
1

Constrained Autoencoders for Data Representation
and Dictionary Learning

Babajide O. Ayinde and Jacek M. Zurada, Life Fellow, IEEE

Abstract—Without proper choice of constraints, autoen-
coders are capable of learning identity mapping or over-
complete representations. The features learned by this archi-
tecture may be local, isolated or primitive. The extraction of
features, however, can be controlled by judiciously enforcing
some desired attributes, in form of constraints on its param-
eters. This paper gives an overview of autoencoders and such
constraints for data representation. It also puts the autoencoder
learning in a broader context of dictionary learning.

Index Terms—Sparse autoencoder, part-based representa-
tion, deep learning, receptive field, denoising.

I. INTRODUCTION

CONSTRAINED feature learning (CFL) is an important
concept in feature engineering. It can unearth repre-

sentation of data useful for such machine learning tasks
as classification or compression. This latent representation
could reveal what is important in data for a given discrimi-
native task [1]. CFL heuristics that enable feature extraction
can generate latent codes for test set during inference [1],
[2]. CFL algorithms that range from sparse coding con-
cept originally introduced in [3] to neural networks that
implement learning with special constraints and work as
feature extractors have become important tools in paradigm
of representation learning.

These heuristics learn constrained representation usually
by learning some dictionary terms that represent the data.
The dictionary term is often used for semantic analysis such
as document categorization. When dealing with other tasks
and data, the terms are called receptive fields, filters, basis
vectors or latent factors.

II. DICTIONARY LEARNING

Dictionary learning is best illustrated through sparse cod-
ing or data matrix factorization. Assume data matrix X
contains m data vectors xj as columns, each with n elements
as shown in Fig. 1. Sparse coding aims to find a set of k basis
vectors (columns φi of matrix Φ ∈ Rn×k) and encodings
(columns aj of matrix A ∈ Rk×m) such that X ≈ ΦA for
X ∈ Rn×m, and aj is a sparse vector for every j. When no
limitation is imposed on k, it is possible to find via sparse

B. O. Ayinde is with the Department of Electrical and Computer
Engineering, University of Louisville, Louisville, KY, 40292 USA. (e-mail:
babajide.ayinde@louisville.edu).

J. M. Zurada is with the Department of Electrical and Computer En-
gineering, University of Louisville, Louisville, KY, 40292 USA. (Corre-
sponding author, e-mail: jacek.zurada@louisville.edu).

This work was supported in part by the NSF under grant 1641042.

coding an over-complete representation of data in which the
number of basis vectors k is greater than the original data
dimensionality n. That is, if k > n the linear system of
equations is under-determined and sparsity enforcement is
needed to avoid obtaining a trivial solution [2].

In order to coerce aj to be sparse for every j, a

Fig. 1: Illustration of Data Matrix Factorization (X ≈ ΦA).
X is the data matrix, columns of Φ are basis vectors, and
columns of A are the encodings of the samples.

sparsity term is introduced in the objective function. Sparse
combination of basis from an over-complete dictionary to
represent data has been suggested as the mechanism with
which mammal primary visual cortex (V1) work [3–5].

The data matrix decomposition is usually formulated as
an optimization problem solvable by balancing out the error
of approximation of X by ΦA and the sparsity of A. During
the optimization process, a trivial solution may result in
which entries of A are small due to sparsity enforcement
but are compensated by allowing entries of Φ to assume
large values [4], [6], [7]. To alleviate this problem, magni-
tude constraints are usually placed on the basis vectors φi
through a process known as regularization by adding decay
term to the objective function. This magnitude constraint
is sometimes referred to as a weight decay penalty. Most
sparse coding methods [3], [4], [8] require solving iterative
optimization problem in order to compute feature descriptor
which is usually computational expensive [2]. The complete
optimization objective is thus formulated as in (1).

min
A,Φ

m∑
j=1

[
‖Φaj − xj‖22 + γ1Sparsity(aj)

]
+ γ2

k∑
i=1

‖φi‖22

(1)

2

where γ1 and γ2 are positive constants that adjust the relative
importance of sparsity and magnitude (or regularization)
constraints, respectively. Formula (1) minimizes the distance
between the data and its representation given the learned
basis.

III. DICTIONARY LEARNING THROUGH CONSTRAINED
AUTOENCODERS

One of the popular approaches to CFL is to train autoen-
coder (AE) in ways that enforces some desired attributes.
The motivation behind the autoencoding is to reconstruct the
input from its encoded representation with features that rep-
resent the data [9]. The reconstruction is usually achieved by
additive linear (sometimes nonlinear) combination through
decoding filters. After training, generating latent encodings
for test samples is extremely fast, requiring a simple matrix-
vector multiplication.

