
Bo Li1,2 and Michelle S. Hoo Fatt1

A Cohesive Zone Model to Predict Dynamic Tearing
of Rubber

REFERENCE: Li, B., and Hoo Fatt, M. S., ‘‘A Cohesive Zone Model to Predict Dynamic

Tearing of Rubber,’’ Tire Science and Technology, TSTCA, Vol. 43, No. 4, October–

December 2015, pp. 297–324.

ABSTRACT: Tire failures, such as tread separation and sidewall zipper fracture, occur when

internal flaws (cracks) nucleate and grow to a critical size as result of fatigue or cyclic loading.

Sudden and catastrophic rupture takes place at this critical crack size because the strain energy

release rate exceeds the tear energy of the rubber in the tire. The above-mentioned tire failures

can lead to loss of vehicle stability and control, and it is important to develop predictive models

and computational tools that address this problem. The objective of this article was to develop

a cohesive zone model for rubber to numerically predict crack growth in a rubber component

under dynamic tearing. The cohesive zone model for rubber was embedded into the material

constitutive equation via a user-defined material subroutine (VUMAT) of ABAQUS. It

consisted of three parts: (1) hyperviscoelastic behavior before damage, (2) damage initiation

based on the critical strain energy density, and (3) hyperviscoelastic behavior after damage

initiation. Crack growth in the tensile strip and pure shear specimens was simulated in

ABAQUS Explicit, and good agreement was reported between finite element analysis

predictions and test results.
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Introduction

All tires possess microscopic flaws or defects. These flaws gradually
coalesce into cracks, and these cracks grow as a result of fatigue or cycling
loading in a rotating tire. Occasionally, surface cracks can appear on sidewalls
or the base of tread grooves from weathering or ozone cracking. In most cases,
crack growth is slow, stable, and sustainable before the treads wear down in the
tire. Under some circumstances, however, a crack may grow to a critical length
so that further loading results in unstable crack growth and catastrophic failure
throughout the tire. Tread separation and sidewall zipper failure are two well-
known examples of catastrophic tire failures, which could result in
uncontrollable vehicle dynamics and sometimes accidents. Trucks, off-road
vehicles, and heavy-equipment vehicles are prone to these types of failures
because of an aggressive environment and usage, as well as poor maintenance,
such as underinflated tires. Poor materials and manufacturing processes could
exacerbate the problem by increasing the number and size of microscopic
defects in a tire. New tire technology, such as the introduction or sensors/
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indicators and a change in materials/manufacturing processes, could also
potentially lead to unintentional or unexpected tire response and result in some
of these failures. Therefore, it is important to have predictive models and
computational tools that can address the growth of cracks in a tire. Having this
capability will improve tire engineering and analysis, and it may even alleviate
overdesigning them with unsubstantiated high factors of safety.

A cohesive zone model (CZM) for predicting crack propagation in rubber
under dynamic loading is developed in this article. This concept is based on the
idea of energy release rate, which originated with Griffith [1]. The adaptation of
Griffith’s energy approach to the tear behavior of rubber was made in 1953 by
Rivlin and Thomas [2] and verified experimentally by comparing the behavior
of test pieces of very different shapes by Thomas [3]. From the viewpoint of
fracture mechanics, a crack will not grow unless the energy release rate exceeds
the critical energy release rate or tear energy of the rubber necessary to create a
new surface at the crack tip. However, rubber fracture mechanics is distinct
from classical fracture mechanics of other engineering materials because it
involves hyperviscoelastic material behavior and large deflection or finite strain
analysis. In addition to this, rubber’s mechanical properties are also affected by
aging, temperature, and environmental agents, such as ozone and ultraviolet
rays [4].

The energy release rate for crack propagation in an actual tire is a
complicated function of the initial crack length and its orientation, tire
geometry, rubber material behavior in the tire, and the loading to the tire
imparted by the vehicle. There have been attempts to use finite element analysis
(FEA) to calculate energy release rates (sometimes called J-Integrals) in tires
[5,6]. However, these attempts focused on crack initiation and did not involve
the creation of new crack surfaces in the tire. The CZM is a breakthrough in
fracture mechanics because it is based on the energy release rate and can
describe crack growth or the creation of new surfaces. By introducing the
concept of a traction-separation law in a cohesive zone at the crack tip, the crack
is assumed to break like two adhesive surfaces. Each material has its own
unique traction-separation law depending on micro-mechanisms of failure [7].
The CZM is typically characterized by only two of three parameters: the peak
traction Ti, the maximum displacement df, and the energy release rate G, which
is the area under the traction-separation curve shown in Fig. 1. In this case, the
stress at the crack tip is characterized by the peak traction Ti so that the CZM
avoids the stress singularity problem, which arises with the use of stress
intensity factors and J-Integrals.

