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Abstract

We present an application of our general formulation [1] to construct energy based, arbitrary order accurate,
discontinuous Galerkin spatial discretizations of the linear elastic wave equation. The resulting methods are
stable and, depending on the choice of numerical flux, conserve or dissipate the elastic energy. The perfor-
mance of the method is demonstrated for problems with manufactured and exact solutions. Applications to
more realistic problems are also presented. Implementations of the methods are freely available at [2].

Keywords:

1. Introduction

Accurate propagation of linear elastic waves in heterogeneous material and complex geometry is im-
portant in many fields such as design of mechanical structures, non-destructive testing, civil engineering
and seismic exploration. In general, the challenge in numerically propagating waves is the long distance of
propagation, requiring high order methods able to control the growth of dispersion errors.

Discontinuous Galerkin (dG) methods have excellent dispersion properties. The research devoted to dG
has been substantial over the last decade and a half and we will not attempt to review the whole literature
here (the textbook by Hesthaven and Warburton, [3], is an excellent reference) but limit our discussion to
methods pertaining to the linear time dependent elastic wave equation.

Discontinuous Galerkin methods for elastic waves either discretize the governing equations in some first
order formulation (in space and time), e.g. velocity-strain or velocity-stress, or directly work with the
equations in second order form. Examples of methods based on first order systems which construct the
numerical fluxes based on the Riemann problem are [4, 5, 6]. Another method that works with a first
order system is the staggered dG method in [7]. Methods that work with the equations in second order
form are the interior penalty method [8] and the symmetric interior penalty method [9], as well as the local
discontinuous Galerkin methods; see [10] for a stability analysis applicable to a wide range of methods of
this type. Another class of methods is the so-called space-time discontinuous Galerkin methods; see for
example the early application in [11] and more recently [12, 13]. We postpone to §4 comparisons with other
discretization techniques after our method, which differs from all of these, has been fully described.

In our proposed approach we approximate the equations in second order form in space but introduce
the velocity to reduce the order to one in time. As the velocity is naturally connected to the kinetic
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energy and the displacement, through the stress, is connected to the potential energy, this form allows for
a dG formulation that mimics the dynamics of the energy of the system. The proposed method is a direct
application of our general formulation for wave equations in second order form [1]. The crucial (and to
our knowledge novel) step in our formulation is to test the equation governing the time derivatives of the
displacements, not directly against a test function but against a quantity related to the potential energy.
This immediately leads to an energy identity for the dG formulation under very general assumptions on the
approximation spaces. This test quantity is often invariant to certain transformations and therefore does
not fully specify the time derivatives of the displacements. However we show that it is straightforward to
add independent equations to close the system without affecting the energy identity.

Finite difference methods are also often used for wave propagation problems. Until recently an obstacle to
constructing high order and curvilinear solvers for the second order formulation was the stable enforcement
of traction boundary conditions, but there are now multiple options, [14, 15, 16], all relying on summation
by parts techniques to prove energy stability. Although these methods typically have a smaller spectral
radius than dG and spectral element methods, they may become less efficient when solving problems where
free surface or interface waves are important.

The classic parameter used to measure resolution requirements for finite difference methods, points per
wavelength (PPW) introduced in the seminal paper [17] by Kreiss and Oliger, has recently been found
to be an inadequate measure of the resolution requirements when surface waves or interfaces are present
[18, 14]. The analysis of Kreiss and Petersson, [18], uses a modified equation approach to show that the
number of points required to reach a fixed error at a fixed time scales with (λ/µ)1/php if a method that
approximates the surface waves to pth order of accuracy is used. The results presented in the experiments
section indicates that this effect is not important for the proposed discretization (and probably not for other
dG methods either). As the analysis in [18] is based on a modified equation it does apply to dG as well,
however it is well known that the wave speeds in dG discretizations are approximated with about twice the

order of the method [19, 9]. Now the dispersion error in the surface wave for dG is, say, (λ/µ)
1
2ph2p which

is still very small compared to hp unless λ/µ is (unphysically) large. We believe that this is the reason why
we do not observe any degradation when λ/µ ≫ 13.

As the basic theoretical analysis and framework of the general method has already been presented in [1]
we focus here on the formulation for the elastic wave equation and the method’s performance for a sequence
of numerical examples. Through these experiments, whose computer implementations are freely available
from [2], we hope to convince practitioners that our method is worth considering. Here we work in two
dimensions but note that the method can easily be generalized to three dimensions.

The rest of the paper is organized as follows. In Section 2 we present the governing equations and discuss
the dynamics of the energy of a solid body subject to boundary conditions. In Section 3 we present the
variational formulation and discuss how to add independent equations to compensate for the invariants of the
elastic energy. We also discuss how to choose the numerical fluxes at inter-element boundaries and at physical
boundaries. Section 4 briefly outlines the discretization and the implementation of the method. In Section
5 we present a comprehensive collection of numerical experiments illustrating the method’s performance
for manufactured solutions, for classical problems such as the propagation of Rayleigh, Lamb and Stoneley
waves, as well as mode conversion at an interface between two solids. We conclude the numerical experiments
with two applications: wave propagation in a slab with a stiff inclusion and an application in uncertainty
quantification for non-destructive testing. The last section summarizes the paper and discusses possible
extensions and improvements.

Finally, we again note that the computer codes used in the examples below are freely available from [2].

2. The Elastic Wave Equation

Let ρ = ρ(x1, x2) be the density and ui = ui(x1, x2, t), i = 1, 2 be the displacements in the x1 and x2

direction. Assuming small deformations the the linear isotropic elastic wave equation, governing the time

3As far as we know, the dG dispersion relation for elastic surface or interface waves has not been studied yet but we expect
it to behave similarly as for other waves.
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evolution of the displacements, can then be written in second order form

ρ
∂2u1

∂t2
= ∇ · ~F1, (x1, x2) ∈ S ⊂ R2, t > 0, (1)

ρ
∂2u2

∂t2
= ∇ · ~F2, (x1, x2) ∈ S ⊂ R2, t > 0. (2)

Here the functions ~Fi, i = 1, 2 are composed of the elements of the stress tensor

~F1 =

(

(2µ+ λ)∂u1

∂x1
+ λ∂u2

∂x2

µ(∂u1

∂x2
+ ∂u2

∂x1
)

)

, ~F2 =

(

µ(∂u1

∂x2
+ ∂u2

∂x1
)

λ∂u1

∂x1
+ (2µ+ λ)∂u2

∂x2

)

,

expressed here using the Lamé parameters λ = λ(x1, x2) and µ = µ(x1, x2).
To close the system we prescribe initial conditions for the displacements and velocities

ui(x1, x2, 0) = gi(x1, x2),
∂ui

∂t
(x1, x2, 0) = hi(x1, x2), i = 1, 2, (3)

and boundary conditions

γi
∂ui

∂t
+ κiR(~n · ~Fi) = 0, (x1, x2) ∈ ∂S, i = 1, 2. (4)

Here R is a constant to make the equations dimensionally consistent, ~n is the outward pointing normal,
κi ≥ 0, γi ≥ 0, and we normalize γ2

i + κ2
i = 1. The choice κi = 0 corresponds to a homogenous Dirichlet

boundary condition on ∂ui

∂t ; γi = 0 corresponds to a traction free boundary, and the choice γiκi > 0 will
dissipate the energy of the system and can be thought of as a low order non-reflecting boundary condition.4

Remark 1. In the above equations we have chosen, for the brevity of the presentation, not to include body
forces but we note that it is straightforward to include such forces; see [1] . Indeed, the example presented
in §5.2.2 includes body and boundary forcing.

The equations (1)-(2) can be derived by taking the variational derivative of the potential energy density:

G =
λ

2

(

∂u1

∂x1
+

∂u2

∂x2

)2

+
2µ

2

(

(

∂u1

∂x1

)2

+

(

∂u2

∂x2

)2

+
1

2

(

∂u1

∂x2
+

∂u2

∂x1

)2
)

. (5)

Equations (1)-(2) then take the form

ρ
∂2ui

∂t2
=

2
∑

k=1

∂

∂xk

(

∂G

∂ui,k

)

, i = 1, 2, (6)

where ui,k denotes differentiation of ui in the kth space coordinate. The equations (1)-(2) and (6) are, of
course, the same. In particular note that

~Fi =

[

∂G
∂ui,1

∂G
∂ui,2

]

, i = 1, 2.

4For the general theory of well-posed boundary conditions for second order wave equations see [20, 21]. The theory is
applied to the traction-free boundary condition in elastodynamics in [18]. Generally speaking, in addition to the energy
estimates following from (4), one must analyze so-called generalized eigenvalues, which is beyond the scope of this paper.
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2.1. The Energy and Energy Derivative

Our variational formulation will be motivated by the continuous energy and its change in time and we
therefore now recall the basic facts about the energy of an elastic system. The total energy in a domain, S,
with sufficiently smooth boundary is obtained by integrating the kinetic and potential energy density

E(t) =

∫

S

2
∑

i=1

ρ

2

(

∂ui

∂t

)2

+GdS, (7)

and the rate of change of that energy is

E′(t) =

∫

S

2
∑

i=1

[

∂ui

∂t
ρ
∂2ui

∂t2
+

2
∑

k=1

∂2ui

∂t∂xk

(

∂G

∂ui,k

)

]

dS.