The model of the neural network AE shown in Fig. 2
which aims to reconstruct its input vector using unsupervised
learning is given in (2).

x1

x2

xn−1

xn

x̂1

x̂2

x̂n−1

x̂n

DecoderEncoder

h1

hn′

Input Layer
Hidden
Layer

Decoding
Layer

b2

b1

W1 W2

Fig. 2: Schematic diagram of a three-layer AE

x̂ = fW,b(x) ≈ x (2)

where x is a normalized input vector, W = {W1,W2},
and b = {b1,b2} respectively represent the weight and
biases of the network. It is worth mentioning that the weight
matrix W2 may optionally be constrained by W2 = WT

1 ,
in which case the autoencoder is linear and said to have
tied weights. Input data X is first encoded through W1

into features h. In turn, features h are mapped back to the
data X̂ through W2 in accordance with h = σ(W1X + b1)
where σ(�) is the activation function. One of the commonly
used activation functions is the logistic sigmoid given as
σ(x) = 1/(1 + exp(−x)). For the purpose of finding the
parameters W and b in (2), the average reconstruction error
serves as the optimization objective

JAE(W,b) =
1

m

m∑
i=1

‖σ(W2σ(W1xi + b1) + b2)− xi‖22
(3)

and corresponds to the first term in brackets of (1).
We should note that the dictionary learning (1) and AE

learning (3) differ by two aspects. Firstly, the reconstruction
error (3) involves mapping of data into itself by two matrices
W1 and W2, while the same error being the first term
of (1) involves one matrix Φ. Secondly, (1) is solved by
optimization, while (3) is based on unsupervised learning of
h.

Imposing meaningful limitations on network parameters
generally forces AE network to learn representations that
attempts to unearth the underlying structure in data. One
of such limitations could be limiting the hidden layer size
for compressed representation of the input. In this con-
text, constrained AE implies that some constraints such as
sparsity, nonnegativity, weight-decay regularization, and/or
other constraint types are imposed on the learned features.
Examples of such constraints are sparsity as in the Sparse
Autoencoder (SAE) [10], or nonnegativity and sparsity as in
Nonnegativity-Constrained Autoencoder (NCAE) [11–13].

Sparsification of features that represent data is increas-
ingly important in learning, especially from big data. This
is because sparsity can facilitate efficient and automatic
feature selection. In addition, regularization can shrink the
magnitude of AE weights and improve the generalization.
Therefore, constrained AEs are not only used for feature
dimensionality reduction, but also for extracting sparse fea-
tures and to enhance data understanding.

Deep networks (DNs) based on AEs are created by
stacking pretrained AEs layer by layer, followed by a super-
vised fine-tuning. They are able to extract salient features
from input data through greedy, unsupervised, layerwise
training algorithm. In deep autoencoding, cascade of AEs
is trained to detect feature hierarchies from training samples
to generate latent encodings. Each additional layer of AE
adds an additional abstract representation of the input. Deep
AE architectures invariably result in lower layerwise recon-
struction error and a better representation of the input [14].
One of the key factors that contributes to lower error is the
appropriate initialization achieved by pretraining each layer.

In vision-related task, basis vectors sensitive to a region
in an image and to specific stimuli are called receptive
fields (RFs). Fig. 3 illustrates the idea of constrained RF
using L1/L2 Nonnegativity Constrained Sparse Autoencoder
(L1/L2-NCSAE) [13] trained on synthetic data that com-
prises of three images as depicted. L1/L2-NCSAE is a spe-
cialized AE architecture capable of extracting nonnegative
features (and nonnegative RFs) as shown. (L1/L2-NCSAE
is explained in more detail in Section II). Input X ∈ R25×3

consists of three 5 × 5 images. The three RFs are rows
of weight matrix W1 ∈ R3×25. For visualization they are
resized to match the square input image (both the inputs and
the 25 weights of hidden neurons are presented as images).
Neurons’ outputs are the Activation Scores computed as the
dot product of each RF and the input pattern.

It can be observed from Fig. 3 that first RF (1st row
of Activation Scores table) is most sensitive to first T-

3

d

1

2

3

4

25

e

f
Activation Scores

1st row
 of W1

2nd row
 of W1

3rd row
 of W1

1 (bias)

W1

5

6

Weights of three RFs
White = 1
Black = 0

Images
White = 1
Black = 0

Assume three 5x5
 Images are to be
 classified into 3 classes

Softmax Scores

0.03

0.97

0.01

0.94

0.01

0.02

0.03

0.02

0.97

0.60

2.24

0.81

0.92

0.48

0.74

0.18

0.27

2.29

d e f

a

b

c

a

b

c

d

e

f

1

a

b

c

2 3

Softmax neuron index

ℜ×∈ 253

X

Fig. 3: Illustration of constrained (non-negative) RF feature extraction using a L1/L2-NCSAE trained on synthetic data
with 3 images (left). The RFs learned (right) are rescaled and portrayed as images. The range of weights are scaled to
[-1,1] and mapped to the graycolor map. w = −1 is assigned to black, w = 0 to grey, and w = 1 is assigned to white
color. That is, black pixels indicate negative, and white pixels indicate positive weights. The dot product of each RF and
input pattern shown as Activation Scores and the outputs of Softmax layer as Softmax scores. a,b, and c are the indices
of input images; d,e, and f are the RFs indices. The biases are not shown.

shaped image and captures features that strongly react to
T-shaped image. Similarly, second RF reacts mostly to
the second input pattern. Likewise the third input pattern
stimulates the third RF and maximally activates it with
largest magnitude. It is remarked that using appropriate
bias and softmax layer, first RF helps in classifying first
image, second RF for classifying second one, and lastly,
the third RF for third image. This observation is consistent
with what is observed at the output of the softmax neurons
given as Softmax scores in Fig. 3. The Softmax layer is
also known as the classification or output layer [15–17].
Softmax scores are computed as Softmax(WC · h + bC),
where Softmax(v) maps a vector v into a vector of values
according to Softmax(v)i = exp (vi)/

c∑
j=1

exp (vj), WC and

bC are respectively the matrix of weights and vector of bias
values for the classification layer, and c is the size of the
output vector equal to the number of classes.

