u|l) for all possible combinations (u, l) ∈ L × U .

In other words, we have to solve the optimization problem

over |U ||L| variables in order to find the optimal solution

q(u|l). Specifically, if we consider a user moving within N
locations and her distorted locations are also taken from these

N locations, then the number of variables will be N2T when

the user wants to release a location trace with length T ,

since we have |U | = |L| = NT in this case. As we can

see, with an increase in the length T of a location trace,

the number of variables increases exponentially. In addition

to this computation complexity issue, the problem of the

offline privacy-utility tradeoff also does not tell us about the

information leakage for the online privacy-preserving location

release, i.e., it does not capture the online nature of this setting.

Therefore, in the following, we propose a new problem,

i.e., the online privacy-utility tradeoff, to analyze the minimum

information leakage subject to a certain utility constraint in the

online privacy-preserving location release setting. Even though

the computation complexity issue still remains in finding the

optimal online privacy-utility tradeoff, we will show how to

address this issue by deriving upper and lower bounds on the

tradeoff which are efficiently computable. Interestingly, these

upper and lower bounds derived for the online privacy-utility

tradeoff also provide us an insight to understand and analyze

the offline privacy-utility tradeoff.

B. Privacy-Utility Tradeoff for Online Location Release Mech-
anisms

We first introduce the definition of the privacy leakage for

online location release mechanisms as below,

Definition 4: Privacy Leakage for Online Location Re-
lease Mechanisms. For a certain time period 1, 2, ..., T , when
a user is releasing her locations in an online manner (i.e.,
she sequentially releases her locations which form a released
location trace), the actual privacy leakage introduced in this
online location release setting is defined as

LActual
online (LPPM) =

T∑

i=1

I(Li;Ui|U i−1), (2)

where the LPPM could be generated based on any type of
approaches, and Li, Ui, U i−1 are described in Table I. We
use LActual

online (LPPM) as the privacy metric to evaluate the actual
privacy leakage for online location release mechanisms.

We will describe how to evaluate the actual privacy leakage

LActual
online (LPPM) for specific LPPMs in detail in Section V-C.

Next, we present the problem of online privacy-utility

tradeoff for location traces in the following proposition.

Proposition 2: Online Privacy-Utility tradeoff for Lo-
cation Traces. The tradeoff between privacy leakage and
distortion for online release mechanisms is given as follows,

L∗
online(D) =

T∑

i=1

min
q(ui|li,ui−1):
D(Li;Ui)≤Di

I(Li;Ui|U i−1), (3)

where Di represents the distortion assigned to the ith op-
timization problem in the summation in (3), Li, U i−1, li

and ui−1 are described in Table I. Furthermore, the online
privacy-utility tradeoff is always greater or equal to the offline
privacy-utility tradeoff, i.e., L∗

offline(D) ≤ L∗
online(D).

The proof of L∗
offline(D) ≤ L∗

online(D) is given in Appendix.

In Proposition 2, we can see that finding the online privacy-

utility tradeoff requires solving the optimization problems

in (3) individually where the objective functions are in the

form of I(Li;Ui|U i−1). In addition, by leveraging this online
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location release mechanism, a user can release her location

ui according to the LPPM q(ui|li,ui−1) at each timestamp i,
instead of releasing her whole location trace u according to the

LPPM q(u|l) obtained in Proposition 1 in the offline setting.

Specifically, the optimization problems in (3) are solved in

a sequential manner from timestamp 1 to timestamp T . In

particular, the LPPM q(ui|li,ui−1) obtained at timestamp i
(i.e., the solution in the ith optimization problem in (3)) will

be used as an input for the problem at timestamp i+1 to find

the optimal LPPM q(ui+1|li+1,ui) that minimize the i+ 1th

optimization problem in (3).

However, we notice that we still need to characterize

the value of q(ui|li,ui−1) for all possible combinations

(ui, li) ∈ Li × U i, i.e., the length of a location trace is

still involved in the objective function I(Li;Ui|U i−1) even

though we are considering the online location release setting.

The essential reason is that as long as the number of variables

in the objective function depends on the length of a location

trace, the exponential complexity still exists. If we want to

remove the effect caused by the length of a location trace

in the optimization problem and make the computation for

the optimal solution more efficient, the number of variables

in I(Li;Ui|U i−1) needs to be independent of the length of

a location trace. To achieve this goal, we obtain upper and

lower bounds on L∗
online(D) by relaxing the objective function,

which leads to the numbers of variables in the new objective

functions in the upper and lower bounds become independent

of the length of a location trace.

In the following, we present the main results for online
privacy-utility tradeoff for location traces.

1) Upper and Lower Bounds on Online Privacy-Utility
Tradeoff with Markov Release Restriction: Intuitively, a lo-

cation is more likely correlated with those that are closer to

it in terms of time span. Based on this intuition, we make

a Markov restriction on the location release mechanisms that

the released location Ui at timestamp i only depends on the

current true location Li, the previous released location Ui−1,

and the previous true location Li−1. We want to highlight that

our system model allows for potentially more complex mech-

anisms but for complexity issues we focus on Markov release.

The location release mechanism with Markov restriction is

shown in Fig. 2.

Ui-2

Li-2

Ui-1 Ui Ui+1

Li-1 Li Li+1 Li+2

Ui+2

Li-3
Fig. 2. Location release mechanism with Markov restriction

Based on this restriction on the location release mechanisms,

we derive the upper and lower bounds on L∗
online(D) and

present them in the following theorem.

Theorem 1: Upper and Lower Bounds on online
Privacy-Utility Tradeoff with Markov Release Restriction.
With the Markov restriction on the location release mecha-
nism, the optimal online privacy-utility tradeoff L∗

online(D) can
be upper and lower bounded as follows:

LMarkov
lower (D) ≤ L∗

online(D) ≤ LMarkov
upper (D), (4)

where

LMarkov
upper (D) =

T∑

i=1

min
q(ui|li,ui−1,li−1):

D(Li;Ui)≤Di

I(Li, Li−1;Ui|Ui−1), (5)

LMarkov
lower (D) =

T∑

i=1

min
q(ui|li,ui−1,li−1):

D(Li;Ui)≤Di

I(Li;Ui|Ui−1, Li−1). (6)

The proof of Theorem 1 is given in Appendix.

We want to highlight that we will use LMarkov
upper (D) to

generate LPPMs rather than LMarkov
lower (D), since we usually care

more about how much information at most will be leaked when

designing privacy-preserving mechanisms.

Definition 5: The optimal LPPM for a T -length loca-
tion trace, generated based on LMarkov

upper (D) from timestamp
1 to T in a online manner, is defined as LPPM∗ =
{LPPM∗

1,...,LPPM∗
i ,...,LPPM∗

T }, where LPPM∗
i is the optimal

solution q(ui|li, ui−1, li−1) obtained from solving the ith op-
timization problem in the summation in (5), i.e.,

LPPM∗
i = arg min

q(ui|li,ui−1,li−1):
D(Li;Ui)≤Di

I(Li, Li−1;Ui|Ui−1). (7)

Corollary 1: The actual leakage of LPPM∗ evaluated
by LActual

online (LPPM) is sandwiched between LMarkov
lower (D) and

LMarkov
upper (D), i.e.,

LMarkov
lower (D) ≤ LActual

online (LPPM∗) ≤ LMarkov
upper (D). (8)

The proof of Corollary 1 is presented in Appendix.

