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Abstract— Urban environments offer a challenging scenario
for autonomous driving. Globally localizing infor mation, such as
a GPS signal, can be unreliable due to signal shadowing and
multipath errors. Detailed a priori maps of the environment with
sufficient information for autonomous navigation typically
require driving the area multiple times to collect large amounts
of data, substantial post-processing on that data to obtain the
map, and then maintaining updates on the map as the
environment changes. This paper addresses the issue of
autonomous driving in an urban environment by investigating
algorithms and an architecture to enable fully functional
autonomous driving with limited information. An algorithm to
autonomously navigate urban roadways with little to no reliance
on an a priori map or GPS is developed. Localization is
performed with an extended Kalman filter with odometry,
compass, and sparse landmark measurement updates.
Navigation is accomplished by a compass-based navigation
control law. Key results from Monte Carlo studies show success
rates of urban navigation under different environmental
conditions. Experiments validate the simulated results and
demonstrate that, for given test conditions, an expected range
can be found for a given success rate.

. INTRODUCTION

Autonomous driving, as with many other robotic
applications, requires accurate localization to perform
robustly. However, dense urban environments provide a key
challenge due to the lack of reliable information sources for
localization and planning. For example, multipath errors and
signal shadowing in dense urban environments make
positioning systems based on GPS an unreliable information
source for autonomous agents [1]. Even highly accurate, state-
of-the-art positioning systems struggle to provide the level of
localization needed for autonomous driving due to the
difficulties that dense urban environments present [2].
Additionally, highly detailed maps typically needed for
autonomous driving are highly sensitive to environmental
changes, and are expensive to obtain in regard to time, money,
and resources. Storing these high-fidelity maps on-board the
vehicle is unrealistic for all maps in all locations or for
environments that change, such as construction areas often
found in cities. Data connections could be relied upon to
provide the vehicle access to highly detailed maps, however,
these connections can be weak, spotty, or non-existent in urban
areas. Furthermore, security of autonomous vehicles is also a
major concern, as both GPS measurements and maps can be
spoofed and/or jammed [3]. Given these challenges, this study
investigates alternative architectures and sources of
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information that may be used for robust navigation of urban
roadways.

Currently, most autonomous driving systems use high
precision GPS signals to localize within a highly detailed
environmental map. Many of the foremost competitors in the
autonomous driving industry, such as Google, Uber, and Ford,
have entire teams dedicated to obtaining and updating their
high-definition (HD) maps, which include everything from
lane markings to potholes. These maps are acquired by
manually driving vehicles while collecting 360-degree lidar
and/or camera data of the environment in which the
autonomous vehicle will later drive [4]. This data then
undergoes heavy post-processing to form the HD map. Due to
the extreme complexity of this task, automakers such as
Volkswagen, BMW, and General Motors have relied on third-
party services, such as HERE and MobilEye, to provide these
highly detailed maps.

To avoid the difficulty of obtaining HD maps in which to
localize the vehicle using high precision GPS, research efforts
exist in the robotics community to address the problem of
navigating without such high-fidelity information sources. On-
line Simultaneous Localization and Mapping (SLAM) can be
applied to autonomous driving to alleviate the need for precise
GPS measurements and highly-detailed maps [5], [6]. For
example, FAB-MAP, atopological SLAM technique, has been
shown to allow for appearance-based navigation [7].
Similarly, SeqSLAM is another SLAM technique that aims to
allow for visual navigation despite changing environmental
conditions [8]. Although both methods do not rely on GPS
measurements or an a priori map of the environment, they
navigate purely in appearance space and make no attempt to
track the vehicle in metric coordinates; in other words, the
techniques behave similar to a scene-matching algorithm.
Without a way to track the vehicle in metric coordinates, it is
impossible to locate the vehicle when it is in between two
matched scenes. Therefore, a sufficiently-dense map of images
is needed for adequate localization, which causes the
algorithms to quickly become computationally expensive and
offer sharply diminishing performance as the scale of the
environment grows.

