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ABSTRACT

With the ubiquitous adoption of smartphones and mobile devices,
it is now common practice for one’s location to be sensed, col-
lected and likely shared through social platforms. While such data
can be helpful for many applications, users start to be aware of
the privacy issue in handling location and trajectory data. Some
users may voluntarily share their location information (e.g., for
receiving location-based services, or for crowdsourcing systems),
which may lead to information leaks about the whereabouts of
other users, through the co-location of events when two users are
at the same location at the same time and other side information,
such as upper bounds on movement speed. It is therefore crucial
to understand how much information one can derive about oth-
ers’ positions through the co-location of events and occasional
GPS location leaks of some of the users. In this paper we formu-
late the problem of inferring locations of mobile agents, present
theoretically-proven bounds on the amount of information that
could be leaked in this manner, study their geometric nature, and
give algorithms matching these bounds. We will show that even if
a very weak set of assumptions is made on trajectories’ patterns,
and users are not obliged to follow any ‘reasonable’ patterns, one
could obtain very accurate estimation of users’ locations even if
they opt not to share them. Furthermore, this information could
be obtained using almost linear-time algorithms, suggesting the
practicality of the method even for huge volumes of data.
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1 INTRODUCTION

With today’s nearly universal use of smartphones, people rely on
Location-Based Services (LBSes) on a daily basis. For instance, us-
ing Google Maps, a user can search for restaurants and landmarks
in her proximity and can find the fastest route to a place from
her current location. Moreover, in Location-Based Social Network
(LBSN) applications, a user can locate her friends via geo-tagged
posts on popular social networking platforms, such as Foursquare,
Instagram, or Facebook. However, due to the sensitivity of location
data, this use of LBSes also raises significant privacy concerns. For
example, leakage of locations can lead to the exposure of sensitive
personal information, such as home addresses, health conditions,
sexual orientation, or political and religious beliefs [24]. A variety
of location privacy metrics and protection mechanisms have been
proposed in the context of LBSes, including perturbation-based
approaches, such as the classical notions of k-anonymity [23] and
spatial cloaking [14, 16, 22], and rigorous privacy-based definitions,
such as differential privacy [13] and geo-indistinguishability [2],
which can guarantee the indistinguishability of two locations to
an adversary given the perturbed ones, provided arbitrary back-
ground information. Crypto-based approaches can also achieve
privacy-preserving location-based queries against untrusted ser-
vice providers with even stronger security guarantees, such as
homomorphic encryption [21, 37], private information retrieval
[15], searchable encryption [30, 31], etc.

While all existing techniques satisfy indistinguishability-based
security/privacy requirements, it remains unclear what concrete
location privacy guarantees they can provide in a real-world setting,
especially against an adversary with certain background knowl-
edge. In fact, several recent studies [3, 14, 33] have shown that
the actual location privacy level of perturbation-based methods
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can be quite limited when an attacker has side information. For
example, one can use the maximum velocity of users to dramati-
cally reduce the region in which a user could be, even if they cloak
their locations [14]. In addition, other studies have shown that in
proximity-based geo-query response systems, an adversary can
carry out triangulation-type attacks to accurately pinpoint user
locations, even if they are protected using crypto-based techniques
[3, 19]. All of this work deals mainly with LBS applications from
the perspective of single users; however, with the increasing use
of social networking platforms, user—user interactions can provide
richer side information that potentially leads to higher privacy
leakage than expected, which is not well understood.

For a LBSN, our main observation is that even if a privacy-
sensitive individual’s location is well-protected by him/herself, it
may still be revealed through other users’ sharing behavior. In prac-
tice, users have different privacy settings and preferences in LBSNs.
Some users who are less privacy-aware publish their locations di-
rectly on social media. For example, in Facebook, if Alice posts
a photo taken with Bob, along with her current location (e.g., by
geo-tagging him), then the location of Bob is immediately revealed.
Similarly, suppose Charlie is a privacy-aware user on Foursquare,
and he sometimes reports his actual locations, but hides the loca-
tions of special events (e.g., confidential meetings with his doctor);
then, using the times of his published locations before and after the
meeting, and some side information, such as whether he is driving
or walking, his private meeting locations can be roughly inferred.
Thus, we ask the fundamental question: how much information
can be inferred about a user’s location, given the co-location events
with others and occasional GPS location leaks?

In this paper, we characterize the fundamental limit of location
inference given limited available information in LBSNs, including
sporadically published locations by users, and side information
(such as meeting events and maximum speed of users). We propose
a theoretical framework to bound the feasible region of users’ un-
known locations, by leveraging geometric constraints imposed by
users’ movement and meeting relationships.

Our results show that even with such a weak set of assumptions,
it is still feasible to restrict users’ unknown locations to small re-
gions. Our attack model is generally applicable to a wide range of
location privacy preserving techniques (such as cloaking, encryp-
tion, or changing privacy settings), while our approach does not
make any assumptions on the statistical mobility patterns of users.
The main contributions of this paper include:

e We characterize the feasibility region for the possible loca-
tion of each agent, at each time. We prove that these regions
are optimal, in the sense that they are as accurate as possible,
given the available data: The agent could be anywhere inside
the feasibility region, without violating any constraints; sim-
ilarly, the agent could not be anywhere outside the feasibility
region, without violating the constraints.

e We give exact and efficient polynomial-time algorithms for
computing feasibility regions when distances are measured
using the Lo, norm (i.e., for computing the bounding boxes of
the regions). If distances are measured using the Euclidean
Ly norm, we provide evidence that computing the exact
feasibility regions is computationally impractical, but we
propose efficient algorithms for e-approximating them.

e We provide hardness results for computing the feasibility
regions when obstacles are present, and then propose a
constant-factor approximation algorithm.

e Using simulations on a synthetic dataset and a real GPS
dataset, we evaluate the correctness and effectiveness of our
algorithms. The results show that the location uncertainty
decreases with an increasing number of known GPS locations
and meeting events, which matches with intuition.