Corollary 1 provides us the privacy guarantee that the exact

information leakage for an entire location trace released by

LPPM∗ sequentially from timestamp 1 to T is sandwiched

between LMarkov
lower (D) and LMarkov

upper (D). Therefore, even though

directly computing the exact information leakage for an en-

tire location trace is computationally challenging, we can

still know the approximate information leakage by sandwich-

ing the exact information leakage between LMarkov
lower (D) and

LMarkov
upper (D). Besides, Corollary 1 strengthens our statement

again that we should generate LPPM according to LMarkov
upper (D)

rather than LMarkov
lower (D), since the actual leakage for an entire

location trace is upper bounded by LMarkov
upper (D). Here we need

to mention that Theorem 1 and Corollary 1 are only valid

under the Markov release restriction.

Corollary 2: Given the LPPMcl for a T -length location
trace that releases locations only depending on the current
location at each timestamp, i.e., the LPPM at timestamp i is in
the form of q(ui|li), where “cl” is shorted for current location,
the actual leakage of LPPMcl evaluated by LActual

online (LPPM) is
upper and lower bounded as below,

Ilower ≤ LActual
online (LPPMcl) ≤ Iupper, (9)

where Iupper =
∑T

i=1 I(Li, Li−1;Ui|Ui−1), and Ilower =∑T
i=1 I(Li;Ui|Ui−1, Li−1).
Since LPPMs that release locations only depending on the

current location also satisfy the Markov release restriction,

Corollary 2 can be easily proved based on the proof of

Corollary 1. Thus we omit its proof for space limitation.
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We want to mention that the previous LPPMs designed for

single location scenario (e.g., [10], [11]) can be straightfor-

wardly applied to location traces by releasing locations only

depending on the current location. One take away from Corol-

lary 2 is that it provides us the upper and lower bounds on the

actual online leakage for a location trace when LPPMs release

locations only depending on the current location. Therefore,

calculating Iupper and Ilower is also meaningful for this type

of LPPMs, especially when their actual leakage is difficult

to calculate due to the exponential computation complexity,

which we will explain in detail in Section V-C.

Now we briefly analyze the generating process for LPPM∗.

As we can see from Theorem 1, this process is quite

efficient, since we only need to characterize the val-

ues of q(ui|li, ui−1, li−1) for N4 possible combinations in

LMarkov
upper (D), which will make the computation much more ef-

ficient compared with characterizing q(u|l) for N2T possible

combinations in L∗
online(D). Moreover, Theorem 1 provides a

framework for privacy-preserving location trace release under

the Markov release restriction . This framework is similar

in spirit to the one in Proposition 2, since both of them

contain the pre-computation part for generating LPPM and

location trace release part according to this LPPM. In terms

of how to use this LPPM to release locations in an online

manner, the user follows the following procedure: after she

obtains LPPM∗
i at timestamp i, she can sample from the

conditional probability distribution q(ui|li, ui−1, li−1) based

on her current true location Li, the previous released and true

locations Ui−1 and Li−1 to obtain the released location Ui.

Next, in order to obtain the LPPM∗
i+1 q(ui+1|li+1, ui, li) to

release her location Ui+1 at the next timestamp i+1, the user

will input her current LPPM∗
i q(ui|li, ui−1, li−1) to the i+1th

optimization problem in (5), which we will explain in detail

in Section V.

As we can see from Theorem 1, we address the computation

challenge by deriving the upper and lower bounds on the

online privacy-utility tradeoff by making a Markov restriction

on location release mechanism. To make our analysis more

general, we also prove the upper and lower bounds without

making this restriction and the result is shown as below.

2) Upper and Lower Bounds on Online Privacy-Utility
Tradeoff for Generic Online Location Release Mechanisms:
In the case of generic online location release, i.e., when we

do not make the Markov restriction on the release mechanism,

the result is shown in the following theorem.

Theorem 2: Upper and Lower Bounds on online
Privacy-Utility Tradeoff for Generic Online Location Re-
lease Mechanisms. For generic online LPPMs, the optimal
online privacy-utility tradeoff L∗

online(D) can be upper and
lower bounded as follows:

Llower(D) ≤ L∗
offline(D) ≤ L∗

online(D) ≤ Lupper(D), (10)

where

Lupper(D) =

T∑

i=1

min
q(ui|li):

D(Li;Ui)≤Di

I(Li;Ui), (11)

Llower(D) = T ·min
i

min
q(ui|li):

D(Li;Ui)≤Di

I(Li;Ui). (12)

The proof of Theorem 2 is presented in Appendix.
Interestingly, this result naturally connects the online

privacy-utility tradeoff with the offline privacy-utility tradeoff,

which further enables us to understand the information leakage

in the offline setting. In addition, the above result is generic in

the sense that Llower(D) and Lupper(D) are true for any kind

of online location release mechanism. Moreover, Theorem 2

also provides a framework to pre-compute the optimal LPPM

q(ui|li) at every timestamp according to Lupper(D) and then

release location ui at timestamp i by sampling from q(ui|li).
We only need to characterize the values of q(ui|li) for N2

possible combinations in Lupper(D), which leads to high

computation efficiency.
However, we notice that Lupper(D) only captures the mutual

information between the true location Li and the released loca-

tion Ui without taking any correlation into account. Therefore,

Lupper(D) may be too weak to be a privacy metric to quantify

location trace privacy, where correlations naturally happen.
Last, as mentioned above, Theorem 1 and Corollary 1 are

only valid under the Markov release restriction. On the other

hand, Theorem 2 provides the generic bounds for any optimal

online LPPM, since we did not make the Markov release

restriction when deriving the main results in this Theorem.

V. ALGORITHMS FOR GENERATING OPTIMAL LPPMS

BASED ON UPPER BOUNDS

In this section, we propose algorithms to obtain the optimal

LPPMs based on the upper bounds LMarkov
upper (D) (i.e., LPPM∗)

and Lupper(D). Since generating LPPM based on Lupper(D)
has already been proposed in [11], we will mainly focus

on presenting the algorithm used to solve the optimization

problem in LMarkov
upper (D) to generate LPPM∗.

Note that the objective function in LMarkov
upper (D) is in the form

of conditional mutual information, thus solving the optimiza-

tion problem in LMarkov
upper (D) comes down to the problem of

minimizing conditional mutual information subject to a utility

constraint, which can be solved by our proposed algorithm.

A. Algorithm for Minimizing Conditional Mutual Information
subject to a Utility Constraint

First, we define the problem of minimizing conditional

mutual information subject to a utility constraint as below.
Definition 6: If X ,X̂ and S are random variables,

the problem of minimizing conditional mutual information
I(X; X̂|S) subject to a utility constraint D is

min
q(x̂|x,s):D̃≤D

I(X; X̂|S),

where D̃ =
∑

x,x̂,s

p(x|s)q(x̂|x, s)p(s)d(x, x̂).
Noticing that the problem in Definition 6 is similar to the

rate distortion function, therefore, we can follow the main idea

of computing the rate distortion function to solve this problem.

