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Abstract

A new class of Hermite methods for solving nonlinear conservation

laws is presented. While preserving the high order spatial accuracy for

smooth solutions in the existing Hermite methods, the new methods

come with better stability properties. Artificial viscosity in the form

of the entropy viscosity method is added to capture shocks.
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1 Introduction

Conservation laws model physical systems arising in traffic flows, aircraft
design, weather forecast, and fluid dynamics. Numerical methods for con-
servation laws ideally conserve quantities like mass or energy, and accurately
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capture various physical components of the solutions, from small smooth
scales to shock waves. The presence of both smooth waves and shock waves,
for example in shock-turbulence interaction creates a challenge to the simu-
lation of nonlinear conservation laws.

Shock waves typically appear in solutions to nonlinear conservation laws,
and are characterized by very thin regions where the solution changes rapidly.
Approximation of shocks and small waves is challenging as the small and large
scales need to be solved simultaneously. Historically, low order finite volume
and finite difference methods equipped with flux/slope limiters have been
used to handle shocks, see for example the textbooks [16, 15]. The drawback
with low order methods is that they cannot accurately propagate small scales
over long distances and as a result, today the research focus has gravitated
towards high order accurate methods with shock capturing capability.

Among high order methods, the weighted essentially non-oscillatory (WENO)
method, [23, 22, 17], has proven to be a method popular among practition-
ers. WENO methods are still relatively dissipative which may be a drawback
for turbulent simulations, [18]. Also, discontinuous Galerkin methods com-
bined with shock capturing, [5, 14], or selectively added artificial viscosity,
[20, 12, 26], have received significant interest. The latter approach traces back
to the artificial viscosity method by Neumann and Richtmyer, [19] and the
popular streamline diffusion method, [3, 11], which computes the viscosity
based on the residual of the PDE.

In this work, we advocate the combination of a high order method and
selectively added artificial viscosity. Specifically, we show how the entropy
viscosity by Guermond and Pasquetti, [7], can be implemented in our new
flux-conservative Hermite methods.

First introduced by Goodrich, Hagstrom, and Lorenz in [6] for hyperbolic
initial-boundary value problems, Hermite methods use the solution and its
first m derivatives in each coordinate to construct an approximate solution
to the PDE. The formulation by Goodrich et al. computes the flux at the
cell centers, which for nonlinear problems leads to discontinuous fluxes at cell
interfaces. This discontinuity results in lost of conservation.

To address the lack of conservation, we develop a new class of Hermite
methods, which share the basic features with the method in [6], such as in-
terpolation and time evolution, but differs in the computation of the flux
function. In the flux-conservative Hermite methods, the numerical flux is
computed at cell edges and then interpolated to cell center for time evolu-
tion, hence by construction, the numerical flux is continuous at cell interface.
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Additionally, for nonlinear problems, it is more efficient to use one step meth-
ods than the Taylor series approach in [6], see [9, 10]. Here we will use the
standard Runge-Kutta method to evolve in time.

The rest of the paper is organized as follows. In Section 2, we derive
conservation laws and discrete conservation. Then, in Section 3, we de-
scribe Hermite methods as first introduced by Goodrich et al. [6], followed
by the description of the flux-conservative Hermite methods in Section 3.2.
For shock capturing capability, we implement the entropy viscosity method,
which is explained in Section 4. In Section 5, we present the results of simu-
lation on Euler’s equations, see [13] for results on Burgers’ equation.

2 Conservation Laws

A scalar conservation law in one space dimension takes the form

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, (1)

where u(x, t) is the state variable at location x and time t and f(u) is the
flux, or the rate of flow, of the state variable u.

The derivation of conservation laws comes from the observation that at
any given time t, the rate of change of the total quantity of the state variable
u over some interval [a, b] must be equal to the net flux f(u) into the interval
through the endpoints. Mathematically, this can be expressed as

d

dt

∫ b

a

u dx = f(u(x(a), t))− f(u(x(b), t)). (2)

When approximating the solution to scalar conservation laws given by
equation (1), the PDE is typically discretized on a grid consisting of Nx cells
where x0 = a and xNx

= b. It is desirable that the numerical method satisfies
discrete conservation. If the reconstructed solution uj

h and flux f j
h on any cell

Ij = [xj−1, xj] satisfy the condition f j
h|x=xj

= f j+1
h |x=xj

, j = 1, . . . , Nx − 1,
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we immediately find

∫ b

a

∂uj
h

∂t
dx =

Nx
∑

j=1

∫ xj

xj−1

∂uj
h

∂t
dx

=
Nx
∑

j=1

∫ xj

xj−1

∂

∂x
(−f j

h) dx

=
Nx
∑

j=1

(

f j
h|x=xj−1

− f j
h|x=xj

)

= f j
h(u(a))− f j

h(u(b)). (3)

The property that f j
h|x=xj

= f j+1
h |x=xj

does not hold for the original
Hermite methods, and our goal here is to design a new Hermite method with
this property. Before describing our new method, we briefly describe the
original method.