2 RELATED WORK

Attacks on Location Privacy. Early works showed that an at-
tacker can easily learn a user’s identity through anonymized GPS
traces [18] (but accurate locations). User de-anonymization and
location recovery attacks are often intertwined with each other,
since with only a few locations of a user, one can uniquely recover
that user’s identity [10]. Many recent attacks [20, 27, 28] show that
even if locations are protected (e.g., perturbed with noise or cloak-
ing), location traces can still be de-anonymized. For instance, by
exploiting prior knowledge of users’ movement patterns (training a
Markov transition matrix for each user), Shokri et al. [28] proposed
optimal inference attacks against user’s noisy locations, and used
attacker’s expected estimation error to quantify location privacy
leakage under inference attacks. In a subsequent work [27], they
consider the scenario when location data is sporadic, and quantified
the location privacy leakage using Bayesian inference for Hidden
Markov Processes, where an adversary knows users’ movement
patterns and geographical distribution. Recently, Murakami [20]
improved this by leveraging the Viterbi algorithm and Forward Fil-
tering Backward Sampling to build users’ transition matrices when
the size of training data is small and data itself is sporadic/sparse. In
addition, Pyrgelis et al. [25] showed that individual location traces
can be recovered even when only aggregated time-series location
data is released.

All of the above works assumed that the attacker possesses the
prior knowledge of an individual user’s mobility pattern. In practice,
this assumption is too strong. Although Ghinita et al. [14] presented
a velocity-based attack to recover users’ private locations when
they are protected with spatial cloaking, it requires knowing users’
precise speeds, and it is not effective with sporadic locations, since
the attack relies on checking the intersection of two continuous
cloaking regions. In contrast, our approach exploits the geometric
properties to estimate unknown locations, based merely on spo-
radic locations, user-reported meeting events and maximum speed.
While incorporating more side information such as prior location
distribution or spatio-temporal correlation can improve the attack
effectiveness, the uncertainty region derived in this paper can be
regarded as an upper bound.

On the other hand, if an active adversary is considered, for exam-
ple, in LBSN applications with geo-distance based retrieval, recent
studies show that individual’s hidden locations can be recovered
using a small number of queries via triangulation [29] or space-
partition based attacks [3, 19, 24]. Li et al. [19] first presented an
attack against friend discovery services in LBSNs, by manipulating
the input query locations and running proximity query as an oracle.
Later, Polakis et al. [3, 24] improved such attack by formalizing it
as a point search problem with a set of proximity queries, where
they show a minimum logarithmic number of queries is sufficient.
Further, Wu and Hu [33] proposed an entropy-minimization based



attack to recover the location of users’ posts using a small num-
ber of adaptively chosen proximity queries and the corresponding
query results, which works even when noise is added to the lo-
cations. However, all the above attacks target at a single location
of a user, and they need the LBSNs to support interactive query-
response. Our model is different, as we only consider passive attacks
where locations can be leaked from information already available
on an LBSN (e.g., posts/tagged photos by a friend of friend showing
co-location).

Location Privacy Protection Techniques. There are three
types of techniques to protect location privacy: anonymization-
based, perturbation-based and crypto-based techniques. The first
type requires a trusted server to publish a synthetic location dataset
while preserving individual privacy [4, 5]. This is not applicable to
our problem since the server may not be fully trusted and we are not
concerned with data publishing. Perturbation-based methods do
not assume a trusted server. Traditional Location Obfuscation meth-
ods such as location cloaking [16, 35] and k-anonymity [23], do not
provide strong privacy guarantee and are prone to various attacks.
Differential Privacy (DP) [13] was proposed that provides formal
privacy guarantees that an adversary is not able to distinguish
whether a particular individual participates in a published dataset,
regardless of the amount of additional information available. Many
recent techniques applied the principle of DP to location privacy
protection, such as geo-indistinguishability [2] and §-location set
DP [34]. However, a common challenge or drawback with DP-based
methods is that the data utility is often low if a reasonable privacy
guarantee is needed, since the original data is perturbed according
to the worst-case adversary assumption. Also, DP does not provide
concrete guarantees in the face of attacks that aim to recover the
original locations. Our proposed attack relaxes the assumption of
the knowledge of the attacker, and provides a bound of the concrete
location leakage under such attack.

On the other hand, crypto-based techniques offer strong privacy
guarantees, but they are either not applicable to our setting, or
are computationally inefficient over a large amount of data. For
example, Private Information Retrieval (PIR) protocols [7, 15, 32]
allow individual users to retrieve their nearest neighbors through
an untrusted server, while the server learns nothing about the
querying user’s location. However, in this paper our goal is different
(not to protect the privacy of users who share their locations, but
to study the leakage of location privacy of all other users in an
LBSN). Private proximity test protocols [17, 21, 36] allow two users
to test their proximity without revealing their locations to each
other. Also, recent searchable encryption techniques [30, 31] enable
private geometric range queries over spatial data. While adapting
crypto-based design to achieve some of the functions of an LBSN
is possible, it may significantly affect the usability of an LBSN.
Nevertheless, no matter what types of location privacy protection
mechanism is adopted by users (be it perturbation or encryption),
our model and approach are applicable.

3 PROBLEM STATEMENT

In this section, we first describe our problem along with the system
and threat model, and then introduce main definitions and notation.