We start with rewriting the optimization problem in Definition

6 as a minimum of the relative entropy between two sets, and

then apply the process of alternating minimization to obtain

the optimal solution q(x̂|x, s).
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1) Rewrite the Optimization Problem in Definition 6: We

begin with the following lemma.

Lemma 1: Let p(x|s)p(x̂|x, s) be a given joint distribution.
Then the distribution r(x̂|s) that minimizes the relative entropy
D(p(x, s)p(x̂|x, s)||(p(x, s)r(x̂|s)) is the marginal distribu-
tion r∗(x̂|s) corresponding to p(x̂|x, s):

D(p(x, s)p(x̂|x, s)||p(x, s)r∗(x̂|s))
= min

r(x̂|s)
D(p(x, s)p(x̂|x, s)||(p(x, s)r(x̂|s)),

where r∗(x̂|s) = ∑
x p(x|s)p(x̂|x, s).

The proof of Lemma 1 is similar to the main idea in the

proof of Lemma 10.8.1 in [33], thus we omit this proof for

space limitation.

According to the definition of mutual information, we have

I(X; X̂|S) =
∑

x,x̂,s

p(x, s)q(x̂|x, s) log q(x̂|x, s)
q(x̂|s) . (13)

Based on Lemma 1 and Eq. (13), we can rewrite the

optimization problem in Definition 6 as a double minimization

as below,

min
q(x̂|x,s):D̃≤D

I(X; X̂|S)

= min
r(x̂|s)

min
q(x̂|x,s):
D̃≤D

∑

x,x̂,s

p(x, s)q(x̂|x, s) log q(x̂|x, s)
r(x̂|s) . (14)

2) Alternating Minimization Between Two Sets to Obtain
the Optimal Solution: If A is the set of all joint distributions

over X, X̂, S with marginal p(x, s) that satisfy the distor-

tion constraint and if B is the set of product distributions

p(x, s)r(x̂|s) with arbitrary r(x̂|s), we can rewrite Eq. (14)

as the following,

min
q(x̂|x,s):D̃≤D

I(X; X̂|S) = min
q∈B

min
p∈A

D(p||q). (15)

Until now, we have converted the problem of minimizing

conditional mutual information into the problem of finding the

minimum of the relative entropy between two sets. Similar to

the algorithm for finding the minimum distance between two

convex sets mentioned in Section III, we can use an alternating

minimization process on the double minimization problem in

(15) to obtain the optimal solution q(x̂|x, s).
We begin with an initial output distribution r(x̂|s) and

calculate the q(x̂|x, s) that minimizes the conditional mutual

information I(X; X̂|S) subject to the distortion constraint.

We can use the method of Lagrange multipliers for this

minimization to obtain

q(x̂|x, s) = r(x̂|s)e−1−λd(x,x̂)

∑
x̂ r(x̂|s)e−1−λd(x,x̂)

. (16)

The parameter λ in Eq. (16) is the Lagrange multiplier,

which is related to how much we favor information leakage

versus distortion (higher λ means less distortion).

For this conditional distribution q(x̂|x, s), we calculate

the output distribution r(x̂|s) that minimizes the conditional

mutual information, which by Lemma 1 is

r(x̂|s) =
∑

x

p(x|s)q(x̂|x, s). (17)

Since the proofs of Eq. (16) and (17) are similar to those

of Eq. (10.142) and (10.143) in [33], we omit these proofs

for space consideration.

We use the output distribution r(x̂|s) as the starting point of

the next iteration. Each step in the iteration, minimizing over

q(x̂|x, s) and then over r(x̂|s), reduces the right-hand side of

(14). The limit of this process has been shown in [34].

The algorithm used to obtain the optimal solution q(x̂|x, s)
to the problem in Definition 6 is presented in Algorithm 1.

Algorithm 1: Minimizing Conditional Mutual Infor-

mation

Input: λ: Lagrange multiplier, p(x, s): joint probability

distribution of x and s, d(x, x̂): distortion matrix,

δ: threshold for convergence of the algorithm

Output: q(x̂|x, s): optimal solution, I∗: minimum of

I(X; X̂|S), D: distortion corresponding to I∗

1: Initialize r0(x̂|s) as a uniform distribution

2: Calculate q0(x̂|x, s) using r0(x̂|s) by Eq.(16)

3: Calculate I0 = I(X; X̂|S) using r0(x̂|s), q0(x̂|x, s),
and p(x, s) by Eq.(13)

4: Calculate r(x̂|s) using q0(x̂|x, s) by Eq.(17)

5: while true do
6: Calculate q(x̂|x, s) using r(x̂|s) by Eq.(16)

7: Calculate I = I(X; X̂|S) using r(x̂|s), q(x̂|x, s),
and p(x, s) by Eq.(13)

8: if (I0 − I � δ) then
9: I∗ ← I

10: Calculate D =
∑

x,x̂,s p(x, s)q(x̂|x, s)d(x, x̂)
11: return q(x̂|x, s), I∗, D
12: else
13: I0 ← I
14: Calculate r(x̂|s) using q(x̂|x, s) by Eq.(17)

15: end if
16: end while

Remark 2: We analyze the computation complexity of
Algorithm 1 by giving an expression for the computation
complexity of one iteration in the algorithm. In each iteration,
the computation complexity is dominated by the calculation
for q(x̂|x, s) and r(x̂|s). Complexity of computing q(x̂|x, s)
as given in (16): For each combination of (x, s), we need |X̂|
multiplications for a specific |x̂| in the denominator and then
use this denominator for every other |x̂|, thus the calculation
needs O(|X̂|) operations. Considering of all the combina-
tions of (x, s), the complexity of computing q(x̂|x, s) will be
O(|X̂||X||S|). Complexity of computing r(x̂|s) as given in
(17): Similarly, for each s, we need |X| multiplications for a
specific |x̂|, so the calculation for all the s requires O(|X||S|)
operations for a specific |x̂|. Considering of the calculation
for all the |x̂|, the complexity of computing r(x̂|s) will also
be O(|X̂||X||S|). Therefore, each iteration in Algorithm 1
requires about O(|X̂||X||S|) computations. We can easily see
that the computation complexity grows with the size of X̂ ,X
and S. However, in practice, it is almost impossible for a
user to move to a location far away from her current location
within a certain time period due to the speed constraint. As a
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result, when we use Algorithm 1 to generate LPPMs, the size
of X̂ ,X and S will not be arbitrarily large and are actually
limited to a small region.

In the following, we show how to leverage Algorithm 1

as a building block to generate LPPM∗, i.e., by generating

LPPM∗
1,...,LPPM∗

i ,...,LPPM∗
T in an online manner.