In deep autoencoding, AE detects hierarchy of features
that are useful in automatically extracting important fea-
tures from inputs. Each added AE layer adds one more
abstract representation of inputs, until producing a cascade
of encodings [18], [19]. The generalization abilities of AEs
deteriorates if specific measures such as sparsity, dropout,
de-noising, and contraction of layers are not in place [20].
This problem of over-determined representation of data
mapping into the DL multilayer architectures can be handled

by training layers under specific sets of constraints.
The concept of RFs is not restricted only to visual

information but also to many pattern recognition tasks such
as those involving audio and semantic data.

A. Constrained Autoencoders for Sparse Representation

In AE settings, a network is considered over-sized if the
size of the hidden layer is the same or larger than the
input vector size n. In this scenario, AE can be forced
to learn useful representation if additional constraints are
added. These constraints can come in form of regularization
to ensure sparsity of the hidden-layer representation or
addition of noise in the hidden layer. Sparse representation
can provide a interpretation of the input data in terms of
a reduced number of parts and by extracting the hidden
structure.

In order to force AE to learn sparse representation, h
is bounded using the Kullback-Leibler (KL) divergence
function [21–24]. If hj(xi) denotes the activation (or output)
of hidden neuron j due to the input xi, the average activation
of this particular neuron is given as:

p̂j =
1

m

m∑
i=1

hj(xi) (4)

If a sparse AE with target activation p is considered, one
common method for imposing sparsity is to limit the ac-

4

tivation of hidden units using the KL function [10] as in
(5)

Sparsity(p||p̂) =

n′∑
j=1

p log
p

p̂j
+ (1− p) log

1− p
1− p̂j

(5)

One of many functions a regularizer provides is enforcing
certain properties on the weights. Note that weight decay
term is also added to the cost function of AE as to pre-
vent overfitting [25]. For a conventional sparse autoencoder
(SAE) the decay term is given as in (6).

Decay(w) =
α

2

2∑
l=1

sl∑
i=1

sl+1∑
j=1

||w(l)
i,j ||22 (6)

where α is the weight penalty factor, and w(l)
i,j represents the

connection between ith neuron in layer l−1 and jth neuron
in layer l. The overall cost function based on (1) for SAE
using penalization then becomes [10]:

JSAE(W,b) = JAE(W,b) + βSparsity(p||p̂) + Decay(w)
(7)

where β controls the sparsity penalty term.
Other popular methods for sparsifying AE features while

preventing overfitting are the dropout technique [26] and
family of k-sparse AEs [27], [28]. In dropout technique,
units and their connections are randomly dropped from the
network during training. In effect, dropout tends to prevent
neurons from co-adapting thereby leading to good general-
ization. The concept of k-sparse AE relies on identifying
the k neurons with largest activations and setting the rest to
zero to prevent overfitting. The k-sparse AE has been found
suitable for many dataset because the value k can be tuned
to obtain desirable sparsity level in conformity with each
dataset.

B. Constrained Autoencoders for Part-based Data Repre-
sentation

Part-based representation is a way of decomposing data
into parts, which when additively combined regenerate the
data [29]. Also, drawing inspiration from the idea of Non-
negative Matrix Factorization (NMF) and sparse coding [29],
[30], the hidden structure of data can be unfolded by learning
features that have capabilities to extract the data parts.
NMF enforces the encoding of both the basis vectors and
features to be nonnegative thereby resulting in additive data
representation. Similar to the data decomposition illustrated
in Fig. 1, NMF decomposes data matrix X ∈ Rn×m with
nonnegative real entries into product of two nonnegative
matrices W ∈ Rn×k and H ∈ Rk×m, that is, X ≈ WH.
Incorporating sparse coding within NMF for the purpose of
encoding data is computationally expensive, while with AEs,
this incorporation is learning-based and fast. In addition, the
performance of AE can be enhanced using NCAEs with part-
based data representation capability [31–33].

As shown in [29], one way of representing data is by
shattering it into various distinct pieces in a manner that

additive merging of these pieces can reconstruct the original
data. Mapping this intuition to AEs, the idea is to sparsely
disintegrate data into parts in the encoding layer and addi-
tively process the parts to recombine the original data in the
decoding layer. This is achieved by imposing nonnegativity
constraint in form of a penalty term and this can be achieved
by replacing the Decay term in (7) with (8) to yield NCAE
[11].

Decay(w) =

{ α

2

2∑
l=1

sl∑
i=1

sl+1∑
j=1

(
w

(l)
ij

)2
wij < 0

0 wij ≥ 0

(8)

where α > 0 is a nonnegativity-constraint weight penalty
factor.