Techniques which are less computationally arduous can
address the problems of navigating without GPS and a highly
detailed map separately. To reduce the vehicle’s reliance upon
GPS, several methods have been proposed in recent years
based on accurate self-localization in mapped environments
[9] — [13]. However, these techniques still rely heavily on a



priori map information, coming either from lidar or vision
data. Similarly, a PosteriorPose algorithm has been shown to
keep the navigation solution converged in extended GPS
blackouts by augmenting GPS and an inertial navigation
system with vision-based measurements of nearby lanes and
stop lines referenced to a known map of environmental
features [14]. This algorithm retained a converged and
accurate position estimate during an §-minute GPS blackout.
To address autonomous navigation without a priori map data,
GPS-fused SLAM techniques have also been proposed [15],
[16]. However, the assumption of consistently receiving these
GPS measurement updates is not valid for urban applications,
such as in urban canyons like Manhattan and Chicago, and
therefore should not be relied upon.

While recent research efforts have been made to face the
challenges of driving either in GPS-denied circumstances or
without an HD map of the environment, there is considerably
less research to simultaneously address both challenges in a
computationally-efficient manner. This work aims to explore
the extent to which a wvehicle can navigate in an urban
environment while assuming a varying degree of external
information. First, as a worst-case situation, this work studies
how far a vehicle can travel with no GPS measurements and
no a priori map information, other than an initial starting
location and measurements from wheel encoders and a
compass. Second, this paper explores how far a vehicle can
travel with a minimal amount of information, which, for the
purposes of this study, comes as a sparse map of landmarks.
This results in a navigation solution with much better
scalability than many other techniques in the research
community. While the focus of this paper is on navigation with
limited information, this work could also be used to
supplement current navigation systems that use GPS, HD
maps, and/or SLAM techniques. This supplemental technique
could provide indispensable aid to autonomous vehicles for
cases when the navigation system experiences difficulties or
its security is threatened; this robustness to infrequent, yet
crucial, events is critical for a long-term navigation solution.
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II. SYSTEM ARCHITECTURE

A. System Overview

The system architecture developed for this study is shown
in Fig. 1. This system diagram contains common elements to
autonomous driving such as steering and speed controllers, an
object tracker, and a path generator. However, the pose
estimator and navigation algorithm are updated from their
typical form to address the challenges associated with the lack
of map information and GPS measurements. The proposed
algorithm assumes local sensors allow for the vehicle’s real-
time control (i.e. staying in a lane). Therefore, precise in-lane
localization is not needed for this approach. Rather, high-level
localization is provided by the pose estimator, which utilizes
only odometry measurements, compass measurements, and
sparse map-based measurements, which come from an on-
board sparse map of landmarks with corresponding
coordinates. This estimator is termed “lightweight” due to the
limited amount of sensor measurements it requires. The sparse
map-based measurements generated from computer vision
methods compare raw camera images to landmark images
contained within a sparse map. For the purposes of this study,
the map information is assumed to be limited (i.e. no global
roadmap, but only a sparse map of images and their
corresponding set of coordinates).

The roadway scene includes information such as lane line
markings, road signs, traffic lights, and other roadway
information that can be extracted from sensor measurements.
However due to the focus of this study on navigation and
estimation, the roadway scene is assumed to be known.
Finally, the roadway scene information, along with the inertial
pose estimate, feeds into an intersection navigation algorithm
and is used to probabilistically determine the best route to take
to reach the goal based on the current limited belief. This high-
level navigation scheme is provided by a compass-based
navigation control law.
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Fig. 1. System architecture for autonomous urban navigation with limited external information.
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B.  Lightweight Sparse Pose Estimation