B. Generating LPPMs based on the Upper Bounds

1) Generating LPPM∗
i : Now we leverage algorithm

1 to design the algorithm used to generate LPPM∗
i

q(ui|li, ui−1, li−1). Basically, we replace X , X̂ and S with

(Li, Li−1), Ui and Ui−1 respectively in Eq.(16) and Eq.(17)

to obtain the q(x̂|x, s) and r(x̂|s) used in Algorithm 1, which

are shown as the following:

q(ui|li, ui−1, li−1) =
r(ui|ui−1)e

−1−λd(li,ui)

∑
ui

r(ui|ui−1)e−1−λd(li,ui)
, (18)

r(ui|ui−1) =
∑

li,li−1

p(li, li−1|ui−1)q(ui|li, ui−1, li−1). (19)

From Eq.(19), we can see that the essential step for cal-

culating r(ui|ui−1) is to calculate p(li, li−1|ui−1), which

equals to p(ui−1, li−1, li) / p(ui−1), where p(ui−1) is the

marginal distribution of the released locations at timestamp

i − 1. Before we present the algorithm for generating the

optimal q(ui|li, ui−1, li−1), we want to show how to calculate

p(ui−1, li−1, li) first, since this is an essential step to under-

stand what should be the input parameters of our algorithm.

More importantly, this calculation also indicates that our

optimal LPPM for a location trace (i.e., LPPM∗) should be

generated sequentially in terms of time span, i.e., the opti-

mal LPPM at timestamp i (i.e., LPPM∗
i q(ui|li, ui−1, li−1))

depends on the optimal LPPM at the previous timestamp

(i.e., LPPM∗
i−1 q(ui−1|li−1, ui−2, li−2)), which has already

been highlighted in Section IV-B. For example, if we want to

generate the optimal LPPM for a location trace with length 4,

first we should generate LPPM∗
1 q(u1|l1) at the first timestamp,

then we can generate LPPM∗
2 q(u2|l2, u1, l1) based on LPPM∗

1

at the second timestamp, and the processes at timestamps 3
and 4 are similar to this. Now, we expand the calculation for

p(ui−1, li−1, li) as the following:

p(ui−1, li−1, li) = p(ui−1, li−1)p(li|ui−1, li−1) (20)

=p(ui−1, li−1)p(li|li−1) (21)

=
∑

ui−2,li−2

p(ui−1, li−1, ui−2, li−2)p(li|li−1) (22)

In the probability calculation above, the reason that

(20) equals to (21) is because of the property of the

first order markov transition in location traces, i.e., the

current location li only depends on the previous loca-

tion li−1. Now we can easily see that p(ui−1, li−1, li)
can be directly calculated by the joint probability distribu-

tion in the previous timestamp p(ui−1, li−1, ui−2, li−2) (i.e.,

q(ui−1|li−1, ui−2, li−2)p(li−1, ui−2, li−2)) and the location

transition probability p(li|li−1). Therefore, in order to generate

LPPM∗
i at the current timestamp i, we need to use one of

the outputs (e.g., p(ui−1, li−1, ui−2, li−2)) from the previous

Algorithm 2: Generating LPPM∗
i at timestamp i

Input: λ: Lagrange multiplier, p(ui−1, li−1, ui−2, li−2):
joint probability distribution obtained from the previous

timestamp i− 1, p(ui−1): marginal distribution of the

released location ui−1, d(li, ui): distortion matrix,

δ: threshold for convergence of the algorithm

Output: q(ui|li, ui−1, li−1): LPPM∗
i at timestamp i, I∗i :

minimum leakage at timestamp i, Di: distortion

corresponding to I∗i , p(ui): marginal distribution of

the released location ui, q(ui, li, ui−1, li−1): joint

probability distribution of the true and released

locations ui, li, ui−1, li−1

1: Initialize r0(ui|ui−1) as a uniform distribution

2: Calculate q0(ui|li, ui−1, li−1) using r0(ui|ui−1) by

Eq.(18)

3: Calculate p(li, ui−1, li−1) by Eq.(22)

4: Calculate I0i = I(Li, Li−1;Ui|Ui−1) using r0(ui|ui−1),
q0(ui|li, ui−1, li−1), and p(li, ui−1, li−1) by Eq.(23)

5: Calculate r(ui|ui−1) using q0(ui|li, ui−1, li−1),
p(li, ui−1, li−1) and p(ui−1) by Eq.(19)

6: while true do
7: Calculate q(ui|li, ui−1, li−1) using r(ui|ui−1) by

Eq.(18)

8: Calculate Ii = I(Li, Li−1;Ui|Ui−1) using r(ui|ui−1),
q(ui|li, ui−1, li−1), and p(li, ui−1, li−1) by Eq.(23)

9: if (I0i − Ii � δ) then
10: I∗i ← Ii
11: Calculate p(ui, li, ui−1, li−1) =

q(ui|li, ui−1, li−1)p(li, ui−1, li−1)
12: Calculate

Di =
∑

ui,li,ui−1,li−1
p(ui, li, ui−1, li−1)d(li, ui)

13: Calculate p(ui) =
∑

li,ui−1,li−1
p(ui, li, ui−1, li−1)

14: return q(ui|li, ui−1, li−1), I
∗
i , Di,

p(ui, li, ui−1, li−1) and p(ui)
15: else
16: I0i ← Ii
17: Calculate r(ui|ui−1) using q(ui|li, ui−1, li−1),

p(li, ui−1, li−1) and p(ui−1) by Eq.(19)

18: end if
19: end while

timestamp i− 1, i.e., this proves the statement above that the

optimal LPPM for an entire location trace (i.e., LPPM∗) should

be generated sequentially in terms of time span.

After we obtain LPPM∗
i at each timestamp i, we can

calculate its minimum information leakage as below,

I(Li, Li−1;Ui|Ui−1)

=
∑

ui,li,
ui−1,li−1

p(ui, li, ui−1, li−1) log
q(ui|li, ui−1, li−1)

r(ui|ui−1)
. (23)

We present the algorithm used to generate LPPM∗
i at

timestamp i in a location trace in Algorithm 2.

By adding up all the I∗i and Di derived at each timestamp

i, we obtain the LMarkov
upper (D) (i.e., an information leakage-

distortion pair in the form of (
∑T

i=1 I
∗
i ,
∑T

i=1 Di)) of an entire
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trace for a fixed λ. By changing to different λs, we can obtain

the privacy-utility tradeoff curve of LMarkov
upper (D).

Last, the computation complexity of Algorithm 2 can be

analyzed similarly as in Remark 2. Therefore, each iteration

in Algorithm 2 requires about O(|Ui||Li||Ui−1||Li−1|) com-

putations.

2) Generating Optimal LPPM based on Lupper(D): As

mentioned before, generating the optimal LPPM q(ui|li) based

on Lupper(D) which only protects the current location, i.e.,

deriving the optimal solution by solving the ith optimization

problem in the summation in (11), has already been done in

[11]. Therefore, details about the generating process of this

LPPM can be referred to [11].

Since the LPPM generated based on Lupper(D) does not

capture location correlations, this may not be very helpful

when designing LPPM for location traces. However, this

method works very well in the single location scenario (i.e.,

the released location ui only depends on the current true

location li at timestamp i), since it can guarantee the minimum

information leakage. Besides, the authors in [11] have already

shown its advantage over other schemes. Later, instead of

evaluating the optimal LPPM q(ui|li) generated based on

Lupper(D), we will show the results for the LPPM proposed

in [11] in Section VI, because they are the same.