Also, Nonnegative Sparse Autoencoder (NNSAE) trained
with an online algorithm and tied weights and linear output
activation function is capable of extracting nonnegative fea-
tures for part-based representation of data [34]. In NNSAE,
asymmetric weight decay function was used to constrain
network parameters to be nonnegative. The weight decay
term in (6) for SAE can also be viewed as imposing Gaussian
prior distribution on network weights while NNSAE uses a
weight decay mechanism that assumes a virtually deformed
Gaussian prior that is skewed with respect to the sign of
the weight. For the purpose of illustrating part-based data

Fig. 4: RFs or weights of randomly selected 32 out of 196
(n′ = 196) hidden neurons of (a) NNSAE (b) NCAE trained
using MNIST dataset. Black pixels indicate negative, grey
pixels indicate zero-valued weights and white pixels indicate
positive weights. The range of weights are scaled to [-1,1]
and mapped to the graycolor map. w = −1 is assigned to
black, w = 0 to grey, and w = 1 is assigned to white color.

decomposition, NCAE and NNSAE networks were trained
on the 60,000 training set of MNIST digit data and both AEs

5

MNIST HANDWRITTEN DIGITS CHARACTERS

Test sample

[h1, …, h70] = [0.4, 0.0, 0.0,0.0,…, 0.0, 0.6, 0.0,0.0,..., 0.9,0.0, 0.5,0.0,0.0,…, 0.0,0.0]

(Hidden Activations)

≈ ∗ ∗ + ∗1h 48h 50h+ +∗34h

Fig. 5: Representation of test image as a linear combination of 4 out of 196 constrained RFs and decoding filters learned
from MNIST dataset using NCAE with linear output activation function. Input consist of 784 values corresponding to a
28 × 28 pixel image. Only 70 RFs with largest activations to test image ”6” and their corresponding decoding filters are
shown. The RFs and the decoding filters are rescaled and portrayed as images on the right hand side. Black pixels indicate
negative, and white pixels indicate positive weights. The range of weights are scaled to [-1,1] and mapped to the graycolor
map. w = −1 is assigned to black, w = 0 to grey, and w = 1 is assigned to white color. The biases are not shown.

have 196 hidden neurons. Their weights are portrayed as im-
ages of RFs. Figs. 4a and b show the receptive fields learned
by NNSAE and NCAE, respectively. It can be observed that
the RFs learned select structures of handwritten digits such
as strokes and dots. The learned featured are localized and
tend to look like parts of digits.

Part-based representation is illustrated in Fig.5 using
NCAE trained on MNIST handwritten characters. NCAE
with linear decoder architecture (that is, the activation func-
tion σ(�) for decoding layer is identity function) was trained
in such a manner that the column of W1 are coerced to be
sparse. RFs and the decoding filters are displayed on the
right hand side. A test image of digit 6 shown is filtered
through the network and activations h are listed. The vector
of activations is very sparse since it only stimulates 4 of
RFs. The test sample can be reconstructed by additively
combining four outputs of decoding filters scaled with
magnitudes of select h values.

C. Constrained Autoencoders for Enhanced Data Under-
standing

Neural networks are known for building hierarchical mod-
els but do so in twisted ways that are difficult to understand
[17]. Attempts have been made to reconcile interpretability
of autoencoding network [13] and solve a long-standing open
problem of understanding their processing. The emergence

of part-based representation can be conceptually tied to
the nonnegativity constraints. Borrowing this concept from
biological analogies, one way to foster the understandability
in autoencoding is to constrain the encoder and decoder’s
weights to be nonnegative. This allows easier human inter-
pretation since the cancelation of terms in the scalar products
summation is eliminated [17]. In practice, the cancelations
are discouraged rather than eliminated in order to ensure a
good accuracy. Enhanced data understanding can result when
the input data can be decomposed into parts in each layer,
while the weights are constrained to be nonnegative and
sparse as shown in [13]. This imposition of nonnegativity
constraint can be incorporated into the cost function of SAE
in (7) in form of a penalty term and the resulting L1/L2-
NCSAE [12], [13]. The decay term in (8) is replaced with
(9). It must be noted that the constraint imposed using (9)
is a soft one, hence, some weights will still be negative.
However, the number and magnitudes of these negative
weights are reduced.

Decay(w) =

2∑
l=1

sl∑
i=1

sl+1∑
j=1

{
α1Γ(w

(l)
ij , κ) +

α2

2
||w(l)

ij ||
2 wij < 0

0 wij ≥ 0
(9)

where α1 and α2 are nonnegativity-constraint weight penalty
for L1 and L2 terms, respectively.

Although (9) is capable of enforcing nonnegativity in AE,
however, its L1 norm term is non-differentiable at the origin,

6

-2 -1 0 1 2
0

0.5

1

1.5

2
Quadratic, κ=0.4
Quadratic, κ=0.7
Quadratic, κ=1.0
Quadratic, κ=1.5
Absolute

Fig. 6: Absolute function approximation using quadratic
smoothing functions with parameter κ = 0.4, 0.7, 1.0 and
1.5. κ tunes the approximation of L1 norm.

and this can lead to numerical instability during simulations.
To circumvent this drawback, smoothing functions that ap-
proximate L1 norm is used [13]. One of the well known
smoothing functions is the quadratic function given in (10)
and depicted in Fig. 6. Given any finite dimensional vector
z and positive constant κ, the following smoothing function
approximates L1 norm:

Γ(z, κ) =

{ ||z|| ||z|| > κ

||z||2
2κ

+
κ

2
||z|| ≤ κ

(10)

and its gradient is:

∇zΓ(z, κ) =

{ z
||z|| ||z|| > κ

z
κ

||z|| ≤ κ
(11)

