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Abstract—Networks or graphs provide a natural and generic
way for modeling rich structured data. Recent research on graph
analysis has been focused on representation learning, of which
the goal is to encode the network structures into distributed
embedding vectors, so as to enable various downstream applica-
tions through off-the-shelf machine learning. However, existing
methods mostly focus on node-level embedding, which is insuffi-
cient for subgraph analysis. Moreover, their leverage of network
structures through path sampling or neighborhood preserving is
implicit and coarse. Network motifs allow graph analysis in a
finer granularity, but existing methods based on motif matching
are limited to enumerated simple motifs and do not leverage
node labels and supervision. In this paper, we develop NEST, a
novel hierarchical network embedding method combining motif
filtering and convolutional neural networks. Motif-based filtering
enables NEST to capture exact small structures within networks,
and convolution over the filtered embedding allows it to fully
explore complex substructures and their combinations. NEST
can be trivially applied to any domain and provide insight
into particular network functional blocks. Extensive experiments
on protein function prediction, drug toxicity prediction and
social network community identification have demonstrated its
effectiveness and efficiency.

I. INTRODUCTION

Network data are being generated in extraordinary volume
and speed nowadays. Figure 1 (a) illustrates a small real-world
Facebook social network collected by [1], which encodes rich
information including various attributes and complex interac-
tions. In domains from computational biology and chemoinfor-
matics to robotics, program analysis and social networks, we
are often interested in leveraging the rich attributes and links
in networks, to cater various domain-specific applications.

Among many network analysis techniques, node-level repre-
sentation learning has been attracting intense research attention
for a long time [2]. While traditional algorithms perform
with mathematical guarantees on small graphs (with thousands
of nodes), they usually require global graph operations such
as eigenvalue decomposition, for which the performance de-
grades largely due to sampling and approximation when scaled
to current-scale real-world networks (with millions of nodes
and more) on distributed systems.

Recently, neural networks have been explored for graph
representation learning, bringing a new trend to node-level
network modeling. There are largely two groups of them:
Path sampling based methods [3], [4], [5], [6] that efficiently
leverage NLP models such as Skipgram [7], and neighborhood
preserving based methods [8], [9], [10], [11] that optimize
over local neighborhoods. Both groups can capture network

structures to some extent, but as we illustrate in Figure 1
(b-c), their capture over network structures is implicit and
coarse– path sampling based algorithms are inefficient in
differentiating small complex structures and neighborhood
preserving based ones are unaware of exact network structures.

To capture network structures in a finer granularity, re-
searchers in computational biology and chemoinformatics have
been working on finding motif-level patterns within networks
for decades [12], which can be viewed as network building
blocks with particular functions. Built on exact motif match-
ing, graph kernel techniques compute the similarity among
subgraphs [13], [14]. Such techniques imply a subgraph-level
embedding, which can enable many new applications that can-
not be sufficiently modeled by node-level embedding. How-
ever, as we illustrate in Figure 1 (d), current motif matching
based methods are limited to a few small simple substructures
and unable to capture those not explicitly enumerated.

In this paper, we develop NEST (NEtwork Structural con-
voluTion), a novel neural architecture for network embedding
from node-level to motif- and subgraph-level. The main ad-
vantages of NEST over many existing embedding methods are
as follows:

1) Multi-resolution: NEST starts with node-level attribute
embedding, continues with motif-level order-invariant
filtering, and all the way up to subgraph-level pattern
combination. Expressive nonlinear neural networks are
built into each layer to comprehensively explore network
attributes and links in different granularities.

2) Task-driven: NEST is an end-to-end deep learning
framework trained under the supervision of ground-truth
subgraph labels. Such integration allows it to perform
supremely across various domains.

3) Interpretable: The learned motif-based convolution net-
works explicitly indicate what motifs and which nodes
are dominating the learning results, which provides
valuable insight into the functional blocks and higher-
order organizations of various networks.

Extensive experimental evaluations on subnetwork identifica-
tion enabled by our subgraph-level representation demonstrate
the effectiveness and efficiency of NEST, while we expect
general utility of all three level representations in various other
network downstream applications.



(a) A small FB network (b) Path sampling (c) Neighborhood convolution (d) Motif matching

Fig. 1. (a) A small real-world FB network: nodes with different colors are students in different majors and edges are their undirected friendships. (b) Path
sampling: different small structures can lead to similar sets of sampled paths. (c) Neighborhood preserving: neighboring nodes are treated similarly no matter
how they connect with each other. (d) Motif matching: unable to capture substructures that are not explicitly enumerated.