Remark 3: Since the lower bounds LMarkov
lower (D) and

Llower(D) only capture the least amount of information leak-
age when user releases her location trace, the actual leakage
may be higher than the leakage quantified by LMarkov

lower (D) and
Llower(D). Therefore, generating LPPMs based on LMarkov

lower (D)
and Llower(D) may not be meaningful in the sense that they
cannot provide any privacy guarantee about the upper bound
of the information leakage. However, for completeness, we still
calculate the LMarkov

lower (D) in Section VI to help us have a clear
understanding about the actual information leakage when user
releases her distorted location trace. Technically, LMarkov

lower (D)
can be solved based on Algorithm 1. For space consideration,
we will not show the results for Llower(D).

C. Evaluating LPPMs based on the Actual Online Leakage

We use the actual online leakage LActual
online (LPPM) in defini-

tion 4 as the privacy metric to evaluate our LPPM and other

proposed LPPMs. This actual online leakage can be used as

a general metric to evaluate existing and future LPPMs. Now

we describe how to use this metric to evaluate LPPMs by

expanding the formulation of LActual
online (LPPM) as the following,

LActual
online (LPPM) =

T∑

i=1

I(L1, ..., Li;Ui|U1, ..., Ui−1)

=
T∑

i=1

(H(Ui|U1, ..., Ui−1)−H(Ui|U1, ..., Ui−1, L1, ..., Li)).

(24)

We want to highlight that the calculation for both terms in

(24) can be simplified depending on how a specific LPPM

is designed. We take the calculation for LActual
online (LPPM) of our

proposed LPPM (i.e., LPPM∗) and the LPPM proposed in [11]

as examples to illustrate this point.

For the second term in (24), because we have made

the restriction on location releasing mechanism that

Ui only depends on Li, Ui−1 and Li−1, we have

H(Ui|U1, ..., Ui−1, L1, ..., Li) = H(Ui|Li, Ui−1, Li−1)
in (i.e., LPPM∗

i ); since the LPPM proposed in [11]

is used in the single location scenario, then we have

H(Ui|U1, ..., Ui−1, L1, ..., Li) = H(Ui|Li) in their scheme.

Similar simplification can also be made when evaluating other

existing or future LPPMs which are designed in different ways.

We know that calculating H(Ui|Li, Ui−1, Li−1) only requires

the conditional probability distribution q(ui|li, ui−1, li−1)
(i.e., LPPM∗

i ) and the joint distribution p(ui, li, ui−1, li−1),
which can be obtained from Algorithm 1. Similarly, the

calculation for H(Ui|Li) only depends on conditional

probability distribution q(ui|li) (i.e., the optimal LPPM in

[11]) and the joint distribution p(ui, li).
As for the first term in (24), the computation complexity

for its calculation grows exponentially with the location trace

length T , since this calculation needs the joint distribution

for all the released locations u1, u2..., ui. As an illustrating

example, we consider calculating the actual online leakage for

a location trace with length 3 (i.e., T = 3). As for a longer

location trace, the calculation needs more time.

When T = 3, we have
∑3

i=1 H(Ui|U1, ..., Ui−1) =
H(U1) + H(U2|U1) + H(U3|U2, U1). We know

that H(U1) = −∑
u1

p(u1) log p(u1), H(U2|U1) =
−∑

u1,u2
p(u2|u1)p(u1) log p(u2|u1), and H(U3|U2, U1) =

−∑
u1,u2,u3

p(u3|u1, u2)p(u2|u1)p(u1) log p(u3|u1, u2). We

can see that the essential parts for those calculation are

calculating p(u2|u1) and p(u3|u1, u2).
For our scheme, we have

p(u2|u1) =
∑

l1,l2

p(u2|u1, l1, l2)p(l1, l2|u1)

=
∑

l1,l2

p(u2|u1, l1, l2)p(u1|l1)p(l1, l2)
p(u1)

, (25)

and similarly we can also obtain

p(u3|u1, u2)

=
∑

l1,l2,l3

p(u3|u2, l2, l3)p(u2|u1, l1, l2)p(u1|l1)p(l1, l2, l3)
p(u2|u1)p(u1)

.

(26)

From (25) and (26), we can see that the calculation only

needs all the LPPMs derived up to the current timestamp i,
i.e., p(u3|u2, l2, l3), p(u2|u1, l1, l2) and p(u1|l1), and the joint

probability distribution of all the true locations p(l1, l2, l3).
Similarly, for the scheme in [11], the calculations are

p(u2|u1) =
∑

l1,l2

p(u2|l2)p(u1|l1)p(l1, l2)
p(u1)

, (27)

p(u3|u1, u2) =
∑

l1,l2,l3

p(u3|l3)p(u2|l2)p(u1|l1)p(l1, l2, l3)
p(u2|u1)p(u1)

.

(28)

The calculation in (27) and (28) also only requires all the

LPPMs derived up to the current timestamp i, i.e., p(u3|l3),
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p(u2|l2) and p(u1|l1), and the joint probability distribution of

all the true locations p(l1, l2, l3).
Finally, by combining the calculation for both terms in (24),

we can calculate the actual online leakage for any type of

LPPMs. Therefore, the actual online leakage LActual
online (LPPM)

can be used as a generic privacy metric to evaluate and

compare existing and future LPPMs, which is extremely mean-

ingful in terms of designing privacy-preserving mechanisms.

The calculation of Iupper and Ilower can be done similarly as

the process presented above.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the actual online leak-

age LActual
online (LPPM) of different LPPMs, LMarkov

upper (D) and

LMarkov
lower (D) on a synthetic dataset; also evaluate LMarkov

upper (D)
and LMarkov

lower (D) on a real-world dataset. Specifically, we eval-

uate the actual online leakage of our LPPM (i.e., LPPM∗),

the LPPM proposed in [11] (denoted by OTP17) and another

LPPM proposed in [10] (denoted by ABCP13). OTP17 has

been briefly mentioned in Section V-B2, and ABCP13 is

based on differential privacy and also works in single loca-

tion scenario. We did not evaluate the LPPM proposed in

[17] which considers temporal correlations when protecting

location privacy, since deriving the probability distributions

for calculating the actual online leakage from their LPPM is

non-trival. All experiments were conducted on a desktop with

3.6 GHz Intel i7 CPU and 8GB memory.

A. Evaluation on Synthetic Dataset

Since our privacy metric defined as the actual online leakage

LActual
online (LPPM) is designed for evaluating trace-level privacy,

intuitively, this metric should capture different correlation

levels among location traces inherently. In order to explore

how different correlation levels will affect the privacy leakage,

we need to make sure that the location traces have the

intended correlation levels by design. Therefore, we start with

a synthetic dataset to properly evaluate this effect. We use

specifically designed Markov models on a synthetic dataset to

generate location traces. An illustration of the synthetic dataset

is presented in Fig. 3. In this dataset, we consider a map with

6 locations, which is divided by 2 × 3 grids, and the width

and length of each grid are both defined as 1 without loss of

generality. The number located inside a grid is an index for

that grid/location; for example, the index of the location (3, 2)
is 6.

Fig. 3. Synthetic dataset: a map with 6 locations.