3 Hermite Methods

A Hermite method of order 2m+1 approximates the solution to a PDE by an
element-wise polynomial that has continuous spatial derivatives up to order
m at the element’s interfaces. In Hermite methods, the degrees of freedom
are function and spatial derivative values, or equivalently the coefficients of
the Taylor polynomial at the cell center of each element. The evolution of
the degrees of freedom on each element can be performed locally.

3.1 Hermite Method in One Dimension

Consider again equation (1) on the domain D = [xL, xR]. Let Gp and Gd be
the primal grid and the dual grid, defined as

Gp = {xj = xL + jhx} , j = 0, . . . , Nx, (4)

Gd =
{

xj+1/2 = xL +

(

j +
1

2

)

hx

}

, j = 0, . . . , Nx − 1, (5)
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where hx = (xR−xL)/Nx is the distance between two adjacent nodes. Let up

and ud be the approximations to the solution on the primal and dual grids,
respectively.

At the initial time tn = t0 + n∆t, we assume that the approximation up

on the primal grid, the global piecewise polynomial

up(x, tn) =
m
∑

k=0

ck(tn) (x− xj)
k , x ∈ Idj = [xj−1/2, xj+1/2], (6)

is known. Starting from time t = tn on the primal grid Gp, we evolve the
solution one full time step by:

Reconstruction by Hermite interpolation: We construct ud, the global
Hermite interpolation polynomial of degree (2m+1), on the dual grid. That
is,

ud(x, tn) =
2m+1
∑

k=0

ck(tn)
(

x− xj−1/2

)k
, x ∈ Ipj = [xj−1, xj], (7)

where the coefficients ck(tn) are uniquely determined by the interpolation
conditions

∂k

∂xk
ud(xi, tn) =

dk

dxk
up(xi, tn), k = 0, . . . ,m, i = j − 1, j. (8)

Time evolution: By rewriting equation (1) as ut = −f(u)x, it is obvious
that in order to evolve ud, we need to compute a polynomial approximation
fd to the flux function f(u). We offer two ways to obtain fd:

• Modal approach: Perform polynomial operations (addition, substrac-
tion, multiplication, and division) on ud and truncate the resulting
polynomial to suitable degree.

• Pseudospectral approach: Compute a local polynomial f ∗

h interpolating
f(ud) on a quadrature grid Gps inside Ipj , j = 1, . . . , Nx, and transform

f ∗

h to a Taylor polynomial fd.

We differentiate fd in polynomial sense to get an approximation to the deriva-
tive of the flux function f(u)x. We usually use the modal approach unless
this option is not applicable. Next, we derive an ODE to evolve ud, or equiva-
lently the coefficients of the Hermite interpolant c(t) = (c0(t), . . . , c2m+1(t))

T ,
by insisting that the numerical solution ud satisfy equation (1) along with
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derivatives of (1), at the cell centers x = xj−1/2, j = 1, . . . , Nx. The resulting
system of ODE for ck, k = 0, . . . , 2m+ 1, can then be evolved independently
on each Ipj with any ODE solver. The reconstruction step provides the initial
data, c(tn).

Repeat on dual grid: At the end of the half time step, we have evolved the
degree 2m+1 polynomial ud from time t = tn to t = tn+1/2. Before repeating
the above process, we truncate ud(x, tn+1/2) by removing the coefficients ck,
k = m + 1, . . . , 2m + 1. We then repeat the above process (including the
truncation) to obtain up at time t = tn+1, see Figure 1 for illustration.

3.1.1 Example: Burgers’ Equation

To illustrate the specifics of the time evolution, we consider Burgers’ equa-
tion, with f(u) = u2/2, approximated by fh = u2

h/2, where uh represents the
degree (2m+ 1) interpolant on either of the grids. We can write

(uh)t + (fh)x = 0,

(uh)tx + (fh)xx = 0,

(uh)txx + (fh)xxx = 0, (9)
...