As a first step in this study, a pose estimator is developed
assuming no detailed a priori map information and no GPS
measurements. The pose estimator relies on globally-known
start and goal locations of the vehicle, dead reckoning using
odometry and compass measurements to estimate the pose of
the wvehicle within a local frame of reference, and
measurement updates to sparse, but known, landmarks. Dead
reckoning using odometry measurements alone diverges over
time. However, the addition of a compass measurement
update, which directly measures the heading of the car,
improves the pose estimator accuracy notwithstanding
relatively high compass uncertainty. To enable longer driving,
the pose estimator is improved using sparse map-based
measurement updates. This allows two key questions to be
addressed in this work: 1) How far can the vehicle travel
during a GPS blackout and with no map information? 2) What
level of map landmark sparsity enables the vehicle to
successfully navigate a certain distance?

A sparse map of landmarks with corresponding images
and coordinates is assumed to be contained within a database
on the vehicle. Therefore, as the vehicle travels in the
environment and collects camera data, it performs scene
detection via computer vision techniques to compare the
collected images to the images of landmarks within its
database. In this work, ORB feature detection is used to detect
and describe features within the local scene of the vehicle and
then match to a corresponding urban scene within the
database of images on the vehicle reference [17]. When the
ORB feature detector obtains a test image that matches an
image in the landmark database, the corresponding landmark
location is used as a measurement update within the extended
Kalman filter (EKF) to refine the pose estimate of the vehicle.

This technique is implemented in simulation as described
in section III, and then in experiments as described in section
IV. It is noted that the proposed work can make use of any
scene detector or computer vision method without loss of
generality. However, ORB feature detection was chosen
rather than a more sophisticated approach, such as the bag-of-
words model used in FAB-MAP, due to its ease of
implementation and the fact that it does not need to be
extensively trained and tuned. Furthermore, by tracking the
vehicle’s position in metric coordinates in between landmark
detections via dead reckoning, a mask can be generated to
disregard all landmarks beyond the 2-sigma uncertainty
ellipse around the vehicle. This caused the ORB landmark
detector to be very computationally efficient — as it did not
need to compare the current test image to all the images in the
database, but only to the database images closest to the
vehicle — and it also improved performance, as it essentially
eliminated all false positives for the experiments described in
section IV.

C. Intersection Navigation Algorithm

Navigating to a desired location in an urban environment
without the availability of GPS or detailed map information is
a difficult challenge. Certain assumptions must be made for
this problem to become feasible. First, the coordinates of the
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start and end points are assumed to be known within a defined
uncertainty. Next, the vehicle is assumed to be equipped with
a suite of sensors that allows it to detect a variety of common
roadway objects such as road signs, traffic lights, cyclists,
pedestrians, other vehicles, and lane markings. The ability to
detect at this level is important because it allows the vehicle
to avoid obstacles, stay on the road by following lane lines,
and detect when it is approaching an intersection; however,
these measurements are not used for pose estimation. Given
the readily available lidar units, radar units, cameras, and
computer vision technology on the market, this is a valid
assumption to make. For instance, MobilEye’s vision-based
advanced driver assistance system can detect lane lines, other
vehicles, pedestrians, and various traffic signs [18]. Many
autonomous vehicles have this detection capability. However,
since this study aims to address novel pose estimation and
navigation techniques, these detection capabilities were not
deemed necessary to implement for this research.

Assuming such a suite of sensors is available, the low-
level navigation problem becomes feasible, and a higher-level
navigation problem can be formulated. Navigation to a
desired location from a given starting point follows two basic
principles in this framework. First, as the vehicle approaches
an intersection and is faced with a decision of its direction of
travel (e.g. continue straight, turn left, turn right, etc.), the
vehicle minimizes the difference in angle between the
heading of the vehicle and the direction to the goal after the
proposed intersection decision. Second, the vehicle retains a
list of intersections that it has already visited and the
corresponding decision made at each intersection; note that
this list of visited intersections is based on the vehicle’s pose
at the time an intersection is detected, which is subject to
uncertainty and will become less reliable as the pose
uncertainty increases. As the vehicle approaches a previously-
visited intersection, the navigation algorithm applies a penalty
to the prior intersection decision, thus, making it less probable
to make the same decision as before. The second principle is
similar to Tabu search [19], as it relaxes the basic rule of the
algorithm and discourages the search to return to previously-
visited solutions to avoid getting stuck in suboptimal regions.
The decision rule is general to any type of intersection (e.g.
different number of roads at different angles), although this
study focuses on gridded roadways due to the intended
application to urban environments.