Assuming classical solutions, integrating by parts, and using (6) we find that E′(t) is completely determined
by the contribution on the boundary

E′(t) =

∫

∂S

2
∑

i=1

∂ui

∂t

[

2
∑

k=1

nk
∂G

∂ui,k

]

ds, (8)

or equivalently using ~F1 and ~F2

E′(t) =

∫

∂S

2
∑

i=1

∂ui

∂t

[

~n · ~Fi

]

ds. (9)

Now, using the boundary conditions (with 1 = γ2
i + κ2

i ) we find that the rate of change of the energy is

E′(t) = −
∫

∂S

2
∑

i=1

γiκi

[

1

R

(

∂ui

∂t

)2

+R
(

~n · ~Fi

)2
]

ds. (10)

Thus, as mentioned above, the rate of change of the energy will depend on the parameters in the boundary
conditions; it is conserved when traction free or homogenous Dirichlet boundary conditions are used and
dissipated when γiκi > 0.

We note that the energy balance holds under weaker conditions, and in particular it will be conserved
across material interfaces and for solutions with less than C2 regularity in the linear case. Here we will
apply the method to problems with material discontinuities and singular sources, but restrict our analysis
to problems with smooth solutions.

Our goal is to introduce a discontinuous Galerkin method whose (discrete) solution obeys the same energy
estimate as the continuous solution. To do this we first choose an appropriate variational formulation on a
single element which after integration by parts (on each element) satisfies an energy estimate of the type
(8) with boundary terms from interior and boundary faces. We then choose numerical fluxes, that couple
interior elements in a stable fashion, and specify boundary “ghost states” that reproduce the right hand
side of (10). Note that our approximations are polynomials within each element, but will be discontinuous
across element boundaries. As in [8], we can rigorously obtain a weak formulation of the elastic wave
equation for displacements in (Hm)d for d ≤ 3 and m > 3/2, so that their traces are elements of (H1)d.
The discretizations will then be defined in broken Sobolev spaces, as is typical for dG methods.

Our method is based on approximating the displacements, ui, and the velocities, vi. We therefore write
the governing equations as a first order system in time

∂ui

∂t
− vi = 0, i = 1, 2, (11)

ρ
∂vi
∂t

=
∑

k

∂

∂xk

(

∂G

∂ui,k

)

, i = 1, 2. (12)
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3. An Energy Based dG Method for the Elastic Wave Equation

Let the finite element mesh
Ω̄ =

⋃

j

Ωj ,

be a discretization of S consisting of geometry-conforming and nonoverlapping mesh elements Ωj with
piecewise smooth boundaries. Here we will consider the elements to be quadrilaterals, possibly with curved
sides, but note that the method can equally well be implemented using simplices. We also note that in our
implementation we use conforming grids but that this is not required.

We denote the piecewise tensor product polynomial approximations to the displacements ~u = [u1, u2]
T

and the velocities ~v = [v1, v2]
T by ~uh = [uh

1 , u
h
2 ]

T and ~vh = [vh1 , v
h
2 ]

T .
On a single element Ωj the approximation (~uh, ~vh) will be a tensor product polynomial in the space

(Qqu(Ωj))
2 × (Qqv (Ωj))

2, where Qq denotes vector valued tensor product polynomials of degree q in each
coordinate on the reference element. Let Pi(z) be a hierarchical polynomial basis, then we take

φi,j,1 =

(

Pi(r)Pj(s)
0

)

, φi,j,2 =

(

0
Pi(r)Pj(s)

)

, i, j = 0, . . . , q,

to be the basis for (Qq)2.

3.1. A Variational Formulation Based on the Energy

We are now ready to formulate our Galerkin variational problem based on testing equations (11) and
(12). Equation (12) is tested against the test functions as usual but in order to obtain an energy estimate
mimicking the continuous case we test equation (11) in a non-standard way.

Problem 1. On each element, require that for all test functions

(~φu, ~φv) ∈ (Qqu(Ωj))
2 × (Qqv (Ωj))

2,

the following variational formulation holds:

∫

Ωj

2
∑

i=1

2
∑

k=1

(

∂

∂xk

(

∂G

∂φui,k
(∇~φu)

))(

∂uh
i

∂t
− vhi

)

=

∫

∂Ωj

2
∑

i=1

2
∑

k=1

(

∂G

∂φui,k
(∇~φu)nk

)(

∂uh
i

∂t
− v∗i

)

, (13)

∫

Ωj

2
∑

i=1

ρφvi

∂vhi
∂t

+
2
∑

k=1

∂φvi

∂xk

∂G

∂ui,k
(∇~uh) =

∫

∂Ωj

2
∑

i=1

φvi(~w
∗

i · ~n). (14)

Integrating the first equation by parts yields an alternative variational formulation

∫

Ωj

2
∑

i=1

2
∑

k=1

(

∂G

∂φui,k
(∇~φu)

)

∂

∂xk

(

∂uh
i

∂t
− vhi

)

=

∫

∂Ωj

2
∑

i=1

2
∑

k=1

(

∂G

∂φui,k
(∇~φu)nk

)

(

v∗i − vhi
)

. (15)

The formulations (13) and (15) are sometimes referred to as the strong and weak formulation, [3]. The
notation refers to the requirement of smooth test functions in the first formulation and the possibility of
non-smooth test functions in the latter. As already mentioned, here we use smooth test and trial functions
and the formulations are thus interchangeable.
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Now, for a standard discontinuous Galerkin formulation the next step would be to choose the numerical
fluxes v∗1 , v

∗

2 , ~w
∗

1 , ~w
∗

2 so that the method is stable and consistent. Here however as we have tested equation

(11) against the right hand side of (6) with the derivatives of the test function ~φu as arguments we will
obviously “lose” equations for the constant elements of (Qqu(Ωj))

2. Perhaps less obvious is that we will lose
yet another equation. To see this more clearly we return to the starting point of our method, the potential
energy density.

3.2. Invariants of the Elastic Energy

The elastic energy (7) has three invariants. These invariants correspond to scalar multiples of the time
independent solutions (u1, u2) = (1, 0), (u1, u2) = (0, 1), and (u1, u2) = (x2,−x1), having in common that
they do not contribute to the potential energy density G.

To see how this affects the variational formulation note that on an element Ωj the local mass matrix
corresponding to (15) will be obtained from

∫

Ωj

(

(2µ+ λ)
∂φ1

∂x1
+ λ

∂φ2

∂x2

)

∂2u1

∂x1∂t
+

(

µ

(

∂φ1

∂x2
+

∂φ2

∂x1

))

∂2u1

∂x2∂t

+

(

µ

(

∂φ1

∂x2
+

∂φ2

∂x1

))

∂2u2

∂x1∂t
+

(

λ
∂φ1

∂x1
+ (2µ+ λ)

∂φ2

∂x2

)

∂2u2

∂x2∂t
dΩ, (16)

where we have suppressed the subscript u on the test function. As we are considering hierarchical bases the
two first vectors5 of the basis can be taken as

P0(z) = 1, P1(z) = z, z ∈ [−1, 1].

Considering first the constant vectors φ0,0,1 = (1, 0)T and φ0,0,2 = (0, 1)T in the basis we see that the ex-
pression (16) vanishes. If we tried to use these equations the mass matrix would become singular. Therefore
we replace the variational formulation, when tested against φ0,0,1 and φ0,0,2, with the independent equations

∫

Ω

(
∂ui

∂t
− vi) = 0, i = 1, 2. (17)

Next consider the linear vectors in the basis

φ1,0,1 = [r, 0]T , φ0,1,2 = [0, s]T , φ0,1,1 = [s, 0]T , φ1,0,2 = [0, r]T .

Using the first two vectors (16) reduces to

∫

Ωj

[

(2µ+ λ)r1 λr1 µr2 µr2
λs2 (2µ+ λ)s2 µs1 µs1

]













∂2u1

∂x1∂t
∂2u2

∂x2∂t
∂2u1

∂x2∂t
∂2u2

∂x1∂t













dΩ.

Here we have used the chain rule to express ∂x1
= r1∂r + s1∂s, etc. For the last two vectors (16) becomes

∫

Ωj

[

(2µ+ λ)s1 λs1 µs2 µs2
λr2 (2µ+ λ)r2 µr1 µr1

]













∂2u1

∂x1∂t
∂2u2

∂x2∂t
∂2u1

∂x2∂t
∂2u2

∂x1∂t













.

5To avoid confusion between the finite element and the element of a basis we use the term vector for the elements in the
basis in this section.
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Now, assuming that r1s2 6= 0, we can use the two former “rows in the mass matrix” to reduce the latter
two to

∫

Ωj

[

0 0 µ µ
0 0 µ µ

]













∂2u1

∂x1∂t
∂2u2

∂x2∂t
∂2u1

∂x2∂t
∂2u2

∂x1∂t













.