To demonstrate this concept, a subset of NORB normalized-
uniform dataset [35] with class labels four-legged animals,
human figures, airplanes was extracted. The full data set
consists of 24, 300 training images and 24, 300 test images
of 50 toys from 5 generic categories: four-legged animals,
human figures, airplanes, trucks, and cars. The training and
testing sets comprise 5 instances of each category. Each
image consists of two channels, each of size 96x96 pixels.
The inner 64x64 pixels of each channel were taken and
resized using bicubic interpolation to 32x32 pixels that form
a vector with 2048 entries as the input. The 2048-10-3
network was trained on the subset of the NORB data set.
Fig. 7a shows the randomly sampled test patterns and the
weights of the output layer are given in Fig. 7b. The AE
was using the L1/L2-NCSAE with 10 hidden neurons and
a softmax layer with 3 neurons. It can be observed in Fig. 7b
that sparsification of the output layer weights is one of the

aftermaths of the nonnegativity constraints imposed on the
network. In addition, the patterns learned by neurons in each
layer are localized, and this allows easy interpretation of
isolated data parts. The patterns visually show nonnegative
weights covering most of the image of the input object
making it easier to visualize to what patterns they respond
[12].

The bar charts indicate the activations of hidden neurons
for the sample input patterns. It can be seen that neurons in
the network discriminate among objects in the images and
react differently to input patterns. In contrary to the gen-
eral observation that networks constrained for interpretabil-
ity show lower testing accuracy, the L1/L2 nonnegativity
constraint improves the AE network interpretation while
maintaining comparable testing accuracy.

D. Other Constraints in Autoencoders

Another useful property of AEs is robustness to partial
destruction of the input, that is, partially corrupted inputs
produce almost the same representation [36]. For example,
high dimensional redundant data usually are recoverable
from partial dimensions of the data. This is because data
contains stable structures that depend on a combination of
many dimensions. Imposition of the above constraint on
AE result in what is well known as Denoising Autoencoder
(DAE) [14]. This constraint can facilitate DAE to improve
the robustness of its representation through reconstructing a
clean input from a corrupted one. Training a DAE is similar
to training a basic AE.

Generally, for the input x, some input components are
randomly selected and their values forced to 0, while others
remain unchanged. Thus, a corrupted version x̃ is obtained.
x̃ is then mapped to a hidden representation h from which x̂
is reconstructed. The key difference between DAE and basic
AE is that x̂ of DAE (given as x̂ = σ(W2σ(W1x̃+b1)+b2))
is a function of x̃ as opposed a function of x for AE (given
as x̂ = σ(W2σ(W1x + b1) + b2)).

Constraint can also be in form of convolution where
repetitive features are discovered and weights are shared
across the entire input field. AEs that utilize this concept
are referred to as Convolutional AEs (CAEs). One of the
main difference between fully connected AE and CAE is
that the latter shares weights among adjacent locations in the
input in order to preserve spatial locality [37]. Thus, CAE
typically results in some degree of shift, scale, and distortion
invariance. The concept of weight sharing in convolutional
network renders a way of reducing the number of trainable
parameters and has been shown to have regularizing effect.
Typically in convolutional neural network, a layer is stimu-
lated by a set of units located in the local neighborhood in
the previous layer to extract localized features. Subsequent
layers then combine these feature to extract higher level
features.

7

(a) (b)

Fig. 7: (a) Example images from NORB data set and (b) The weights trained using L1/L2-NCSAE. The weights of the
softmax layer are plotted as a diagram at topmost layer in (b). Each row of the plot corresponds to each output neuron
and each column for every hidden neuron. The magnitude of the weight corresponds to the area of each square; white
indicates positive and black negative sign. Underneath the plot are the receptive fields learned from the reduced NORB
dataset. The intensity of each pixel is proportional to the magnitude of the weight connected to that pixel in the input
image with, the value 0 corresponding to gray. The biases are not shown. The activations of hidden neurons for the NORB
objects presented in (a) are depicted on the bar chart at the bottom of the plot. Each row shows the activations of each
hidden neuron for five color-coded examples of the same object.

Fig. 8: Schematic diagram of Stacked Constrained Autoen-
coders (SCAE) plus Softmax Classifier (SMC)

E. Deep High-Level Feature Learning with Constrained
Autoencoders

To facilitate multilevel feature extraction and increased
mapping accuracy, several AEs can be stacked into a deep
architecture as depicted in Fig. 8 and trained with the input
of a layer being the activation of its preceding layer. The
activations of the last AE are then used usually as the input
to either a linear regression layer (if the output values are
continuous) or logistic regression layer (if the output is
discrete). Finally, in the fine-tuning stage, the weights of all

the layers are tuned simultaneously in a supervised fashion
to improve the classification accuracy [23]. To illustrate this
concept, two L1/L2-NCSAEs were stacked and trained as
described above on 150 samples of 1, 2 and 3 digits from
MNIST handwritten dataset, 30 samples from each digit
category.

The number of hidden neurons was chosen to obtain
reasonably good classification accuracy while keeping the
network reasonably small. For this subset of MNIST data,
the hidden sizes of the first and second AEs were chosen to
be 10 to allow easy inspection. The network is intentionally
kept small because the full MNIST data would require larger
hidden layer size and this may limit network interpretability.
The filtering of a test image of the digit 2 is shown in Fig. 9.
It can be seen that the fourth and seventh receptive fields of
the first AE layer have dominant activations (with activation
values 0.12 and 0.13 respectively) and they capture most
information about the test input. Also, they are able to filter
distinct part of input digit. The outputs of the first layer
sigmoid constitute higher level features extracted from test
image with emphasis on the fourth and seventh features.
Subsequently in second layer the second, sixth, eight, and
tenth neurons have dominant activations (with activation
values 0.0914, 0.0691, 0.0607, and 0.0606 respectively)
because they have stronger connections with the dominant
neurons in first layer than the rest. Lastly in the softmax
layer, the second neuron was 99.62% activated because it has
strongest connections with the dominant neurons in second
layer thereby classifying the test image as ”2”.