3.1 System and Threat Model

Consider a scenario in which a set of users (or agents) of a LBSN is
moving in a two-dimensional domain; examples include shoppers

in a mall, walkers in a rain forest, or vehicles on the road. In each
of these scenarios, GPS signals are not always available/received so
GPS coordinates are considered to be sporadic information. To use
the LBSN, users may choose to report their location check-ins (in-
cluding user ID, timestamps, and GPS locations) to a central server
(e.g., Facebook). Depending on their own privacy settings, they may
also choose not to report locations, or they may adopt other privacy
enhancing techniques (such as cloaking or cryptographic tools) to
protect their individual locations. In the case of cloaking, the server
receives a region of uncertainty for the user’s location. In the case
of encryption, the location is considered to be unknown.

In addition, a history, or a log of events, such as meetings be-
tween pairs of agents, may be collected by the server and exchanged
among the agents. For example, a user may tag his/her friends in a
photo that documents their meeting, thereby indicating co-location;
however, the meeting event may or may not have associated loca-
tion data (e.g., if it took place in a rain forest, shopping mall, or
other place where GPS is not available). Part of the location trace
collection and event logs can be accessed by the general public, if
some users put their privacy settings as public.

We consider an adversary (or attacker) to have access to the
sporadically reported GPS locations of users, as well as the meeting
event logs stored on the server. We also assume that this attacker
has very limited side information, such as the maximum speed of
agents, which can be obtained from knowing the coarse category of
agents (pedestrians, bicycles or vehicles). Such an attacker could be
the server itself, users of the social network service who are curious
about other users’ locations, or the general public. The server can
be considered honest-but-curious (honestly executing the protocol
but curious in knowing users’ locations), or its stored data could be
leaked out in the case of a data breach due to hacking. Note that we
do not assume any other information (e.g., statistical user mobility
patterns) is available to the adversary.

Our goal is to study how accurately the attacker can infer from
the accumulated history of events, and any side information, the
unknown or hidden locations of users who do not share their loca-
tions.

3.2 Definitions and Notation

We now give a more formal problem statement. There is a set, A, of
n agents; for simplicity of notation, we refer to agents by index (e.g.
“agent i”), writing A = {1, 2, ..., n}. We assume the agents move in
a two-dimensional plane. GPS is able to provide location data for an
agent only sporadically. When a pair of agents meet (e.g. when the
distance between them allows bluetooth connections), they detect
each other and register the meeting as an event. We assume that the
attacker has access to logs (history) of all meetings among agents;
the attacker will use this data to estimate where each meeting took
place. Moreover, the attacker also knows an upper bound, 9;, on
the speed of each agent i € A. We distinguish between two types
of events:

GPS events: A GPS event is a triple (i, 7, p), indicating that
agent i is at location p at time 7.

Meeting events: A meeting event is a triple y = (i,j,7)
indicating that there was a meeting between agents i and
Jj at time 7. Note that while the time, 7, of the meeting is
specified, the location is not specified or required. In some
cases, the location of a meeting event might known, in which
case it will be separately specified via a GPS event associated



with one of the meeting agents at the time 7 of the meeting.
The attacker, however, may be able to infer locations or
approximate locations of meeting events, as we describe
below.

We let Egps denote the set of all GPS events and let &,y denote
the set of all meeting events.

Distance Constraints. The maximum speed, 0;, of each agent i
imposes constraints on the positions of agents over time. Consider
two meeting events (i, j, 7) and (i, j’, r’) involving the same agent
i € A and two other agents j and j (possibly j = j’). Then, the
distance between the (unknown) locations of the two events is at
most 9;|t — 7’|, since agent i moves at speed at most 9;, and the
time between the two events is |t — 7”|.

The feasibility region R(y) of a meeting event y € Sy, is the
locus of points (locations) where the meeting y could have taken
place, consistent with all of the known data in the event log. By
slightly abusing notation, we will let R(z, i) denote the locus of
possible locations of agent i at time 7. Of course, if 7 coincides with
the time of a meeting event y = (i, j, 7) in which agent i is involved,
then R(z, i) = R(); and if agent i is involved in a GPS event (i, 7, p),
then R(z, i) = {p}.

We define the event graph G = G(EarsUE veetings» E) to be the graph
whose vertex set is the set of events (Egps U Eppeening,) and whose
edges are defined as follows: Two events y, y’, with associated
times 7 and 7’, define an edge (y, y”) € E if they involve a common
agent i € A, and agent i was not involved in any events (meetings
or GPS events) at times between 7 and 7’. We assign the weight
w(y, x') = 0i|t — 7’| to the edge (y, x’); the weight of the edge is
an upper bound on the distance between the two meeting locations.

4 COMPUTING FEASIBILITY REGIONS

4.1 Preliminaries

Let m be the total number of events. Let the region R € R?™ be
the locus of all points (x1, 1 . . . Xm, Ym) € R?™ such that placing
event y; at (x;,y;), for alli = 1,...,m, satisfies all position and
distance constraints.

PROBLEM 4.1. Given the event graph G defined above, computeR.

Observe that the set R is defined by a set of convex constraints.
Specifically, the GPS events fix the position of a vertex in the graph
and thus correspond to fixing two coordinates of all points in R.
Each edge (y, y’) of the graph gives rise to the convex constraint
d((x,y), (x’,y")) < w(y, x’), where (x,y) and (x’,y’) are the loca-
tions of the events y and y’, respectively. Now we immediately
conclude:

LemMma 4.1. R is convex.
LEMMA 4.2. R(y) is convex, for every event y.

PROOF. R(y) is the orthogonal projection of R to the plane. Since
R is convex, so is its projection. o

There are several natural ways to measure distances between
points in the plane. Two of them are the Euclidean (Lz) distance
do((x,y), (x",y")) = V(x —x")2 + (y — y’)?, and the Lo-distance
deo((x,y), (x”,y")) = max{|x — x’|, |y — y|}. We suggest several
algorithms for solving Problem 4.1. It appears that there are large
gaps in the difficulty of solving the problem in the Ly and Lo, case.
We will start with the latter case, which is easier.