...

where

fh =
2m+1
∑

k=0

bk(t)(x− xj−1/2)
k.

The coefficients bk are determined by truncated polynomial multiplication,
that is bk =

1
2

∑k
l=0 clck−l. Insisting that the approximate solution uh satisfy

equation (9) at the cell centers x = xj−1/2, we obtain















c′0(t)
c′1(t)

...
c′2m(t)
c′2m+1(t)















=















b1(t)
2 b2(t)

...
(2m+ 1) b2m+1(t)

0















. (10)

While equation (10) is valid for any cell, the initial data for each cell are
different from one cell to another. For a more detailed explanation and open
source implementations, see [9, 10, 2].
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Figure 1: Illustration of the numerical process in one dimensional Hermite
Methods for a full time step. Solid circles represent the primal grid Gp and
open circles represent the dual grid Gd. I is the Hermite interpolation oper-
ator and T is the time evolution operator.

3.2 Flux-Conservative Hermite Methods

The numerical flux fh obtained by the approach described above, is discontin-
uous at cell interfaces when the flux function f(u) is nonlinear. Numerically,
the discontinuity in the flux induces numerical stiffness. As a result, the time
step often needs to be taken very small. To remedy this, we propose new
flux-conservative Hermite methods that impose flux continuity by computing
the numerical flux at cell edges, and then interpolate the numerical flux to
cell center.

To illustrate the difference between the original and flux-conservative Her-
mite schemes, we plot the numerical flux fh = u2

h/2 with m = 3 and for
Nx = 3 cells in Figure 2. The numerical flux obtained using the original Her-
mite method, shown as the blue curve, has discontinuities at cell interfaces.
On the other hand, the numerical flux obtained by the flux-conservative Her-
mite method, shown as the black curve, is continuous everywhere.
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Figure 2: Numerical flux for Burgers’ equation with random data, obtained
by original Hermite (blue), flux-conservative Hermite (black).

3.2.1 The Construction of the New Method

The goal of our construction is to globally conserve the integral of uh and its
m first derivatives over one half time step, with ∆t̂ = ∆t/2.

In the flux-conservative methods, we assume that the solution on the
primal grid at time tn is given by

up(x, tn) =
2m+1
∑

k=0

ck(tn) (x− xj)
k , x ∈ Idj = [xj−1/2, xj+1/2]. (11)

Note that the degree of this polynomial is different than in the original
method. We assume that the time stepping will be performed by an ex-
plicit one step method requiring stage values. The evolution will be carried
out at the cell center where the stage values will be the derivative of the
Hermite interpolant of the flux. As this interpolant is m times differentiable
at the edges, it will result in a conservative discretization. Now, the time
evolution of the approximate solution entails the following steps.

Computation of the stage fluxes at the cell edges: For simplicity, assume
that we use the classic fourth order Runge-Kutta, then to construct the
Hermite interpolants for the four stages we first compute
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F p
1 = f (up) ,

F p
2 = f

(

up +
∆t̂

2

dF p
1

dx

)

,

F p
3 = f

(

up +
∆t̂

2

dF p
2

dx

)

,

F p
4 = f

(

up +∆t̂
dF p

3

dx

)

.

Note that inside the argument of f , we keep all the coefficients of the poly-
nomials up to degree 2m+ 1, while the nonlinearity f itself, which typically
is a higher degree polynomial, is truncated to degree 2m+ 1.

Reconstruction of solution and fluxes by Hermite interpolation: Next, we
construct ud and F d

i , i = 1, . . . , 4, the global Hermite interpolation polyno-
mials of degree (2m + 1) of the solution and the flux, respectively. Let wd

represent ud or F d
i and wp represent up or F p

i . Then,

wd(x, tn) =
2m+1
∑

k=0

dk(tn)
(

x− xj−1/2

)k
, x ∈ Ipj = [xj−1, xj], (12)

where the coefficients ck(tn) are uniquely determined by the interpolation
conditions (at cell edges)

∂k

∂xk
wd(xi, tn) =

dk

dxk
wp(xi, tn), k = 0, . . . ,m, i = j − 1, j. (13)

Time evolution: Let the coefficients of ud be ck and the coefficients of F d
i

be b
(i)
k . Then, again assuming RK4, we have that for k = 0, . . . , 2m+ 1,

ck(tn+∆t̂) = ck(tn)+
∆t̂

6
(k + 1)(b

(1)
k+1(tn) + 2b

(2)
k+1(tn) + 2b

(3)
k+1(tn) + b

(4)
k+1(tn)).