Although the CZM has been applied in fracture analysis of both brittle and
ductile materials, most CZM research requires a predefined crack path in
different FEA problems [8–14], including rubber [15]. The approach in this
article does not make use of cohesive elements and a predetermined crack path
but instead incorporates cohesive zone modeling into the material constitutive
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behavior of the rubber. To develop the CZM for rubber, results from high-strain-

rate material tensile and fracture tests on carbon black–filled natural rubber

(NR) are taken from Al-Quraishi and Hoo Fatt [16] and Hoo Fatt et al. [17]. The

following section summarizes the above-mentioned experimental results that

will be used in this study. A CZM for rubber is then proposed after this. A

hyperviscoelastic constitutive equation and a damage initiation criterion are first

developed from the high strain rate, uniaxial dumbbell tension test data up to

break. Appropriate equivalent traction and displacement then follow from the

damage initiation criterion. A unique damage evolution function for rubber is

proposed and introduced into the traction-separation response for the rubber.

The traction-separation response and the tear energy of the NR are used to

determine crack propagation. The CZM model is incorporated in the form of an

ABAQUS Explicit user-defined material subroutine (VUMAT) and is used to

predict the crack initiation and propagation in the tensile strip and pure shear

fracture specimens.

Charpy Impact Tension and Fracture Test Results

The test data used in this article are taken from references [16] and [17]. In

these experiments, a Charpy Tensile Impact apparatus [18] was used to apply

tensile loading of rubber specimen at high speeds. The drop height of the

Charpy pendulum determined the amount of available potential energy for each

test. Once the pendulum was released, it hit a slider bar at the base, thereby

transferring potential energy of the hammer to kinetic energy of slider bar.

Through various design configurations, the slider bar was connected to ends of

grips holding the specimens. Specific details of these can be found in references

[16] and [17]. During each test, the deformation and the crack tip position of the

specimen were recorded by the FASTCAM-Ultima high-speed camera, and

piezoelectric force sensors were used to record the impact tensile force imposed

on the specimen.

FIG. 1 — Traction-separation law of a cohesive zone model.
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Three types of specimens were tested on this Charpy Tensile Impact

apparatus: (1) uniaxial tensile dumbbell, (2) tensile strip, and (3) pure shear. The

uniaxial tension test results are used to develop the hyperviscoelastic behavior

before damage initiation as well as a damage initiation criterion for rubber. The

tensile strip and pure shear fracture tests are then used to develop the CZM,

including the hyperviscoelastic behavior after damage initiation and tearing.

The CZM is used in an ABAQUS Explicit program to simulate tearing of the

tensile strip and pure shear specimens. Crack propagation is manifested by

element erosion in the FEA.

Uniaxial Tension Tests

In reference [16], a uniaxial tension test was performed on ASTM D638

half-dumbbell specimens [19]. The experiments were done to break up the

material so that the tensile strength and elongation at break could be found, as

shown in Fig. 2. In addition to the high-strain-rate tests, material behavior at

0.1, 1, and 10 s�1 as well as the equilibrium behavior of material were obtained

from an MTS servo-hydraulic machine. The equilibrium response was obtained

from step relaxation tests on the MTS servo-hydraulic machine. Results from

the MTS machine are added to Fig. 2 for comparison. It was noted that the NR

exhibited rate-dependent behavior. Unlike most other rubber compounds,

stiffness and strength do not increase with the rate of loading because of a lack

of relaxation time during the test. NR obtains stiffness and strength from strain-

induced crystallization, which is a process that occurs over a finite time. At high

FIG. 2 — Uniaxial tension test results.
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strain rates or very short loading times, this crystallization process is suppressed
so that stiffening and strengthening by it are reduced.

Tensile Strip Tests
In the tensile strip tests, the specimen was a flat rubber sheet with a notch,

as shown in Fig. 3. The dimensions of the specimen were length l ¼ 50.8 mm,
width w¼25.4 mm, thickness t¼2 mm, and a notch or precrack length a¼5.08
mm. The tensile loading was evenly imposed on the opposite ends of the
specimen. Crack growth occurred from the left end to the right end at the center
of the specimen.

