
Are Friends of My Friends Too Social?
Limitations of Location Privacy in a Socially-Connected World

Boris Aronov

New York University

Brooklyn, NY, USA

boris.aronov@nyu.edu

Alon Efrat

University of Arizona

Tucson, AZ, USA

alon@email.arizona.edu

Ming Li

University of Arizona

Tucson, AZ, USA

lim@email.arizona.edu

Jie Gao

Stony Brook University

Stony Brook, NY, USA

jie.gao@stonybrook.edu

Joseph S. B. Mitchell

Stony Brook University

Stony Brook, NY, USA

joseph.mitchell@stonybrook.edu

Valentin Polishchuk

Linköping University

Norrköping, Sweden

valentin.polishchuk@liu.se

Boyang Wang

University of Cincinnati

Cincinnati, OH, USA

wang2ba@ucmail.uc.edu

Hanyu Quan

Xidian University

Xi’an, China

quanhanyu@gmail.com

Jiaxin Ding

Stony Brook University

Stony Brook, NY, USA

jiaxin.ding@stonybrook.edu

ABSTRACT
With the ubiquitous adoption of smartphones and mobile devices,

it is now common practice for one’s location to be sensed, col-

lected and likely shared through social platforms. While such data

can be helpful for many applications, users start to be aware of

the privacy issue in handling location and trajectory data. Some

users may voluntarily share their location information (e.g., for

receiving location-based services, or for crowdsourcing systems),

which may lead to information leaks about the whereabouts of

other users, through the co-location of events when two users are

at the same location at the same time and other side information,

such as upper bounds on movement speed. It is therefore crucial

to understand how much information one can derive about oth-

ers’ positions through the co-location of events and occasional

GPS location leaks of some of the users. In this paper we formu-

late the problem of inferring locations of mobile agents, present

theoretically-proven bounds on the amount of information that

could be leaked in this manner, study their geometric nature, and

give algorithms matching these bounds. We will show that even if

a very weak set of assumptions is made on trajectories’ patterns,

and users are not obliged to follow any ‘reasonable’ patterns, one

could obtain very accurate estimation of users’ locations even if

they opt not to share them. Furthermore, this information could

be obtained using almost linear-time algorithms, suggesting the

practicality of the method even for huge volumes of data.

CCS CONCEPTS
• Security and privacy → Social aspects of security and pri-
vacy; • Theory of computation→ Computational geometry;
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1 INTRODUCTION
With today’s nearly universal use of smartphones, people rely on

Location-Based Services (LBSes) on a daily basis. For instance, us-

ing Google Maps, a user can search for restaurants and landmarks

in her proximity and can find the fastest route to a place from

her current location. Moreover, in Location-Based Social Network

(LBSN) applications, a user can locate her friends via geo-tagged

posts on popular social networking platforms, such as Foursquare,

Instagram, or Facebook. However, due to the sensitivity of location

data, this use of LBSes also raises significant privacy concerns. For

example, leakage of locations can lead to the exposure of sensitive

personal information, such as home addresses, health conditions,

sexual orientation, or political and religious beliefs [24]. A variety

of location privacy metrics and protection mechanisms have been

proposed in the context of LBSes, including perturbation-based

approaches, such as the classical notions of k-anonymity [23] and

spatial cloaking [14, 16, 22], and rigorous privacy-based definitions,

such as differential privacy [13] and geo-indistinguishability [2],

which can guarantee the indistinguishability of two locations to

an adversary given the perturbed ones, provided arbitrary back-

ground information. Crypto-based approaches can also achieve

privacy-preserving location-based queries against untrusted ser-

vice providers with even stronger security guarantees, such as

homomorphic encryption [21, 37], private information retrieval

[15], searchable encryption [30, 31], etc.

While all existing techniques satisfy indistinguishability-based

security/privacy requirements, it remains unclear what concrete

location privacy guarantees they can provide in a real-world setting,

especially against an adversary with certain background knowl-

edge. In fact, several recent studies [3, 14, 33] have shown that

the actual location privacy level of perturbation-based methods
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can be quite limited when an attacker has side information. For
example, one can use the maximum velocity of users to dramati-

cally reduce the region in which a user could be, even if they cloak

their locations [14]. In addition, other studies have shown that in

proximity-based geo-query response systems, an adversary can

carry out triangulation-type attacks to accurately pinpoint user

locations, even if they are protected using crypto-based techniques

[3, 19]. All of this work deals mainly with LBS applications from

the perspective of single users; however, with the increasing use

of social networking platforms, user–user interactions can provide

richer side information that potentially leads to higher privacy

leakage than expected, which is not well understood.

For a LBSN, our main observation is that even if a privacy-

sensitive individual’s location is well-protected by him/herself, it

may still be revealed through other users’ sharing behavior. In prac-

tice, users have different privacy settings and preferences in LBSNs.

Some users who are less privacy-aware publish their locations di-

rectly on social media. For example, in Facebook, if Alice posts

a photo taken with Bob, along with her current location (e.g., by

geo-tagging him), then the location of Bob is immediately revealed.

Similarly, suppose Charlie is a privacy-aware user on Foursquare,

and he sometimes reports his actual locations, but hides the loca-

tions of special events (e.g., confidential meetings with his doctor);

then, using the times of his published locations before and after the

meeting, and some side information, such as whether he is driving

or walking, his private meeting locations can be roughly inferred.

Thus, we ask the fundamental question: how much information

can be inferred about a user’s location, given the co-location events

with others and occasional GPS location leaks?

In this paper, we characterize the fundamental limit of location

inference given limited available information in LBSNs, including

sporadically published locations by users, and side information

(such as meeting events and maximum speed of users). We propose

a theoretical framework to bound the feasible region of users’ un-

known locations, by leveraging geometric constraints imposed by

users’ movement and meeting relationships.

Our results show that even with such a weak set of assumptions,

it is still feasible to restrict users’ unknown locations to small re-

gions. Our attack model is generally applicable to a wide range of

location privacy preserving techniques (such as cloaking, encryp-

tion, or changing privacy settings), while our approach does not

make any assumptions on the statistical mobility patterns of users.

The main contributions of this paper include:

• We characterize the feasibility region for the possible loca-

tion of each agent, at each time. We prove that these regions

are optimal, in the sense that they are as accurate as possible,

given the available data: The agent could be anywhere inside

the feasibility region, without violating any constraints; sim-

ilarly, the agent could not be anywhere outside the feasibility

region, without violating the constraints.