The updated solution on the dual grid is thus

ud(x, tn +∆t̂) =
2m+1
∑

k=0

ck(tn +∆t̂)
(

x− xj−1/2

)k
, x ∈ Ipj = [xj−1, xj].
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Repeat on dual grid: At the end of the half time step, we have evolved the
degree 2m + 1 polynomial ud. We then repeat the above process to obtain
up at time t = tn+1.

We note that unlike the original method, the number of degrees of freedom
that we keep is twice as large, representing an increase in memory require-
ment. The number of floating point operations, however, to leading order, is
the same as for the original method (see the complexity analysis below).

3.2.2 Conservation

We now consider the conservation properties of the above scheme. Due to
the fact that the s fluxes used in the stages have m continuous derivatives
we immediately find that for periodic problems the following conservation
statements hold.

Theorem: Assume we use the flux-conservative Hermite method to
evolve ut + f(u)x = 0 with periodic boundary conditions. Further assume
that ud(t, x) is the periodic degree 2m+ 1 Hermite interpolating polynomial
and that F d

i , i = 1, . . . , s are the periodic degree 2m+1 polynomials Hermite
interpolating the fluxes. Further, let the coefficients ck(t) of ud on a cell be
evolved from time t = tn to t = tn +∆t̂ by the one step method

ck(tn +∆t̂)− ck(tn) + ∆t̂

s
∑

i=1

αi(k + 1)b
(i)
k+1(tn) = 0, k = 0, . . . , 2m+ 1,

where b
(i)
k are the coefficients of F d

i . Then, the following conservation state-
ment holds.

∑

j

∫ xj

xj−1

∂k

∂xk
ud(tn+∆t̂, x)dx =

∑

j

∫ xj

xj−1

∂k

∂xk
ud(tn, x)dx, k = 0, . . . , 2m+2−s.

(14)

Proof: From the RK time stepping method for conservation laws (1) as

ud(tn+1/2)− ud(tn)

∆t̂
= ∆t̂

∑

i

αi
dF d

i

dx
, (15)

together with the continuity of m first derivatives of each of the F d
i , the re-

sult follows immediately from the update formula. Note also that F d
i+1 is one
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original
xj−1 xj xj+1

(Iu)j− 1

2

fj− 1

2

(Iu)

(Iu)j+ 1

2

fj+ 1

2

(Iu)

flux conservative
xj−1 xj xj+1

fj−1(u) fj(u) fj+1(u)

(If)j− 1

2

(If)j+ 1

2

Figure 3: Original vs. Flux Conservative Hermite Methods. Here, we
dropped the subscript h in all the computed quantities for compactness.

order less accurate than F d
i due to flux differentiation during stage i.

To summarize, in the original Hermite scheme, computation of numerical
fluxes is performed at the cell center using the interpolated solution. The
flux-conservative Hermite scheme requires a computation (and storage) of
numerical fluxes at the cell edges and the interpolation of those fluxes to
the cell center. Refer to Figure 3 for an illustrative comparison between the
schemes.

3.3 The Flux-Conservative Hermite Method in Two Di-

mensions

Now, let us consider a conservation law

ut + (f(u))x + (g(u))y = 0, (16)

on the domain D = [xL, xR]× [yB, yT ]. Let Gp and Gd be the primal and dual
grids, defined as

Gp = {(xi, yj)} = (xL + ihx, yB + jhy), i = 0, . . . , Nx, j = 0, . . . , Ny, (17)

Gd =
{

(xi+1/2, yj+1/2) =

(

xL +

(

i+
1

2

)

hx, yB +

(

j +
1

2

)

hy

)}

,

i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1, (18)
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where hx = (xR − xL)/Nx and hy = (yT − yB)/Ny are the distances between
two adjacent nodes in x and y directions respectively.

The extension of the flux-conservative method from one dimension is
straightforward. Writing equation (16) as ut = −f(u)x − g(u)y and let-
ting ud(t) represent the two-dimensional tensor product Hermite interpolant
of the data on the primal grid we can write the RK4 time stepping of ud(tn)
to time t = tn +∆t̂ as

ud(tn +∆t̂)− ud(tn)

∆t̂
=

Kd
1 + 2Kd

2 + 2Kd
3 +Kd

4

6
. (19)

The left hand side of equation (19) is an approximation to ut and the right
hand side is an approximation to stage values of −(f(u)x + g(u)y). Similar
to the one dimensional case we have

Kd
1 = −(F d

1 )x − (Gd
1)y,

Kd
2 = −(F d

2 )x − (Gd
2)y,

Kd
3 = −(F d

3 )x − (Gd
3)y,

Kd
4 = −(F d

4 )x − (Gd
4)y.