II. RELATED WORK

Due to the advanced data warehousing techniques and
much effort put into knowledge acquisition, lots of data are
stored with structures, ready to be modeled by networks in
a generic way. Network embedding, by computing distributed
representations that preserve network information, provides a
general solution to various downstream applications. In this
section, we review related work in network embedding through
a three-level hierarchy: node, motif and subgraph.

A. Node-Level: Network Embedding

Earlier studies on network embedding are focused on node-
level. They tend to first construct the complete node affinity
graph based on node feature similarity and then compute the
eigenvector of the affinity matrix as node embedding [2],
[15]. Such computations are usually global and hard to be
parallelized, which limits their usage for nowadays large-scale
real-world networks.

Recently, the successful Skipgram model for word embed-
ding [7] has motivated many node-level embedding techniques.
By sampling truncated random walks (e.g., [3], [4], [6],
[5]) or designing proximity preserving objectives (e.g., [9],
[8], [16], [17]), the embedding they compute can preserve
network structures in an implicit and coarse way. However,
as we discussed in Section I, these techniques are unaware of
exact network structures and thus unable to differentiate small
complex structures. Moreover, most of them are unsupervised
and unable to handle node attributes, and thus do not efficiently
explore important network patterns w.r.t. different domains.
Finally, they only provide node-level embedding, which is
insufficient for higher-level tasks like subgraph identification.

B. Motif-Level: Network Kernel

Network motifs have been studied for decades by re-
searchers in computational biology and chemoinformatics
[12]. Most analyses have been around simple statistics such
as frequency and correlation. Recently, motif is studied on
general networks [18], [19], [20], due to its implication
into higher-order network organization. They do not compute
network embedding, but instead only leverage the counting of
basic motifs matched on the network.

The group of algorithms that compute network embedding
based on motifs are called graph kernels [21], [22]. They mea-
sure the similarity between a pair of networks by decomposing
them into atomic substructures and defining a kernel function
that corresponds to an inner product over the substructures in
reproducing kernel Hilbert space. The state-of-the-art network
kernel methods are able to handle correlated substructures
and alleviate diagonal dominance by capturing the similarity
among substructures [13], [14]. However, as illustrated in
Figure 1 (d), while kernel methods capture exact motif-level
substructures, they are limited to the few enumerated simple
motifs and do not comprehensively explore more complex
structures and their combinations. Moreover, the computed
kernel functions are learned without supervision, separately
from the final subgraph classification objectives, and it is non-
trivial to consider node attributes, which is hard to perform
well across different domains.

C. Subgraph-Level: Network Convolution

Convolutional neural networks have been extremely suc-
cessful in machine learning problems where the coordinates
of the underlying data have a grid structure [23]. Network
data are naturally not on such fine grids, but valid translations
can be formed through either a spatial approach [24], [25],
[26] or a spectral one [10], [11], [27]. Although their aim
is on node-level embedding, the convolutions along domain
hierarchies or graph Laplacian spectrum effectively collect
neighboring nodes in hierarchies and thus can be interpreted
as multi-resolution embedding in the spatial neighborhoods or
Fourier domain. However, their subgraph-level embedding is
still coarse, because the capture of exact structures is implicit.

The two approaches of translation both suffer from some ad-
ditional limitations. For spatial translation, [25], [26] designed
multi-scale hierarchical local receptive fields, but there is no
good way to choose the optimal hierarchies; [24] proposed to
determine a unique node ordering for computing neighborhood
graphs, but a fixed ordering limits the exploration of arbitrary
complex structures, and what is a good ordering is still an
open question. On the other hand, [10], [11], [27] developed
recursive spectral filtering based on graph Laplacian with solid
mathematical guarantees, but their results without the consid-
eration of the specific spatial structures are less conceivable.



Symbol Definition
N Network

V = {v1, . . . , vn} Objects (chemical compounds, users, etc.)
E Links (interactions, friendships, etc.)
A Attributes of objects

G = {V, E,A} Graph for modeling a network
M = {Vm, Em,Am} Motif-level subset of the graph

S = {Vs, Es,As} Subgraph-level subset of the graph
x(v) Node-level embedding

x(M) Motif-level embedding
x(S) Subgraph-level embedding
y(S) True label of a subnetwork
ŷ(S) Predicted label of a subnetwork

TABLE I
SYMBOLS AND DEFINITIONS USED THROUGHOUT THE PAPER.