These are obviously linearly dependent and we therefore replace the variational formulation for φ0,1,1 =
[s, 0]T with

∫

Ωj

(

∂2u1

∂x2∂t
− ∂2u2

∂x1∂t

)

−
(

∂v1
∂x2

− ∂v2
∂x1

)

= 0. (18)

If r1s2 = 0 we can instead replace the variational formulation for φ1,0,1 = [r, 0]T with equation (18).
Practically speaking, in the assembly process used in our computer code we simply compare m12 =

∫

Ωj
|r1s2|dΩ with m21 =

∫

Ωj
|r2s1|dΩ and replace the variational formulation for φ0,1,1 with (18) if m12 >

m21. If m12 < m21 we instead replace the variational formulation for φ1,0,1 with (18). We note that
combining all equations containing ∂ui

∂t and inverting the resulting mass matrix we obtain a simpler form
which might prove more useful for general unstructured grids:

∂ui

∂t
− vi|Ωj

= boundary terms. (19)

To summarize, a full set of equations uniquely defining the time derivatives of our approximation are
given by (14), (13) or (15) augmented by (17) and (18).

Remark 2. At a first glance the equation relating velocity to the time derivative of the displacement, which
in a single dimension can be written as

M ût = Sv̂ + LR(v̂
∗

R − v̂R)− LL(v̂
∗

L − v̂L), (20)

appears to be less efficient than traditional formulations with diagonal mass matrices. Indeed if use the
Legendre polynomials P0(z) = 1, P1(z) = z, . . ., as our basis, the N × N mass matrix M (on the reference
element) is a dense symmetric matrix with elements

Mi,j =















2
3 i = j = 1,

3i(i− 1) i = 2, 4, 6 . . . , j = i, i+ 2, i+ 4, . . . ,
3j(j − 1) j = 2, 4, 6 . . . , i = j, j + 2, j + 4, . . . ,

0 otherwise.

(21)

However, since M = S we always have that M−1Sv̂ = v̂. Further, a direct computation shows that the
symmetric pentadiagonal matrix A, with elements

Ai,j =



































3
2 i = j = 1,

(2i−1)
3((2i−1)2−22) i = j = 2, 3, . . . , N − 2

1
6(2i−3) i = j = N − 1, N,

− 1
6(2i+1) i = 2, 3, . . . , j = i + 2,

− 1
6(2j+1) j = 2, 3, . . . , i = j + 2,

0 otherwise,

(22)

is the inverse of M . Now, as the elements of the vectors (lift operators) LR and LL are (LR)i = 3/2(i− 1)i
and (LL)i = (−1)i+1(LR)i the vectors ALR and ALL take the simple form

ALR =















0
...
0
1/2
1/2















, ALL =















0
...
0

−1/2
1/2















. (23)
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Thus, the flux correction only affects the time evolution of the last two expansion coefficients and the compu-
tation of ût in simply an assignment plus four fused multiply adds independent of the order of approximation.
Similarly in higher dimensions the cost of computing ût is dominated by the cost of computing v̂t.

3.3. Numerical Fluxes

Let the discrete energy be defined as the sum over the energy contributions from each element

Eh(t) =
∑

j

∫

Ωj

2
∑

i=1

ρ

2
(vhi )

2 +Gh(∇~uh). (24)

Computing the time derivative of the energy on a single element Ωj we find that

dEh
j (t)

dt
=

∫

Ωj

2
∑

i=1

vhi ρ
∂vhi
∂t

+

2
∑

k=1

∂2uh
i

∂t∂xk

(

∂Gh

∂uh
i,k

)

. (25)

This integral can be transformed into an integral over the boundary of the element by using the variational
equations (14) and (15). Precisely, choosing ~φu = ~uh and ~φv = ~vh in (14) and (15) and adding those two
equations together we find

dEh
j (t)

dt
=

∫

∂Ωj

2
∑

i=1

vhi (~w
∗

i · ~n) +
2
∑

k=1

(

∂Gh

∂ui,k
(∇~uh)nk

)

(

v∗i − vhi
)

. (26)

Focusing on the contribution from a face Fl between two elements we follow standard notation and label
the current element by ”−” and the adjacent element by ”+”. Further, to make room for this notation we
suppress the superscript h. Then the contribution takes the form

∫

Fl

2
∑

i=1

[

v−i (~w
∗

i · ~n−) +

2
∑

k=1

(

∂G−

∂ui,k
(∇~u−)n−

k

)

(

v∗i − v−i
)

]

−
[

v+i (~w
∗

i · ~n−) +

2
∑

k=1

(

∂G+

∂ui,k
(∇~u+)n−

k

)

(

v∗i − v+i
)

]

, (27)

where we have used that ~n+ = −~n−.
We consider the parametrized flux

~w∗

i · ~n− =

2
∑

k=1

(

n−

k

(

αi
∂G+

∂ui,k
+ (1 − αi)

∂G−

∂ui,k

))

− βi

R
(v−i − v+i ), (28)

v∗i =
[

(1− αi)v
+
i + αiv

−

i

]

− τiR

2
∑

k=1

(

n−

k

(

∂G−

∂ui,k
− ∂G+

∂ui,k

))

, (29)

which yields the energy contribution

−
∫

Fl

2
∑

i=1

βi

R
(v−i − v+i )

2 + τiR
2
∑

k=1

(

n−

k

(

∂G−

∂ui,k
− ∂G+

∂ui,k

))2

. (30)

The method is thus dissipative when βi > 0, τi > 0 and conservative when βi = τi = 0. The choice of αi

is arbitrary; αi = 1/2 recovers the standard central flux and αi = 0 or αi = 1 recovers alternating fluxes.
An upwind like flux is obtained by the choice (αi, βi, τi) = (1/2, βi > 0, τi > 0).

We note that many authors use Riemann/Godunov fluxes [4, 6, 12, 13]. The forms above can only
reproduce such fluxes in the case where element normals coincide with coordinate directions. However,
Riemann/Godunov fluxes can be easily incorporated into our formulation by slightly generalizing (28)-(29)
to replace diag(βi), diag(τi) by nondiagonal matrices. However in our experiments here we stick to the
simpler forms.
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3.4. Boundary Conditions

In the case of homogenous boundary conditions we follow [1] and set the outside states on a physical
boundary as

v+i = v−i − 2γi

(

γiv
−

i + κiR

(

2
∑

k=1

n−

k

∂G−

∂ui,k

))

,

2
∑

k=1

n+
k

∂G+

∂ui,k
= −

2
∑

k=1

n−

k

∂G−

∂ui,k
+ 2κi

(

γiv
−

i + κiR

(

2
∑

k=1

n−

k

∂G−

∂ui,k

))

.

For the case of non homogenous Dirichlet boundary conditions, that is when γi = 1, κi = 0, and

∂ui

∂t
= di(x, y, t), (x, y) ∈ ∂S, i = 1, 2,

we simply set the outside state so that the average equals the boundary condition

v+i = di(x, y, t)− v−i ,

2
∑

k=1

n+
k

∂G+

∂ui,k
= −

2
∑

k=1

n−

k

∂G−

∂ui,k
.

If we want to impose a traction boundary condition, γi = 0, κi = 1, and

~n · ~Fi = Ti(x, y, t),

we set

v+i = v−i ,

2
∑

k=1

n+
k

∂G+

∂ui,k
= −Ti(x, y, t) +

2
∑

k=1

n−

k

∂G−

∂ui,k
.

4. Details of the Implementation

In this section we outline the implementation of the above method. The implementation is also available
as open source software at [2].

To approximate the solution on an element Ωj we first map the element to the reference element Ω̂ =
{(r, s) ∈ [−1, 1]2} and expand the solution components in a tensor product Chebyshev polynomial expansion.
For example we approximate

u1(x1(r, s), x2(r, s)) ≈ uh
1 (x1(r, s), x2(r, s)) =

qu
∑

l1=0

qu
∑

l2=0

(ûh
1 (t))l1,l2Tl1(r)Tl2(s), x1, x2 ∈ Ωj .

Here Tn(x) = cos(n arccos(x)).
We assume that the elements are either straight-sided quadrilaterals or curved-sided quadrilaterals.

Typically we use curved elements at the physical boundaries and straight-sided elements in the interior. We
assume we know the curves bounding the elements so that we can use a simple transfinite interpolation to
map the elements to the reference element. See Chapter 6 and Algorithm 98 in [22] for a comprehensive
description of the transfinite interpolation mapping.

To compute the element and face integrals we use a Legendre-Gauss-Lobatto rule of sufficiently high
degree. Typically we use qu + 6 quadrature points. The metric coefficients required to express derivatives
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with respect to the physical coordinates x1, x2 (via the chain rule) on the reference element are computed
using Fornberg’s finite difference formula algorithm weights.f at the quadrature points; see [23].

The resulting mass matrices are factored as a pre-computation using standard dense LAPACK routines.
The application of the stiffness matrices to the solutions vectors are computed using BLAS routines and the
element-wise linear systems of equations are solved using LAPACK as well.