8

Test sample
 (Image)

Weights (shown as images) and
 biases of hidden neurons in
 Layer 1, each image is formed
from weights of a single neuron

1. The dot-products of
the input and Neuron
weights in Layer 1

2. Activations (h1) 3. The dot-products of
the activation in Layer 1
and Neuron weights
in Layer 2

5. The dot-product with
 classification layer weights.
 Biases are added

6. Finally, the softmax
 nonlinearity is applied
 to get probabilities

-5.881

-3.329

-3.169

-2.919

-3.163

-3.173

-3.098

-27.69

-3.567

-3.344

= 0.072

= 0.044

= 0.022

= 0.12

= 0.13

= 0.073

=0.036

= 0.016

= 0.038

= 0.082

-3.917

-4.142

-3.550

-3.381

-3.699

-3.969

-3.410

-3.987

-3.899

-3.793

= 0.0425

= 0.0914

= 0.0468

= 0.0439

= 0.0393

 = 0.0691

= 0.0528

= 0.0607

= 0.0401

= 0.0606

= 53.16

= 61.07

= 55.39

0.0004 for “1”

0.9962 for “2”

0.0034 for “6”

Weights and biases of hidden
neurons in Layer 2. Each row is
a vector of weights of a single
 neuron

Matrix of classification weights
where each row represents one
 output neuron

4. Activations (h2)

Fig. 9: Filtering the signal through two stacked L1/L2-NCSAEs trained using the reduced MNIST data set with class
labels 1, 2 and 6. The test image is a 28×28 pixels image unrolled into a vector of 784 values. Both the input test sample
and the RFs of the first AE layer are presented as images.The architecture is 784-10-10-3. The weights of the output layer
are plotted as a diagram with one row for each output neuron and one column for every hidden neuron in 2nd layer [13].
Black pixels indicate negative, and white pixels indicate positive weights. The range of weights are scaled to [-1,1] and
mapped to the graycolor map. w = −1 is assigned to black, w = 0 to grey, and w = 1 is assigned to white color.

IV. COMPUTATIONAL CONSIDERATION AND SOFTWARE
LIBRARIES

Many existing deep learning libraries have good AE
implementations but their functionalities vary. The list of
libraries in Table I is to highlight some of the most pop-
ular tools for experimenting with AE and is by no means
exhaustive.

DeepLearn [38] as its name suggests is a DL library
implemented in MATLAB. For very large data, some of
the computational limitations can be overcome by GPU par-
allelization [39]. Theano is another optimized open-source
symbolic tensor manipulation framework for developing
machine/deep learning algorithms. It is very handy for im-
plementing gradient-based methods such as DL models that
repeatedly compute tensor-based mathematical expressions
which can be easily coded in Theano and compiled on either
a CPU or a GPU [47]. A good number of AEs, such as
denoising AE [36], have efficient Theano implementation.
Many libraries such as Keras and Pylearn2 use Theano as
backend engine. Although Keras can also be configured to
use TensorFlow backend by setting appropriate backend field
to TensorFlow. Keras provides high-level building blocks for
developing DL models and relies on well-optimized tensor
manipulation libraries with GPU and CPU support. Pylearn2
offers implementation of a variety of models and training
algorithms that form integral modules of DL.

Torch is another scientific computational framework built
on Lua programming language [40], [41]. It supports GPU
and comes with efficient CUDA backend and neural net-

works libraries [47]. AE architectures such as SAE, stacked
SAE, denoising AE, and variational AEs also have Torch
implementations.

Pytorch [42] is a Python-based deep learning framework
that provides tape-based autograd system functionality. Not
only does it provide standalone DL research platform, it can
also serve to replace NumPy (a popular package for scientific
computing with Python) in order to take advantage of the
GPU implementation for speedup. PyTorch uses one of the
fastest implementation of reverse-mode auto-differentiation
which allows the dynamics of the network to be arbitrarily
changed with little or overhead. Its memory usage is very
efficient compared to its counterpart such as Torch which
enables training of larger models.

TensorFlow is an open-source symbolic tensor manipu-
lation framework developed by Google, Inc. It is one of
the recently introduced DL framework based on C++ [43]
with Python API. It uses data flow graphs to perform nu-
merical computations where the nodes denote mathematical
operations and the edges denote multidimensional data array
communicated between them.

V. CONCLUDING REMARKS

This paper reviews data representation and latent feature
extraction using several types of constrained autoencoders.
In addition to sparsity, non-negative receptive fields can be
enforced during learning to enhance interpretability of data
and its additive properties where applicable. Comparisons
are made between computing of matrix Φ with quasi-
basis vectors as columns containing dictionary terms and

9

TABLE I: Deep Learning Libraries with Autoencoder Implementation.

Library Language Operating
System

Architecture Popular
Optimizer

Loss
Function

GPU-Enabled?