In this synthetic dataset, we use four different types of

Markov transition matrices to model the different correlation

levels among location traces. These are all 6× 6 matrices and

denoted by M1, M2, M3 and M4 respectively. Specifically,

each row in M1 has one element as 1 and the others as 0;

each row in M2 has two elements as 1/2 and the others as 0;

all elements in M3 are generated randomly and then each row

is normalized to form a probability distribution; all elements

in M4 are the same (i.e., 1/6). Then M1, M2, M3 and M4

can be used to generated location traces which are correlated

in a decreased manner, i.e., location traces generated based on

M1 are fully correlated, while traces generated based on M4

are fully independent.

Besides, we adopt Euclidean distance as the distortion func-

tion since the distortion between two locations is sensitive to

the their distance, i.e., d(l, u) =
√|(lx − ux)2 + (ly − uy)2|,

where (lx, ly) and (ux, uy) are the two coordinates for location

l and u respectively.

We consider a location trace with length of 4, i.e., L =
{L1, L2, L3, L4}. Each location is represented by an index

k in {1, 2, ..., 6}. Given the location distribution for the 1st

timestamp p1 as {p11, p21, p31, p41, p51, p61} (pki represents the

probability when user’s location index is k at the ith times-

tamp), the location probability distribution for the subsequent

timestamps can be calculated based on p1 and the Markov

transition matrix M by equation pi = pi−1M . We generate

location traces for the synthetic dataset according to the joint

probability distribution of all the locations, i.e., p(l1, l2, l3, l4).
Based on this synthetic dataset, we show the performance

of LMarkov
upper (D) and LMarkov

lower (D), and evaluate the actual online

leakage of the LPPM proposed in our paper (i.e., LPPM∗), the

LPPMs in OTP17 and ABCP13. In particular, the later two

LPPMs are derived under the same initial location probability

distribution, Markov mobility model and distortion as ours.

Besides, we choose λ from the range of 0.01 to 10 to draw

the privacy-utility tradeoff curve. Since we know that the less

λ is, the larger the distortion. Therefore, by choosing λ in

an increasing manner from the range, we can draw privacy-

utility tradeoff curve quite smoothly (one point in the figures

corresponds to one λ). We set the threshold for convergence in

Algorithm 2 as 10−8. All experiments are conducted average

on 5 Markov matrices, and the results are shown in Fig. 4.

Now we describe how we derive the curves shown in the

figures in detail. Remember that each point on the curve

is corresponding to a fixed λ. For a fixed λ, given the

initial location probability distribution and a Markov transition

matrix, we can obtain the information leakage-distortion pair

(i.e., (
∑4

i=1 I
∗
i ,
∑4

i=1 Di)) of LMarkov
upper (D) by Algorithm 2. For

each λ, we save the distortion Di which is one of the outputs of

Algorithm 2 at each timestamp i. When changing to different

λs, we can smoothly draw the information leakage-distortion

curve of LMarkov
upper (D). For every λ, we use Di, the same initial

location probability distribution and Markov transition matrix

as inputs to derive the LPPMs in OTP17 and ABCP13 at each

timestamp, and then calculate their actual online leakage for

the entire trace following the calculation procedure presented

in Section V-C. By enumerating all the λs, we derive the actual

online leakage curves for the LPPMs in OTP17 and ABCP13.

In addition, we also calculate the actual online leakage of the

LPPM proposed in our paper (i.e., LPPM∗) and compare it

with the actual leakage of the other two LPPMs. Similarly,

we can also derive the curve of LMarkov
lower (D).

As we can see from Fig. 4, the actual leakage of the LPPM

proposed in our paper (i.e., LPPM∗) is lower than the other

two LPPMs in all the cases we considered. In particular, this
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(d) Markov matrices are in type of M4.

Fig. 4. LMarkov
upper(D), LMarkov

lower (D), and actual leakage of different LPPMs evaluated under different types of Markov matrices.

advantage becomes even greater when location trace is more

correlated. The reason that LPPM∗ has the least information

leakage is because it considers Ui−1 when releasing locations.

Specifically, when the comparison was done on M1, the

location trace is mostly a single static location over time

(i.e., Li = Li−1 ), if we do not consider Ui−1, the LPPM

will output a new Ui as a noisy version of Li (which equals

to Li−1) independent of the previous Ui−1, with the same

probability distribution as Ui−1 since the inputs are the same,

so an attacker can better infer Li by combining the two noisy

outputs. In this case, our leakage will be similar to the LPPM

in OTP17 since they only consider Li in their LPPM. But

if we consider Ui−1, we can now output the same value

Ui = Ui−1, which will still satisfy the distortion constraint

but less leakage than the case which do not consider Ui−1.

Since the the LPPM in ABCP13 considers neither correlations

nor minimizing information leakage, its leakage is the largest

compared with our LPPM and the one in OTP17.

Besides, the actual leakage-distortion curve of our LPPM

is always upper bounded by LMarkov
upper (D), which follows the

main result from Corollary 1. In other words, the experimental

results further strengthen the statement that our LPPM can pro-

vide the privacy guarantee that its actual leakage is sandwiched

between LMarkov
lower (D) and LMarkov

upper (D). Therefore, even though

generating LPPM for location traces directly from L∗
online(D)

is exponentially expensive, we can still use LMarkov
upper (D) to

efficiently generate LPPM∗ with strict privacy guarantee and

remain lower leakage compared with other LPPMs in terms

of trace-level privacy.

We want to highlight one important take away from the

results in Fig. 4, which is that the actual leakage is very

close to the upper bound LMarkov
upper (D). This is intuitive since

LMarkov
upper (D) generates the LPPM in a way such that the released

location Ui at timestamp i depends on the current true location

Li, the previous released location Ui−1, and the previous true

location Li−1; and we only consider the first-order Markov

mobility model (i.e., the current location Li only depends

on the previous location Li−1), therefore, designing LPPM

based on LMarkov
upper (D) may be already enough to capture the

full correlations among locations, which leads to the actual

leakage of our LPPM to be quite close to the upper bound

LMarkov
upper (D).

In addition, to understand how LPPM∗ works in an intuitive

way, we analyze how the location traces are distorted based

on LPPM∗. Specifically, we show the true location trace and

its corresponding distorted location trace (both of length of

8) on M1 and M4 when λ = 0.5 in Fig. 5. We can see

that when the Markov transition matrix is M1, the distorted

locations remain almost the same with the true locations.

Remember that the user’s locations are highly correlated when

the Markov transition matrix is M1. In this case, it is not

necessary to distort the locations by a large extent, because

this will decrease the utility and is not very helpful to decrease

the information leakage. The reason for not being helpful to

decrease the information leakage is that the initial location

distribution and the Markov transition matrix have already leak

a significant amount of information, even though we do not

release the distorted locations. Hence, LPPM∗ ensures good

utility by not distorting the locations by a large amount in

this case. When the Markov transition matrix is M4, the true

locations are distorted by a very large extent to ensure less

information leakage, only very few distorted location remains

the same with the true location. The results are intuitive

since the optimization problem used to generate LPPMs in

LMarkov
upper (D) consider information leakage and utility at the

same time.
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Fig. 5. True location trace and released location trace generated from
our LPPM on M1 and M4 when λ = 0.5.
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Fig. 6. LMarkov
upper (D) and LMarkov

lower (D) of our LPPM, Iupper and Ilower

of other LPPMs on the real-world dataset.