These two principles for the navigation algorithm are

summarized in the following optimization problem:
6" = argmin[|6; — ¢;| +v;], (1)

IEN

where 0* is the intersection decision, or direction of travel
after the intersection, i represents the index of turning options
at an intersection (e.g. continue straight, turn left, turn right,
etc.), and N is the total number of turning options at a given
intersection. The direction of travel of the vehicle after the
intersection is denoted by 6;". The direction from the vehicle
to the goal after the intersection is represented by ¢;. The
penalty of making the same decision at the same intersection
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Fig. 2. Illustration of an autonomous vehicle navigating through a 3-way
intersection. The goal is denoted by the red star. (a) The vehicle approaching
the intersection. (b) The vehicle after continuing straight through the
intersection (decision i = 1). (¢) The vehicle after turning right through the
intersection (decision i = 2). The navigation algorithm would choose to
continue straight through the intersection in (b), assuming no previous visits
to this intersection.

as before is given by y;, which increases incrementally each
time the same decision is made at the same intersection.

Fig. 2 shows an example of an intersection decision to
better understand the navigation algorithm in (1). In this
example, the vehicle navigates through a 3-way intersection.
The navigation algorithm assumes that the vehicle can detect
the type of intersection that it is approaching (e.g. 3-way
intersection) based on the measurements of its on-board
sensors. With this information, the algorithm computes the
angle between the vehicle’s heading and the direction to the
goal for each possible route. After including any penalties for
the decisions made at prior visits, the route associated with
the minimum value is selected. In this example, assuming no
penalties, the algorithm would direct the vehicle to go straight
through the intersection.

III. SIMULATION RESULTS

A simulator was developed to test the feasibility of the
proposed pose estimation and navigation techniques. The
simulator models the vehicle’s dynamics using a four-state
bicycle model [20] and simulates its motion through a
randomly-generated city road network. A predictive state
model of the vehicle is given as

Xiv1 = [ (Xp, A, @, 61) ()
Xks1]  [%k + Ax cos(6y) — Ay sin(6y)]
Yier1| _ | i + Bx sin(6y) + Ay cos(6y) 3)
9k+1 gk + AO ’
Vk+1 l v, + a0t

In the equations above, x, is the vehicle state at time &, which
consists of four states: the position of the center of the
vehicle’s rear axle (x;, and y;), the heading of the vehicle
(8x), and the speed of the vehicle (vy). The control inputs to
the vehicle model are acceleration (a;) and steering angle
(@y). The prediction time step is given as 6t. In addition, the
A terms are defined as
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1

- ’
Pk

Pk dy %ak&z + v, 6t.
The parameter / is the length between the front and rear axles,
Py represents the radius of curvature for the vehicle, and d,

represents the distance the vehicle travels over 6t.

During the vehicle’s travel, simulated odometry, compass,
and vision measurements are used to update the vehicle pose
estimate. Steering and speed proportional-integral-derivative
(PID) controllers are used to allow the vehicle to stay on a
specified path chosen by the navigation algorithm. A randomly
gridded map was generated for each test in this Monte Carlo
study. These maps ranged in size from 1 sq. km to 100 sq. km,
and the block size ranged from 50 meters to 300 meters. Dead
end and one-way roads were randomly scattered into the map.
Random start and end locations were chosen. Finally, for the
landmark detection study, landmarks were scattered into the
map at random locations according to the given landmark
density.