Here, for example, F d
i is the degree 2m + 1 tensor product polynomial that

interpolates f(up+ γi∆t̂F p
i ) and its m first derivatives in x and y at the four

adjacent primal grid-points.

3.4 Comparison of Computational Costs

The time evolution portion of the Hermite methods are performed by a one
step method with nK stages, involving computation of the flux function, in-
terpolation of the solution and, in the flux-conservative method, the fluxes,
and differentiation of fluxes. For the purpose of this comparison, we assume
Burgers’ flux function f(u) = u2/2 in 1D or f(u) = g(u) = u2/2 in 2D. Each
1-dimensional Hermite interpolation is equivalent to a multiplication by a
(2m+2) by (2m+2) matrix. If we use the recipe above, each 2-dimensional
Hermite interpolation corresponds to 2× (2m+ 2) one-dimensional interpo-
lations. The factor (2m + 2) comes from the the fact that the y dimension
brings in (2m+2) interpolations in 1D and the multiplicative factor 2 comes
from the fact that we interpolate in y direction on both the left and right
edges of the cell. In 3D, we have 4 interpolations in the z direction, each

12



flux computation interpolation

original nKd(2m+ 2)2d 22
d−1

(2m+ 2)d+1

flux-conservative nKd(2m+ 2)2d (1 + nKd)2
2d−1

(2m+ 2)d+1

Table 1: Comparison of Costs in original and flux-conservative Hermite meth-
ods, nK is the number of stages in Runge-Kutta method, d is the spatial
dimension.

brings in (2m+2) times interpolations in 2D, and so on. We summarize the
cost of the method, corresponding to the number of multiplications involved,
in Table 1. The number of interpolation in the flux-conservative Hermite
method is nKd 22

d−1

more than the original Hermite method. We note that
the flux-conservative scheme can be simplified to just two flux interpolations
by adding up the F ’s and G’s, but in this paper, we interpolate each flux
separately. There is also an additional cost of differentiation at cell corners,
but it is negligible compared to the cost of interpolation.

4 The Entropy Viscosity Method

Given a PDE on the form (1), there exists an entropy function E(u) and its
corresponding entropy flux function F (u) =

∫

E ′(u)f ′(u) du such that the
entropy residual satisfies

rEV (u) ≡ Et(u) +∇ · F (u) ≤ 0. (20)

This inequality can be used to select the physically correct solution to (1) or
(16). The direction of the inequality can vary from one problem to another,
but the inequality becomes strict only at shocks. In essence, the entropy
viscosity (EV) method uses the fact that the residual approaches a Dirac
delta function centered at shocks to construct a nonlinear dissipation. The
resulting dissipation is small away from shocks and just sufficient amount at
a shock. The details of EV for conservation laws are described in detail in
[8] but we summarize its most important features here.

Consider the conservation law whose right hand side has been replaced
by a viscous term, ut +∇ · f(u) = ∇ · (ν∇u), with ν = νh(x, t) given by

νh(x, t) := min(νEV , νmax), (21)

13



where νEV is the entropy-based viscosity and νmax is a viscosity whose size
depends on the largest eigenvalue of the flux function f(u), representing the
maximum wave speed. The discretized entropy-based viscosity νE is then
given by

νEV (x, t) = αEVC1(uh)h
β|rEV (uh)|, (22)

where β is a positive scalar, αEV is a user defined constant and C1(uh) is
some PDE-specific normalization.

At shocks, the entropy residual approaches Dirac delta function, so we
instead use

νmax(x, t) = αmax hmax
y∈Vx

C2(uh(y, t)), (23)

where αmax is another user defined constant, C2 serves as the maximum wave
speed and Vx is some neighborhood of x. The Vx neighborhood can either
be “local”, i.e. containing only a few cells around x, or “global”, i.e. Vx = D,
where D is the domain of the PDE. In this work, we use global Vx.