III. PROBLEM FORMULATION

A. Problem Definition

In this paper, we consider hierarchical embedding of net-

works, from nodes to motifs and subgraphs. While our node-

level embedding can be used for fundamental network learning

tasks like node classification, network clustering, missing link

prediction and so on, in this work, we focus on leveraging

the subgraph-level embedding for the challenging task of

subnetwork identification.

Input. Given a network N that can be from any domain, we

represent its set of total n objects as V = {v1, . . . , vn}, their

m links as E , and their attributes as A. Therefore, N can be

represented as a graph G = {V, E ,A}. For most networks like

chemical compound networks and social networks, ∀eij ∈ E
is usually binary, where eij = 1 indicates the existence of an

interaction or a link between vi and vj and 0 otherwise. ∀ai ∈
A records the l-dimensional attributes of vi. Each component

of ai can be numerical (e.g., age, income) or categorical (e.g.,
school, company), describing the status of vi. Some network

datasets may not include the attribute set at all [28].

Output. Our objective is to learn a multi-resolution embedding

of the network in three levels: node-level x(v), motif-level

x(M) and subgraph-level x(S), which explores and preserves

network functional blocks in different resolutions. For subnet-

work identification, we also predict a class label ŷ(S) for each

candidate subgraph, which can be supervised by the true labels

y(S) to effectively explore N w.r.t. different domains.

B. Toy Example

Figure 2 provides a toy example of a hierarchical network

embedding pipeline. It starts from node-level embedding,

which explores available node attributes captured by the

particular network. Motif-level embedding is then computed

by assembling the corresponding node-level embedding. The

motif instances are later utilized as building blocks of more

complex network structures, i.e., subgraphs, whose embed-

ding is computed as an organic combination of motif-level

embedding. The subgraph-level embedding can be further

convolved and filtered through proper neural networks and

used to produce subgraph predictions for supervision. If no

supervision is available, heuristic metrics of network similarity

such as edit distance can be computed to form an unsupervised

objective, requiring neighboring subnetworks to be close.

Fig. 2. A toy example illustrating a hierarchical network embedding pipeline.

C. Desired Properties

Our goal is to identify subnetworks with prominent patterns

in N , typically indicated by particular node-level features,

motif-level structures and subgraph-level patterns.

Definition III.1. Subnetwork identification. Given a subnet-
work S = {Vs, Es,As}, the goal of subnetwork identification
is to predict a class label ŷ(S), indicating the function of S .

The functions of subnetworks are different across domains.

For example, in a biochemistry network, specific subnetworks

might indicate a pathway or disease, while in a social network,

they may correspond to user groups of different interests.

Since we want our algorithm to be efficient in identifying

subnetworks, we study the challenges in exploring networks.

Definition III.2. Complexity. Node attributes and interactions
are usually noisy, complex and multi-scale. Therefore, an ideal
algorithm should explore the networks in different resolutions
and comprehensively capture fuzzy complex network patterns.

Definition III.3. Variety. Network patterns and functions vary
across different domains. Therefore, an ideal algorithm should
leverage domain-specific node attributes and class supervi-
sion, preferably in an end-to-end coherent learning framework.

Definition III.4. Intractability. Network embedding methods
are often intractable in terms of the meaning and process of
representation learning. Therefore, an ideal algorithm should
respect and leverage specific network structures, providing
insightful interpretation into network functional blocks.

IV. NETWORK STRUCTURAL CONVOLUTION

In this section, we develop NEST (NEtwork Structural

convoluTion), to provide a generic network embedding frame-

work that simultaneously address the aforementioned three

challenges.

Multi-Resolution Embedding Architecture. In many real-

world networks, we can acquire labels for subnetworks. For

example, in biochemistry networks, we know some disease

pathways and are interested in identifying similar ones; alike

in social networks, it is natural to look for similar user groups

based on the knowledge of some identified ones. Such domain-

specific supervision, although often limited, is valuable in

guiding the exploration of network functional blocks.

Figure 3 showcases the neural architecture of our NEST

embedding framework. Consider a subnetwork represented by



Fig. 3. The neural architecture of our proposed NEST multi-resolution network embedding framework.

S , which is a subset of the whole network N , such as a group

of proteins and their interactions in a biochemistry network,

or some users and their relationships in a social network.