The deformation and the corresponding force-displacement relation
measured at the grips are shown in Fig. 4 for the test at drop height 76.2 cm.
Different stages of deformation and crack growth are marked as a–e, and the
corresponding force-displacement curve at these events is given. The specimen
experienced severe blunting before fracture onset at 25.6 ms or 50.6 mm of
extension. The crack grows from 25.6 ms to 30.7 ms, when the specimen breaks
into two parts. Tests at drop heights 50.8 and 101.6 cm were also done, and
results from these will be shown in a later section.

Pure Shear Tests
The pure shear tests were similar to the tensile strip tests. However, the

width of the specimen was much longer than its height, as shown in Fig. 5. The

FIG. 3 — Tensile strip specimen.
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dimensions of the specimen were height h ¼ 19 mm, width w ¼ 260 mm,

thickness t ¼ 1.5 mm, and precrack length a ¼ 63.5 mm. During the pure shear

tests, tensile loading was imposed on the upper surface of the specimen and the

lower surface was fixed. The crack grows from the notch to the right end. The

material is under constrained tension because of the high width-to-height ratio.

This mode of fracture is often termed constrained tension because of this

geometry configuration.

FIG. 4 —Tensile strip test deformation and corresponding force-displacement curve at 76.2-cm drop
height.

FIG. 5 — Pure shear specimen.
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The deformation and the corresponding force-displacement curve measured
at the grips are shown in Fig. 6 for the test at 76.2-cm drop height. Similar to the
tensile strip, there is blunting at the crack tip before the onset of fracture at 10.5
ms or 18 mm. Crack growth in this specimen is much longer than the tensile
strip. The load drop that is associated with tearing occurs over half of the total
load-drop curve so that crack propagation in this specimen is very evident. Tests
at drop heights of 50.8 and 101.6 cm were also performed, and results from
these will be given in a later section.

Development of CZM for Rubber

During crack growth in a ductile material–like rubber, there is an apparent
cohesive zone ahead of the crack tip as shown in Fig. 7a. From the viewpoint of
a CZM, material behavior in the cohesive zone can be characterized by an
equivalent traction-separation law, as shown in Fig. 7b. The stress at the crack
tip is denoted by an equivalent traction T, and the displacement between the two

FIG. 6 — Pure shear test deformation and corresponding force-displacement curve at 76.2-cm drop
height.
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surfaces ahead of the crack tip is denoted by an equivalent separation d, which

is given by

d ¼ ē � Lc ð1Þ

where ē is the equivalent strain and Lc is the characteristic length associated

with the mesh in FEA. Specific details of how to obtain the equivalent strain and

traction at the crack tip will be given later.

The CZM that is proposed for rubber consists of three events based on the

equivalent traction-separation law: (1) hyperviscoelastic behavior before

damage OA, (2) damage initiation at A, and (3) hyperviscoelastic behavior

after damage initiation AB. Note that in most existing CZMs, behavior before

damage OA is ignored because it is used with cohesive surface or interface

elements and not actual material response.

OA, the hyperviscoelastic behavior before damage is developed from a

rheological model involving an equilibrium spring, is in parallel with a Maxwell

FIG. 7 — Growth of a crack in rubber: (a) cohesive zone and (b) equivalent traction-separation law.
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element. The high-strain-rate, uniaxial tension test data up to break is used to
develop this hyperviscoelastic behavior.

At Point A, the critical strain energy density is selected as the damage
initiation criterion for the rubber material. A strain rate–dependent function is
used to describe the variation of critical strain energy density in a different
strain rate. In the equivalent traction-separation curve Ti and di are, respectively,
the traction and displacement when the damage initiation is reached.