Here the time evolution of the problem is done by the classic fourth order Runge-Kutta formulas but we
note that it would also be possible to evolve the equations using a Taylor series method of arbitrary order.

4.1. Comparison to Existing Methods

It is difficult to compare discretization techniques as there are many different aspects that influence what
is a “good method”. If the final goal is that the method should be used by practitioners, it is important that
it is stable and easy to understand and use. If on the other hand the goal is to maximize the efficiency then
it is important that the method comes with a very high computation to communication ratio and minimal
data transfer so that the method maximizes the utilization of current and future hardware.

As mentioned in the introduction, a wide variety of discontinuous Galerkin methods have been proposed
for simulating elastic waves. Most focus on the dG discretization in space, with time handled either by a
standard ODE solver, as in our case, or by the so-called ADER approach where a temporal Taylor series is
approximated via the transformation of time to spatial derivatives [6]. An exception are the space-time dG
methods [11, 12, 13]. Methods differ by using, as we do, displacements as basic variables [8, 9, 10, 12, 13],
or transforming to first-order form with velocity-stress [5, 6, 7] or velocity-strain [4] as basic variables. They
also differ by either conserving energy as in SIPG [9] and first order formulations with central fluxes [5]
or staggered meshes [7], or dissipating energy using upwind fluxes [4, 6, 8, 12, 13]. Our method allows
both energy-conserving and energy-dissipating fluxes, and we present experiments with both. However
our upwind flux differs from the Riemann/Godunov fluxes used in the references. Essentially all methods,
including ours, demonstrate optimal convergence of order q+1 if degree q polynomials are used to discretize
the basic variables, at least for some numerical experiments.

Comparing with other methods which use displacement variables, a strength of the proposed method in
comparision with interior penalty methods is that its stability does not require any grid dependent penalty
terms. Although an IPDG method typically will be stable if the penalty parameters are chosen large
enough, too large a penalty parameter will result in numerical stiffness and a consequent loss of efficiency.
Comparisons with the space-time methods are more complex as there are obvious differences in the grid
generation and time-stepping process. However it does seem that the weak formulations in [12] share some
similarities with ours.

The upwind methods that work with first order forms of the equations are also stable and have been
shown to be highly efficient when implemented on accelerators on both straight-sided and curved simplices
[24, 25]. In particular the low-storage curvilinear discontinuous Galerkin [25] by Warburton eliminates the
need to store a custom mass matrix on each curvilinear element by building element specific approximation
spaces based on a scaling by the square root of the element Jacobian. A potential drawback of our method is
that, due to the non-standard variational form we use, it may not be possible to construct such approximation
spaces, necessitating the storage of a custom lift matrix. (Our current implementation uses a custom mass
matrix, but as mentioned above this can be easily avoided.) This drawback can be partially offset by the
fewer variables that need to be stored when working with the equations in second order rather than first
order form.

5. Numerical Examples

In this section we assume that suitable scalings have been performed so that all quantities are dimen-
sionless. Throughout we also set the dimensionality constant R to have a numerical value of unity.
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5.1. Time-step Constraints and Scaling of the Upwind Flux for Large cp/cs
To experimentally investigate the time-step stability properties of the method we consider the unit square

discretized by square elements of size h × h. We enforce stress free boundary conditions (the results are
similar for Dirichlet boundary conditions) and explicitly construct the matrix, M , which maps the degrees
of freedom to their time derivatives. We restrict the presentation to the specific case qu = qv and central or
upwind fluxes. In addition the computational results we present in this example use µ = 1, ρ = 1 but as
the scaling below appears (based on observations from other numerical experiments not reported here) to
be valid for general µ and ρ we keep them as parameters in the expressions.

We estimate, Λmax, the eigenvalue of M with largest amplitude, by computing the largest eigenvalue of
M for a sequence of grids and then choosing the largest (scaled) value obtained in the sequence. In general,
we find that the change of the largest eigenvalue for the different grids is small.

Starting with the central flux we aim to find a scaling, S(qu, λ), of Λmax such that

hΛmax

S(qu, λ)
≈ constant. (31)

In Figure 1 we display plots of hΛmax versus S(qu, λ) and
hΛmax

S(qu,λ)
as a function of λ for qu = 2, . . . , 9 using

the empirically determined scaling

S(qu, λ) =

√

2µ+ λ

ρ
(qu + 3/2)2. (32)

We note that this is different than the typical scaling used for finite difference methods

S(qu, λ) =

√

3µ+ λ

ρ
,

or for the dG method by Wilcox et al.

S(q, λ) =

√

2µ+ λ

ρ
max(1, q2).

To leading order in q2u and λ the scalings are the same but (empirically) we have found that (32) is a good
model for our method.

Now for the upwind flux we have the freedom to choose the penalty parameters and the choice will have
an impact on the allowable time-step for large λ (or equivalently large cp/cs). In Figure 2 we plot the full
spectrum for a single grid keeping qu = 4 fixed (results for other choices of qu are similar) and varied λ =
1, 2, 4, . . . , 1024. We also use either the central flux or the upwind flux with τi = 1,

√
ρ/

√
2µ+ λ, ρ/(2µ+λ).

As can be seen the last choice for τi gives a method whose spectrum resembles the central flux method and
with a timestep that is limited by the eigenvalues along the imaginary axis. The first two choices for τi
result in spectra with real negative eigenvalues that limit the timestep.

Choosing τi =
ρ

2µ+λ we repeat the scaling experiment. The results, displayed in Figure 3, are similar to
those obtained with the central flux. Throughout the rest of the paper, when we refer to the upwind flux,
this choice with τi =

ρ
2µ+λ is what we mean.

In conclusion we have that the timestep stability limit appears to be well described by

∆t <
CFL · h

(qu + 3
2 )

2
√

2µ+λ
ρ

, (33)

where h refers, for example, to the smallest diameter of the elements and CFL depends on the time stepper.
We again note that the experiments are carried out for the specific case ρ = µ = 1 but that the above
expression, where we have left ρ,µ to be parameters, appears to hold for general ρ and µ. Roughly one
should require CFL · hΛmax/S(qu, λ) to be inside the stability region of the time stepper. For Runge-Kutta
we typically choose CFL ∼ 2 for meshes of reasonable quality.

11



10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

hΛmax

S
(q

u
,λ

)

10
0

10
1

10
2

10
3

10
4

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92
2
3
4
5
6
7
8
9

h
Λ
m
a
x
/
S
(q

u
,λ

)

λ

Figure 1: To the left we plot the quantity (32) as a function of the largest eigenvalue scaled by h for many different qu and λ.
As can be seen the curves for the different methods and material parameters collapse to a single curve with an almost constant
slope. To the right we plot the slope of that curve as a function of λ. The results are for the central flux.

5.2. Choice of Approximation Spaces and Flux

In this section we consider the impact of the choice of the degrees of the approximations spaces for the
displacement and velocity. We either choose qu = qv + 1 or qu = qv. We also investigate how the accuracy
of the method is affected by the choice of flux.

5.2.1. Harmonic Vibrations of the Unit Square

We first consider the harmonic vibration of the unit square with traction free boundary conditions. Then
a solution to the elastic wave equation is

u1(x1, x2, t) = cos(ωt) cos(πx1) sin(πx2), (34)

u2(x1, x2, t) = − cos(ωt) sin(πx1) cos(πx2), (35)

with ω =
√
2µ. Our mesh is a uniform discretization of the unit square split into smaller squares with

side-length h = 1/nsq, nsq = 2, 3, . . . , 20. We set µ = 1, λ = 1 and simulate until time t = π
2ω when we

measure the error. Here CFL is 0.1 to eliminate any temporal error effects. Note that we have reduced CFL
for accuracy rather than stability. The results of the computations are presented in Figure 4.

The reported error, e2,u, is the sum of the errors in the displacements made relative with the L2-norm
of the displacement at the initial time. Precisely we define

e2,u(t) =

(

∑2
i=1

∫

S

(

ui − uh
i

)2

∑2
i=1

∫

S
(ui(·, ·, 0))2

)

1
2

. (36)

Measured rates of convergence are reported in Tables 1 and 2. Here we use least squares and the data
points from the error graphs in Figure 4 to find the rates. The least squares fit is performed using errors
from the four finest grids. Note that for the highest order methods we excluded the portions of the curves
where the error saturated, i.e. for h . 1/10 for this problem.

The results displayed in the figures show relatively clean convergence with all the error curves bending
slightly downwards as the errors approach the asymptotic regime. For the case qu = qv + 1 the results in
Table 1 indicate that the rates of convergence are qu for both the central and upwind flux. The main outlier
is the case scheme C65 which has a higher rate. The left sub-figure also shows that the slopes are similar for
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Figure 2: The upper left plot displays the spectrum of the matrix M when using the central flux. The upper right, lower left
and lower right plots display the spectra of the matrix M when using and upwind flux with τi = 1,

√
ρ/

√
2µ+ λ, ρ/(2µ + λ)

respectively. Note that the range of the axis are different in the different plots. Also note that the last choice of τi yields a
spectrum which is similar to the spectrum when the central flux is used.

both fluxes and that the error levels are almost identical when qu is odd and that the upwind flux is more
accurate when qu is even.