NEST computes a multi-resolution embedding over S , which

includes a pipeline of node-level attribute embedding, motif-

level structural convolution and subgraph-level pattern explo-

ration, and finally produces a classification label ŷ(S).
Since we focus on the task of supervised subnetwork

identification, which is essentially a subgraph-level multi-

class classification problem, we apply the standard softmax

prediction over the final subnetwork embedding x(S) and

compute a cross-entropy loss for each subnetwork as in the

training set as

Ls = − logL(Θ|y, ŷ) = −
C∑

c=1

I(y(S) = c)log(ŷc(S)), (1)

where I(·) is an indicator function that outputs 1 when the

argument is true and 0 otherwise, and ŷc is computed as

ŷc(S) = p(ŷ(S) = c) =
exp(θTc x(S))∑C
i=1 exp(θ

T
i x(S))

. (2)

The total loss for all m subgraphs in the training set is thus

L =
m∑

i=1

Lsi = −
m∑

i=1

C∑

c=1

I(y(Si) = c)log(ŷc(Si)). (3)

Node-Level Attribute Embedding. An ideal network embed-

ding algorithm should be able to fully explore domain-specific

node attributes. However, existing embedding frameworks usu-

ally start with preserving network structures [3], [4], [8], and

then incorporate node attributes through graph augmentation

[29], [30]. Such methods are inefficient in capturing high-

dimensional noisy attributes. Some recent methods like [6]

start with node embedding computed based on node attributes,

which is shown to better leverage the similarity among nodes.

In this work, we start from node-level attribute embedding,

by connecting a fully connected linear embedding layer to the

input of original node attributes as

x(vi) = fn(ai) = Wnai + bn, (4)

where fn is the attribute embedding function and Θn =
{Wn,bn} is the set of parameters.

This layer is easy to learn, while effectively explores all

linear combinations of various node features. With proper

feature preprocessing such as sparse one-hot embedding, these

combinations account for most straightforward feature config-

urations such as all one-feature filtering rules connected by

AND and OR operations, representing the status of individual

nodes in a network. For example, by considering different

combinations of age ranges, education backgrounds and

publication numbers, a simple linear layer is able to well

differentiate the roles of professors, lecturers and students
in a publication network.

Our one-layer attribute embedding is similar to that of [6],

and can be easily extended to multiple layers of nonlinear

feedforward neural networks, given complex node features and

sufficiently large training data. We use O to denote the number

of hidden layers here and experiment on different settings of

O in Sec V.3. However, [6] considers network structures by

incorporating network path sampling to incur an unsupervised

joint training objective, which is unable to capture small exact

network patterns, produce multi-resolution representations and

provide insightful interpretations of functional blocks. To ad-

dress these issues, we continue with hierarchical assemblies of

nodes into motifs and combinations of motifs into subgraphs.

Motif-Level Structural Convolution. Network structures are

usually complex and hard to understand. Therefore, most

embedding algorithms chose to ignore the exact structures, but

implicitly maintain a network-based proximity through path

sampling [3], [4] or neighborhood preserving [8], [10]. Such

leverage of network structures is coarse and does not provide

interpretation into network functional building blocks.

Convolutional neural networks are known to be powerful in

data with spatial orders, such as images, due to their automatic

exploration of important structural features like edges of some

orientations and blotches of some colors indicating objects in

images. However, networks do not have well defined spatial

orders, and thus convolution can not be directly applied. As

we discussed in Section II, existing convolutional methods for

network embedding do not provide satisfactory results, due to

the lack of a unique and interpretable ordering or clustering

technique [24], [25].

In this work, we enumerate a set of K basic network

motifs Ω = {M1, . . . ,MK} as functional building blocks of

larger complex networks, and construct a set of filter windows

corresponding to each of the motifs (e.g., the nine motifs in

Figure 3 are all motifs composed of 2-4 nodes without isolated



node). Then we convolve these windows along the network by
matching the corresponding motifs (i.e., finding instances of
each motif), assemble the nodes matched within each instance
through vector concatenation of their node-level embedding,
and connect a fully connected linear layer to yield an instance-
level embedding x(Mt). To put it formally, for each motif
Mk ∈ Ω, we have

x(Mk
t ) = fkm([x(vkt1), . . . ,x(vkt|Mk|)]), (5)

where fkm(x) = Wk
mx + bk

m, and {vkt1, . . . , vkt|Mk|} is the
set of nodes matched on the t-th instance of Mk. Since each
motif can find multiple instances in a network, we aggregate
the instance-level embedding of each motif into a motif-
level embedding through an order-invariant operation such as
summation or averaging. Assuming Mk was matched with T
instances on S, we have

x(Mk) = fma(x(Mk
1), . . . ,x(Mk

T )), (6)
where fma(·) is an aggregation function within the motif-level
embedding layer (e.g., point-wise summation, averaging, etc.).