In AB, the hyperviscoelastic behavior after damage initiation is character-
ized by the following exponential function:

T ¼ Ti 1 � 1 � e
�mðd�diÞ
ðdf �diÞ

1 � e�m

2
4

3
5

8<
:

9=
; ð2Þ

where m is a parameter to control the rate of degradation and df is the final
displacement. The equivalent traction T is given by

T ¼ Teq þ Tov ð3Þ

where Teq is the equivalent traction due to equilibrium spring and Tov is the
equivalent traction due to intermediate spring. Hence, the equivalent traction is
hyperviscoelastic. The tear energy of the rubber G is the value equal to the area
under OAB:

G ¼
Z df

0

Tdd ð4Þ

Once damage has initiated, the material properties are degraded. It is
important to distinguish the terms damage and degradation in this context with
the so-called Mullins effect or stress softening in the hysteresis of filled rubbers
undergoing cyclic loading [20]. Here the terms damage and degradation relate
to the local cavitation or thinning of a rubber sheet as it breaks apart. Figure 8a
and b illustrate the loading-unloading behavior of rubber in the undamaged and
damaged states. Between OA, the rubber has hyperviscoelastic behavior with
undamaged properties, as shown in Fig. 8a. Between AC, the rubber has
hyperviscoelastic behavior with damaged properties, as shown in Fig. 8b.
Loading and unloading in these deformation phases produce hysteresis.
Unloading between AC can occur if the available energy is not enough to
create new surfaces. The following section describes the material behavior
before damage, a damage initiation criterion, and material behavior after
damage initiation based on the above CZM for rubber.

Hyperviscoelastic Behavior before Damage
The hyperviscoelastic behavior of the NR is derived from the rheological

model of an equilibrium spring in parallel with a Maxwell element, as shown in
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FIG. 8 — Loading-unloading behaviors in (a) undamaged state and (b) damaged state.

FIG. 9 — Rheological model for a hyperviscoelastic material.
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Fig. 9. The Maxwell element has a viscous damper in series with an

intermediate spring. Thus, the total stress at any time is given by

r ¼ req þ rov ð5Þ

where r symbolizes the total Cauchy stress of this model. The req and rov

denotes the stress caused by the equilibrium spring and intermediate spring,

respectively. Both springs in this model are hyperelastic, and resistance of the

viscous damper is controlled by strain rate.

The viscous damper allows the force in the intermediate spring to vary at

different strain rates. If the strain rate is very low or approaches zero, the total

deformation of this rheological model is governed only by the equilibrium

spring since no force passes through the intermediate spring of the Maxwell

element. In this case, the total stress r is equal to the equilibrium stress req.

When the strain rate is very high, the viscous damper does not have time to

deform, and the intermediate spring deforms by the same amount as the

equilibrium spring. In this case, the overstress and total stress are at an upper

limiting value. In between very slow and fast strain rates, the intermediate

spring deformation is lower than the equilibrium spring. This feature allows

rate-dependent behavior to be modeled.

In a three-dimensional context, the equilibrium and intermediate springs

are expressed as incompressible hyperelastic material:

req ¼ �peqI þ 2
]Ueq

]I1
þ IB

]Ueq

]I2

� �
B � 2

]Ueq

]I2
BB ð6Þ

and

rov ¼ �povI þ 2
]Uov

]I1e
þ I1e

]Uov

]I2e

� �
Be � 2

]Uov

]I2e
BeBe ð7Þ

where peq and pov are undetermined pressures, I1 and I2 denote first and second

invariants of the left Cauchy Green deformation tensor B in the equilibrium

spring, I1e and I2e denote first and second invariants of the left Cauchy Green

deformation tensor in the intermediate spring Be, and Ueq and Uov are strain

energy potential functions given in terms of the above-mentioned invariants of

the left Cauchy Green deformation tensors.

The key to relating viscosity to the overstress lies in a compatibility

relation first derived by Huber and Tsakmakis [21]:

_Be ¼ LBe þ BeLT � 2FeDvFT
e ð8Þ

where L is the velocity gradient tensor and Dv is the rate of deformation tensor

of the viscous damper. They argued that to guarantee the dissipation rate is

always positive
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FeDvFT
e ¼ 1

g
Ber

D
ov;g.0 ð9Þ

where g is a viscosity coefficient and rD
ov is the deviatoric component of the

overstress. Substituting Eq. (9) into Eq. (8) gives an expression for the

overstress in terms of the

_Be ¼ LBe þ BeLT � 2

g
Ber

D
ov ð10Þ

The above equation relates the overstress to deformation rates in both

equilibrium and intermediate springs. In reference [21], g was assumed to be

constant, but in this article, g is taken to be a nonlinear function of I1 and I1e. By

making the viscosity a function of the first invariants of both of these left

Cauchy Green deformation tensors, the overstress becomes dependent on

deformation as well as rate of deformation.