4.2 Computing feasibility regions in L,

In this section, the distance between any pair of locations, such as
positions of GPS or meeting events or initial locations of agents, is
measured using the L, distance. In other words, we are computing
the bounding boxes for the feasibility regions. Intuitively, the Lo
distance allows us to treat the x- and the y-coordinate of the loca-
tion separately and independently, so it is sufficient to solve two
independent one-dimensional problems. We show how to compute
the bounding boxes for the feasibility regions of all events R(y) for
X € aMeetmgs'

Let X(R(y)) denote the projection of R(y) to the x-axis; define
Y(R(y))) analogously. As in the proof of Lemma 4.2, both X(R(y))
and Y(R(y)) are one-dimensional convex sets, i.e., intervals. Since
x- and y-coordinate constraints are independent under the Le
distance, R(y) = X(R(y)) X Y(R(y)) is an axis-parallel rectangle. Let
MaxX{( y) be the rightmost point of X(R(y)). Below we explain how
to compute MaxX( y). Computing the remaining three coordinates
is completely analogous and omitted for brevity. Without loss of
generality, we will assume that the x-coordinates of all meetings
are non-negative; otherwise the entire input set can be shifted to
ensure that this condition holds.

We define a new graph G*(Egps U Epectings» E), which is a modifi-
cation of G.

Algorithm L, Feasibility

1. Initialize G*(Ecps U Eptevtings» E) to G, with weights

as in Section 3.2.

2. Add a new vertex sy to G*, placed at x = 0.

3. For every y € Egps, add to G* an edge (so, y),
with weight equal to the x-coordinate of the loca-
tion of the event.

4. Run Dijkstra’s algorithm starting at sg, comput-
ing distances 8(sg, ), which are the lengths of the
shortest paths s) ~» y in G*.

5. return (so, y) for every y.

LEmMMA 4.3. &(sg, ) is MaxX(y), i.e., the rightmost point of the
x-projection of R(y).

Proor. By induction from left to right. We set MaxX(sp) = 0, so
the base of the induction is satisfied.

Assume that the claim is true for every event y’ with MaxX(y’) <
MaxX(y). Observe that MaxX(y) could only be determined by an
event y”’ (either a GPS or a meeting event) that is located to the
left of MaxX(y); otherwise we could move MaxX(y) further to
its right. By induction hypothesis MaxX(y"') = §(so, x”’). Hence
MaxX(y) = min,»{MaxX(x") + w(x”’, x)} = min,~{5(so, x"’) +
w(x", )} = 8(s0, x)- o

It is interesting to see another proof of Lemma 4.3. We assume
that in every connected component of G there is at least one GPS
event s (with the known coordinate x;), otherwise only relative
positioning information is available and we could add a dummy
anchoring GPS event. Determining the largest possible coordinate
x; of an event ¢ is formulated as the linear program (LP)

{maxx; — x5 : x; — xj < I},

where x; is the coordinate of event i and [;; is (the right-hand side
of) the distance constraint imposed by the speed (as in Section 3.2).
The LP’s constraint matrix is the incidence matrix of the graph,
with 1 and —1 in every row for the tail and the head, respectively,



of each edge, and the dual of this LP is
min 3’ ljjyi; (1)
2iYsi = L2k Ykt = L2 Yij = Dk Yk Vi # s, t,
which is the min-cost flow LP for sending 1 unit of flow from s
to t. By the integrality of the solution (which follows from total

unimodularity of the constraint matrix) the flow follows the shortest
s-t path. Thus, our problem reduces to shortest path computation.

THEOREM 4.1. Under the Loo-norm, we can compute R(y) for all
X € Eptectings> in time O((m+n) log n), where m is the number of events
and n is the number of agents.

Computing the feasibility region R(t, a) of agent a at time 7: As-
sume that R(y) is already computed for every y € E,ung using
Algorithm Lo, Feasibility. And suppose agent a € A is not involved
in any meeting at time 7. To compute the feasibility region of agent
a € A at time 7, let y’, "’ be two meetings involving a immedi-
ately before and after 7, at times 7’ and 7", respectively. Then the
rightmost point MaxX(r, a) of R(z, a) occurs at

min{MaxX(x') + (r — t’) - MaxSpeed(a),
MaxX(x"") + ("' = 7) - MaxSpeed(a)}.

As before, the leftmost, topmost, and bottommost points are com-
puted analogously.

Note that, when an attacker computes the feasibility region
R(z, a) with our algorithm, we assume the attack is generic, i.e., an
agent’s cloaked/encrypted/suppressed location provides no addi-
tional information to this attacker. In practice, an attacker could
further reduce the uncertainty by calculating the intersection of
its cloaking region and its feasibility region obtained from our
algorithm.

4.3 Difficulties with Euclidean (L) distances

In this section we present some evidence that the Ly version of the
problem appears to be significantly more challenging.

Hardness in presence of speed lower bounds: We start by proving
that when imposing simultaneous lower and upper bounds on the
speed of the agent motion, even deciding the feasibility of our
problem becomes hard.

A linkage is an abstract graph with prescribed edge lengths; see,
for example [8, 11]. The (two-dimensional) linkage realizability (de-
cision) problem is to determine whether a given linkage can be
represented as a graph with points in R? as vertices and line seg-
ments with prescribed Euclidean lengths as edges. The complexity
class 3R is, roughly speaking, the class of decision problems! that
can be encoded as a Boolean formula with real variables, usual
arithmetic operations, integer constants, and only existential quan-
tifiers (“Does there exist a real solution to the following system of
algebraic equations?”). Clearly, checking if R = 0 is such a problem,
by definition (see Section 4), so it is in IR.