Finally, we stack the K motif-level embedding and use them
as input to the next layer.

x(M) = [x(M1), . . . ,x(MK)]. (7)
In motif-level embedding, we generalize the idea of con-

volution by using learnable functions {fkm}Kk=1 to apply the
same operations locally everywhere w.r.t. network motifs, and
combine information through a global aggregation step. In this
way, instead of explicitly aligning nodes in the networks, we
can automatically explore the efficient ways of assembling
node-level embedding into instance and motif-level. While
we start with simple fully connected linear layers, it is also
possible to stack more nonlinear layers and we experiment on
the influence of number of hidden layers (P ) in the motif-level
embedding in Sec V.3.

Parameters Θm inside functions {f1m, . . . , fKm } w.r.t. motifs
in Ω are shared across the whole network, which effectively
explores the global consistency of network functional blocks.
For example, in a specific domain like a gene-protein network,
a three-node motif of a triangle composed of two specific
genes and one specific protein might be indicative for a certain
disease pathway, which can be well captured by our motif-
based filtering. The probability of this disease might be even
larger if this motif is instantiated with some other indicative
motif instances, which can be further captured by our next
layer of combining motifs into more complex subgraphs.

Subgraph-Level Pattern Exploration. The idea of exactly
matching small fixed-sized motifs for capturing network struc-
tures has been leveraged by many graph kernel methods [13],
[31], [22], [21]. They usually focus on resolving substructure
similarity and diagonal dominance, and are shown to be
effective in computing network structural similarity. However,
due to combinatorial complexity of motif enumeration and
matching, their consideration of motifs are restricted to the
enumerated small subgraphs with a few nodes.

In this work, based on motif-level embedding x(M), we
add multiple (Q) layers of nonlinear feedforward neural net-

works to comprehensively explore the patterns of various
combinations of the small simple motifs into more complex
larger subgraphs. Thus we have

x(S) = fQs (. . . f1s (f0s (S)) . . .), (8)

where

fqs (x) = fsn(Wq
sf

q−1
s (x) + bq

s), (9)

for q ≥ 1, and f0s (S) = x(M). fsn is a point-wise nonlinear
activation function such as sigmoid or ReLU. Θs is the set of
parameters in the Q subgraph-level embedding layers.

In the motif-level embedding, each embedded dimension
can be understood as a possible function of the specific
motif and its status, which can be further activated or de-
activated based on the existence and status of other motifs in
the subgraph-level embedding. The subgraph-level embedding
through the nonlinear pattern exploration layers are finally
converted into classification label prediction through a softmax
function, which can be used to compute a supervised loss
w.r.t. ground-truth subgraph labels. Gradients of the loss are
back-propagated to all three of the subgraph-level, motif-level
and node-level embedding layers, to guide the exploration of
network functional blocks in different granularities simultane-
ously in a coherent way.

Implementation, Training and Efficiency. We implement the
NEST neural framework with TensorFlow1. We also use an
existing motif matching algorithm called SubMatch2 [32]. The
codes will be made available upon acceptance of the work.

To train the NEST model, we optimize the loss function
in Eq. 3 by performing stochastic gradient descent with
mini-batch Adam [33]. Before training, we preprocess node
attributes in each dataset by applying sparse one-hot encoding
and recording them into an attribute tensor. Then we prepro-
cess the subgraphs in training and testing sets by matching a
set of K enumerated motifs and collecting the ids of matched
nodes into a structure tensor. During training, in each batch,
we sample one subgraph from the training set and input its
corresponding part of the attribute and structure tensors to
compute a partial loss function in Eq. 1 and execute one step
of gradient descent for all parameters Θ = {Θn,Θm,Θs} in
the three embedding layers respectively, until the overall loss
L converges or is sufficiently small.