• We give exact and efficient polynomial-time algorithms for

computing feasibility regions when distances are measured

using the L∞ norm (i.e., for computing the bounding boxes of

the regions). If distances are measured using the Euclidean

L2 norm, we provide evidence that computing the exact

feasibility regions is computationally impractical, but we

propose efficient algorithms for ε-approximating them.

• We provide hardness results for computing the feasibility

regions when obstacles are present, and then propose a

constant-factor approximation algorithm.

• Using simulations on a synthetic dataset and a real GPS

dataset, we evaluate the correctness and effectiveness of our

algorithms. The results show that the location uncertainty

decreaseswith an increasing number of knownGPS locations

and meeting events, which matches with intuition.

2 RELATED WORK
Attacks on Location Privacy. Early works showed that an at-

tacker can easily learn a user’s identity through anonymized GPS

traces [18] (but accurate locations). User de-anonymization and

location recovery attacks are often intertwined with each other,

since with only a few locations of a user, one can uniquely recover

that user’s identity [10]. Many recent attacks [20, 27, 28] show that

even if locations are protected (e.g., perturbed with noise or cloak-

ing), location traces can still be de-anonymized. For instance, by

exploiting prior knowledge of users’ movement patterns (training a

Markov transition matrix for each user), Shokri et al. [28] proposed

optimal inference attacks against user’s noisy locations, and used

attacker’s expected estimation error to quantify location privacy

leakage under inference attacks. In a subsequent work [27], they

consider the scenario when location data is sporadic, and quantified

the location privacy leakage using Bayesian inference for Hidden

Markov Processes, where an adversary knows users’ movement

patterns and geographical distribution. Recently, Murakami [20]

improved this by leveraging the Viterbi algorithm and Forward Fil-

tering Backward Sampling to build users’ transition matrices when

the size of training data is small and data itself is sporadic/sparse. In

addition, Pyrgelis et al. [25] showed that individual location traces

can be recovered even when only aggregated time-series location

data is released.

All of the above works assumed that the attacker possesses the

prior knowledge of an individual user’s mobility pattern. In practice,

this assumption is too strong. Although Ghinita et al. [14] presented
a velocity-based attack to recover users’ private locations when

they are protected with spatial cloaking, it requires knowing users’

precise speeds, and it is not effective with sporadic locations, since

the attack relies on checking the intersection of two continuous

cloaking regions. In contrast, our approach exploits the geometric

properties to estimate unknown locations, based merely on spo-
radic locations, user-reported meeting events and maximum speed.

While incorporating more side information such as prior location

distribution or spatio-temporal correlation can improve the attack

effectiveness, the uncertainty region derived in this paper can be

regarded as an upper bound.

On the other hand, if an active adversary is considered, for exam-

ple, in LBSN applications with geo-distance based retrieval, recent

studies show that individual’s hidden locations can be recovered

using a small number of queries via triangulation [29] or space-

partition based attacks [3, 19, 24]. Li et al. [19] first presented an

attack against friend discovery services in LBSNs, by manipulating

the input query locations and running proximity query as an oracle.

Later, Polakis et al. [3, 24] improved such attack by formalizing it

as a point search problem with a set of proximity queries, where

they show a minimum logarithmic number of queries is sufficient.

Further, Wu and Hu [33] proposed an entropy-minimization based



attack to recover the location of users’ posts using a small num-

ber of adaptively chosen proximity queries and the corresponding

query results, which works even when noise is added to the lo-

cations. However, all the above attacks target at a single location

of a user, and they need the LBSNs to support interactive query-

response. Our model is different, as we only consider passive attacks

where locations can be leaked from information already available

on an LBSN (e.g., posts/tagged photos by a friend of friend showing

co-location).

Location Privacy Protection Techniques. There are three

types of techniques to protect location privacy: anonymization-

based, perturbation-based and crypto-based techniques. The first

type requires a trusted server to publish a synthetic location dataset

while preserving individual privacy [4, 5]. This is not applicable to

our problem since the server may not be fully trusted and we are not

concerned with data publishing. Perturbation-based methods do

not assume a trusted server. Traditional Location Obfuscation meth-

ods such as location cloaking [16, 35] and k-anonymity [23], do not

provide strong privacy guarantee and are prone to various attacks.

Differential Privacy (DP) [13] was proposed that provides formal

privacy guarantees that an adversary is not able to distinguish

whether a particular individual participates in a published dataset,

regardless of the amount of additional information available. Many

recent techniques applied the principle of DP to location privacy

protection, such as geo-indistinguishability [2] and δ -location set

DP [34]. However, a common challenge or drawback with DP-based

methods is that the data utility is often low if a reasonable privacy

guarantee is needed, since the original data is perturbed according

to the worst-case adversary assumption. Also, DP does not provide

concrete guarantees in the face of attacks that aim to recover the

original locations. Our proposed attack relaxes the assumption of

the knowledge of the attacker, and provides a bound of the concrete

location leakage under such attack.

On the other hand, crypto-based techniques offer strong privacy

guarantees, but they are either not applicable to our setting, or

are computationally inefficient over a large amount of data. For

example, Private Information Retrieval (PIR) protocols [7, 15, 32]
allow individual users to retrieve their nearest neighbors through

an untrusted server, while the server learns nothing about the

querying user’s location. However, in this paper our goal is different

(not to protect the privacy of users who share their locations, but

to study the leakage of location privacy of all other users in an

LBSN). Private proximity test protocols [17, 21, 36] allow two users

to test their proximity without revealing their locations to each

other. Also, recent searchable encryption techniques [30, 31] enable

private geometric range queries over spatial data. While adapting

crypto-based design to achieve some of the functions of an LBSN

is possible, it may significantly affect the usability of an LBSN.

Nevertheless, no matter what types of location privacy protection

mechanism is adopted by users (be it perturbation or encryption),

our model and approach are applicable.

3 PROBLEM STATEMENT
In this section, we first describe our problem along with the system

and threat model, and then introduce main definitions and notation.

3.1 System and Threat Model
Consider a scenario in which a set of users (or agents) of a LBSN is

moving in a two-dimensional domain; examples include shoppers

in a mall, walkers in a rain forest, or vehicles on the road. In each

of these scenarios, GPS signals are not always available/received so

GPS coordinates are considered to be sporadic information. To use

the LBSN, users may choose to report their location check-ins (in-

cluding user ID, timestamps, and GPS locations) to a central server

(e.g., Facebook). Depending on their own privacy settings, they may

also choose not to report locations, or they may adopt other privacy

enhancing techniques (such as cloaking or cryptographic tools) to

protect their individual locations. In the case of cloaking, the server

receives a region of uncertainty for the user’s location. In the case

of encryption, the location is considered to be unknown.