The above expressions were reduced to the uniaxial stress case in order to

obtain hyperelastic constants for the springs and a viscosity function for the

damper. A Yeoh (third-order reduced polynomial) function [22] was found to

best describe the hyperelastic equilibrium and intermediate springs, which were

assumed to have the same hyperelastic coefficients for simplicity:

req ¼ 2 C10 þ 2C20ðI1 � 3Þ þ 3C30ðI1 � 3Þ2
h i

k2 � 1

k

� �
; I1 ¼ k2 þ 2

k
ð11Þ

and

rov ¼ 2 C10 þ 2C20ðI1e � 3Þ þ 3C30ðI1e � 3Þ2
h i

k2
e �

1

ke

� �
; I1e ¼ k2

e þ
2

ke

ð12Þ

The hyperelastic coefficients, C10, C20, and C30, were found by fitting the

uniaxial test data from a step relaxation tests for the equilibrium response. For

the 25 phr carbon black–filled NR: C10 ¼ 0.2515 MPa, C20 ¼ 0.0057 MPa, and

C30 ¼ 6.303E-06 MPa. Once these coefficients were found, a viscosity function

was derived from the high strain rate tests as follows:

g ¼ aðI1 þ bÞc þ dðI1e þ eÞf þ gðI1 þ hÞiðI1e þ jÞk þ l ð13Þ

where parameters a–l are listed in Table 1. Figure 10 is a plot showing the

viscosity in I1–I1e space.

Uniaxial stress–strain behavior at various strain rates was predicted with

the above hyperelastic and viscoelastic properties. The predicted hyper-

viscoelastic behavior before damage initiation is compared in tensile tests

results in Fig. 11a and b, and relatively good agreement is reported.
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Damage Initiation Criterion

The damage initiation criterion for NR is defined as the critical strain

energy density Ucrit, which is the total strain energy density stored in the

equilibrium and intermediate spring up to break in a uniaxial tensile test. At

point A, the strain energy density U is given by

FIG. 10 — Viscosity distributions at different strain rate in NR25.

TABLE 1 — Parameters for NR25 viscosity function.

Parameter I1 , 9.67 I1 . 9.67

a (MPa.s) 0.409 455 154.7404

b �1.298 23 �1.9

c �0.615 08 0.051 397

d (MPa.s) �1.100 48 72.244 54

e 109.5941 �1.884 72

f �0.213 83 0.296 595

g (MPa.s) 0.091 817 �22.6715

h 209.7806 42.7413

i 0.255 25 0.795 111

j �1.9 �0.124 47

k 0.499 024 �0.4608

l (MPa.s) �0.261 39 78.941 04

LI AND HOO FATT ON A COHESIVE ZONE MODEL 309



U ¼ Ueq þ Uov ð14Þ

where

Ueq ¼ C10ðI1 � 3Þ þ C20ðI1 � 3Þ2 þ C30ðI1 � 3Þ3 ð15Þ

and

Uov ¼ C10ðI1e � 3Þ þ C20ðI1e � 3Þ2 þ C30ðI1e � 3Þ3 ð16Þ

Thus, the damage initiation criterion for NR is given by

U � Ucrit ð17Þ

The critical strain energy density is rate dependent. The tensile strength and

elongation at break depended on strain rate in the tensile tests. To model this

rate dependency, the following function was chosen for Ucrit:

FIG. 11 — Rate-dependent material response: (a) simulations and (b) tests.
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Ucrit ¼ c1 � arctan c2
Uov

Ueq

� �
þ c3

� �
þ c4 ð18Þ

where Uov

Ueq
is the ratio of elastic strain energies in the intermediate and

equilibrium springs at break, c1 ¼ 9 500 kJ/m3, c2 ¼ 50.0, c3 ¼�43.0, and c4 ¼
40 500 kJ/m3. A plot of this function and the calculated tensile test results is
given in Fig. 12. The tests at 83 s�1 and 194 s�1 were considered outliers.

Hyperviscoelastic Behavior after Damage Initiation
Recall from Fig. 7b that behavior after damage initiation is specified by the

exponential damage evolution function. The equivalent traction and separation
for this evolution function are defined in this section.