If on the other hand the orders are chosen to be the same we find that the upwind methods with odd
qu = qv e.g. 3,5,7 appear to converge at a rate close to the optimal rate qu+1 but only at a rate approximately
qu when qu = qv is even; see Table 2. The schemes with a central flux on the other hand do not appear to
benefit at all from the extra degree of freedom for the velocities. In fact, the rates are only qu and qu − 1
when qu = qv is odd and even respectively. For all orders the upwind flux provides a more accurate answer.

Errors in the Velocity and Stress

For the upwind methods with odd qu = qv = 3, 5, 7 we also compute the errors in the velocity and in the
stress components ∂G

∂u1,1
and ∂G

∂u1,2
. The results, which can be found in Figure 5, indicate that the rates of

convergence in these quantities are sub-optimal appearing to asymptotically approach qu.

5.2.2. Forced Manufactured Method Solution on the Unit Square

Next we investigate the rates of convergence for non-homogenous problems. Again we consider the unit
square S = [0, 1]2 and impose Dirichlet conditions on the boundary. The initial data, boundary conditions
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Figure 3: To the left we plot the largest eigenvalue scaled by h for the time-stepping matrix against the quantity (32) for
different qu and λ. As can be seen the curves for the different methods and material parameters collapse to a single curve with
an almost constant slope. To the right we plot the slope of that curve as a function of λ. The results are for the upwind flux
with τi =

ρ
2µ+λ

.

Table 1: Harmonic Vibrations of the Unit Square: Estimated rates of convergence for central and upwind fluxes using qu = qv+1.

qu 2 3 4 5 6 7 8
C 2.23 3.05 4.29 4.99 7.12 6.81 7.46
U 2.14 2.93 4.28 4.98 6.20 6.76 8.66

Table 2: Harmonic Vibrations of the Unit Square. Estimated rates of convergence for central and upwind flux using qu = qv.

qu 2 3 4 5 6 7 8
C 1.01 2.95 2.99 4.95 4.97 6.96 7.61
U 1.99 4.00 4.00 5.80 5.98 7.90 8.49

and forcing of the governing equations are chosen so that the solution is

u1 = A1 cos(ωt) sin(kxx+ x0) sin(kyy + y0), (37)

u2 = A2 cos(ωt) sin(kxx+ x0) sin(kyy + y0), (38)

with A1 = 1, A2 = −1, kx = 2.5π, ky = 2π, x0 = 5, y0 = −10. Our mesh is a uniform discretization of the
unit square split into smaller squares with side-length h = 1/nsq, nsq = 2, 3, . . . , 20.

In our first experiment we set ω = 2π and simulate until time t = 1 with CFL = 0.1. The material
parameters are chosen to be constants, µ = 1, λ = 1.

The errors plotted as a function of the grid size h are displayed in Figure 6 and the rates of convergence
estimated using linear least squares are reported in Table 3 and 4. Again, the least squares fit is performed
using errors from the the four finest grids.

From the figures we see that the errors for the upwind flux behave similarly to the problem above but
that the central flux exhibits a longer pre-asymptotic regime where the errors behave in an unpredictable
manner. The tables again display that the rates for qu = qv = 3, 5, 7 are higher than qu but this time only
qu = qv = 3 appears to reach the optimal rate qu + 1. The methods qu = qv = 5, 7 appear to give a rate of
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Figure 4: Harmonic Vibrations of the unit square. Errors at the final time for the harmonic vibrations of the traction free unit
square. To the left qu = qv + 1 = 2, . . . , 8 with central and upwind flux. To the right qu = qv = 2, . . . , 8 with central and
upwind flux.

Table 3: Estimated rates of convergence using central or upwind flux for the manufactured solution example. Here we are using
qu = qv + 1 = 2, . . . , 8.

qu 2 3 4 5 6 7 8
C 2.02 3.57 4.84 6.93 6.42 8.27 5.92
U 2.69 4.09 4.35 5.27 5.99 7.51 8.27

Table 4: Estimated rates of convergence using central or upwind flux for the manufactured solution example. Here we are using
qu = qv = 2, . . . , 8.

qu 2 3 4 5 6 7 8
C 1.20 2.82 3.44 4.02 4.96 6.16 7.29
U 2.45 4.07 4.49 5.44 6.11 7.52 8.67

convergence closer to qu + 1/2. For this forced problem we also find that the upwind schemes with qu = qv
and qu = qv +1 behave more similarly with respect to rates of convergence as well as with respect to actual
error levels.

Although some methods appear to have optimal, or close to optimal rates the results are somewhat
surprising as both experiments and analysis for the scalar wave equation show optimal convergence for all
qu = qv + 1 and upwind fluxes [1].

5.2.3. A Comparison with a Summation by Parts Discretization

To see how our method compares to a high order finite difference scheme we repeat example 5.2.1 from
[15]. The initial data, forcing and boundary conditions are chosen as in §5.2.2 with all the parameters
the same except for λ, which is now taken to be 100. The computational domain is again the unit square
S = [0, 1]2 and we impose (non-homogenous) traction boundary conditions on all sides.

As in [15] we solve until time 2 on a sequence of four uniform grids refined by a factor of two between
each level. We present results for the upwind flux and with qu = qv = 3 and 5 and with CFL=2.5. In [15]
the coarsest grid has 25 elements in each direction so in order to match the number of degrees of freedom
we use 4 elements for qu = 5 and 6 elements for qu = 3 (note that 4× (5 + 1) = 6× (3 + 1) = 24 ≈ 25.)
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Figure 5: From the top right the sum of the L2 errors in the displacements, the sum of the L2 errors in the velocities, L2 errors
in ∂G

∂u1,1
and L2 errors in ∂G

∂u1,2
. The results are for qu = qv = 3, 5, 7 and the dashed line have slopes 4, 6 and 8 in the top

right figure and 3, 5 and 7 in the other figures.

The errors as a function of time are displayed in Figure 7 for the four different grids and for the two
choices for qu. Comparing with Figure 1 in [15] we note that our method yields about one order of magnitude
better results at fourth order. Our method with qu = 5 is almost two orders of magnitude better than the
”sixth order method” of [15], probably because their global order of accuracy is, in fact, only 5 (as is also
noted in [15]). It is also worth noting that the error grows very slowly with time, significantly slower than
the fourth order method of [15].

In Table 5 we present the errors at the final time and computed rates of convergence. Note that we
now observe the optimal rate of convergence qu + 1. This is surprising as the only difference between this
experiment is that we now impose the traction and not the velocity on the boundary. Comparing the results
in the table with Table 1 in [15] we see again that for the same number of degrees of freedom we observe
smaller errors than for the SBP-SAT discretization of [15].

Above we compared the results based on the number of degrees of freedom and it should be pointed out
that our methods take ∼ 1.6 and 2.2 times smaller time steps compared to the methods in example 5.2.1 in
[15].
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Figure 6: Manufactured Solution: To the left qu = qv+1 = 2, . . . , 8 with central and upwind flux. To the right qu = qv = 2, . . . , 8
with central and upwind flux.

Table 5: Example from [15]: Errors at time 2 for different grids and orders of approximation

h error qu = 3 rate h error qu = 5 rate
1/6 3.55(-3) 1/4 8.92(-4)
1/12 1.77(-4) 4.32 1/8 8.12(-6) 6.78
1/24 1.09(-5) 4.02 1/16 1.11(-7) 6.19
1/48 6.79(-7) 4.01 1/32 1.78(-9) 5.97

5.2.4. Harmonic Vibrations of an Annulus

This example is inspired by example 6.4 in [26]. We consider the harmonic oscillations of the radially
symmetric mode

ur(r) = cos(ωkt) [J1(αkt) +BkY1(αkr)] , (39)

in an annulus with inner radius ri = 1/2 and outer radius ro = 1. The constants αk, Bk are determined
by the boundary conditions, which we take to be homogenous Dirichlet boundary condition on the inner
boundary and homogenous traction on the outer boundary. We consider two cases λ = 100, k = 1 and
λ = 1, k = 5. These correspond to constants α1 = 3.578028273880645 and B1 = 2.524281875355463 for the
first case and α5 = 28.28892419267416, B5 = 1.069885069032360 for the second case.

We solve on a sequence of structured grids defined by the grid points

xkl = ri cos(k
2π

nΘ
) +

l

nr
(ro − ri) cos(k

2π

nΘ
),

ykl = ri sin(k
2π

nΘ
) +

l

nr
(ro − ri) sin(k

2π

nΘ
),

k = 0, . . . , nΘ, l = 0, . . . , nr, nr = nΘ/4.

To make the element next to the boundary conform with it we use a transfinite interpolation and over-
integrate using tensor product LGL quadrature. The metric terms at the quadrature points are computed
using a high order finite difference approximation; see [23] (see also the description in §4). In this experiment
we take CFL to be equal to 1 and choose nΘ = 32, 36, . . . , 60 when λ = 1 and nΘ = 20, 24, . . . , 40 when
λ = 100.
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Figure 7: Errors as a function of time for the example from [15]. To the left qu = 3, to the right qu = 5. Note that the axis are
adjusted to coincide with Figure 1 in [15].