We will argue that the problem of checking if R = 0 is, in fact, IR-
hard, as it can be reduced from the unit-length linkage realizability
problem, which is known to be IR-complete [26].

Start with a linkage with unit-length edges. Create an agent u
for every vertex u (its maximum speed is zero) and an agent (u, v)
for every edge (its minimum and maximum speed is one). There
are no GPS events. We orient every edge arbitrarily. For a directed

! According to Schaefer[26], the best known estimates of where this class lies among
other complexity classes is that it contains NP and is contained in PSPACE.

edge (u, v), we make agent u meet agent (u, v) at time 0 and agent v
meet agent (u,v) at time 1. It is easy to check that the original
linkage is realizable if and only if for the resulting GPS-and-meeting
constraints problem has R # 0. So we have reduced the problem of
unit-length linkage realizability to the feasibility of our problem
with both minimum and maximum speed constraints. Therefore
we have the following claim.

THEOREM 4.4. Deciding whether R # 0 under Ly norm is IR-
complete with both minimum- and maximum-speed constraints.

Complexity of the boundary of the feasible region. Returning to
our feasibility problem with only upper bounds on agents’ moving
speed, under Lo, distance the feasibility regions for all agents are
axis-parallel rectangles. We note that the L distance constraints
are quadratic thus the boundary of R(y) can be more complicated.
Let p € OR(y) be a point on the boundary which corresponds to a
realization of the agents’ location to satisfy all distance constraints.
We say that an edge (u,w) € E is taut if its length equals the
maximum distance between its endpoints. Otherwise, it is loose.

It is tempting to guess that R(y) is a Boolean combination of
disks of different radii, and thus bounded by circular arcs. In some
examples this is true (see Figure 1 Left), but in general it turns out
to be far from the truth.

C(p2, dy + dy)
DR
3. l(,v(‘]_‘)h(],;; f (1())
((\1,(]|]) X1 “)i’éﬁ?

14

05 .
0 Clpo,dy + dy)

Figure 1: Left: An example where the boundary dR(y) of R(y)
under the L, distance consists of three circular arcs. Here, p1,
p2 are locations of GPS events, and there are three distance
constraints. At the rightmost boundary segment, all three
distance constraints are taut (when y is pulled in direction 1),
while along the other two segments only two of the three are
taut. Here, dy, di and ds are the corresponding lengths of the
segments y1 y,p2 x1 and p; y1, resp., and C(p, r) is a circle with
center p and radius r. Right: Two “snapshots” of a simple
configuration that produces a non-circular boundary.

Next we will show a configuration that produces a non-circular
boundary. Refer to Fig. 1 Right. The configuration contains two
GPS events p1, p2 (marked as black boxes) and three meeting events
X> X1, x2- The length of edges are given. The four events p1, p2, x1, x2
form a quadrilateral with all edges taut. But a quadrilateral is not
rigid so it can be moved. The rightmost point of the feasibility re-
gion of y is obtained by pulling in the horizontal direction 7. As
we pull y in directions close to but near 7, the point y traces out a
section of a curve y that is not a circular arc, as is easy to check.

Notice that this can be replicated as shown in Fig. 2 with two
trapezoids sharing an edge. The angles spanned within each trape-
zoid change as p moves along y. The placement of the i’th trapezoid
depends on the position of the i —1’st trapezoid, but since the angles
of each of them are changing (as y slides along y), the position of
no part could be defined as an affine transformation of another
part. This suggests that no portion of the configuration moves as



Figure 2: Concatenation of two trapezoids, defined by ver-
tices p1p2 x3 y1 and y1x3 x4 x2-

a rigid object, hence could not be replaced, even locally, by any
smaller subsets of agents. Thus any arc of the boundary could be
found only by the solution of a system of ©(n) of trapezoids, which
suggests high dependencies on the parameters.

4.4 e-approximation of the L, setting

In this section, we approximate the solution to the Ly problem by
measuring the Euclidean distances within a factor of 1 + ¢, where
€ > 0 is a user-specified parameter.

D, Mg, &)

Ti(g, £3)
Figure 3: Left: Lines of canonical orientations at spacing
a, emerging from point p, and the orthogonal projection
II(q, ¢;) of q on each ¢;. If ||p — q|l2 = 1, then the maximum
distance max; ||p — I1(q, {;)|| can be made arbitrarily close to
llp — ql|, for small enough «. Right: The discrepancy between
the norms is obtained when q is at orientation § to p, mak-
ing the distance § between them at most |[p — g|2(1 — cos §).

Let k = k(e) be an integer to be chosen below. Let p, g € R?; refer
to Fig. 3. Let ® = {{1, ..., {} } be a set of lines emerging from p and
spanning an angle of @ = n/k between them, such that one of the
lines coincides with the x-axis. Consider the regular 2k-polygon Dy
circumscribed around the unit circle centered at p, with each edge
perpendicular to a line ¢;. For example, if Dy is the axis-aligned
2 X 2 square, i.e., the unit ball in the Lo, metric.

LetII(g, ¢;) be the orthogonal projection of q to the line ¢;. Define
the distance ||p — qllp, as max; ||p —II(q, £;)||. As easily observed
this value indicates by which factor should we scale Dy (without
shifting its center) so its boundary contains q. Similarly we define
the distance |[p—gql| D, replacing Dy, as the "unit ball" by D, defined
as the largest scaled copy of Dy contained inside the unit Ly disk.
See Fig. 3.

It can be verified that for a suitable choice of k = @(5‘1/ 2)

llp = qlip, < llp = qllz < llp = qllp, /(1 +&).

Next let u; be a unit vector parallel to ;. We replace the distance
constraint ||p — gqll2 < Lby +(p — q) - u; < L, for all i, thereby
introducing a multiplicative error of at most 1 + &.