In addition, a history, or a log of events, such as meetings be-

tween pairs of agents, may be collected by the server and exchanged

among the agents. For example, a user may tag his/her friends in a

photo that documents their meeting, thereby indicating co-location;

however, the meeting event may or may not have associated loca-

tion data (e.g., if it took place in a rain forest, shopping mall, or

other place where GPS is not available). Part of the location trace

collection and event logs can be accessed by the general public, if

some users put their privacy settings as public.

We consider an adversary (or attacker) to have access to the

sporadically reported GPS locations of users, as well as the meeting

event logs stored on the server. We also assume that this attacker

has very limited side information, such as the maximum speed of

agents, which can be obtained from knowing the coarse category of

agents (pedestrians, bicycles or vehicles). Such an attacker could be

the server itself, users of the social network service who are curious

about other users’ locations, or the general public. The server can

be considered honest-but-curious (honestly executing the protocol

but curious in knowing users’ locations), or its stored data could be

leaked out in the case of a data breach due to hacking. Note that we

do not assume any other information (e.g., statistical user mobility

patterns) is available to the adversary.

Our goal is to study how accurately the attacker can infer from
the accumulated history of events, and any side information, the

unknown or hidden locations of users who do not share their loca-

tions.

3.2 Definitions and Notation
We now give a more formal problem statement. There is a set,A, of

n agents; for simplicity of notation, we refer to agents by index (e.g.

“agent i”), writingA = {1, 2, . . . ,n}. We assume the agents move in

a two-dimensional plane. GPS is able to provide location data for an

agent only sporadically. When a pair of agents meet (e.g. when the

distance between them allows bluetooth connections), they detect

each other and register the meeting as an event. We assume that the

attacker has access to logs (history) of all meetings among agents;

the attacker will use this data to estimate where each meeting took

place. Moreover, the attacker also knows an upper bound, v̄i , on
the speed of each agent i ∈ A.We distinguish between two types

of events:

GPS events: A GPS event is a triple (i,τ ,p), indicating that
agent i is at location p at time τ .
Meeting events: A meeting event is a triple χ = (i, j,τ )
indicating that there was a meeting between agents i and
j at time τ . Note that while the time, τ , of the meeting is

specified, the location is not specified or required. In some

cases, the location of a meeting event might known, in which

case it will be separately specified via a GPS event associated



with one of the meeting agents at the time τ of the meeting.

The attacker, however, may be able to infer locations or

approximate locations of meeting events, as we describe

below.

We let EGPS denote the set of all GPS events and let EMeetings denote

the set of all meeting events.

Distance Constraints. The maximum speed, v̄i , of each agent i
imposes constraints on the positions of agents over time. Consider

two meeting events (i, j,τ ) and (i, j ′,τ ′) involving the same agent

i ∈ A and two other agents j and j ′ (possibly j = j ′). Then, the
distance between the (unknown) locations of the two events is at

most v̄i |τ − τ ′ |, since agent i moves at speed at most v̄i , and the

time between the two events is |τ − τ ′ |.
The feasibility region R(χ ) of a meeting event χ ∈ EMeetings is the

locus of points (locations) where the meeting χ could have taken

place, consistent with all of the known data in the event log. By

slightly abusing notation, we will let R(τ , i) denote the locus of

possible locations of agent i at time τ . Of course, if τ coincides with

the time of a meeting event χ = (i, j,τ ) in which agent i is involved,
then R(τ , i) = R(χ ); and if agent i is involved in a GPS event (i,τ ,p),
then R(τ , i) = {p}.

We define the event graphG = G(EGPS∪EMeetings,E) to be the graph
whose vertex set is the set of events (EGPS ∪ EMeetings) and whose

edges are defined as follows: Two events χ , χ ′, with associated

times τ and τ ′, define an edge (χ , χ ′) ∈ E if they involve a common

agent i ∈ A, and agent i was not involved in any events (meetings

or GPS events) at times between τ and τ ′. We assign the weight

w(χ , χ ′) = v̄i |τ − τ ′ | to the edge (χ , χ ′); the weight of the edge is
an upper bound on the distance between the two meeting locations.

4 COMPUTING FEASIBILITY REGIONS
4.1 Preliminaries
Letm be the total number of events. Let the region R ⊆ R2m be

the locus of all points (x1,y1 . . . xm ,ym ) ∈ R2m such that placing

event χi at (xi ,yi ), for all i = 1, . . . ,m, satisfies all position and

distance constraints.

Problem 4.1. Given the event graph G defined above, compute R.

Observe that the set R is defined by a set of convex constraints.

Specifically, the GPS events fix the position of a vertex in the graph

and thus correspond to fixing two coordinates of all points in R.
Each edge (χ , χ ′) of the graph gives rise to the convex constraint

d((x ,y), (x ′,y′)) ≤ w(χ , χ ′), where (x ,y) and (x ′,y′) are the loca-
tions of the events χ and χ ′, respectively. Now we immediately

conclude:

Lemma 4.1. R is convex.

Lemma 4.2. R(χ ) is convex, for every event χ .

Proof. R(χ ) is the orthogonal projection of R to the plane. Since

R is convex, so is its projection. □

There are several natural ways to measure distances between

points in the plane. Two of them are the Euclidean (L2) distance

d2((x ,y), (x ′,y′)) =
√
(x − x ′)2 + (y − y′)2, and the L∞-distance

d∞((x ,y), (x ′,y′)) = max{|x − x ′ |, |y − y′ |}. We suggest several

algorithms for solving Problem 4.1. It appears that there are large

gaps in the difficulty of solving the problem in the L2 and L∞ case.

We will start with the latter case, which is easier.

4.2 Computing feasibility regions in L∞
In this section, the distance between any pair of locations, such as

positions of GPS or meeting events or initial locations of agents, is

measured using the L∞ distance. In other words, we are computing

the bounding boxes for the feasibility regions. Intuitively, the L∞
distance allows us to treat the x- and the y-coordinate of the loca-
tion separately and independently, so it is sufficient to solve two

independent one-dimensional problems. We show how to compute

the bounding boxes for the feasibility regions of all events R(χ ) for
χ ∈ EMeetings.