The solution is a pure pressure wave so α2
k = ρω2

k/(2µ + λ). To measure the error in the solution we
solve until time t = 5π

2ωk
(2.5 periods) at which time the exact solution is identically zero. The errors are

reported as in the previous examples, i.e. as L2 errors made relative with the solution at the initial time,
see equation (36).

Table 6: Harmonic oscillations of an annulus with λ = 1, µ = 1, ρ = 1. Estimated rates of convergence for central and upwind
flux using qu = qv and qu = qv + 1. Here h is taken to be the square root of the area of the element with the smallest area.

qu = qv 2 3 4 5 6 7
C 2.34 3.00 3.62 5.37 8.61 6.79
U 2.91 4.44 4.45 6.70 7.00 8.62

qu = qv + 1 2 3 4 5 6 7
C 1.96 6.32 4.83 7.21 6.69 9.86
U 2.86 4.30 3.97 6.42 6.65 8.55

The results, displayed in Figure 8 and Table 6 and 7, again give somewhat varying estimates for the rates
of convergence (the rates of convergence are obtained from a least squares fit of the four last data-points).
Focusing on the figure it is however clear that the upwind flux gives much steadier rates of convergence.
It also appears as the rates are better for higher order methods and that the upwind flux gives rates of
convergence greater than qu for almost all cases.

Based on these and the above results we conclude that the upwind flux with qu = qv and odd results
in methods with robust and observed optimal or close to optimal convergence rates. To this end we will
present results below for an upwind flux and qu = qv.

5.3. Exact Solutions

In this section we perform due diligence and demonstrate the performance of our method on known
analytic and semi-analytic solutions to the elastic wave equation in simple geometries.

5.3.1. Rayleigh Wave

Perhaps the most well known wave supported by the elastic wave equation is the Rayleigh surface wave.
This wave travels along a traction-free surface and decays exponentially in the normal direction from the
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Figure 8: Harmonic oscillations of an annulus with λ = 1, µ = 1, ρ = 1 (top two figures) and λ = 100, µ = 1, ρ = 1 (bottom
two). To the left qu = qv +1 = 1, . . . , 7 with central and upwind flux. To the right qu = qv = 1, . . . , 7 with central and upwind
flux. The notation in the legend refers to the flux used and the degree of the elements, e.g. U21 refers to upwind flux with
qu = 2, qv = 1.

surface. The decay of the wave increases as the ratio λ
µ increases and this has been observed to lead to

difficulties for some numerical approximations; see [14]. Following the example in Section 5.4 of [14] we
consider an isentropic solid with density ρ = 1 in x1 > 0 and with a traction free surface at x1 = 0. Then
the Rayleigh wave can be written

~u = e−ωx1

√
1−ξ2

(

cos(ω(x2 + crt))
√

1− ξ2 sin(ω(x2 + crt))

)

+

(

ξ2

2
− 1

)

e−ωx1

√

1− ξ2µ
2µ+λ

(

cos(ω(x2 + crt))

sin(ω(x2 + crt)/
√

1− ξ2µ
2µ+λ )

)

.

Here cr = ξ
√
µ is the Rayleigh phase velocity and ξ is a solution of the dispersion equation

√

1− ξ2

√

1− ξ2µ

2µ+ λ
−
(

ξ2

2
− 1

)2

= 0. (40)

As in [14] we fix λ = 1 and vary µ. We compute solutions in the rectangular domain (x1, x2) ∈
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Table 7: Harmonic oscillations of an annulus with λ = 100, µ = 1, ρ = 1. Estimated rates of convergence for central and
upwind flux using qu = qv and qu = qv + 1.

qu = qv 2 3 4 5 6 7
C 4.00 2.84 4.17 6.11 6.64 6.44
U 1.94 3.94 4.15 6.38 6.39 8.33

qu = qv + 1 2 3 4 5 6 7
C 2.26 3.42 4.26 8.40 5.95 8.66
U 2.07 4.44 5.65 7.82 6.44 8.59

[0, 10]× [0, 1] and choose ω = 2π so that the domain contains exactly one wavelength in the direction along
the surface. The computational domain is discretized into square elements of size 1/N . To compare to the
results in [14] we introduce the degrees of freedom per wavelength as

Pr = N(qu + 1). (41)

We impose free surface conditions at the surface x1 = 0 and use the exact solution as forcing to set
Dirichlet conditions (for the velocity) on all other boundaries.
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Figure 9: Rayleigh Wave: Max errors as a function of time when λ = 1, µ = 0.01 for 20, 40, and 80 degrees of freedom per
wavelength. To the left qu = 3. To the right qu = 9.

Following [14] we first take µ = 0.01 and solve until time 20. We use the upwind flux, qu = qv and
CFL = 0.5 for qu = 9 and CFL = 1.0 for qu = 3. In Figure 9 we present results displaying the maximum
error as a function of time. To the left in Figure 9 the results with qu = 3 are displayed and to the right the
results with qu = 9. The number of elements in the x2-direction, 5, 10 and 20 and 2, 4 and 8 respectively,
were chosen to match the number of points per wavelength used in [14]. Comparing the results to Figure
4 in [14] we note that unlike [14] we do not see any significant growth in time of the error. Also, the error
levels are a bit lower for qu = 3 compared to [14] while the results with qu = 9 are significantly better.

Kreiss and Petersson [18] studied the Rayleigh wave in the incompressible limit µ/λ → 0 using normal
modes and modified equation techniques. The main result is that the classical Kreiss-Oliger points per
wavelength theory for finite difference methods [17] is inadequate for predicting the number of points per
wavelength required when propagating surface waves. Kreiss and Petersson found that to meet a pre-
determined tolerance in the error of the Rayleigh phase velocity the number of points per wavelength for
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a pth order finite difference method must scale as ∼ (λ/µ)1/p. These results have also been confirmed by
finite difference simulations in [14, 15].

We repeat the second experiment in [14] where the influence of the ratio of λ/µ is studied. The problem
setup is the same as above with the exception that µ is set to 1, 0.1, 0.01, 0.001, 0.0001 (again λ = 1 is fixed)
and that the final time is one period (which depends on µ).
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Figure 10: Rayleigh Wave: Max-error as a function of number of degrees of freedom, Pr , for different values of µ and different
qu = qv. Unlike the results reported in [14, 15] we do not experience any significant degratation in the performance of the
method when λ/µ → ∞.

We again perform simulations with the upwind flux and with qu = qv = 2, 3, 5. The constant CFL is
taken to be 0.5. The results are displayed in Figure 10. As in [14] we report the maximum error at the final
time as a function of number of degrees of freedom, Pr, for different values of µ. As can be seen in the figure
our method does not appear to suffer from any significant degradation in performance as λ/µ → ∞.

We have not yet carried out a theoretical dispersion analysis of our method but we suspect that this
excellent propagation of the surface waves can be explained by the superconvergence of the dispersion errors.
Precisely we suspect, as for other dG methods (see for example [19]), that the dispersion errors converge at
a rate about twice the degree of the polynomial approximation space.
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5.3.2. Lamb Wave

As another test of the free surface conditions we consider a rectangular waveguide occupying (x1, x2) ∈
[−∞,∞]× [−d/2, d/2] with free surface conditions at x2 = ±d/2. Such a waveguide supports Lamb waves.
Following Wilcox et al. [4] we consider the symmetric Lamb wave

u1(x1, x2, t) = (−kB1 cos(px2)− qB2 cos(qx2)) sin(kx1 − ωt),

u2(x1, x2, t) = (−pB1 sin(px2) + kB2 sin(qx2)) cos(kx1 − ωt),

where the parameters p and q are defined as

p2 =
ω2

2µ+ λ
− k2, q2 =

ω2

µ
− k2,

and the wavenumber k and frequency ω are related through the dispersion relation

tan(qd)

tan(pd)
+

4k2pq

(q2 − k2)2
= 0.

The amplitudes B1 and B2 are unique up to a scaling constant and their ratio satisfies:

B1

B2
=

2µkq cos(qd)

(λk2 + (2µ+ λ)p2) cos(pd)
.
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Figure 11: The Lamb wave problem. Squares represent central flux and stars the upwind flux. Both methods use qu = qv.

As in [4] we consider the computational domain (x1, x2) ∈ [−1, 1] × [−1/2, 1/2], i.e. d = 1/2, and a
wavenumber k = 2π. We set the material parameters (λ, µ, ρ) = (2, 1, 1), which leads to ω = 13.137063197233.
The amplitudes are set to B1 = 126.1992721468, B2 = 53.88807700007.