RZ(X) & Rg(X)

b T2
1 '

< “aby”

RI)_, 62 §3 5-1

Figure 4: Feasible regions and their approximations for dif-
ferent notion of a distance. Two GPS events are at points p;
and p;. Agents leave these locations and meet at y, travers-
ing a maximum distance of r; and ry, resp. R2(y) is the lens
of intersection of the two Euclidean disks. Rp, () is the red
rectangle. Rp, (x) is empty, since the green squares do not
intersect. R+ () is the blue diamond.

In this section, we use subscripts on R to indicate the underlying
norm. For example, Ry(y) denotes the uncertainty region when Ly
norm is used in distance constraints. Section 4.2 showed how to
compute Reo () exactly and efficiently.

One approach for approximating Ro(y) is to compute well-spread
extreme points {{ ... Yo} on dRz2(y), along the directions *u;,
i = 1,...,k. Since Ry(y) is convex, the convex hull Rx(y) =
CH(Y1 . .. Yy) is a good approximation (Fig. 4). Obviously R~(y) C
Ry(x), and their boundaries are quite close to each other with re-
spect to the Hausdorff Distance: For every point a € 0R~(y) there
is a point @’ € Ry(y) within distance diam(R2(y))/k and vice versa,
where diam(X) is the diameter of a compact set X — the maximum
distance between any two points in X.

One might wonder what quality of approximation could be ob-
tained by using only Linear Programming (rather than Convex
Programming). To follow this approach for approximating Ra(y)
we solve 2k LP problems. In the ith problem we find the extreme
point &; of the feasibility region of y in direction u;, with distances
measured under the Lp, norm. Let Rp, (x) = CH({1 ... & }).

LEmMA 4.5. For any event y,
Rpy (%) € R=(x) € Ra(x) S Rp, (x)-

To summarize,

® Roo(y) canbe computed in time O((m+n) log n), for all events
x (Theorem 4.1).

® Rp, (y)and RDL () can be computed for a meeting event y
by solving O(k) linear programs with O((n+m)k) constraints
each.

® R+(y) can be computed by solving O(k) convex programs
with O(n + m) constraints each.

It is worth mentioning that from a theoretical point of view, all
algorithms mentioned above are polynomial (the first is strongly
polynomial, while the others are pseudopolynomial).

Also note that the condition that [[p—q||p, < L for some constant
L can be written as 2k linear conditions: each of the projections of
the vector p—q on the directions u; does not exceed L. ||p—q||D;c <L
is treated similarly, replacing L by (1 — ¢)L.

Finally, as described above, we compute R~ () as the convex hull
of points obtained by solving 2k convex programming problems
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Figure 5: The variable gadget for x;.

maximizing the projection of the position of y to each of the 2k
directions u;.

Hence we can describe the (approximate version of) R(y) as the
feasible region of a linear or convex program.

5 DOMAINS WITH OBSTACLES

Next we consider the case where agents may not be able to move
along a straight line due to the presence of some obstacles (buildings,
lakes or other features of the terrain). This abstract model captures

multiple real-life scenarios: (i) Vehicles are confined to paved road.

(ii) Pedestrians walk along sidewalks, and in general will not enter
building unless these are their final destinations. So even if we
obtain bounds of the maximum speed of each agent, the feasibility
of locations of meeting points depend on distances along (shortest)
paths that avoids the obstacles, rather than crow-fly distances.

In this section we first show that the presence of obstacles makes
the problem of testing whether the feasibility region is empty hard,
for any L, metric. Then we show approximate solutions when the
obstacles are ‘fat’ under L, metric.

5.1 Hardness

THEOREM 5.1. Testing feasibility of the localization problem in a
domain with holes, i.e., checking if R = 0, is NP-hard.

Proor. The proofis by reduction from 1-in-3SAT, in which there
are n Boolean variables and m clauses, each with exactly three
literals, and we ask whether there is an assignment such that exactly
one literal in each clause is true.

For each variable we create a variable gadget. Figure 5 shows an
example for variable x;; we use a solid dot to show a GPS event
and a circle to show a meeting event. A variable gadget for x; is
composed of two GPS events, p1, g1, meaning agent p located at p;
and agent g at location q; at time t. These two GPS events are the
top and bottom vertices, respectively, of a diamond-shaped room (in
gray). This room has two other vertices at distance L’ from p1, q1;
these are two exits of the room. There is a meeting event wy at time
t + L’ for agents p, g. Thus, the meeting event is within distance L’
of p1, q1. Inside the diamond there is a horizontal segment obstacle,
extending almost to the exits, such that the only possible position
for wy is at either exit of the diamond polygon.

The left and right vertices of the diamond are connected by
extremely narrow corridors (of width essentially zero). The two
vertical corridors from the left and right exits are connected by
another equally narrow corridor of length L, called a bridge. See
the picture for the illustration. There are two “tendrils” out of each
variable gadget, the left one corresponding to x; and the right one
corresponding to x7. The tendril for x; (or X7) will connect to the
clause gadgets that contain x; (or x7).

For each clause we build a clause gadget, which consists of a
special triangular room and one single meeting event. See Figure 6a.
We have a regular triangular room of side length R with a regular
triangular obstacle inside. The triangular obstacle has side length
nearly R/2. That is, there are three narrow passages near the three
vertices of the triangular obstacles. The three vertices of the trian-
gular room correspond to the three literals of this clause and are
connected by narrow corridors to the corresponding tendril of the
variable appearing in this clause. If the variable x; or its negation
X1 appears in the ith clause, the meeting event ¢; involves agent 1
and happens at time ¢ + L] + P. Thus ¢; is at most distance P away
from the meeting event wj.

q
x3

2 3 )

(a) The clause gadget for
X1 A X2 A X3.

(b) The feasible embedding
for x; = 0.

Figure 6: The clause gadget and variable gadget.