A. Monte Carlo Range Tests without Map Information

Monte Carlo studies were conducted in simulation to
determine the maximum distance an autonomous vehicle can
travel without receiving external pose measurements (i.e. no
GPS or landmark measurements) before it becomes lost.
Without the use of a map, local sensors are assumed to enable
the vehicle to stay on the road. The limiting factor in reaching
the goal is the navigation algorithm’s ability to differentiate
between each intersection. At a sufficiently high position
uncertainty level, it becomes ambiguous which intersection the
vehicle is approaching and the high-level navigation breaks
down. The vehicle is assumed to be lost when the major axis
of the 2-sigma uncertainty ellipse of the vehicle’s x-y location
grows to exceed 100 meters, which is approximately the
average size of a Manhattan city block [21]. A 2-sigma
uncertainty ellipse, rather than a 1-sigma uncertainty ellipse, is
used to provide a high confidence region for the location of the
vehicle. While the uncertainty is below this threshold, the
vehicle is considered sufficiently localized for the high-level
navigation algorithm to function.

This study assumes a conservative odometer measurement
uncertainty common in cars and ABS braking systems. This
uncertainty considers wheel slip and rotary encoder
discretization errors, which have a maximum error of £1/2 of
the angular rotation between two successive bits [22]. For
compass measurements, interference from the large amount of
electrical hardware found on an autonomous vehicle can result
in high uncertainty. Therefore, three values for the 2-sigma
compass uncertainty are studied here: £10°, £20°, and +30°.
For comparison, an additional set of simulations were
performed in which no compass measurements were used. A
total of 4,000 simulations were conducted, with each
simulation using a new random map, and new random start and
end points. Fig. 3 plots the 2-sigma ellipse major axis as a
function of distance traveled for each trial in all three compass
uncertainty cases, as well as the case with no compass
measurements.
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Fig. 3. Monte Carlo results to determine the distance an autonomous vehicle
can travel without external pose measurement updates before getting lost,

which is defined by the threshold indicated by the horizontal dashed line; note
that this figure shows the Manhattan distance traveled by the car.

The results for each set of tests follow a predictable trend:
the major axis of the 2-sigma uncertainty ellipse increases
quickly when the ellipse is small and then grows more
gradually as the area of the ellipse becomes large. For a 2-
sigma compass uncertainty of £10°, a distance at which the
vehicle becomes lost was not found. For a 2-sigma compass
uncertainty of £20°, the vehicle could travel 20.8 km on
average before it became lost. For a 2-sigma compass
uncertainty of+£30°, the vehicle could travel 9.3 km on average
before it became lost. Finally, for the case with no compass
measurements, the vehicle could only travel 300 meters on
average before it became lost. In this case, the 2-sigma
uncertainty grew very rapidly since only wheel encoders were
being used to estimate the position of the car. Therefore, as the
vehicle began to drive, the initial uncertainty in the heading of
the vehicle quickly resulted in a large amount of lateral
uncertainty in the position of the vehicle.

The main source of variation in this study relates to the
number of turns that the vehicle made during its travel. It is
expected that the final uncertainty ellipse major axis is larger
for a vehicle driving along a straight road compared to a
vehicle driving the same distance while taking many turns.
This is seen in Fig. 3, as most of the data points above the fitted
curve resulted from tests in which the vehicle took few turns,
while the majority of the data points below the fitted curve
resulted from tests in which the vehicle took many turns. This
is because the ellipse grows predominantly along only one axis
in the case of driving straight and along both axes in the case
involving many turns, and therefore the major axis of the 2-
sigma uncertainty ellipse grows at a faster rate for straight
driving,

B. Monte Carlo Landmark Detection Study

A Monte Carlo study was performed to determine the
effect that map-based measurements from sparse landmarks
have on the pose estimation problem and subsequent
navigation. The parameters of this study were the same as the
prior Monte Carlo range tests, except this study utilizes a
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sparse map of landmarks with corresponding coordinates
known a priori to allow the vehicle to perform pose updates as
it drives. A camera takes measurements of a scene, and
attempts to correlate a detection with a sparse map of locations.
If a positive detection is made, a map-based pose measurement
update is performed using an uncertain location.