Let X (R(χ )) denote the projection of R(χ ) to the x-axis; define
Y (R(χ ))) analogously. As in the proof of Lemma 4.2, both X (R(χ ))
and Y (R(χ )) are one-dimensional convex sets, i.e., intervals. Since

x- and y-coordinate constraints are independent under the L∞
distance, R(χ ) = X (R(χ ))×Y (R(χ )) is an axis-parallel rectangle. Let

MaxX(χ ) be the rightmost point of X (R(χ )). Below we explain how

to compute MaxX(χ ). Computing the remaining three coordinates

is completely analogous and omitted for brevity. Without loss of

generality, we will assume that the x-coordinates of all meetings

are non-negative; otherwise the entire input set can be shifted to

ensure that this condition holds.

We define a new graph Gx (EGPS ∪ EMeetings,E), which is a modifi-

cation of G.

Algorithm L∞ Feasibility
1. Initialize Gx (EGPS ∪ EMeetings,E) to G, with weights

as in Section 3.2.

2. Add a new vertex s0 to Gx
, placed at x = 0.

3. For every χ ∈ EGPS , add to Gx
an edge (s0, χ ),

with weight equal to the x-coordinate of the loca-
tion of the event.

4. Run Dijkstra’s algorithm starting at s0, comput-

ing distances δ (s0, χ ), which are the lengths of the

shortest paths s0 ⇝ χ in Gx
.

5. return δ (s0, χ ) for every χ .

Lemma 4.3. δ (s0, χ ) is MaxX(χ ), i.e., the rightmost point of the
x-projection of R(χ ).

Proof. By induction from left to right. We set MaxX(s0) = 0, so

the base of the induction is satisfied.

Assume that the claim is true for every event χ ′withMaxX(χ ′) <
MaxX(χ ). Observe that MaxX(χ ) could only be determined by an

event χ ′′ (either a GPS or a meeting event) that is located to the

left of MaxX(χ ); otherwise we could move MaxX(χ ) further to
its right. By induction hypothesis MaxX(χ ′′) = δ (s0, χ ′′). Hence
MaxX(χ ) = minχ ′′{MaxX(χ ′′) +w(χ ′′, χ )} = minχ ′′{δ (s0, χ ′′) +
w(χ ′′, χ )} = δ (s0, χ ). □

It is interesting to see another proof of Lemma 4.3. We assume

that in every connected component of G there is at least one GPS

event s (with the known coordinate xs ), otherwise only relative

positioning information is available and we could add a dummy

anchoring GPS event. Determining the largest possible coordinate

xt of an event t is formulated as the linear program (LP)

{maxxt − xs : xi − x j ≤ li j },
where xi is the coordinate of event i and li j is (the right-hand side

of) the distance constraint imposed by the speed (as in Section 3.2).

The LP’s constraint matrix is the incidence matrix of the graph,

with 1 and −1 in every row for the tail and the head, respectively,



of each edge, and the dual of this LP is

min

∑
li jyi j∑

j ys j = 1,
∑
k ykt = 1,

∑
j yi j =

∑
k yjk∀i , s, t , (1)

which is the min-cost flow LP for sending 1 unit of flow from s
to t . By the integrality of the solution (which follows from total

unimodularity of the constraintmatrix) the flow follows the shortest

s-t path. Thus, our problem reduces to shortest path computation.

Theorem 4.1. Under the L∞-norm, we can compute R(χ ) for all
χ ∈ EMeetings, in timeO((m+n) logn), wherem is the number of events
and n is the number of agents.

Computing the feasibility region R(τ ,a) of agent a at time τ : As-
sume that R(χ ) is already computed for every χ ∈ EMeetings using

Algorithm L∞ Feasibility. And suppose agent a ∈ A is not involved

in any meeting at time τ . To compute the feasibility region of agent

a ∈ A at time τ , let χ ′, χ ′′ be two meetings involving a immedi-

ately before and after τ , at times τ ′ and τ ′′, respectively. Then the

rightmost point MaxX(τ ,a) of R(τ ,a) occurs at
min{MaxX(χ ′) + (τ − τ ′) ·MaxSpeed(a),

MaxX(χ ′′) + (τ ′′ − τ ) ·MaxSpeed(a)}.
As before, the leftmost, topmost, and bottommost points are com-

puted analogously.

Note that, when an attacker computes the feasibility region

R(τ ,a) with our algorithm, we assume the attack is generic, i.e., an

agent’s cloaked/encrypted/suppressed location provides no addi-

tional information to this attacker. In practice, an attacker could

further reduce the uncertainty by calculating the intersection of

its cloaking region and its feasibility region obtained from our

algorithm.

4.3 Difficulties with Euclidean (L2) distances
In this section we present some evidence that the L2 version of the

problem appears to be significantly more challenging.

Hardness in presence of speed lower bounds: We start by proving

that when imposing simultaneous lower and upper bounds on the

speed of the agent motion, even deciding the feasibility of our

problem becomes hard.

A linkage is an abstract graph with prescribed edge lengths; see,

for example [8, 11]. The (two-dimensional) linkage realizability (de-

cision) problem is to determine whether a given linkage can be

represented as a graph with points in R2 as vertices and line seg-

ments with prescribed Euclidean lengths as edges. The complexity

class ∃R is, roughly speaking, the class of decision problems
1
that

can be encoded as a Boolean formula with real variables, usual

arithmetic operations, integer constants, and only existential quan-

tifiers (“Does there exist a real solution to the following system of

algebraic equations?”). Clearly, checking if R = ∅ is such a problem,

by definition (see Section 4), so it is in ∃R.
Wewill argue that the problem of checking ifR = ∅ is, in fact, ∃R-

hard, as it can be reduced from the unit-length linkage realizability
problem, which is known to be ∃R-complete [26].

Start with a linkage with unit-length edges. Create an agent u
for every vertex u (its maximum speed is zero) and an agent (u,v)
for every edge (its minimum and maximum speed is one). There

are no GPS events. We orient every edge arbitrarily. For a directed

1
According to Schaefer[26], the best known estimates of where this class lies among

other complexity classes is that it contains NP and is contained in PSPACE.

edge (u,v), we make agentu meet agent (u,v) at time 0 and agentv
meet agent (u,v) at time 1. It is easy to check that the original

linkage is realizable if and only if for the resulting GPS-and-meeting

constraints problem has R , ∅. So we have reduced the problem of

unit-length linkage realizability to the feasibility of our problem

with both minimum and maximum speed constraints. Therefore

we have the following claim.