Figure 6b shows an example of one possible embedding of the
variable gadget, corresponding to the case of x; = 0. In this case,
the meeting event wy is located at the left vertex of the gadget such
that the distance from w; to the meeting event from a clause c;
containing x7 has to travel through the horizontal bridge of extra
length L. This limits the placement of the meeting event c; due to
the upper bound on distance.

We choose the lengths P, L, and R in a manner that allows pre-
cisely three possible positions for each meeting event cj, at the
three midpoints of the edges of the triangular obstacle. Figure 6a
gives one placement. This placement makes the meeting point be
closer to the exit corresponding to x7 and further away from the
exits corresponding to Xz and x3. In this case X7 = 1, meaning the
agent 1 travels from meeting location w; to the meeting location
cj through the bridge of length L. To make this happen, we just set

L= #R, when distance is measured by the Ly metric (for other
metric spaces the value of R can be properly adjusted).

Last we note that we can place the entire arrangement in the
plane. We can add little nooks on the corridors to make their length
as prescribed. The narrow corridors connecting the variable gadgets
and clause gadgets can cross but these will not affect the statements
above due to our design of the length constraints. O

5.2 Fat obstacles

Despite the computational hardness pointed out by the previous
section, an adversary might still be able to approximate an agent’s
location in many environments, as long as their obstacles exhibit
geometric property referred to as x-fatness. Roughly speaking, a
convex object C in the plane is x-fat (for some fixed constant k > 0)
if, for each disk D centered on the boundary of C and not fully
containing C, the area of C N D is at least k - area(D) [9]. That is,
very long and skinny objects will have a very large enclosing disk,
but only tiny portions of the disk’s area is occupied by C.



Many common, man-made obstacles exhibit such fatness. Of
course, certain natural obstructions (rivers, canyons) and man-made
structures (fences, train tracks) do not constitute fat obstacles; we
leave further study of extensions to (possibly a small number of)
non-fat obstacles to future work. In the rest of this section, we
assume that all obstacles are x-fat.

We next show that the algorithm of Section 4.2 could be used to
obtain a constant factor approximation on the feasibility regions,
as formulated below. First we need the following lemma, proven
by Chew et al [6].

LEmMA 5.1 ([6]). Let C be a fat obstacle. Let p,q be two points
on its boundary, dC, and let § = min{|0ccw (O)|, |0cw (C)|}, where
dccw (C) (resp., dcw (C)) is the counterclockwise (resp., clockwise)
portion of dC between p and q, and |dccw (C)|, |0cw (C)| are the
lengths of these portions. Then, ||p — q|| < K8, where K is a constant
that depends only on the fatness parameters.

The term K is called the stretch factor. It can be argued that
the shortest path between any two points s, ¢ in the domain with
fat obstacles is no longer than K - |st| where |st| is the Euclidean
distance between s and ¢. See the Figure to the right, showing the
relatively small discrepancy between the shortest path s — ¢ that
avoid all obstacles, vs. the length of the segment |st|. Specifically,
we can take the intersections of the
straight line segment st with the

fat obstacles, denoted by p;, g; with e Cs CjQ_\
the ith obstacle. Now we build an ‘)*)‘C’[
alternative path that is composed C y'
of pieces of segments on st and the 0‘4‘ Ty

shorter paths along the obstacle i to

move from p; to g;. This path has

length at most K - |st|. This implies that if we run the Algorithm Ly
Feasibility with the original weights in an obstacle-free setting, we
would obtain a region R’(y) containing R(y), where R(y) is the ac-
tual feasibility region of y computed when taking all obstacles into
account. In addition, we could compute the stretch factor K of all
obstacles, replace the length w(u, v) of each edge of G by w(u, v)/K,
and recalculate the uncertainty region for each y, resulting in new
regions, denoted R”'(y), contained within R(y). In summary,

THEOREM 5.2. In time O((m+ n) log n) we can compute feasibility
regionsR’(y), R’ (x) for the events such that R” (x) € R(x) € R'(x),
when the domain has fat obstacles and the distance is measured by
shortest path in the domain, under the Lo, metric.

6 EVALUATION

In this section we evaluate how the algorithms work on both a
synthetic dataset and a real trajectory dataset. All experiments are
run on a laptop with Intel(R) Core™ i5-4200M CPU@2.50GHz and
4 GB memory.

6.1 Simulation on Synthetic Datasets

We first present the simulation results of our Lo, feasibility algo-
rithm in Section 4.2 on synthetic datasets. We assume that some
agents share their locations, while others are concerned about their
location privacy. We refer to the latter ones as privacy-aware agents,
or PA agents, for short. The others are non-PA agents. We simulate
the movements of all agents using Processing [1], assuming a sim-
ple Markovian model. Each agent moves randomly along the x-axis
in an interval of length 800 meters, with a random speed between 2

meters per time frame and 4 meters per time frame. Every non-PA
agent reports a GPS event once her location is updated, and all
agents (PA and non-PA) report their meeting events with others
with a given frequency (e.g., once every 5 time frames).

In our experiment, we have 12 agents. First, we test the impact
of the number of non-PA agents on the average uncertainty of PA
agents. The average uncertainty of a PA agent is calculated as

Z#T Z#a R(r,a)
#7 - #a

s

where a is a PA agent and R(z, a) is the width of its feasibility region
at time frame 7. Having a small location uncertainty is undesirable,
as it compromises an agent’s location.

The uncertanty of PA agent. (meters)

3 5 7 9
The number of non-PA agents.

Figure 7: The impact of the number of non-PA agents on the
average uncertainty of PA agents.

The simulation result is demonstrated in Fig. 7. As expected, as
more agents report GPS events, the average size of the feasibility
regions decreases. Table 1 shows the average number of GPS events
collected in our experiment.