We discretize the domain with a uniform grid with 8 × 4 square elements, set CFL = 2.5, and impose
Dirichlet conditions on the left and right ends of the domain x1 = ±1. We solve until time t = 1 with
qu = qv and either the upwind or central flux. The results, presented in Figure 11, display the spectral
accuracy of the methods. Note that as above the upwind flux gives a monotone and robust convergence
while the central flux appears to converge in steps of 2-increments with qu.
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5.3.3. Mode Conversion at an Interface

Next we consider an example with piecewise constant material properties consisting of the mode conver-
sion of an incoming P-wave impinging on the interface x2 = 0. Let the interface x2 separate two domains
with material properties (λa, µa, ρa) and (λb, µb, ρb). Then the angles of the incoming (plane) P-wave, αip,
the reflected P and S-wave, αrp, αrs, and the transmitted P and S-wave, αtp, αts (defined as in Figure 12)
obey Snell’s law:

sinαip

cap
=

sinαrp

cap
=

sinαrs

cas
=

sinαtp

cbp
=

sinαts

cbs
,

Here c2ap = (2µa + λa)/ρa, c
2
bp = (2µb + λb)/ρb, c

2
as = µa/ρa, c

2
bs = µb/ρb.

λa, µa, ρa

λb, µb, ρb

αip αrp

αrs

αtp

αts

Figure 12: Snell’s law for an incoming P-wave.

We may separate the solutions in the upper and lower part of the domain as

~ua = ~uip + ~urp + ~urs,

~ub = ~utp + ~uts,

where

~uip = Aip

[

sin(αip)
− cos(αip)

]

cos (kap [x1 sin(αip)− x2 cos(αip)]− ωt) ,

~urp = Arp

[

sin(αrp)
cos(αrp)

]

cos (kap [x1 sin(αrp) + x2 cos(αrp)]− ωt) ,

~urs = Ars

[

cos(αrs)
− sin(αrs)

]

cos (kas [x1 sin(αrs) + x2 cos(αrs)]− ωt) ,

~utp = Atp

[

sin(αtp)
− cos(αtp)

]

cos (kbp [x1 sin(αtp)− x2 cos(αtp)]− ωt) ,

~uts = Ats

[

cos(αts)
sin(αts)

]

cos (kbs [x1 sin(αts)− x2 cos(αts)]− ωt) .

The wave numbers kap, kas, kbp, kbs are given by

kap =
ω

cap
, kas =

ω

cas
, kbp =

ω

cbp
, kbs =

ω

cbs
.

Now, if we prescribe the material parameters, the incoming angle, and the amplitude and angular
frequency of the incoming P-wave, we can obtain the amplitudes of the reflected and transmitted waves
by requiring that the total wave fields in domains a and b satisfy the interface conditions:

~ua = ~ub, x2 = 0, (42)
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(2µa + λa)
∂u2a

∂x2
+ λa

∂u1a

∂x1
= (2µb + λb)

∂u2b

∂x2
+ λb

∂u1b

∂x1
, x2 = 0, (43)

µa

(

∂u1a

∂x2
+

∂u2a

∂x1

)

= µb

(

∂u1b

∂x2
+

∂u2b

∂x1

)

, x2 = 0. (44)

To demonstrate the performance of our method for problems with discontinuous media we consider the
problem defined by the parameters: αip = π/3, ω = 2π, Aip = 1, (λa, µa, ρa) = (3, 2, 1) and (λb, µb, ρb) =
(1, 1, 1).
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Figure 13: Errors as a function of time for the mode conversion example. To the left the results with qu = 3 correspond to
solid lines and qu = 5 to dashed lines. To the right the results with qu = 7 correspond to solid lines and qu = 9 to dashed lines.
The labels refer to the number of elements used in the x1 direction.

We solve on the domain (x1, x2) ∈ [−1, 1]× [−2, 2] using the upwind flux and with qu = qv = 3, 5, 7, 9.
We set CFL = 0.5 and record the error (36) as a function of time. The mesh consists of squares of size 2/N .

In Figure 13 we display the errors as a function of time for the different choices of qu and for different
N . We note that the high order methods give very accurate results even for a very coarse discretization.

In Table 8 we report the errors at the final time and rates of convergence for the different choices of qu
and the different grids. The rates of convergence appear to be consistently greater than qu.

Table 8: Errors and convergence rates for the mode conversion example.

qu = 3, N e2,u(t = 10) rate qu = 5, N e2,u(t = 10) rate
16 3.35e-03 - 8 2.63e-04 -
32 7.02e-05 5.58 16 2.84e-06 6.54
64 2.66e-06 4.72 32 5.57e-08 5.67

qu = 7, N e2,u(t = 10) rate qu = 9, N e2,u(t = 10) rate
4 2.48e-04 - 4 5.30e-06 -
8 1.41e-06 7.46 8 8.64e-09 9.26
16 7.12e-09 7.63 16 1.25e-11 9.43

5.3.4. Stoneley Wave

The Stoneley wave, [27], exists at an interface between two solids and is similar to the Rayleigh wave in
that it decays exponentially away from the interface. To demonstrate the spectral accuracy (with increasing
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qu) of our solver we evolve the Stonely wave used in the example from Section 6.6 in [4] at an interface x2 = 0.
The material parameters for x2 > 0 are (λ1, µ1, ρ1) = (3, 3, 10) and for x2 < 0 they are (λ1, µ1, ρ1) = (1, 1, 1).
With this setup the Stoneley wave takes the form

u1(x1, x2, t) = ℜ
[

(

ikB1e
−kb1px2 + kb1sB2e

−kb1sx2
)

ei(kx1−ωt)
]

, x2 > 0,

u2(x1, x2, t) = ℜ
[

(

−kb1pB1e
−kb1px2 + ikB2e

−kb1sx2
)

ei(kx1−ωt)
]

, x2 > 0,

u1(x1, x2, t) = ℜ
[

(

ikB3e
kb2px2 − kb2sB4e

kb2sx2
)

ei(kx1−ωt)
]

, x2 < 0,

u2(x1, x2, t) = ℜ
[

(

kb2pB3e
kb2px2 + ikB4e

kb2sx2
)

ei(kx1−ωt)
]

, x2 < 0.

Here

k =
ω

cst
, blp =

√

1− c2st
(2µl + λl)/ρl

, bls =

√

1− c2st
µl/ρl

, l = 1, 2,

and cst is the Stoneley wave speed. It is determined by an algebraic solvability condition derived from the
interface conditions (see [4, 27]) and depending on the material parameters. For the material parameters
above cst = 0.546981324213884. Once cst has been determined the amplitudes B1, B2, B3, B4 follow (up to
a scaling with a constant.) As in [4] we set them to be B1 = −i0.2952173626624, B2 = −0.6798795208473,
B3 = i0.5220044931212, and B4 = −0.9339639688697. Finally, we set ω = cst.
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Figure 14: This plot of error versus element order illustrates the spectral convergence of them method when applied to the
Stoneley wave also considered in [4].

The computational domain is chosen as in [4], (x1, x2) ∈ [−1, 1] × [−20, 20] and we impose the exact
solution via Dirichlet conditions on all boundaries. We use an upwind flux with qu = qv and set CFL = 2.5
and solve until time 1. The results, found in Figure 14, clearly demonstrate the spectral convergence of the
method with increasing qu.

5.3.5. A Singular Source Problem

As an example with a singular source term we solve a variation of Lamb’s problem. We consider a half
space x2 ≤ 0 with a free surface at x2 = 0 and a point force at x1 = 0 and directed downward. The time
dependence of the forcing is

s(t) = −2(t− 2)π2e−π2(t−2)2 .

Using methods with qu = qv = 3, 5 and 7 and the upwind flux we evolve the solution until time 10 with
CFL = 2. The discretization of the delta function follows directly from the properties of the delta function.
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We record the solution on the surface at x1 = 5 and compare the results to the semi-exact solution obtained
by EX2DDIR by Berg and If. In Figure 15 we display the L2 error in time at the receiver for a sequence of
grids with square elements. As can be seen in the figure the errors asymptote to the rates of convergence 4,
6, and 8.
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Figure 15: L2-errors in time for the points source problem as a function of the grid size. The dashed asymptotes correspond
to rates of convergence 4,6 and 8. The red stars, black circles and blue triangles correspond to methods with qu = qv = 3, 5
and 7 and upwind flux.

Remark 3. Before moving on to the applications we note that the convergence rates we observe above does
vary depending on the choice of numerical flux as well as the degree of the polynomial. Comparing the
examples we also note that optimal order of accuracy at a rate qu + 1 is achieved when qu = qv and odd
together with the upwind flux and homogenous traction or Dirichlet boundary conditions or non-homogenous
traction boundary conditions. With non-homogenous Dirichlet conditions we observe a decrease in the rate
of convergence by one half to qu + 1/2. For best efficiency we thus recommend using the upwind flux and
odd and equal degrees for the velocities and displacements.

5.4. Applications

In this section we present two more practical applications of our method. The first problem is taken from
the textbook by LeVeque, [28]. In the second application we consider how the uncertainty in the geometry
of a pipe composed of two slightly non-concentric circles is propagated to quantities of interest, QOI.