Theorem 4.4. Deciding whether R , ∅ under L2 norm is ∃R-
complete with both minimum- and maximum-speed constraints.

Complexity of the boundary of the feasible region. Returning to

our feasibility problem with only upper bounds on agents’ moving

speed, under L∞ distance the feasibility regions for all agents are

axis-parallel rectangles. We note that the L2 distance constraints
are quadratic thus the boundary of R(χ ) can be more complicated.

Let p ∈ ∂R(χ ) be a point on the boundary which corresponds to a

realization of the agents’ location to satisfy all distance constraints.

We say that an edge (u,w) ∈ E is taut if its length equals the

maximum distance between its endpoints. Otherwise, it is loose.
It is tempting to guess that R(χ ) is a Boolean combination of

disks of different radii, and thus bounded by circular arcs. In some

examples this is true (see Figure 1 Left), but in general it turns out

to be far from the truth.

p1

p2

χ1
χ ~n~n

C(p2, d1 + d0)

d3

d1
d0

C(p1, d3 + d0)

C(χ1, d0)

∂R(χ)

C(p2, d1 + d0)

C(p1, d3 + d0)
χ
χ′

γ

χ′
2

p1

p2

χ2

χ1

χ′
1

χ

~n

Figure 1: Left: An example where the boundary ∂R(χ ) of R(χ )
under the L2 distance consists of three circular arcs. Here, p1,
p2 are locations of GPS events, and there are three distance
constraints. At the rightmost boundary segment, all three
distance constraints are taut (when χ is pulled in direction ®n),
while along the other two segments only two of the three are
taut. Here, d0,d1 and d3 are the corresponding lengths of the
segments χ1χ ,p2χ1 and p1χ1, resp., andC(p, r ) is a circle with
center p and radius r . Right: Two “snapshots” of a simple
configuration that produces a non-circular boundary.

Next we will show a configuration that produces a non-circular

boundary. Refer to Fig. 1 Right. The configuration contains two

GPS events p1,p2 (marked as black boxes) and three meeting events

χ , χ1, χ2. The length of edges are given. The four eventsp1,p2, χ1, χ2
form a quadrilateral with all edges taut. But a quadrilateral is not

rigid so it can be moved. The rightmost point of the feasibility re-

gion of χ is obtained by pulling in the horizontal direction ®n. As
we pull χ in directions close to but near ®n, the point χ traces out a

section of a curve γ that is not a circular arc, as is easy to check.

Notice that this can be replicated as shown in Fig. 2 with two

trapezoids sharing an edge. The angles spanned within each trape-

zoid change as p moves along γ . The placement of the i’th trapezoid

depends on the position of the i−1’st trapezoid, but since the angles
of each of them are changing (as χ slides along γ ), the position of

no part could be defined as an affine transformation of another

part. This suggests that no portion of the configuration moves as



χ′

∂R(χ)

χ4

χ3

p1

p2

χ1 χ2 ~n

Figure 2: Concatenation of two trapezoids, defined by ver-
tices p1p2χ3χ1 and χ1χ3χ4χ2.

a rigid object, hence could not be replaced, even locally, by any

smaller subsets of agents. Thus any arc of the boundary could be

found only by the solution of a system of Θ(n) of trapezoids, which
suggests high dependencies on the parameters.

4.4 ε-approximation of the L2 setting
In this section, we approximate the solution to the L2 problem by

measuring the Euclidean distances within a factor of 1 + ε , where
ε > 0 is a user-specified parameter.

p

q

`1

`2

`3

`4

Π(q, `1)

Π(q, `3)

α

Dk

p

q

`1

`2

Π(q, `1)

α
2

α
2

q

δΠ(q, `1)

D′
k

Figure 3: Left: Lines of canonical orientations at spacing
α , emerging from point p, and the orthogonal projection
Π(q, ℓi ) of q on each ℓi . If ∥p − q∥2 = 1, then the maximum
distance maxi ∥p − Π(q, ℓi )∥ can be made arbitrarily close to
∥p −q∥, for small enough α . Right: The discrepancy between
the norms is obtained when q is at orientation α

2
to p, mak-

ing the distance δ between them at most ∥p − q∥2(1 − cos
α
2
).

Let k = k(ε) be an integer to be chosen below. Let p,q ∈ R2; refer
to Fig. 3. Let Φ = {ℓ1, . . . , ℓk } be a set of lines emerging from p and

spanning an angle of α = π/k between them, such that one of the

lines coincides with the x-axis. Consider the regular 2k-polygonDk
circumscribed around the unit circle centered at p, with each edge

perpendicular to a line ℓi . For example, if D2 is the axis-aligned

2 × 2 square, i.e., the unit ball in the L∞ metric.

LetΠ(q, ℓi ) be the orthogonal projection ofq to the line ℓi . Define
the distance ∥p − q∥Dk as maxi ∥p − Π(q, ℓi )∥. As easily observed

this value indicates by which factor should we scale Dk (without

shifting its center) so its boundary contains q. Similarly we define

the distance ∥p−q∥D′
k
replacingDk as the "unit ball" byD ′

k , defined

as the largest scaled copy of Dk contained inside the unit L2 disk.
See Fig. 3.

It can be verified that for a suitable choice of k = Θ(ε−1/2)
∥p − q∥Dk ≤ ∥p − q∥2 ≤ ∥p − q∥D′

k
/(1 + ε).

Next let ui be a unit vector parallel to ℓi . We replace the distance

constraint ∥p − q∥2 ≤ L by ±(p − q) · ui ≤ L, for all i , thereby
introducing a multiplicative error of at most 1 + ε .

RD2p1 p2

r1
r2

ψ1

ψ2

ψ3

ψ4

ξ2 ξ3
ξ4

ξ1 R2(χ)
R≈(χ)

RD2

Figure 4: Feasible regions and their approximations for dif-
ferent notion of a distance. Two GPS events are at points p1
and p2. Agents leave these locations and meet at χ , travers-
ing a maximum distance of r1 and r2, resp. R2(χ ) is the lens
of intersection of the two Euclidean disks. RD2

(χ ) is the red
rectangle. RD′

2

(χ ) is empty, since the green squares do not
intersect. R≈(χ ) is the blue diamond.

In this section, we use subscripts on R to indicate the underlying

norm. For example, R2(χ ) denotes the uncertainty region when L2
norm is used in distance constraints. Section 4.2 showed how to

compute R∞(χ ) exactly and efficiently.