Damage evolution is a series of damage initiation events. As stated in the
previous section, damage initiates at a critical value of the strain energy density.
Let I1 and I1e be the values of the first invariant of the left Cauchy Green
deformation tensors when the sum of Ueq and Uov reaches Ucrit. These define
equivalent stretch ratios, k̄ and ke , for an incompressible material since

I1 ¼ k
2 þ 2

k
ð19Þ

and

I1e ¼ ke
2 þ 2

ke
ð20Þ

The equivalent stretch ratio k̄ due to equilibrium spring is determined by the
largest root of the following cubic equation:

FIG. 12 — Damage initiation function based on Ucrit.
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k̄
3 � �I1 k̄þ 2 ¼ 0 ð21Þ

Therefore, the equivalent traction due to the equilibrium spring Teq is given by

Teq ¼ 2 k̄
2 � 1

k̄

� �
C10d 1 þ 2a1 k̄

2 þ 2

k̄
� 3

� �
þ 3a2 k̄

2 þ 2

k̄
� 3

� �2
" #

ð22Þ

where C10d, C20d, and C30d are the damaged parameters in Yeoh function and

a1 ¼ C20

C10
and a2 ¼ C30

C10
are the ratios measured when damage initiated. It is assumed

that these ratios remain constant during damage evolution. Furthermore, the

equivalent strain is ē¼ k̄ – 1, and the equivalent displacement is d¼ ē � Lc.

Similarly, the equivalent stretch ratio k̄e due to intermediate spring is

determined by the largest root of

k̄
3
e � I1e k̄e þ 2 ¼ 0 ð23Þ

and, the equivalent traction due to the intermediate spring Tov is given by

Tov ¼ 2 k̄
2
e �

1

k̄e

� �
C10d 1 þ 2a1 k̄

2
e þ

2

k̄e

� 3

� �
þ 3a2 k̄

2
e þ

2

k̄e

� 3

� �2
" #

ð24Þ

The equivalent traction is now specified simultaneously by Eq. (2) and the

sum of Eqs. (22) and (24). Setting these expressions equal to each other gives

C10d ¼

Ti 1 � 1 � e
�mðd�diÞ
df �di

1 � e�m

8<
:

9=
;

2 k̄
2 � 1

k̄

� �
1 þ 2a1 k̄

2 þ 2

k̄
� 3

� �
þ 3a2 k̄

2 þ 2

k̄
� 3

� �2
" #

þ 2 k̄
2
e �

1

k̄e

� �
1 þ 2a1 k̄

2
e þ

2

k̄e

� 3

� �
þ 3a2 k̄

2
e þ

2

k̄e

� 3

� �2
" #

ð25Þ

This function decreases as d or k̄ increases. The above expression for C10d

allows one to completely determine all Yeoh hyperelastic coefficients after

damage because C20d ¼ a1C10d and and C30d ¼ a2C10d. These hyperelastic
coefficients approach zero when d ¼ df.

To calculate df, first consider the area under OA in Fig. 7b and denote it as

G1 ¼
Z di

0

Tdd ð26Þ

Numerically, this is done by calculating the internal energy per unit volume and
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multiplying it by Lc. The remaining energy release rate includes the area under
curve AB in Fig. 7b and is given by

G2 ¼
Z df

di

Ti 1 � 1 � e
�mðd�diÞ
ðdf �diÞ

1 � e�m

2
4

3
5

8<
:

9=
;dd ¼ Tiðdf � diÞ 1 � e�mðm þ 1Þ½ �

mð1 � e�mÞ ð27Þ

Using G2 ¼ G – G1 gives the final equivalent displacement for total damage as

df ¼ di þ
ðG � G1Þmð1 � e�mÞ

1 � e�mðm þ 1Þ½ �Ti
ð28Þ

The viscosity function after damage initiation also changes with C10d. A
simple function for the viscosity after damage initiation is assumed as

gd ¼ C10d

C10
g ð29Þ

where g is the undamaged viscosity function in Eq. (13).

FEA Results

FEA Implementation
The CZM developed for rubber and discussed above is incorporated in an

ABAQUS VUMAT. The VUMAT was first used in a single element under
uniaxial stress. The tension test at 106 s�1 strain rate was simulated specifically.
Details of the ABAQUS single-element model are given in Table 2, and input
material properties are given in Table 3.

Figure 13a shows the element and the boundary conditions applied to it in
order to keep it in uniaxial loading condition. The Cauchy extension ratio
responses of the single element with a different rate of degradation parameters
m are shown in Fig. 13b for comparison. The single-element FEA shows that
the load gradually drops after damage initiation. This is different from the
sudden load drop in an ideally brittle material. The load drop speed and the
final extension of the element depend on m. When m � 0.1, an almost linear
load drop and a final extension ratio of about 8 is expected. When m � 5, the
load drop is steeper at first and ends more gradually, like an exponential

TABLE 2 — ABAQUS single-element model.