Table 1: # GPS events

#Non-PA agents | 1 | 3 | 5 7 9 11
#GPS events 13 | 41 | 64 | 103 | 128 | 166

In Fig. 8 we show the average uncertainty of a PA agent as a
function of the meeting report frequency, defined to be the number
of time frames between two consecutive meetings. It is interesting
to see the correlation between meeting report frequency and the
average uncertainty region size. In the same period of time, with the
shorter meeting report frequency (i.e., fewer time frames between
meetings), more meeting events are reported and collected (see
Table 2). As a result, the more reported meeting events during the
same time period, the smaller the average uncertainty of PA agents.

Table 2: # Meeting events

#time frames 5 10 | 15 | 20 | 25
#meeting events | 366 | 183 | 129 | 95 | 59
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Figure 8: The impact of meeting report frequency on the av-
erage uncertainty of PA agent.

6.2 Experiment on real GPS trajectories

We further evaluate our algorithm with the trajectories of 6,099
taxis in Shenzhen [12], sampled every five minutes during one
hour. Each trajectory is sampled by 13 GPS locations. All of the
GPS locations are within the range of longitude from 113.8°E to
114.3°E, and latitude from 22.45° N to 22.75°N, which is an area of
about 1, 847km?. To simulate the meeting events, we assume that
each agent travels along the line segment between two consecutive
GPS locations with uniform speed. If two agents arrive to the same
position within a time interval of one second, we record it as a
meeting event. There are 14, 534 meeting events in this dataset.

Again, we run the Lo, feasibility algorithm and investigate the
impact of the number of GPS events on the results. First, we let all
vehicles report GPS events with different frequencies. We calculate
the feasibility regions of all meeting events. In other words, there
are no PA agents in this case, but the number of GPS events changes
with the GPS reporting frequency. As shown in Fig. 9, when each
vehicle reports one GPS event every five minutes, the average width
of the feasibility regions is only 711 meters while its average height
is 973 meters. Even if each vehicle only reports two GPS events at
the start and end of the duration, i.e., with frequency of reporting
one GPS every 60 minutes, the average size of the feasibility regions
can be narrowed down to 10 kilometers in width and 12 kilometers
in height, which is still relatively small compared to the area of the
entire range of motion of the vehicles.

120001 Average width (meters)
I Average height (meters)

10000

8000

6000

4000

2000

The size of feasibility regions of meetings.

o

5 10 15 20 30 60
The frequency of reporting GPS (every # minutes).

Figure 9: The impact of GPS reporting frequency on the av-
erage size of feasibility regions of meeting events.

Then we increase the number of PA agents, which are randomly
chosen from the 6,099 vehicles. The others still report their GPS

events once every 5 minutes. As illustrated in Fig. 10, our algorithm
works effectively with the existence of PA agents. For instance,
even with about one third of the vehicles (i.e. 2,000 vehicles) not
reporting their GPS locations, both the average width and the av-
erage height of the feasibility regions are less than 1, 600 meters.
Also, the average size of the feasibility regions increases as fewer
vehicles report GPS events, consistent with our previous simulation
results on synthetic datasets (i.e., the results shown in Fig. 7).
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Figure 10: The impact of PA agents on the average size of
feasibility regions of meeting events.

Both Fig. 9 and Fig. 10 demonstrate that the more GPS events
collected, the more accurate our algorithm performs. More impor-
tantly, even with a small number of GPS events, our algorithm can
still derive a small feasibility region for each meeting event.

Il Average width (km)
I Average height (km)

The size of feasibility regions of PA agents.

500 1000 1500 2000 2500 3000
The number of PA agents

Figure 11: The impact of PA agents on the average size of
feasibility regions of agents.

The above results have shown the capability of our L feasibility
algorithm to infer the locations of meeting events. As discussed in
Section 4.2, we can further calculate a PA agent a’s feasibility region
at time 7 from the feasibility regions of two meetings involving
a immediately before and after 7, even if a is not involved in a
meeting at 7. We also implement this method to recover all PA
agents’ feasibility regions at the midpoint of the hour, and present
the impact of the number of PA agents on the results. Since there
are only 3,477 vehicles involved in at least two meetings before
and after the midpoint time, respectively, we randomly choose the
PA agents from these 3, 477 vehicles. Fig. 11 shows the average size
of all PA agents’ feasibility regions at the midpoint time, which also
grows with the increase in the number of PA agents. Compared
to the results in Fig. 10, the feasibility regions of PA agents are



larger. This is due to the sparsity of meeting events in our dataset
(recall that we have shown the impact of the number of meetings in
Fig. 8). However, they are still much less than the whole area of the
dataset. Thus, we can conclude that our algorithm is also effective
in revealing agents’ feasibility regions.

7 CONCLUSION AND FUTURE WORK

In this paper, we focused on understanding the information leakage
of a user’s location trajectory caused by other privacy-insensitive
users’ social behaviors, such as posting a meeting with location
data. To the best of our knowledge, this is the first work to quantify
the limits of location privacy for sporadic location traces, without
assuming specific mobility models. Our model is general enough
to capture a wide range of location privacy protection techniques.
So far we have assumed that when two agents meet their meeting
time is recorded precisely. The algorithm using L can be easily
extended if a time interval is associated with each meeting event.

The obvious open question is how to defend against this type of
attack. Common solutions to this problem are based on changing
some of the reported locations (e.g., via random perturbation or
cloaking) or filtering out some of them; however, this action risks
upsetting users who want to publish their locations, at an accuracy
they wish to determine. In addition, such methods will degrade the
usability of the LBS/LBSN. To address this issue, we will explore
adding dummy agents and trajectories, indistinguishable from real
users’ trajectories, in order to make it computationally intractable
to recover real agents’ uncertainty regions.
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