One approach for approximatingR2(χ ) is to compute well-spread

extreme points {ψ1 . . .ψ2k } on ∂R2(χ ), along the directions ±ui ,
i = 1, . . . ,k . Since R2(χ ) is convex, the convex hull R≈(χ ) =
CH (ψ1 . . .ψk ) is a good approximation (Fig. 4). Obviously R≈(χ ) ⊆
R2(χ ), and their boundaries are quite close to each other with re-

spect to the Hausdorff Distance: For every point a ∈ ∂R≈(χ ) there
is a point a′ ∈ R2(χ ) within distance diam(R2(χ ))/k and vice versa,

where diam(X ) is the diameter of a compact set X – the maximum

distance between any two points in X .

One might wonder what quality of approximation could be ob-

tained by using only Linear Programming (rather than Convex

Programming). To follow this approach for approximating R2(χ )
we solve 2k LP problems. In the ith problem we find the extreme

point ξi of the feasibility region of χ in direction ui , with distances

measured under the LDk norm. Let RDk (χ ) = CH ({ξ1 . . . ξ2k }).

Lemma 4.5. For any event χ ,

RD′
k
(χ ) ⊆ R≈(χ ) ⊆ R2(χ ) ⊆ RDk (χ ).

To summarize,

• R∞(χ ) can be computed in timeO((m+n) logn), for all events
χ (Theorem 4.1).

• RDk (χ ) and RD′
k
(χ ) can be computed for a meeting event χ

by solvingO(k) linear programs withO((n+m)k) constraints
each.

• R≈(χ ) can be computed by solving O(k) convex programs

with O(n +m) constraints each.
It is worth mentioning that from a theoretical point of view, all

algorithms mentioned above are polynomial (the first is strongly

polynomial, while the others are pseudopolynomial).

Also note that the condition that ∥p−q∥Dk ≤ L for some constant

L can be written as 2k linear conditions: each of the projections of

the vectorp−q on the directionsui does not exceed L. ∥p−q∥D′
k
≤ L

is treated similarly, replacing L by (1 − ε)L.
Finally, as described above, we compute R≈(χ ) as the convex hull

of points obtained by solving 2k convex programming problems
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Theorem 0.1. Testing feasibility of the localization problem in a domain with holes is NP-hard.

Proof: We prove by reduction from 3SAT.
For each variable we create a variable gadget. Figure 1 shows the example for variable x1. Here

we use the solid dot to show a point with GPS reading and a circle to show a contact position. A
variable gadget for x1 is composed of two GPS locations p1, q1, which is located inside a diamond
shape room (in pink) occupying the top and bottom vertices respectively. This room has two
exits precisely at the two other vertices of the diamond polygon. The two exits are connected
by extremely narrow corridors (of width essentially approaching zero). The two vertical corridors
from the left and right exits are connected by another equally narrow corridor of length L, called
a bridge. See the picture for the illustration. There are two ‘tendrils’ out of each variable gadget,
the left one corresponding to x1 and the right one corresponding to x̄1. There is a contact vertex
w1 connected to p1, p2 by ropes of length at most L0. Inside the room there is a horizontal obstacle
such that the only possible position for w1 is at either one of the rest of two vertices of the diamond
polygon.

For each clause we build a clause gadget, which consists of a special triangular room and one
single contact vertex. Let’s name this contex vertex ci for the ith clause. If the variable x1 or its
negation x̄1 appear in the ith clause, we connect by a rope of length at most P from the contact
vertex w1 to each of these clauses.

Figure 2 shows an example of one feasbile embedding allowed by the variable gadget, corre-
sponding to the case of x1 = 0. In this case, the contact vertex w1 is located at the left vertex
of the gadget such that the rope connecting w1 to an instance of x̄1 has to travel through the
horizontal bridge of length L. Thus the contact vertex corresponding to an instance of x̄1 has less
rope to play with at the clause gadget.

p1

q1

p1 q1

w1 w1

L

L0

 L0

 P

x1 x̄1
u11 · · · u1k

Figure 1. The variable gadget for x1.

1

Figure 5: The variable gadget for x1.

maximizing the projection of the position of χ to each of the 2k
directions ui .

Hence we can describe the (approximate version of) R(χ ) as the
feasible region of a linear or convex program.

5 DOMAINS WITH OBSTACLES
Next we consider the case where agents may not be able to move

along a straight line due to the presence of some obstacles (buildings,

lakes or other features of the terrain). This abstract model captures

multiple real-life scenarios: (i) Vehicles are confined to paved road.

(ii) Pedestrians walk along sidewalks, and in general will not enter

building unless these are their final destinations. So even if we

obtain bounds of the maximum speed of each agent, the feasibility

of locations of meeting points depend on distances along (shortest)

paths that avoids the obstacles, rather than crow-fly distances.

In this section we first show that the presence of obstacles makes

the problem of testing whether the feasibility region is empty hard,

for any Lp metric. Then we show approximate solutions when the

obstacles are ‘fat’ under L∞ metric.

5.1 Hardness
Theorem 5.1. Testing feasibility of the localization problem in a

domain with holes, i.e., checking if R = ∅, is NP-hard.

Proof. The proof is by reduction from 1-in-3SAT, in which there

are n Boolean variables and m clauses, each with exactly three

literals, and we ask whether there is an assignment such that exactly

one literal in each clause is true.

For each variable we create a variable gadget. Figure 5 shows an

example for variable x1; we use a solid dot to show a GPS event

and a circle to show a meeting event. A variable gadget for x1 is
composed of two GPS events, p1,q1, meaning agent p located at p1
and agent q at location q1 at time t . These two GPS events are the

top and bottom vertices, respectively, of a diamond-shaped room (in

gray). This room has two other vertices at distance L′ from p1,q1;
these are two exits of the room. There is a meeting eventw1 at time

t + L′ for agents p,q. Thus, the meeting event is within distance L′

of p1,q1. Inside the diamond there is a horizontal segment obstacle,

extending almost to the exits, such that the only possible position

forw1 is at either exit of the diamond polygon.

The left and right vertices of the diamond are connected by

extremely narrow corridors (of width essentially zero). The two

vertical corridors from the left and right exits are connected by

another equally narrow corridor of length L, called a bridge. See
the picture for the illustration. There are two “tendrils” out of each

variable gadget, the left one corresponding to x1 and the right one

corresponding to x1. The tendril for x1 (or x1) will connect to the
clause gadgets that contain x1 (or x1).

For each clause we build a clause gadget, which consists of a

special triangular room and one single meeting event. See Figure 6a.