In recent papers, the parameter β is chosen to be 2, but we found that this
may prevent convergence for moving shocks, see [13] where we also argue that
β = 1 is a more appropriate choice. In essence our argument is as follows.
As the entropy residual approaches a Dirac delta distribution, a consistent
discretization of the residual with a single shock must satisfy

Nx−1
∑

j=0

hj(rEV )j = 1, (24)

where hj = xj+1 − xj. Thus, we expect (rEV )j ∼ h−1
j near the shock. When

β = 2, the two terms νEV and νmax are both O(h). Since the parameters are
tuned on a coarse grid and the terms C1 and C2 in (22)-(23) also changes
with the grid size, the selection of the minimum of νEV and νmax does not
necessarily “converge” as the grid gets refined. If instead we choose β = 1,
then νEV = O(1) while νmax = O(hj), and the particular choice of αEV is
thus irrelevant in the limit hj → 0 as the selection mechanism will eventually
select νmax at the shocks.

While the explicit formula for C1 and C2 varies from one PDE to another,
the core of the entropy viscosity method remains the same. The size of the
entropy residual gives us a sense of relative distance to the shock, which is
then used to take the following actions: near a shock, EV uses sufficiently
large dissipation, νh = νmax, and away from a shock, EV uses entropy-based
dissipation, νh = νEV .

14



Table 2: Convergence study of smooth solution to Burgers’ equation

hx π/2 π/4 π/8 π/16 π/32

l∞-err m = 1 2.30(-01) 5.85(-02) 1.09(-02) 1.42(-03) 1.80(-04)
Rate 1.97 2.43 2.94 2.98
l∞-err m = 2 4.85(-02) 5.47(-03) 2.19(-04) 7.25(-06) 1.97(-07)
Rate 3.15 4.64 4.92 5.20
l∞-err m = 3 1.09(-02) 6.59(-04) 7.71(-06) 4.70(-08) 2.73(-10)
Rate 4.04 6.42 7.36 7.43

5 Numerical Examples

We start by confirming that the rates of convergence, 2m+ 1, (in space) are
the same for the new flux-conservative method as for the original method.

5.1 Convergence for a Smooth Solution

We solve Burgers’ equation on the domain x ∈ [−π, π] and impose periodic
boundary conditions. The initial data is u(x, 0) = − sin(x)+0.3 and we evolve
the solution until time t = 0.4. The timestep is chosen as ∆t = CFL hx/
maxx |u(x, 0)|, with CFL = 0.1.

In Table 2, we display the maximum error at the final time computed
against a reference solution computed using m = 5 and hx = π/64. As
can be seen the rates of convergence appear to approach the predicted rate
2m+ 1.

We next present a sequence of experiments displaying the performance of
the Hermite-Runge-Kutta-4-Entropy-Viscosity method for Euler’s equations
(with artificial viscosity).

5.2 Euler’s equations in One Dimension

We consider Euler’s equations which represent conservation of mass, momen-
tum, and energy,
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



ρ
ρu
E





t

+





ρu
ρu2 + p
(E + p)u





x

=





0
0
0



 . (25)

Here, ρ is the density, ρu is the momentum, u is the velocity, and E is the
energy. Furthermore, we assume an ideal gas with the equation of state

E =
p

γ − 1
+

ρu2

2
, (26)

where γ = 1.4 is the adiabatic index and p is the pressure.
To regularize equation (25), we add a viscous term (ν(ρ, ρu, E)x)x, where

the coefficient ν is obtained using the entropy viscosity method. Thus, the
viscous Eulers’ equations can be written as





ρ
ρu
E





t

+





ρu− νρx
ρu2 + p− ν(ρu)x
(E + p)u− νEx





x

=





0
0
0



 . (27)

We note that an alternative to this simple viscosity would be to use the full
Navier-Stokes equations.

5.2.1 Entropy Viscosity (EV) method for 1D Euler’s equations

The discretized viscosity coefficient ν = νh is given in terms of primitive
variables ρ, p, and u,

νh =min(νmax, νEV ), (28)

νEV =αEV hx ρh(x, t)|rEV (x, t)|, (29)

νmax =αmax hx ρh(x, t)max
y∈D

(

|uh(y, t)|+
√

γTh(y, t)
)

, (30)

where Th = ph/ρh is the temperature, hx is the grid size and

rEV = ∂tSh + ((uS)h)x ≥ 0, (31)

is the entropy residual for the entropy function Sh(ph, ρh) =
ρh
γ−1

log
(

ph
ργ
h

)

and

its corresponding entropy flux (uS)h.
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5.2.2 An Improved Entropy Viscosity

The entropy viscosity method discretizes the entropy residual using the nu-
merical solution. In theory, the entropy residual is large at shocks, and zero
at contact discontinuities (where no artificial viscosity is needed). However,
our experience is that the discretization of the entropy equation may also
trigger the maximum viscosity at contact discontinuities. To the left in Fig-
ure 4, we see a space-time diagram of the entropy residual for Sod’s problem
in logarithm scale. Note that a relatively large amount of residual is produced
at the contact discontinuity.