Although we sample one subgraph to train the model in each
batch sequentially, it is possible to compute multiple batches
and optimize the model in parallel. Matching graph motifs can
be efficiently done through well-developed techniques offline
before training. Many industrial graphs are developed with
such functionalities to enable various data analysis. Training
the multi-resolution model is just as efficient as training
a feedforward neural network with O + P + Q layers. In
our experiments, NEST runs efficiently on CPU, while it is
expected to run faster on GPU.

1https://www.tensorflow.org/
2https://sites.google.com/site/fangyuan1st/data-and-tools/submatch



V. EXPERIMENTS

In this section, we evaluate NEST for subnetwork identifi-
cation with extensive experiments on 12 real-world networks.

A. Experimental Setups

Datasets. We use 12 datasets, among which 6 are standard
benchmark datasets from bioinformatics, namely, MUTAG
(mutagenic aromatic and heteroaromatic nitro compounds)
[34], PTC (chemical compounds reporting rats’ carcinogenic-
ity) [35] , PROTEINS (secondary structure elements linked
with neighbors in the amino-acid sequence or in 3D space)
[36], D&D (enzymes and non-enzymes protein structures)
[37], NCI1 and NCI109 (chemical compounds screened for
activity against the growth of a panel of human tumor cell
lines) [38], and the other 6 are public social network datasets
processed by [13], i.e., COLLAB (a scientific-collaboration
dataset derived from three public collaboration datasets of
researchers in different research fields), IMDB-Binary, IMDB-
Multi (two movie-collaboration dataset with actor/actress and
genre information of different movies on IMDB3), Reddit-
Binary, Reddit-Multi-5K, and Reddit-Multi-12K (three so-
cial networks crawled from Reddit4 composed of submission
graphs from popular subreddits). Their properties are shown
in the first few columns in Table II. To highlight the ability of
NEST to leverage various node attributes, besides the original
node features, we also compute and incorporate normalized
node degrees and page rank scores as initial node attributes.

We perform 10-fold cross-validation, use 9 folds for training
and 1 for testing, and repeat the experiments for 10 times to re-
port average classification accuracies and standard deviations.

Compared algorithms. Since most network embedding al-
gorithms only compute node-level embedding and are not
suitable for subnetwork identification, we compare NEST with
the following subgraph-level embedding algorithms:
• SP [39]: shortest-path kernel.
• RW [40]: random walk kernel.
• WL [22]: Weisfeiler-Lehman subtree kernel.
• GK [21]: graphlet count kernel.
• DGK [13]: deep graphlet count kernel.
• PSCN [24]: Patchy-San graph convolutional networks.

Parameter settings. When comparing NEST with the baseline
methods, we set its parameters to the following default values:
for motif set Ω, we enumerate all connected small structures
composed of 1-5 nodes, which results in K = 31 motifs in
total; for node-level embedding, we set the number of hidden
layers O to 1 and the embedding size |x(v)| to 32; for motif-
level embedding, we set the number of hidden layers P to
1 and the embedding size |x(M)| to 32; for subgraph-level
embedding, we set the number of hidden layers Q to 3 and
the sizes of the layers to 128 → 64 → 32, so the embedding
size |x(S)| is 32; for the transformation functions, we use the
popular ReLU for nonlinear activation in fnn, fmn and fsn

3http://www.imdb.com/
4https://www.reddit.com/

(if any), and point-wise summation for fma. In addition to
these default values, we also evaluate the effects of different
parameter settings on the performance of NEST in Sec V.3.

To make a fair comparison, we follow previous works
using the same datasets [13], [24] to set parameters for
baseline algorithms. For RW, we choose the decay factor from
{10−6, 10−5, . . . , 10−1}; for WL, we set the height parameter
to 2; for GK and DGK, we set the size of the graphlets
to 6; for PSCN, we set the size of receptive fields to 10
and the convolution architecture as suggested in their original
experiments.
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Fig. 4. NEST with different motif sets on NCI1.

Research problems. Our experiments are designed to answer
the following research questions:
• Q1. Performance: Does NEST provide better solutions

for network embedding and subnetwork identification?
How much does it improve on the state-of-the-art?

• Q2. Robustness: How does the exact design of neural
architecture influence the performance of NEST? Do
more complex neural networks help?

• Q3. Interpretability: Does NEST capture functional
building blocks and provide insightful interpretations into
the formation of networks in different domains?