We have a regular triangular room of side length R with a regular

triangular obstacle inside. The triangular obstacle has side length

nearly R/2. That is, there are three narrow passages near the three

vertices of the triangular obstacles. The three vertices of the trian-

gular room correspond to the three literals of this clause and are

connected by narrow corridors to the corresponding tendril of the

variable appearing in this clause. If the variable x1 or its negation
x̄1 appears in the ith clause, the meeting event ci involves agent 1
and happens at time t + L′

1
+ P . Thus ci is at most distance P away

from the meeting eventw1.

x̄2

x3

c1

x̄1

x̄2

x̄1

x3

(a) The clause gadget for
x̄1 ∧ x̄2 ∧ x̄3.

p1

q1

w1

x1 x̄1

Figure 2. The feasible embedding for x1 = 0.

x̄2

x3

c1

x̄1

x̄2

x̄1

x3

Figure 3. The clause gadget for x̄1 ^ x̄2 ^ x3.

In the clause gadget, consider the example as in Figure 3. We have a regular triangular room of
side length R with a regular triangular obstacle inside. The triangular obstacle has sidelength nearly
R/2. That is, there are three narrow passages near the three vertices of the triangular obstacles.
The three vertices of the triangular room are connected by narrow corridors to the corresponding
tendril of the variable appearing in this clause. We choose the length P,L,R in such a way that
allow precisely only three possibly positions for the contact vertex cj , at the three midpoints of the
edges of the triangular obstacle. Figure 3 gives one placement. In particular, if we choose to make
x̄1 = 1, the rope connecting w1 with cj goes through the bridge of length L. That means, we must

place the vertex cj closer to the exit corresponding to x̄1. In particular, we just make R = 2
p
3p

3�1
·L.

⇤

2

(b) The feasible embedding
for x1 = 0.

Figure 6: The clause gadget and variable gadget.

Figure 6b shows an example of one possible embedding of the

variable gadget, corresponding to the case of x1 = 0. In this case,

the meeting eventw1 is located at the left vertex of the gadget such

that the distance from w1 to the meeting event from a clause ci
containing x1 has to travel through the horizontal bridge of extra

length L. This limits the placement of the meeting event ci due to
the upper bound on distance.

We choose the lengths P , L, and R in a manner that allows pre-

cisely three possible positions for each meeting event c j , at the
three midpoints of the edges of the triangular obstacle. Figure 6a

gives one placement. This placement makes the meeting point be

closer to the exit corresponding to x1 and further away from the

exits corresponding to x2 and x3. In this case x1 = 1, meaning the

agent 1 travels from meeting locationw1 to the meeting location

c j through the bridge of length L. To make this happen, we just set

L = 3−
√
3

4
R, when distance is measured by the L2 metric (for other

metric spaces the value of R can be properly adjusted).

Last we note that we can place the entire arrangement in the

plane. We can add little nooks on the corridors to make their length

as prescribed. The narrow corridors connecting the variable gadgets

and clause gadgets can cross but these will not affect the statements

above due to our design of the length constraints. □

5.2 Fat obstacles
Despite the computational hardness pointed out by the previous

section, an adversary might still be able to approximate an agent’s

location in many environments, as long as their obstacles exhibit

geometric property referred to as κ-fatness. Roughly speaking, a

convex objectC in the plane is κ-fat (for some fixed constant κ > 0)

if, for each disk D centered on the boundary of C and not fully

containing C , the area of C ∩ D is at least κ · area(D) [9]. That is,
very long and skinny objects will have a very large enclosing disk,

but only tiny portions of the disk’s area is occupied by C .



Many common, man-made obstacles exhibit such fatness. Of

course, certain natural obstructions (rivers, canyons) andman-made

structures (fences, train tracks) do not constitute fat obstacles; we

leave further study of extensions to (possibly a small number of)

non-fat obstacles to future work. In the rest of this section, we

assume that all obstacles are κ-fat.
We next show that the algorithm of Section 4.2 could be used to

obtain a constant factor approximation on the feasibility regions,

as formulated below. First we need the following lemma, proven

by Chew et al [6].

Lemma 5.1 ([6]). Let C be a fat obstacle. Let p,q be two points
on its boundary, ∂C , and let δ = min{|∂CCW (C)|, |∂CW (C)|}, where
∂CCW (C) (resp., ∂CW (C)) is the counterclockwise (resp., clockwise)
portion of ∂C between p and q, and |∂CCW (C)|, |∂CW (C)| are the
lengths of these portions. Then, ∥p − q∥ ≤ Kδ , where K is a constant
that depends only on the fatness parameters.

The term K is called the stretch factor. It can be argued that

the shortest path between any two points s, t in the domain with

fat obstacles is no longer than K · |st | where |st | is the Euclidean
distance between s and t . See the Figure to the right, showing the

relatively small discrepancy between the shortest path s → t that
avoid all obstacles, vs. the length of the segment |st |. Specifically,

s
t

C1

C2C3

C4
C5

C6

we can take the intersections of the

straight line segment st with the

fat obstacles, denoted by pi ,qi with
the ith obstacle. Now we build an

alternative path that is composed

of pieces of segments on st and the

shorter paths along the obstacle i to
move from pi to qi . This path has

length at most K · |st |. This implies that if we run the Algorithm L∞
Feasibility with the original weights in an obstacle-free setting, we

would obtain a region R′(χ ) containing R(χ ), where R(χ ) is the ac-
tual feasibility region of χ computed when taking all obstacles into

account. In addition, we could compute the stretch factor K of all

obstacles, replace the lengthw(u,v) of each edge of G byw(u,v)/K ,
and recalculate the uncertainty region for each χ , resulting in new

regions, denoted R′′(χ ), contained within R(χ ). In summary,

Theorem 5.2. In timeO((m+n) logn) we can compute feasibility
regionsR′(χ ),R′′(χ ) for the events such thatR′′(χ ) ⊆ R(χ ) ⊆ R′(χ ),
when the domain has fat obstacles and the distance is measured by
shortest path in the domain, under the L∞ metric.

6 EVALUATION
In this section we evaluate how the algorithms work on both a

synthetic dataset and a real trajectory dataset. All experiments are

run on a laptop with Intel(R) Core™ i5-4200M CPU@2.50GHz and

4 GB memory.

6.1 Simulation on Synthetic Datasets
We first present the simulation results of our L∞ feasibility algo-

rithm in Section 4.2 on synthetic datasets. We assume that some

agents share their locations, while others are concerned about their

location privacy. We refer to the latter ones as privacy-aware agents,
or PA agents, for short. The others are non-PA agents. We simulate

the movements of all agents using Processing [1], assuming a sim-

ple Markovian model. Each agent moves randomly along the x-axis
in an interval of length 800meters, with a random speed between 2

meters per time frame and 4 meters per time frame. Every non-PA

agent reports a GPS event once her location is updated, and all

agents (PA and non-PA) report their meeting events with others

with a given frequency (e.g., once every 5 time frames).