Figure 4: Space time diagram of the magnitude of entropy residual |rE| (left)
and |∆u rE| (right) for Sod’s problem. Blue is small, red is big. Simulations
performed with νS ∝ rE (left) and νS ∝ ∆u rE (right). With the new sensor
|∆u rE|, the residual, hence the viscosity is driven to zero along contact
discontinuity (thicker red line in the middle disappears with the new sensor).

To eliminate this undesired behavior along the contact discontinuity, we
use the fact that the velocity of the fluid, u, is a Riemann invariant along the
second characteristic field. Since u is smooth at the contact discontinuity but
not at a shock, the product of ∆uj and (rE)j is small at contact discontinuities
but still large at shocks. We incorporate the term ∆u into the improved
entropy viscosity

νEV = αEV hx ρh(x, t)|∆u||rEV (x, t)|.

To this end we take νE and νmax as a piecewise constant function on each
cell. Thus, we compute the discretized density ρh, velocity uh, temperature
Th, entropy function Sh and entropy flux uSh at cell center in pointwise
manner. Now, to get the entropy residual given in (31), we compute temporal
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Figure 5: Numerical solution (dotted lines) obtained using entropy viscosity
proportional to |rE| (left) and |∆u rE| (right) for Sod’s problem are plotted
against the exact solution (solid lines). We plot density (blue), velocity
(green), and pressure (red). Contact discontinuity is sharper using the new
sensor |∆u rE|.

and spatial derivatives using finite differences. Using the notation Sh = Sn
j

to denote the approximate flux function S at x = xj, t = tn, we discretize
the term ∂tS

n
j using second order Backward Difference formula

∂tS
n
j =

3Sn
j − 4Sn−1

j + Sn−2
j

2∆t
. (32)

Similarly, the term ∂x(uS)
n
j is approximated by the centered finite difference

∂x(uS)
n
j =

(uS)nj+1 − (uS)nj−1

2hx

. (33)

5.3 Experiments in One Dimension with Euler’s Equa-

tions

We now present results obtained using our Hermite-RK4-EV method for a
stationary shock, the Lax, the Sod, and the Shu-Osher problem. For experi-
ments where we use more than one resolution, the EV parameters are tuned
on the coarsest grid. In the 1D Euler’s equations simulations, the timestep is
chosen as ∆t = CFLhx/maxx |(u± c)(x, 0)|, where c =

√

γp/ρ is the speed
of sound, with CFL values given in Table 3.
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hx 1.25(-02) 6.25(-03) 3.13(-03) 1.56(-03) 7.81(-04) 3.91(-04)
L1 error 3.44(-03) 2.29(-03) 1.40(-03) 7.96(-04) 4.46(-04) 2.49(-04)
Rate 0.59 0.71 0.81 0.83 0.84

Table 3: Convergence study on Euler’s equation with stationary shock.

5.3.1 Stationary shock problem

By solving the Riemann problem, we decide the states corresponding to a
stationary shock. The goal of this experiment is to investigate the stability
and accuracy of EV in the presence of shocks. Since small oscillations coming
from shocks could potentially pollute the “smooth” regions, this is also a test
for how well EV removes numerical artifacts. The computational domain is
D = [−0.5, 0.5] with the stationary shock given by

(ρ, u, p)(x, t) =

{

(0.84, 1.08, 0.56) x < 0,

(1, 0.9, 0.71) x > 0.
(34)

The boundary condition are imposed by setting the solution at the boundary
so that it coincides with the solution at initial time. We perform a grid refine-
ment study and report the errors in the density in Table 3. We also present
the ratio between successive errors. It appears that the rate of convergence
for the L1 error is approaching 7/8.