B. Q1. Performance

We quantitatively evaluate NEST against all baselines on
standard subnetwork classification. Table II shows the perfor-
mance in terms of classification accuracies on the 12 datasets.
NEST is able to outperform all compared algorithms on 10 out
of the 12 datasets, and is highly competitive in the remaining 2.
The improvements of NEST over the outperformed algorithms
all passed the paired t-tests with significance value p < 0.01.

The consistent promising performances on all compared
datasets demonstrate the general advantages of NEST to
explore complex network structures and leverage domain-
specific supervision. Moreover, we observe large performance
gain on MUTAG, PTC, and IMDB datasets, where the average
numbers of nodes in the subnetworks are comparatively small,
indicating the significance and the power of NEST to capture
exact small substructures. NEST is also advantageous in
leveraging node attributes (labels) in datasets like PTC, NCI1
and NCI109, which have 19, 37 and 38 distinct node labels
respectively. As the number of graphs increases, we experience
significant improvements on relative performance on datasets
such as the NCI, COLLAB and RED (Reddit) ones. Finally,



Dataset properties Algorithm performances
Dataset #graphs Avg.nodes SP RW WL GK DGK PSCN NEST
MUTAG 188 17.9 85.22± 2.43 83.68± 1.66 82.94± 2.68 81.66± 2.11 82.66± 1.45 88 .95 ± 4 .37 91.85± 1.57

PTC 344 25.6 58.24± 2.44 57.26± 1.30 56.97± 2.01 57.26± 1.41 57.32± 1.13 62 .29 ± 5 .68 67.42± 1.83
PROTEINS 1,113 39.1 75 .07 ± 0 .54 74.22± 0.42 72.92± 0.56 71.67± 0.55 71.68± 0.50 75.00± 2.51 76.54± 0.26

D&D 1,178 284.3 > 3 days >3 days 77.95± 0.70 78 .45 ± 0 .26 78.50± 0.22 76.27± 2.64 78.11± 0.36
NCI1 4,110 29.9 73.00± 0.24 > 3 days 80 .13 ± 0 .50 62.28± 0.29 62.40± 0.25 76.34± 1.68 81.59± 0.46

NCI109 4,127 29.6 73.00± 0.21 > 3 days 80 .22 ± 0 .34 62.60± 0.19 62.69± 0.23 76.69± 1.71 81.72± 0.41

COLLAB 5,000 74.5 > 3 days > 3 days 72.01± 0.35 72.84± 0.28 73 .09 ± 0 .25 72.60± 2.15 74.55± 0.60
IMDB-B 1,000 19.8 71 .26 ± 1 .04 67.94± 0.77 67.40± 1.26 65.87± 0.98 66.96± 0.56 71.00± 2.29 73.26± 0.72
IMDB-M 1,500 13 51 .33 ± 0 .57 46.72± 0.30 45.42± 0.78 43.89± 0.38 44.55± 0.52 45.23± 2.84 53.08± 0.31
RED-B 2,000 429.6 > 3 days > 3 days 76.56± 0.20 77.34± 0.18 78.04± 0.39 86 .30 ± 1 .58 88.52± 0.64

RED-M5K 5,000 508.8 > 3 days > 3 days 39.29± 0.15 41.01± 0.17 41.27± 0.18 49.10± 0.70 48 .61 ± 0 .46
RED-M12K 11,929 391.4 > 3 days > 3 days 31.08± 0.08 31.82± 0.08 32.22± 0.10 41 .32 ± 0 .42 42.80± 0.28

TABLE II
PROPERTIES OF DATASETS AND PERFORMANCES OF NEST COMPARED WITH OTHER STATE-OF-THE-ART ALGORITHMS.

Fig. 5. Important motifs as network functional building blocks found by NEST in datasets from different domains.

Architecture |x| = 8 |x| = 16 |x| = 32 |x| = 64
O = 1,P = 1,Q = 1 56.48 58.53 59.16 59.14

O = 2,P = 1,Q = 1 56.42 57.86 58.35 59.07

O = 1,P = 2,Q = 1 56.46 56.52 57.21 57.81

O = 1,P = 1,Q = 2 79.51 79.93 80.12 80.88

O = 1,P = 1,Q = 3 80.46 81.23 81.59 81.67

O = 1,P = 1,Q = 4 80.37 81.41 81.72 81.74

O = 2,P = 2,Q = 3 80.62 81.31 81.55 81.65
TABLE III

NEST WITH DIFFERENT NEURAL ARCHITECTURES ON NCI1.

while some algorithms like SP and RW are too costly in

computation and unable to be finished in several days on larger

datasets, NEST is able to be easily scaled to large networks

and its runtimes are of the same magnitude with the state-of-

the-art neural algorithms like DGK and PSCN.