Furthermore, this study explores three variants of the
heading-based navigation function in (1). The first method,
termed the straight to goal method, attempts to drive straight
to the goal and does not actively seek out landmarks (i.e.
fortuitous landmark measurement updates). The second
method, called the landmark to landmark method, seeks out
the closest landmark to the vehicle that also moves the vehicle
closer to the goal. The third approach is the hybrid method,
where the vehicle attempts to drive straight to the goal until its
pose uncertainty exceeds a specified threshold, at which point
the vehicle then seeks out landmarks to improve its pose
estimate. For this study, the specified threshold is 50 meters
for the major axis of the 2-sigma position uncertainty ellipse.

In addition to the navigation method, the effects of
landmark density and landmark detection rate are also studied.
The simulated landmark detection rate is implemented by
disregarding a specified percentage of the landmark
detections. A constant 2-sigma compass uncertainty of £30° is
assumed, which is the most conservative value from the Monte
Carlo range study with no map information. With 3 different
navigation methods, 5 different landmark densities, and 5
different landmark detection rates being considered, a total of
75 different combinations of test conditions are studied. For
each combination, 700 simulation trials were conducted to find
the success rate as a function of Euclidean distance from
starting point to goal. Success rate is defined as the rate at
which the vehicle reaches the goal without its 2-sigma
uncertainty ellipse major axis exceeding the lost threshold of
100 meters.

Fig. 4 summarizes the performance results from more than
50,000 simulations in this Monte Carlo study. Note that Fig. 4
shows range as Euclidean distance, where Fig. 3 shows
Manhattan distance traveled.
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Fig. 4. Monte Carlo landmark detection study results for (a) straight to goal
navigation, (b) landmark to landmark navigation, and (c) hybrid navigation;
note that this figure shows the range as Euclidean distance traveled by the
car, rather than Manhattan distance.



Due to the different navigation methods resulting in
different routes to the goal, the Euclidean distance from start
point to goal, instead of the total Manhattan distance traveled,
is used in Fig. 4 for a fair comparison between navigation
methods. The performance defined for this study is an 80
percent success rate of reaching the goal; this success rate is
chosen for easy comparison with the experimental results
shown in section IV. For each test condition in this study, the
range of the vehicle at a specified success rate gives a good
indication of the overall success of the test condition. It is
expected that the range and overall success of the navigation
method increase as the landmark density and landmark
detection rate increase. In general, this trend is seen in the
results. For dense landmark maps, a clear upward trend can
be seen in the data, with the trend becoming subtler as the
density becomes sparser. The trend is also subtler for the
straight to goal navigation method, since the vehicle is not
actively seeking out landmarks and therefore receives far
fewer landmark measurement updates. Overall, Fig. 4 allows
for the expected range with a given success rate to be obtained
for all combinations of navigation methods, landmark
densities, and landmark detection rates.

Fig. 4 also gives insight to the effectiveness of each
navigation method. The straight to goal navigation method,
where the vehicle ignores the landmarks and attempts to drive
straight to the goal, performs noticeably worse compared to
the other two methods, which perform similarly in terms of
robustness (i.e. the reliability of the vehicle to reach the goal
for given test conditions is similar). Excluding the 10
landmarks per sq. km case (in which many landmarks are
reached regardless of the navigation method), the range of the
straight to goal navigation method for all other test parameters
is typically 1 to 2 km less than the corresponding range for the
other two navigation methods. However, the navigation
methods that actively seek out landmarks (the landmark to
landmark and hybrid navigation methods) increase the average
distance traveled for the vehicle. The landmark to landmark
navigation method causes the vehicle to travel 31 percent
further on average compared to the straight to goal navigation
method. Similarly, the hybrid navigation method causes the
vehicle to travel 15 percent further on average compared to the
straight to goal navigation method. Therefore, in general, there
is a tradeoff between distance traveled and robustness for the
navigation methods that sought out landmarks to update the
vehicle’s pose estimate.