DeepLearn [38] MATLAB Windows
Linux

SAE a

SSAE b

DAE c

BGDd

SGDe
MSEf Yes

Torch7 [40], [41] Lua Linux
Android
iOS

SAE
SSAE
DAE

SGD
LBFGS g

CG h

MSE
Cross-
Entropy

Yes

Pytorch [42] Python Linux
OSX

SAE SGD
Adam
Adamax
Adagrad
Adadelta

MSE
Cross
Entropy
BCE i

NLL j

KLD k

HE l

Yes

TensorFlow [43] C++
(with Python API)

Linux
Windows

SAE
DAE

BGD
SGD

MSE
Cross-
Entropy

Yes

Theano [44] Python Linux
Mac

DAE SGD NGLm Yes

Pylearn2 [45]
(Built on Theano)

Python Linux SAE
SSAE
DAE

BGD
SGD

MSE
Cross-
Entropy

Yes

Keras [46]
(Built on Theano
or TensorFlow)

Python Linux SAE
CAE n

DAE

SGD
RMSprop
Adagrad
Adadelta

MSE
Categorical
Cross-
Entropy

Yes

aSparse Autoencoder
b Stacked Sparse Autoencoder
cDenoising Autoencoder
dBatch Gradient Descent
eStochastic Gradient Descent
fMean Square Error
gLimited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
hConjugate Gradient
iBinary Cross-Entropy
jNegative Log Likelihood
kKullback-Leibler divergence
lHinge Embedding
mNegative log-likelihood
nConvolutional Autoencoder

unsupervised learning of a cascade of two RFs being rows
of encoding matrix W1 and columns of the decoding matrix
W2.

Special constraints and regularization are capable of forc-
ing AEs and their RFs to learn representations that can
unearth the underlying structures in data. Such specialized
limitations including enforcing sparse and nonnegative de-
compositions and dictionaries that can help shatter data
into parts and in fostering the understanding of the hidden
data structure. This, in turn, can facilitate informed decision
making.

REFERENCES

[1] J. Snoek, R. P. Adams, and H. Larochelle, “Nonparametric guidance
of autoencoder representations using label information,” Journal of
Machine Learning Research, vol. 13, no. Sep, pp. 2567–2588, 2012.

[2] K. Kavukcuoglu, R. Fergus, Y. LeCun et al., “Learning invariant
features through topographic filter maps,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 1605–1612.

[3] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: A strategy employed by v1,” Vision Research, vol. 37,
no. 23, pp. 3311–3325, 1997.

[4] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” Advances in neural information processing systems,
vol. 19, p. 801, 2007.

[5] J. F. Murray and K. Kreutz-Delgado, “Learning sparse overcomplete
codes for images,” The Journal of VLSI Signal Processing, vol. 45,
no. 1, pp. 97–110, 2006.

[6] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proceedings of the 26th annual international
conference on machine learning. ACM, 2009, pp. 689–696.

[7] J. Chorowski, “Review of dimensionality reduction techniques,” Tech-
nical Paper, 2010.

[8] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen,
“Sparse coding via thresholding and local competition in neural
circuits,” Neural computation, vol. 20, no. 10, pp. 2526–2563, 2008.

[9] J. Wang, H. He, and D. V. Prokhorov, “A folded neural network au-
toencoder for dimensionality reduction,” Procedia Computer Science,
vol. 13, pp. 120–127, 2012.

[10] A. Ng, “Sparse autoencoder,” in CS294A Lecture notes. URL https:
//web.stanford.edu/class/cs294a/sparseAutoencoder 2011new.pdf:
Stanford University, 2011.

[11] E. Hosseini-Asl, J. M. Zurada, and O. Nasraoui, “Deep learning
of part-based representation of data using sparse autoencoders with

https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf

10

nonnegativity constraints,” Neural Networks and Learning Systems,
IEEE Transactions on, vol. 27, no. 12, pp. 2486–2498, 2016.

[12] B. O. Ayinde, E. Hosseini-Asl, and J. M. Zurada, “Visualizing and
understanding nonnegativity constrained sparse autoencoder in deep
learning,” in International Conference on Artificial Intelligence and
Soft Computing. Springer, 2016, pp. 3–14.

[13] B. O. Ayinde and J. M. Zurada, “Deep learning of constrained au-
toencoders for enhanced understanding of data,” submitted to Neural
Networks and Learning Systems, IEEE Transactions on, June, 2016.

[14] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in 25th
International Conference on Machine Learning. ACM, 2008, pp.
1096–1103.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[16] R. Collobert and J. Weston, “A unified architecture for natural
language processing: Deep neural networks with multitask learning,”
in Proceedings of the 25th international conference on Machine
learning. ACM, 2008, pp. 160–167.

[17] J. Chorowski and J. M. Zurada, “Learning understandable neural
networks with nonnegative weight constraints,” Neural Networks and
Learning Systems, IEEE Transactions on, vol. 26, no. 1, pp. 62–69,
2015.

[18] B. O. Ayinde and J. M. Zurada, “Nonredundant sparse feature extrac-
tion using autoencoders with receptive fields clustering,” submitted to
Neural Networks, September, 2016.

[19] B. Ayinde and J. Zurada, “Clustering of receptive fields in au-
toencoders,” in Neural Networks (IJCNN), 2016 International Joint
Conference on. IEEE, 2016, pp. 1310–1317.

[20] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 35, no. 8, pp. 1798–1828,
2013.

[21] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for
visual area v2,” Advances in Neural Information Processing Systems,
vol. 7, pp. 873–830, 2007.