C. Q2. Robustness

As we can observe in Table II, the results of NEST with the

specific default neural configuration are quite robust with rel-

atively small variance, probably due to our convolution based

on exactly matching the network structures. In this subsection,

we study the robustness of NEST through an in-depth analysis

on how different designs of the neural embedding architectures

influence its performance. We conduct all experiments in this

subsection on the two NCI benchmark datasets.

Table III lists the performance of NEST with varying neural

architectures on NCI1. The results for NCI109 are almost

identical to NCI1 and are thus omitted. O,P,Q are the num-

bers of layers in the node-level, motif-level, subgraph-level

embedding, respectively. As we can observe, when all three

layers are composed of only one linear fully connected neural

network without nonlinear activation, the performance is rather

poor– only slightly better than random guess given the fact

that the two NCI datasets are both balanced with binary class

labels. As we stack linear and nonlinear layers to the node-

level or motif-level embedding alone, the performance does

not increase, probably because linear combinations are suffi-

cient for most node-level and motif-level patterns. However,

as we stack linear and nonlinear layers to the subgraph-level

embedding, the performance improves significantly, especially

when the first linear and nonlinear layers are added. This

indicates the significance and the power of NEST to explore

complex subgraph patterns as arbitrary combinations of motif-

level patterns. Finally, the improvements brought by increasing

the embedding sizes are marginal but still observable in most

cases, especially when the sizes are small.

The performance of NEST is generally robust when the neu-

ral networks are sufficiently complex. Since network patterns

as functional blocks are repeated many times even in a few

small subnetworks, the model does not easily overfit the data.

Figure 4 shows the performance and runtime of NEST

on NCI1 when we use different sets of enumerated motifs

as convolution windows. We experiment on motif sets with

maximum number of nodes from 1 to 6. Other parameters

are set as default. The runtimes are recorded on a local PC

with two 2.5 GHz Intel i7 CPUs and 32GB memory (the

offline motif enumeration and matching time before training

are excluded). It can be observed that the size of motifs being

considered has a significant influence on the performance of

NEST, especially when the considered motifs are small. Motifs

of sizes 1 and 2 alone obviously do not deliver satisfactory

results, but including those of sizes 3, 4 and 5 clearly helps,

probably by covering most basic functional building blocks in

the network. The runtimes increase drastically as the sizes of

motifs grow, basically because of the combinatorial complexity

of larger motifs, leading to large numbers of neural cells in

the motif-level embedding layers. Fortunately, motifs larger

than 6 do not seem to contribute significantly in boosting the

performance of NEST, because exact instances of large motifs

are usually scarce and thus hard to leverage.



D. Q3. Interpretation
In this section, we study the power of NEST to discover

network functional building blocks and provide insightful in-
terpretations into the formation of different networks. Figure 5
illustrates some results we got on three datasets, i.e., MUTAG,
PTC and IMDB-B. For each dataset, we present an example
positive subnetwork and visualize the 31× 32 neuron outputs
in the motif-embedding layer (31 motifs and 32 neurons)
when this example subnetwork is input into a NEST model
trained with all data in the corresponding dataset. Then we
pick out the first 3 rows in the neuron output matrix which
have the largest sum of absolute values, roughly indicating the
high activeness of the corresponding motifs, which are also
listed in the figure. These motifs are frequently seen in many
subnetworks and may well be seen as discriminative patterns
with specific functions.

VI. CONCLUSION

In this paper, we develop a novel neural architecture to com-
pute multi-resolution network embeddings through a three-
level hierarchy: node, motif and subgraph. NEST is developed
with special consideration of network complexity, variety and
intractability, to coherently explore complex network struc-
tures, node attributes and domain-specific supervision, while
it is also able to capture exact small substructures and provide
insightful interpretations into their various combinations as
network functional building blocks. Extensive experiments
on subnetwork identification in different domains show the
effectiveness of our approach. For future work, it is promising
to leverage the multi-resolution embeddings for node-level
tasks like classification and clustering, to derive unsupervised
heuristics and loss functions for unsupervised representation
learning, to extend to heterogeneous networks by deriving
more efficient motif enumeration methods.
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[40] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives,” Lecture Notes in Computer Science, vol. 2777,
pp. 129–143, 2003.