IV. EXPERIMENTAL RESULTS

To verify the simulation results and understand the maturity
of the theory, the proposed estimation and navigation
techniques were implemented on a 2007 Chevrolet Tahoe and
tested in downtown Ithaca, NY. A picture of the test vehicle is
shown in Fig. 7. Due to the current traffic laws in the state of
New York, the pose estimation and navigation techniques
were implemented and used to guide a human driving the car,
directing the driver where to go. In other words, the driver was
merely used to act as the inner-loop controller and keep the
vehicle on the road. A video of the results accompanies this

paper.

The odometry measurements for these field tests were
obtained from the vehicle’s wheel encoder measurements on
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the CAN bus. A low-cost compass was installed in the vehicle
to receive heading measurements. Due to the large amount of
electromagnetic interference in the car, the compass’ 2-sigma
uncertainty was empirically determined to be approximately
+25°. However, this uncertainty is dependent on the location
ofthe vehicle and can improve or worsen based on its location
within the city. Finally, a Point Grey Ladybug3 360-degree
camera was used to capture images for landmark detection.

A. Range Tests without Map Information

The first set of experiments aimed to verify the results from
the Monte Carlo range study with no map information in Fig,
3. For these experiments, the vehicle was driven for a
specified amount of time and the final position uncertainty
from the pose estimator was recorded. Fig. 5 shows the results
from 33 range test experiments with no map information
overlaid with the Monte Carlo simulation results.

Results show that the vehicle can travel nearly 10 km with
no map information before becoming lost. Given a 2-sigma
compass uncertainty of approximately +25°, the experimental
results are expected to fall between the high compass
uncertainty and medium compass uncertainty data points. As
shown in Fig. 5, this is typically the case, reinforcing the
simulation results. However, as the distance traveled
increases, the experimental data align more closely with the
high compass uncertainty data points. This is likely due to
locations where the compass experienced very high magnetic
interference, which was seen during calibration tests. As the
distance traveled by the vehicle increases, the more likely it is
to drive through one of the regions with high magnetic
interference, leading to a higher average compass uncertainty.
In the supplemental video, the vehicle can be seen to travel
through one of these high interference regions at 2:16.
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Fig. 5. Experimental results shown overlaid with simulated Monte Carlo
results to verify the Manhattan distance an autonomous vehicle can travel
without external pose measurement updates before getting lost. Thirty-three
field tests were performed for this study.



B. Landmark Detection Tests

To verify the Monte Carlo landmark detection results, an
ORB landmark detector was developed and implemented on
the vehicle to augment the existing pose estimator. This
landmark detector had an average detection rate of
approximately 60 percent. Furthermore, approximately 100
images from Ithaca’s downtown intersections were obtained
to populate the vehicle’s landmark database; however, only a
few of these images were used during the experiments due to
the specific landmark density that was chosen to be tested.
Finally, the landmark to landmark navigation method was
used in these tests due to its high robustness.

For each test, the vehicle’s navigation algorithm guided it
to arandomly chosen goal location while relying on the sparse
pose estimator for localization. Once the goal was reached, a
new random goal was spawned and the wehicle then
proceeded to drive to it. This process was repeated until the
vehicle became lost and the navigation algorithm broke down
or the experiment exceeded 75 minutes. For each goal
generated, at most one landmark would be randomly placed
within the map. This landmark would then be cleared when
the vehicle reached its corresponding goal. Therefore, no
more than one goal and one landmark were on the map at a
time. This approach of traveling to many subsequent goals, as
opposed to one goal, needed to be taken due to the small size
of Ithaca’s downtown (approximately 1 sq. km). Simulations
show that the method of subsequently traveling to many short-
range goals produce analogous results compared to traveling
to one long-range goal. The supplemental video shows how
these experiments were performed.