[22] V. Nair and G. E. Hinton, “3d object recognition with deep belief
nets,” Advances in Neural Information Processing Systems, pp. 1339–
1347, 2009.

[23] G. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[24] C. Poultney, S. Chopra, and Y. Cun, “Efficient learning of sparse
representations with an energy-based model,” Advances in Neural
Information Processing Systems, pp. 1137–1144, 2006.

[25] J. Moody, S. Hanson, A. Krogh, and J. A. Hertz, “A simple weight
decay can improve generalization,” Advances in Neural Information
Processing Systems, vol. 4, pp. 950–957, 1995.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[27] A. Makhzani and B. Frey, “K-sparse autoencoders,” arXiv preprint
arXiv:1312.5663, 2013.

[28] A. Makhzani and B. J. Frey, “Winner-take-all autoencoders,” in
Advances in Neural Information Processing Systems, 2015, pp. 2791–
2799.

[29] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–
791, 1999.

[30] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 381, no. 6583, pp. 607–609, 1996.

[31] M. Ranzato, Y. Boureau, and Y. LeCun, “Sparse feature learning for
deep belief networks,” Advances in Neural Information Processing
Systems, vol. 20, pp. 1185–1192, 2007.

[32] S. J. Wright and J. Nocedal, Numerical optimization. Springer New
York, 1999, vol. 2.

[33] T. D. Nguyen, T. Tran, D. Phung, and S. Venkatesh, “Learning
partsbased representations with nonnegative restricted boltzmann ma-
chine,” in Asian Conference on Machine Learning, 2013, pp. 133–148.

[34] A. Lemme, R. Reinhart, and J. Steil, “Online learning and general-
ization of parts-based image representations by non-negative sparse
autoencoders,” Neural Networks, vol. 33, pp. 194–203, 2012.

[35] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, vol. 2. IEEE, 2004,
pp. II–97.

[36] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Pro-
ceedings of the 25th international conference on Machine learning.
ACM, 2008, pp. 1096–1103.

[37] Y. LeCun, Y. Bengio et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995.

[38] R. B. Palm, “Deeplearn toolbox,” 2014.
[39] P. Druzhkov and V. Kustikova, “A survey of deep learning methods

and software tools for image classification and object detection,”
Pattern Recognition and Image Analysis, vol. 26, no. 1, pp. 9–15,
2016.

[40] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, no.
EPFL-CONF-192376, 2011.

[41] Torch. [Online]. Available: https://github.com/Kaixhin/Autoencoders
[42] Pytorch. [Online]. Available: http://pytorch.org
[43] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” arXiv
preprint arXiv:1603.04467, 2016.

[44] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A cpu
and gpu math compiler in python,” in Proc. 9th Python in Science
Conf, 2010, pp. 1–7.

[45] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin,
M. Mirza, R. Pascanu, J. Bergstra, F. Bastien, and Y. Bengio,
“Pylearn2: a machine learning research library,” arXiv preprint
arXiv:1308.4214, 2013.

[46] F. Chollet, “Keras: Theano-based deep learning library,” Code:
https://github. com/fchollet. Documentation: http://keras. io, 2015.

[47] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Com-
parative study of deep learning software frameworks,” arXiv preprint
arXiv:1511.06435, 2015.

https://github.com/Kaixhin/Autoencoders
http://pytorch.org

11

Babajide Ayinde (S’09) received the M.Sc. de-
gree in Engineering Systems and Control from
the King Fahd University of Petroleum and Min-
erals, Dhahran, Saudi Arabia. He is currently a
Ph.D. candidate at the University of Louisville,
Kentucky, USA and a recipient of University of
Louisville fellowship. His current research inter-
ests include unsupervised feature learning and
deep learning techniques and applications.

Jacek M. Zurada (M’82-SM’83-F’96-LF’14)
Ph.D., has received his degrees from Gdansk In-
stitute of Technology, Poland. He now serves as a
Professor of Electrical and Computer Engineering
at the University of Louisville, KY. He authored
or co-authored several books and over 380 papers
in computational intelligence, neural networks,
machine learning, logic rule extraction, and bioin-
formatics, and delivered over 100 presentations
throughout the world.

In 2014 he served as IEEE V-President, Tech-
nical Activities (TAB Chair). He also chaired the IEEE TAB Periodicals
Committee, and TAB Periodicals Review and Advisory Committee and was
the Editor-in-Chief of the IEEE Transactions on Neural Networks (1997-
03), Associate Editor of the IEEE Transactions on Circuits and Systems,
Neural Networks and of The Proceedings of the IEEE. In 2004-05, he was
the President of the IEEE Computational Intelligence Society.

Dr. Zurada is an Associate Editor of Neurocomputing, and of several
other journals. He has been awarded numerous distinctions, including the
2013 Joe Desch Innovation Award, 2015 Distinguished Service Award, and
five honorary professorships. He has been a Board Member of IEEE, IEEE
CIS and IJCNN.

	Introduction
	Dictionary Learning
	Dictionary Learning through Constrained Autoencoders
	Constrained Autoencoders for Sparse Representation
	Constrained Autoencoders for Part-based Data Representation
	Constrained Autoencoders for Enhanced Data Understanding
	Other Constraints in Autoencoders
	Deep High-Level Feature Learning with Constrained Autoencoders

	Computational Consideration and Software Libraries
	Concluding Remarks
	References
	Biographies
	Babajide Ayinde
	Jacek M. Zurada