B. Evaluation on Real-world Dataset

Since directly calculating the actual online leakage

LActual
online (LPPM) on a real-world dataset leads to exponential

complexity, in this subsection, we evaluate LMarkov
upper (D) and

LMarkov
lower (D) based on a real-world dataset Geolife [35] col-

lected by Microsoft Research Asia. Geolife dataset contains

182 users’ location trace data in a period of over five years.

In this dataset, user’s GPS trace is represented by a sequence

of tuples, each of which contains latitude, longitude and

timestamp. The majority of this dataset was created in Beijing,

China. In our experiment, we pre-processed the dataset by

extracting a part of the data within the 3rd ring of Beijing of

size 7.2km× 7.2km, and divided this area into 12× 12 grids

of 0.6km×0.6km. For simplicity, we evaluate user’s location

trace with length 8. Markov transition matrix for this real-

world dataset is learned by the EM method [36]. We also adopt

Euclidean distance to calculate the distortion function. We

randomly choose 5 users out of the entire dataset to train their

personal Markov transition matrices and location probability

distributions, and the results are averaged on those 5 users.

We choose λ from the same range with the one used in the

synthetic dataset and set the threshold as 0.0001.

1) Evaluating LMarkov
upper (D), LMarkov

lower (D), and Iupper and Ilower

of other LPPMs: After we derive LPPM∗ on the real-world

dataset, by using similar process as the experiments in the

synthetic dataset, we can use the same distortion to derive the

LPPMs in OTP17 and ABCP13. Since we know that calculat-

ing the actual online leakage on the real-world dataset leads

to exponential complexity even for the LPPMs proposed for

protecting single location, we calculate Iupper and Ilower for the

LPPMs in OTP17 and ABCP13. We show the results in Fig. 6.

From this figure, the first thing we know is that LMarkov
upper (D) is

lower than the Iupper of the other two LPPMs, and LMarkov
lower (D)

is lower than the Ilower of the other two LPPMs. Even though

we cannot directly compare the actual online leakage of these

LPPMs because of the exponential complexity problem, we

still know that the actual online leakage of LPPM∗ should

be very close to LMarkov
upper (D), based on the results shown

in synthetic dataset. Besides, we know that the information

leakage of LPPM∗ should be sandwiched between LMarkov
upper (D)

and LMarkov
lower (D), since we have theoretically proved that the

actual online leakage is sandwiched between the upper and

lower bounds in Corollary 1. In addition, the actual online

leakage of LPPM∗ should be no worse than the one in

OTP17 from a theoretical point of view, this is because

we are trying to minimize privacy leakage over a larger

distribution q(ui|li, ui−1, li−1) instead of a smaller distribution

q(ui|li). Last, we want to highlight that even though we cannot

evaluate the actual online leakage of LPPM∗ on the real-world

dataset directly due to the exponential complexity problem, our

advantage is that LPPM∗ can still provide reasonable privacy

guarantee in a scenario where locations are correlated, since

its actual online leakage is no larger than LMarkov
upper (D).

2) Impact of Threshold on Real-world Dataset: We also

analyze the computation time for Algorithm 2 on real-world

dataset, i.e., the time that Algorithm 2 needs to converge. As

we can see from Algorithm 2, when fixing the trace length and

the size of locations, the time of convergence only depends

on the threshold. To evaluate how the time of convergence

changes with different thresholds, we run our algorithm on 4
different thresholds, i.e., 0.000001, 0.00001, 0.0001 and 0.001
respectively when λ = 0.5, 1.0, 2.0. Besides, when Algorithm

2 converges at different iterations, the minimum information

leakage and the corresponding distortion may also be different

and thus need to be evaluated to see the extent of differences.

As we can see from Fig. 7, with the increase of threshold

from 0.000001 to 0.001, the time of convergence for Algo-

rithm 2 decreases by a large extent when λ = 0.5, 1.0, 2.0, how-

ever, the minimum information leakage and the corresponding

distortion change very slightly. This means that a user can

choose a slightly larger threshold to reduce a large amount of

computation time while only sacrificing little privacy.

In addition, we can also know the approximate time for

pre-computing LPPM∗ to release a location trace with length

of 8 from Fig. 7(a), which is around 22, 000 seconds (i.e.,

about 6 hours, i.e., 45 minutes for each location on average).

We argue that this pre-computation time is reasonable, since

a user usually releases her location trace at daytime and

does not do so during nighttime, thus the pre-computation

can be finished at night based on her current initial location

distribution and Markov transition matrix. As a user does

not change her mobility profile very often, once the pre-

computation is completed, the user can release her distorted

location trace using the pre-computed LPPM∗ very efficiently,

until her mobility profile is changed.

VII. CONCLUSION AND FUTURE WORK

We have proposed privacy metrics to quantify location

trace privacy independent of any specific attack based on an

information-theoretic approach in both an offline setting and
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Fig. 7. Impact of threshold.

an online setting. Specifically, our privacy metrics quantify the

inherent information leakage when releasing user’s distorted

location trace instead of her true location trace to the untrusted

service provider. We have formulated the problem to obtain

the optimal LPPM used to release user’s locations to get

services while achieving the minimum information leakage

in an online setting. To address the computation challenge

occurred when computing the optimal LPPM directly from

the online problem, we obtain the upper and lower bounds on

the online privacy-utility tradeoff with and without Markov

restriction on release mechanisms, and thus we can obtain the

LPPM based on the upper bounds with very high efficiency.

In particular, the offline privacy-utility tradeoff has a natural

connection with the online tradeoff when there is no Markov

release restriction. Experiments have shown the advantage of

our LLPM over existing LLPMs in terms of privacy-utility

tradeoff, which is greater when the location trace is more

correlated. In addition, the proposed privacy metrics can also

be used as standard measures to evaluate and compare other

privacy-preserving mechanisms for time-series data and not

limited to LBS, which is very meaningful in many real-world

applications. We direct this to future work.

APPENDIX

A. Proof of L∗
offline(D) ≤ L∗

online(D)

We start with proving the connection between the objective

function of L∗
offline(D) and the summation of the objective

functions in L∗
online(D) as follows,

I(L;U)

(a)
=

T∑

i=1

I(L;Ui|U i−1)

=
T∑

i=1

{I(Li;Ui|U i−1) + I(Li+1, ..., LT ;Ui|U i−1,Li)}

(b)
=

T∑

i=1

I(Li;Ui|U i−1),

where (a) follows from the chain rule of mutual information,

and (b) follows from the fact in an online location release set-

ting, which is the current released location Ui is independent

of the future true locations Li+1, ..., LT given U i−1,Li.

As we can see from the above proof, the objective function

in L∗
offline(D) is equal to the summation of the objective func-

tions in L∗
online(D). Since the variables where the optimization

takes place are different for each term of the summation, we

can conclude that minimizing the summation is less than or

equal to the summation of the individual minimizations, thus

we have L∗
offline(D) ≤ L∗

online(D).