5.4.1. Le Veque’s Stiff Inclusion Problem

As a first application example we repeat Example 22.3 from [28]. A rectangular elastic slab (x1, x2) ∈
[0, 2] × [0, 1] with λ = 2 and µ = 1 has a stiff inclusion, (x1, x2) ∈ [0.5, 1.5] × [0.4, 0.6], with λ = 200 and
µ = 100. The density is ρ = 1 throughout. The slab is initially at rest and the problem is forced through
the left boundary, x1 = 0, where we impose the Dirichlet boundary condition for the velocities

v1(0, x2, t) =

{

sin(πt/0.025) if t < 0.025,
0 if t ≥ 0.025,

v2(0, x1, t).

The three remaining sides of the slab are taken to be free of traction.
The solution is evolved until time t = 0.4 using qu = qv = 15 and the upwind flux. The grid is Cartesian

with elements of size 1/20× 1/20. In Figure 16 we display |(~F1)2| and |(~F1)1 + (~F2)2| at times 0.324 (left)
and 0.4 (right). As in [28] we use a nonlinear color scale (most likely not the same) to emphasize the features
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Figure 16: Example from LeVeque. Top: |(~F1)2| at times 0.324 (left) and 0.4 (right). Bottom: |(~F1)1 + (~F2)2| at times 0.324
(left) and 0.4 (right). Note that the color scale is nonlinear.

of the solution. The results appear to agree well with Figure 22.5 in [28]. To estimate the error we repeat
the computation with qu = 13 and compare the solutions at the final time. The errors in u1 and u2 made
relative with their maximum amplitudes at the final time are displayed in Figure 17. The largest point-wise
errors are on the order of 0.1% and a bit larger than expected. It may be that this is can be attributed to
the lack of smoothness in the time dependent forcing, which is continuous but not differentiable at the time
instances when it turns on and off.

Figure 17: Pointwise errors relative to a reference solution in u1 to the left and u2 to the right.

5.4.2. Non Destructive Testing and Uncertainty Quantification

In this example we consider a pipe whose outer wall is a circle of radius 1 and centered at (x1, x2) = (0, 0)
and with an inner wall being a circle of radius 1/2. The center of the inner circle is (x1, x2) = (−0.05 +
0.1Xc, 0) where Xc is a uniformly distributed random variable, Xc ∈ U(0, 1).
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Figure 18: Sketch of the non-destructive testing of a pipe.
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Figure 19: Typical grids used in the UQ example.

The pipe is initially at rest and we force the problem by prescribing a boundary forcing centered at the
angle π/4; see Figure 18. Precisely we set:

~n · ~F1 = cos(θ)sNDT(x1, x2, t),

~n · ~F2 = sin(θ)sNDT(x1, x2, t),

where

sNDT(x1, x2, t) = e−(θ−
π
4
)/0.25)2

(

1−
(

t− τ

σ

)2
)

e−
1
2 (

t−τ
σ )2 .

Here we choose σ = 1/10, τ = 0.75. The pipe is clamped at the inner boundary, i.e. the displacement is
zero.

Let un(θ, t) be the outward normal component of the displacement at the outer boundary and at an
angle θ. We consider four (normalized) QOIs: Qi(Xc) = Q̂i(Xc)/Q̂i(0), i = 1, . . . , 4,

Q̂1(Xc) =

∫ T

0

∫ 2π

0

un(θ, t,Xc)dθdt, (45)

Q̂2(Xc) =

∫ T

0

un(
π

4
, t,Xc)dθ, (46)

Q̂3(Xc) = un(
π

4
, T,Xc), (47)

Q̂4(Xc) =

∫ 2π

0

un(θ, T,Xc)dθ. (48)
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To compute approximations to the expected values of the QOIs we use stochastic collocation; see e.g. [29].
Here we expand un(θ, t,Xc) in a basis consisting of Lagrange interpolating polynomials defined by the
Clenshaw-Curtis nodes zl = (1 + cos( lπ

NCC
))/2, l = 0, . . . , NCC. This allows us to approximate, e.g.,

E(Q̂1(Xc)) ≡
∫ 1

0

Q̂1(Xc)dXc ≈
NCC
∑

l=0

wlQ̂1(zl). (49)

Here wl are the Clenshaw-Curtis weights associated with the nodes zl. The integrals in the above formulas
are computed using the trapezoidal rule.

As the Clenshaw-Curtis nodes are nested we can use the the finest grid as a reference solution and then
inspect how the convergence of the expected values depends on the order of the numerical method as well
as the number of samples in the stochastic collocation. As described in [29] the rate of convergence of a
stochastic collocation method depends on the quadrature rule, the numerical method and the smoothness of
the solution with respect to the probability space. The paper [29] presents a rather complete characterization
of how the smoothness of the solution to the scalar wave equation depends on uncertainties in the material
coefficients for different initial data.

The examples and theory developed in [29] are motivated by applications in seismology and exploration
where the material parameters in the ground are uncertain. The example we present here can be thought of
as an example arising in non-destructive testing where the material parameters are typically well known but
the internal geometry could perhaps be known only with certain precision (for example due to manufacturing
tolerances). We note that in non-destructive testing the end goal is often to find out if there are imperfections
or defects inside the object. This type of problem could also be treated with our method but is beyond the
scope of this paper.

To assess the convergence of the expected values we perform NCC + 1 computations for the different
locations of the interior circle. Each of the NCC + 1 realizations requires its own grid which we generate
automatically using the grid generator GMSH [30]. Typically the grids are of high quality, see the two
leftmost grids in Figure 19, but occasionally the elements are somewhat deformed, as in the grid to the right
in Figure 19. The handling of the curved elements is described in §4.

We choose NCC = 28 and compute solutions at time T = 5 using qu = qv = 3, 5, 7, 9 and using the
upwind flux with CFL = 0.5. The computed expected values of the three different QOI using NCC = 28 can
be found in Table 9. As can be seen the QOIs converge with increasing order.

Using the computation with qu = 9 as a reference value we then compute errors for all the nested levels
of the Clenshaw-Curtis nodes. The results are displayed in Figure 20. It is clear that the convergence of
the expected values depends on the number of quadrature points used as well as on the discretization. The
results for all the QOIs are improved with increased order but the jumps in the error levels are somewhat
different. The principal difference between the QOIs is whether or not they are integrated in space and/or
in time. A careful study of the smoothing properties of the integrals and the numerical errors associated
with their approximation, following the ideas in [29], is a topic for future study.

Table 9: Expected values for the four different QOI for different qu = qv using the full set of Clenshaw-Curtis nodes.

qu E(Q̂1) E(Q̂2) E(Q̂3) E(Q̂4)
3 0.7593239 0.9148653 0.76725 -0.21405469
5 0.7577141 0.9183187 0.77871 -0.23945853
7 0.7577082 0.9185063 0.77758 -0.23951380
9 0.7577076 0.9185057 0.77761 -0.23951366
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Figure 20: Relative errors in the expected values of the different QOIs as a function of the number of quadrature points and
for different qu.

6. Summary

In summary, we have presented an application of our general formulation [1] to the elastic wave equation.
The resulting semi-discrete method is of arbitrary order of accuracy and either conserves or dissipates the
elastic energy, depending on the choice of flux.

We investigated how the choice of approximation spaces and fluxes impacts the observed order of accu-
racy. The best (and most robust) order of convergence is obtained when the upwind flux is used and when
the degrees of the polynomials used to approximate the velocity and displacement are the same.

The accuracy and spectral properties of the spatial discretization were demonstrated on a sequence of
problems containing both manufactured and exact solutions. Two more realistic applications of the method
were also presented.

Finally, our current implementation of the method is freely available at [2]; we encourage the reader to
try it out.
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[26] D. Appelö, J. W. Banks, W. D. Henshaw, D. W. Schwendeman, Numerical methods for solid mechanics on overlapping

grids: Linear elasticity, Journal of Computational Physics 231 (18) (2012) 6012–6050.
[27] R. Stoneley, Elastic waves at the surface of separation of two solids, Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences 106 (738) (1924) 416–428.
[28] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002.
[29] M. Motamed, F. Nobile, R. Tempone, A stochastic collocation method for the second order wave equation with a discon-

tinuous random speed, Numerische Mathematik 123 (3) (2013) 493–536.
[30] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities,

International Journal for Numerical Methods in Engineering 79 (11) (2009) 1309–1331.

31


	Introduction
	The Elastic Wave Equation
	The Energy and Energy Derivative

	An Energy Based dG Method for the Elastic Wave Equation
	A Variational Formulation Based on the Energy
	Invariants of the Elastic Energy
	Numerical Fluxes
	Boundary Conditions

	Details of the Implementation
	Comparison to Existing Methods

	Numerical Examples
	Time-step Constraints and Scaling of the Upwind Flux for Large cp/cs 
	Choice of Approximation Spaces and Flux
	Harmonic Vibrations of the Unit Square
	Forced Manufactured Method Solution on the Unit Square
	A Comparison with a Summation by Parts Discretization
	Harmonic Vibrations of an Annulus

	Exact Solutions
	Rayleigh Wave
	Lamb Wave
	Mode Conversion at an Interface
	Stoneley Wave
	A Singular Source Problem

	Applications
	Le Veque's Stiff Inclusion Problem
	Non Destructive Testing and Uncertainty Quantification


	Summary
	Acknowledgement