ABAQUS solver Dynamic, explicit version 6.12

Element l 3 b 3 h ¼ 0.125 mm 3 0.125 mm 3 0.125 mm; type ¼ C3D8

Step time 0.1 s

Loading type Displacement control, ramp at 13.25 mm/s (strain rate is 106 s�1)
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TABLE 3 — Material properties for FEA input.

Density 1083.35 kg/m
3

Yeoh hyperelastic coefficients C
10
¼ 0.2515 MPa

C
20
¼ 0.005 68 MPa

C
30
¼ 6.3029E-06 MPa

Bulk modulus (for almost incompressible material) K
1
¼ 0.251 456 GPa

K
2
¼ 0.002 838 GP

K
3
¼ 2.10e-6 GPa

Viscosity function Eq. (13)

Critical strain energy Ucrit Eq. (18)

Tear energy G 10 900 J/m
2

Crack parameter m 0.1, 1, 2, 5

FIG. 13 — Uniaxial tension in a single finite element (a) FEA model and (b) Cauchy stress versus
extension ratio with various m.
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decay, but the final extension ratio becomes large (.9). Such a large
extension ratio would not be practical because of element overdistortion.
Therefore, there is a small range of useful values for m, and it is assumed that
0.1 � m � 5.

In a meshed part, m should theoretically control the rate of crack growth
because it determines the final deformation at which an element is eroded. The
element is eroded quickly when the final deformation is small, and it is eroded
slowly when the final deformation is large. However, the size of the element in a
meshed part will also affect how fast crack growth is simulated in FEA. Erosion
with smaller elements is slower than with larger elements. These are tradeoffs
that one has to make in the FEA.

Tensile Strip Tests
A quarter model of the tensile strip specimen is made to simulate the

tensile strip tearing tests because the load is evenly imposed on the specimen
opposite ends. The full specimen and quarter model are shown in Fig. 14a and
b. The dashed lines in Fig. 14a indicate the quarter of the full strip used in the
FEA. According to Fig. 14b, there are symmetry boundary conditions with
respect to y and z directions, and the displacement loading is placed at a

FIG. 14 — FEA model of tensile strip specimen: (a) full specimen and (b) quarter model.
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reference point on the top of the surface. Forces are also obtained from this

reference point.

Details of the FEA of the tensile strip are given in Table 4. A crack growth

parameter of m ¼ 5 was chosen to best simulate crack growth. The elements
near the crack tip and in the crack path need to be very small order to accurately

determine strain energy density and other crack tip parameters. As a result of

this, the program run time is about 42 hours with a 4-CPU multicore computer
workstation.

The specimen during deformation and tearing from the FEA is compared

with the images taken from the tests in Fig. 15. There is very good

agreement between the two responses. Blunting at the crack tip and tearing
of the tensile strip specimen were successfully simulated in the FEA. A

close-up view of the crack tip is shown in Fig. 16. The force and crack

growth history from the FEA is compared with that of the test in Fig. 17a–b,
and good agreement is also obtained. Both the peak load at the onset of

tearing and the load drop during tearing are correctly determined. The
initiation and final time of crack growth are also in very good agreement

with the test. Two other tensile strip experiments at drop heights of 50.8 and

101.6 cm were also simulated. Good agreement was also found for these, as
shown in Fig. 17c–f.

Pure Shear Tests

Although the bottom grip of the pure shear specimen was fixed, preliminary

FEA shows that a quarter model is still applicable. The full specimen and

quarter model of it are shown in Fig. 18a and b. The dashed lines in Fig. 18a
indicate the quarter of the specimen used in FEA. According to the Fig. 18b,

there are symmetry boundary conditions with respect to y and z directions.

Displacement loading is placed at the reference point on the top of the surface.
The grip force is also taken at this reference point. Full details of the FEA of the

TABLE 4 — FEA details of quarter model of tensile strip specimen.