In our experiment, we have 12 agents. First, we test the impact

of the number of non-PA agents on the average uncertainty of PA

agents. The average uncertainty of a PA agent is calculated as∑
#τ

∑
#a R(τ ,a)

#τ · #a ,

where a is a PA agent and R(τ ,a) is the width of its feasibility region
at time frame τ . Having a small location uncertainty is undesirable,

as it compromises an agent’s location.
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Figure 7: The impact of the number of non-PA agents on the
average uncertainty of PA agents.

The simulation result is demonstrated in Fig. 7. As expected, as

more agents report GPS events, the average size of the feasibility

regions decreases. Table 1 shows the average number of GPS events

collected in our experiment.

Table 1: # GPS events

#Non-PA agents 1 3 5 7 9 11

#GPS events 13 41 64 103 128 166

In Fig. 8 we show the average uncertainty of a PA agent as a

function of the meeting report frequency, defined to be the number

of time frames between two consecutive meetings. It is interesting

to see the correlation between meeting report frequency and the

average uncertainty region size. In the same period of time, with the

shorter meeting report frequency (i.e., fewer time frames between

meetings), more meeting events are reported and collected (see

Table 2). As a result, the more reported meeting events during the

same time period, the smaller the average uncertainty of PA agents.

Table 2: # Meeting events

#time frames 5 10 15 20 25

#meeting events 366 183 129 95 59
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Figure 8: The impact of meeting report frequency on the av-
erage uncertainty of PA agent.

6.2 Experiment on real GPS trajectories
We further evaluate our algorithm with the trajectories of 6, 099
taxis in Shenzhen [12], sampled every five minutes during one

hour. Each trajectory is sampled by 13 GPS locations. All of the

GPS locations are within the range of longitude from 113.8◦E to

114.3◦E, and latitude from 22.45◦N to 22.75◦N , which is an area of

about 1, 847km2
. To simulate the meeting events, we assume that

each agent travels along the line segment between two consecutive

GPS locations with uniform speed. If two agents arrive to the same

position within a time interval of one second, we record it as a

meeting event. There are 14, 534 meeting events in this dataset.

Again, we run the L∞ feasibility algorithm and investigate the

impact of the number of GPS events on the results. First, we let all

vehicles report GPS events with different frequencies. We calculate

the feasibility regions of all meeting events. In other words, there

are no PA agents in this case, but the number of GPS events changes

with the GPS reporting frequency. As shown in Fig. 9, when each

vehicle reports one GPS event every five minutes, the average width

of the feasibility regions is only 711meters while its average height

is 973 meters. Even if each vehicle only reports two GPS events at

the start and end of the duration, i.e., with frequency of reporting

one GPS every 60minutes, the average size of the feasibility regions

can be narrowed down to 10 kilometers in width and 12 kilometers

in height, which is still relatively small compared to the area of the

entire range of motion of the vehicles.
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Figure 9: The impact of GPS reporting frequency on the av-
erage size of feasibility regions of meeting events.

Then we increase the number of PA agents, which are randomly

chosen from the 6, 099 vehicles. The others still report their GPS

events once every 5minutes. As illustrated in Fig. 10, our algorithm

works effectively with the existence of PA agents. For instance,

even with about one third of the vehicles (i.e. 2, 000 vehicles) not
reporting their GPS locations, both the average width and the av-

erage height of the feasibility regions are less than 1, 600 meters.

Also, the average size of the feasibility regions increases as fewer

vehicles report GPS events, consistent with our previous simulation

results on synthetic datasets (i.e., the results shown in Fig. 7).
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Figure 10: The impact of PA agents on the average size of
feasibility regions of meeting events.

Both Fig. 9 and Fig. 10 demonstrate that the more GPS events

collected, the more accurate our algorithm performs. More impor-

tantly, even with a small number of GPS events, our algorithm can

still derive a small feasibility region for each meeting event.
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Figure 11: The impact of PA agents on the average size of
feasibility regions of agents.

The above results have shown the capability of our L∞ feasibility

algorithm to infer the locations of meeting events. As discussed in

Section 4.2, we can further calculate a PA agent a’s feasibility region
at time τ from the feasibility regions of two meetings involving

a immediately before and after τ , even if a is not involved in a

meeting at τ . We also implement this method to recover all PA

agents’ feasibility regions at the midpoint of the hour, and present

the impact of the number of PA agents on the results. Since there

are only 3, 477 vehicles involved in at least two meetings before

and after the midpoint time, respectively, we randomly choose the

PA agents from these 3, 477 vehicles. Fig. 11 shows the average size
of all PA agents’ feasibility regions at the midpoint time, which also

grows with the increase in the number of PA agents. Compared

to the results in Fig. 10, the feasibility regions of PA agents are



larger. This is due to the sparsity of meeting events in our dataset

(recall that we have shown the impact of the number of meetings in

Fig. 8). However, they are still much less than the whole area of the

dataset. Thus, we can conclude that our algorithm is also effective

in revealing agents’ feasibility regions.

7 CONCLUSION AND FUTURE WORK
In this paper, we focused on understanding the information leakage

of a user’s location trajectory caused by other privacy-insensitive

users’ social behaviors, such as posting a meeting with location

data. To the best of our knowledge, this is the first work to quantify

the limits of location privacy for sporadic location traces, without

assuming specific mobility models. Our model is general enough

to capture a wide range of location privacy protection techniques.

So far we have assumed that when two agents meet their meeting

time is recorded precisely. The algorithm using L∞ can be easily

extended if a time interval is associated with each meeting event.

The obvious open question is how to defend against this type of

attack. Common solutions to this problem are based on changing

some of the reported locations (e.g., via random perturbation or

cloaking) or filtering out some of them; however, this action risks

upsetting users who want to publish their locations, at an accuracy

they wish to determine. In addition, such methods will degrade the

usability of the LBS/LBSN. To address this issue, we will explore

adding dummy agents and trajectories, indistinguishable from real

users’ trajectories, in order to make it computationally intractable

to recover real agents’ uncertainty regions.
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