Ten experiments were conducted with an average landmark
density of 0.55 landmarks per sq. km and an average landmark
detection rate of 60 percent; the number of tests was chosen
based on the time required to run each trial (approximately 1
hour). In 8 of these 10 tests, the vehicle successfully reached
a final goal with a Euclidean distance of at least 6.9 km from
the starting point. This result is plotted in Fig. 6 along with
the Monte Carlo simulation results.
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Fig. 6. Experimental result shown with simulated Monte Carlo landmark
detection study results. Ten field tests were conducted using the landmark to
landmark navigation method to verify the simulation results. Note that this
figure shows the range as Euclidean distance traveled by the car, rather than
Manhattan distance.

When incorporating a sparse landmark-based map, the
vehicle can reliably travel to a much further goal, as compared
to the tests without map information. In many of these
experiments, the vehicle could drive a Manhattan distance of
20 km (more than twice the distance traveled in the tests with
no map information). The experiment showed that the vehicle
could drive nearly 10 km between landmark measurement
updates without getting lost. Therefore, the experiments
demonstrated that, if the landmark density and detection rate
were high enough to guarantee a landmark measurement
update at least every 10 km traveled by the vehicle, then the
vehicle could travel indefinitely without getting lost. This was
seen in 3 tests, as the vehicle received numerous landmark
measurement updates during its travel; however, these tests
were eventually cut short after 75 minutes of driving.

Fig. 7. (a) Test vehicle with notable sensors indicated; note only the Ladybug camera was used in this study, the lidar and radar units were not used. (b) Test
image of a landmark from the Ladybug camera during the experiments. (c) Database image of the landmark corresponding to the image in (b). These images
produced a match and resulted in a landmark measurement update despite being taken on different days under different conditions. Note the resolution of the

original images is 1232 x 1616
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While the average experimental results match the
simulation results relatively well, there is some variation. A
total of 10 trials is small compared to the number of
simulation trials. It is expected that the experimental result
would more closely reflect the simulated results with
additional tests. Given the large amount of time needed to
perform each test, 10 experiments were deemed sufficient to
demonstrate the capabilities of the proposed techniques.
Additionally, the landmark detection rate varied from test to
test. This high uncertainty in the detection rate could also
explain why the experimental result is lower than expected in
Fig. 6. The detection rate was dependent on many
environmental conditions including the prominence of the
features at each intersection, the weather, and the traffic. For
instance, the vehicle would be less likely to receive a
landmark measurement update if the landmark did not have
interesting features (e.g. an open field or empty parking lot),
or if the weather or traffic was very different from the
database images. An example of traffic leading to a missed
landmark measurement update can be seen in the
supplemental video at 1:30, where a truck parked too close to
an intersection caused the test vehicle to move into the
opposite lane. The resulting image taken at that landmark was
from an angle in the opposite lane, resulting in a missed
detection. Fig. 7 shows the test vehicle, as well as a database
image and test image of a landmark taken during testing.

V. CONCLUSIONS

A novel system architecture is presented to address the
problem of autonomous driving within an urban environment
when reliable GPS measurements and map information is
limited. This paper proposes a pose estimation method that
utilizes odometry, compass, and sparse map-based
measurements to estimate the pose of the vehicle as it
autonomously navigates the roadways with limited map
information and GPS measurements. This study also uses a
simulator to study key parameters of the navigation and pose
estimation algorithms within the proposed system
architecture. Monte Carlo studies using this simulator provide
evidence to resolve key issues concerning navigating without
GPS or detailed map information. These studies show the
distance a vehicle can travel with no GPS or map information,
as well as the relationship between the range of the vehicle,
navigation method, landmark density, and landmark detection
rate. Experimental results verify the simulation results within
a small amount of deviation, as they produce a minimum
range of 6.9 km for the given success rate, navigation method,
landmark detection rate, and landmark density.
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