ABAQUS solver Dynamic, Explicit Version 6.12

Geometry l/2 ¼ 25.4 mm (half length)

w ¼ 25.4 mm (width)

t/2 ¼ 1.04 mm (half thickness)

Elements C3D8, 8-node linear full-integration brick

No. of elements ¼ 8058

Loading type 76.2-cm drop height, tensile strip

Crack parameter m m ¼ 5

Step time 35 ms

Run time ~42 h (4 CPU)
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pure shear specimen are given in Table 5. It was not possible to use a smaller

mesh in this specimen without excessively increasing the computer run time. To

compensate for the larger elements, the critical strain energy density function

was reduced by a factor of 1/11.

The specimen deformation from the FEA is compared with the test results

in Fig. 19. As with the tensile strip, there is very good agreement between the

FEA predicted response and the test images of the pure shear specimen.

Blunting at the crack tip and tearing of the specimen were also successfully

simulated in the pure shear specimen in the FEA. A close-up view of the crack

tip is shown in Fig. 20.

The force and crack growth history from the FEA is compared with that

of the test in Fig. 21a–b, and relatively good agreement is also obtained. The

FIG. 15 — Side-by-side comparison of tensile strip tearing in FEA and test for 76.2-cm drop height.
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peak load at the beginning of tearing was determined by the FEA very well,

and the subsequent load drop during tearing was slightly faster in the FEA

than in the test. The corresponding crack speed is faster in the FEA than in

the test. Two other pure shear experiments at drop heights of 50.8 and 101.6

cm were also simulated. The peak load was predicted correctly for a drop

height of 50.8 cm in Fig. 21c, but FEA again predicted faster tearing than

what was reported in the experiment (Fig. 21d). However, very good

agreement in both peak load and crack speed was obtained for the 101.6-cm

drop height in Fig. 21e–f.

Even though the FEA results with coarser mesh for the wider pure shear

specimens were not as accurate as for the tensile strips, they were still able to

capture crack initiation and growth in these specimens relatively well. It should

be emphasized that m¼5 afforded the lowest crack speed in the FEA, and it was

not possible to simulate a slower crack speed in the FEA with this mesh. A finer

mesh could improve crack speed accuracy, but this comes at a cost of increased

program run time.

FIG. 16 — Close-up view of crack tip of tensile strip specimen during test at 76.2-cm drop height.
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Conclusions

A CZM for rubber was developed to numerically predict crack growth in a

rubber component under dynamic loading. This CZM consisted of three parts:

(1) hyperviscoelastic behavior before damage, (2) damage initiation based on

the critical strain energy density, and (3) hyperviscoelastic behavior after

damage initiation. The CZM for rubber was embedded into the material

constitutive equation via a user-defined material subroutine (VUMAT) of

ABAQUS Explicit. This allowed crack growth to proceed by element erosion in

the FEA programs without predefining a crack path.

FIG. 17 — Comparisons of force history and crack growth positions in test and FEA for tensile strip
experiments at drop heights (a–b) 76.2 cm, (c–d) 50.8 cm, and (e–f) 101.6 cm.
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Results from high-strain-rate material tension tests up to break on 25

phr carbon black–filled NR were used to develop the hyperviscoelastic

constitutive equations and damage initiation. Crack growth in tensile strip

and pure shear fracture specimens made with of the same material were

then simulated in ABAQUS Explicit. The CZM was successfully able to

predict the deformation and crack behavior of these specimens with a very

fine mesh near the crack tip and in the crack path. However, adjustments

on the critical strain energy density for damage initiation were made to

FIG. 18 — FEA model of pure shear specimen: (a) full specimen and (b) quarter model.

TABLE 5 — FEA details of quarter model of pure shear specimen.

ABAQUS solver Dynamic, Explicit Version 6.12

Geometry h/2 ¼ 9.5 mm (half length)

w ¼ 260.0 mm (width)

t/2 ¼ 0.702 mm (half thickness)

Elements C3D8, 8-node linear full-integration brick

No. of elements ¼ 2448

Loading type 76.2-cm drop height, pure shear

Crack parameter m m ¼ 5

Step time 30 ms

Run time 25 h (4 CPU)
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FIG. 19 — Side-by-side comparison of pure shear tearing in FEA and test for 76.2-cm drop height.

FIG. 20 — Close-up view of crack tip in pure shear specimen during test at 76.2-cm drop height.
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avoid using small elements and long program run times. These adjustments
did not affect the overall deformation and crack behavior of these
specimens.
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FIG. 21 — Comparisons of force history and crack growth positions in test and FEA for pure shear
experiments at drop heights of (a–b) 76.2 cm, (b–d) 50.8 cm, and (e–f) 101.6 cm.
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