B. Proof of Theorem 1

1) L∗
online(D) ≤ LMarkov

upper (D): We prove the upper bound of

the objective function I(Li;Ui|U i−1) as follows,

I(Li;Ui|U i−1)

(c)
=I(Li−1, Li;Ui|U1, U2, ..., Ui−1)

+ I(L1, L2, ..., Li−2;Ui|U1, U2, ..., Ui−1, Li−1, Li)

(d)
= I(Li−1, Li;Ui|U1, U2, ..., Ui−1)

=H(Ui|U1, U2, ..., Ui−1)−H(Ui|Li, Li−1, Ui−1)

(e)

≤H(Ui|Ui−1)−H(Ui|Li, Li−1, Ui−1)

=I(Li, Li−1;Ui|Ui−1),

where (c) follows from the chain rule of mutual information,

(d) follows from that the second term equals to zero since we

made the restriction on location releasing mechanism that Ui

only depends on Li, Ui−1 and Li−1, and (e) follows from the

fact that conditioning does not increase entropy.

Since the objective function in L∗
online(D) is less than or

equal to the one in LMarkov
upper (D), the constraint remains the

same, and we also replace the probability distribution set

q(ui|li,ui−1) with a smaller set q(ui|li, ui−1, li−1), the proof

of L∗
online(D) ≤ LMarkov

upper (D) is completed.

2) LMarkov
lower (D) ≤ L∗

online(D): Similar to the proof

above, we show the lower bound of the objective function

I(Li;Ui|U i−1) as the following.

I(L;Ui|U i−1)

(f)
=H(Ui|U1, U2, ..., Ui−1)−H(Ui|Ui−1, Li, Li−1)

(g)

≥H(Ui|U1, U2, ..., Ui−1, Li−1)−H(Ui|Ui−1, Li, Li−1)

(h)
=H(Ui|Ui−1, Li−1)−H(Ui|Ui−1, Li, Li−1)

=I(Li;Ui|Ui−1, Li−1),

where (f) follows the same proofs as those in (c) and (d),

(g) follows from the fact that conditioning does not increase

entropy, and (h) follows from fact that Ui only depends on

Ui−1 and Li−1. This is because we have the restriction on

location releasing mechanism that Ui only depends on Li,

Ui−1 and Li−1, and Li only depends on Li−1 according to

the property of the first order markov transition in location

traces, then the fact that Ui only depends on Ui−1 and Li−1

is true, thus (h) holds.



ZHANG et al.: ONLINE LOCATION TRACE PRIVACY: AN INFORMATION THEORETIC APPROACH 15

Because the objective function in LMarkov
lower (D) is less than or

equal to the one in L∗
online(D), and the constraint remains the

same, the proof of LMarkov
lower (D) ≤ L∗

online(D) is completed.

Proofs in B1 and B2 complete the proof of Theorem 1.

C. Proof of Corollary 1

1) Proof of LActual
online (LPPM∗) ≤ LMarkov

upper (D): From the

proof for I(Li;Ui|U i−1) ≤ I(Li, Li−1;Ui|Ui−1) in Ap-

pendix B1, we can easily see that
∑T

i=1 I(L
i;Ui|U i−1) ≤∑T

i=1 I(Li, Li−1;Ui|Ui−1) is always true under the Markov

release restriction. Therefore, when we use the same

q(ui|li, ui−1, li−1) generated based on LMarkov
upper (D) to cal-

culate the actual leakage
∑T

i=1 I(L
i;Ui|U i−1), the actual

leakage
∑T

i=1 I(L
i;Ui|U i−1) is always less than or equal to

LMarkov
upper (D) according to the proof in Appendix B1. That is to

say, the actual leakage evaluated by
∑T

i=1 I(L
i;Ui|U i−1) of

the LPPMs generated based on LMarkov
upper (D) is upper bounded

by LMarkov
upper (D).

2) Proof of LMarkov
lower (D) ≤ LActual

online (LPPM∗): Since we

know that
∑T

i=1 I(L
i;Ui|U i−1) is always greater or equal

to L∗
online(D), and we also have LMarkov

lower (D) ≤ L∗
online(D), thus

we have LMarkov
lower (D) ≤ ∑T

i=1 I(L
i;Ui|U i−1).

Proofs in C1 and C2 complete the proof of Corollary 1.

D. Proof of Theorem 2

1) L∗
online(D) ≤ Lupper(D): The key idea of this proof is

based on the fact that minimizing an objective function over a

subset of certain constraint is less than or equal to minimizing

it over the original constraint.

L∗
online(D) =

T∑

i=1

min
q(ui|li,ui−1):

{D(Li;Ui)≤Di}T
i=1

I(Li;Ui|U i−1)

(i)

≤
T∑

i=1

min
q(ui|li):

{D(Li;Ui)≤Di}T
i=1

I(Li;Ui|U i−1)

(j)

≤
T∑

i=1

min
q(ui|li):

{D(Li;Ui)≤Di}T
i=1

{I(Li;Ui|U i−1)

+ I(L1, ...Li−1;Ui|U i−1, Li}
(k)
=

T∑

i=1

min
q(ui|li):

{D(Li;Ui)≤Di}T
i=1

I(Li;Ui|U i−1)

(l)
=

T∑

i=1

min
q(ui|li):

{D(Li;Ui)≤Di}T
i=1

I(Li;Ui) = Lupper(D),

where (i) follows from the fact that q(ui|li) is a subset

of q(ui|li,ui−1), (j) follows from the chain rule of con-

ditional mutual information, (k) follows from the fact that

I(L1, ...Li−1;Ui|U i−1, Li) equals to zero when choosing

q(ui|li) in the minimization problem, and (l) follows from

that fact that U i−1, Li, Ui forms a Markov chain (denoted by

U i−1 → Li → Ui) when choosing q(ui|li).

2) Llower(D) ≤ L∗
offline(D): We start with proving the lower

bound on the objective function I(L;U) in Llower(D).

I(L;U)

(m)
= I(Li;U) + I(L1, ..., Li−1, Li+1, ..., LT ;U |Li)

(n)
= I(Li;Ui) + I(Li;U1, ..., Ui−1, Ui+1, ..., UT |Ui)

+ I(L1, ..., Li−1, Li+1, ..., LT ;U |Li)
(o)

≥ I(Li;Ui)

where (m) and (n) follow from the chain rule of mutual

information, and (o) follows from the fact that mutual infor-

mation is always nonnegative.

Then we have

L∗
offline(D) = min

q(u|l):{D(Li;Ui)≤Di}T
i=1

I(L;U)

(p)

≥ T ·min
i

min
q(u|l):{D(Li;Ui)≤Di}T

i=1

I(Li;Ui)

(q)
= T ·min

i
min

q(ui|li):D(Li;Ui)≤Di

I(Li;Ui) = Llower(D)

Where (p) follows from the proof of I(L;U) ≥ I(Li;Ui)
for any integer i between 1 and T , (q) follows from the

fact that the objective function I(Li;Ui) only depends on Li

and Ui, therefore, when choosing the conditional probability

distribution as q(ui|li) rather than q(u|l), the results of the

minimization problems remain the same.

Proofs in D1 and D2 complete the proof of Theorem 2.
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