5.3.2 Lax’s and Sod’s Shock Tube Problems

Lax’s and Sod’s problems come from physical experiments in which a gas
tube is separated by a membrane into two sections. The gas in each section is
uniform in the y and z direction, so the problem is modeled as a 1-dimensional
shock tube. The gas in the left section is kept at a different state than the
gas in the right section. At time t = 0, the membrane is punctured. In
the problem setup, the Euler’s equations are solved on the domain D =
[−0.5, 0.5] with initial data

(ρ, u, p)(x, 0) =

{

(0.445, 0.698, 3.528) x < 0

(0.5, 0, 0.571) x > 0
(35)
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for Lax, and

(ρ, u, p)(x, 0) =

{

(1, 0, 1) x < 0

(0.125, 0, 0.1) x > 0
(36)

for Sod. For both problems, we impose fixed boundary condition so that the
solution on the boundary is the same as at the initial time. The solution is
computed up to time t = 0.16 for Lax’s problem and time t = 0.1644 for
Sod’s problem.

The solution to Riemann problems such as Lax’s and Sod’s shock tubes
contains 3 waves propagating from the discontinuity at the initial time. The
second wave is a contact discontinuity, where the discontinuity is translated
over time. The first and third waves are nonlinear, and can take either
rarefaction waves or shock waves.

The results for density ρ, velocity u and pressure p are plotted against
the exact solution in Figure 6. In each plot, we use Nx = 100 elements. The
entropy viscosity parameters used are given in Table 4. In both problems,
the shocks are resolved better than the contact discontinuities. Although the
shock strength is only of medium size for both problems, some experts con-
sidered these tough test cases for non-characteristic-based high order schemes
[23].
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Figure 6: To the left: Lax shock tube, to the right: Sod shock tube. Dashed
lines are the numerical solutions, solid lines are the exact solutions. Numeri-
cal solutions are obtained using Nx = 100 elements. The color blue represents
density, green represents velocity, and red represents pressure.
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Problem CFL m αEV αmax

Lax 0.2 3 0.5 0.08
Sod 0.15 3 0.2 0.08
Shu-Osher 0.15 3 0.01 0.05
Stationary shock 0.2 3 10 0.3

Table 4: Parameters for examples in 1D Euler’s equations.

5.3.3 The Shu-Osher Problem

The Shu-Osher problem poses difficulties for numerical methods due to the
sinusoidal interacting with the shock. Here the domain is D = [−5, 5] with
initial data

(ρ, u, p)(x, 0) =

{

(3.86, 2.63, 10.33) x < −4,
(1 + 0.2 sin(5x), 0, 1) x > −4,

(37)

and with fixed boundary condition so that the solution on the boundary
coincides with the solution at the initial time. The solution is computed up
to time t = 1.8 and compared against a computed solution on a much finer
grid. We use Nx = 80 to obtain the numerical solution in Figure 7, where we
interpolate the solution on to a finer grid. The “exact” solution is computed
on a grid with Nx = 1280. Note that even if we use a coarse grid, we can
still get roughly the shape of the solution, especially away from the shock.
However, when smooth waves are present (see blue oscillatory line to the left
of shock) and too close to the shock, these waves get damped.

5.4 Euler’s equations in Two Dimensions

The two dimensional viscous Euler equations are given by









ρ
ρu
ρv
E









t

+









ρu
ρu2 + p
ρuv

(E + p)u









x

+









ρv
ρuv

ρv2 + p
(E + p)v









y

=









0
0
0
0









. (38)

Here, ρ is the density, ρu and ρv are the momentum, u and v are the velocity
in x and y direction respectively and E is the energy. Furthermore, we
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Figure 7: Shu-Osher problem. Dashed lines are the numerical solutions,
solid lines are the “exact” solutions. Numerical solutions are computed using
Nx = 80 elements, “exact” solutions are computed on a much finer grid, with
Nx = 1280 elements. The color blue represents density, green represents
velocity, and red represents pressure.

Problem CFL m αEV αmax

Explosion/implosion 0.2 3 0.1 0.2
Vortex-shock interaction 1 0.2 3 0.01 0.04
Vortex-shock interaction 2 0.2 3 0.05 0.07
Jet 0.2 3 0.03 0.2

Table 5: Parameters for examples in 2D Euler’s equations.

assume an ideal gas with equation of state

E =
p

γ − 1
+

ρ(u2 + v2)

2
, (39)

where γ = 1.4 is the adiabatic index and p is the pressure. For all experiments
below, the timestep is chosen as ∆t = CFL hx/maxx |(u± c)(x, 0)|, where
c =

√

γp/ρ is the speed of sound, with CFL values given in Table 5.
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5.5 Entropy Viscosity Method for Euler’s Equations in

Two Dimensions

The entropy viscosity is identical to the 1D version given in (28), with the
exception that it takes the velocity in both directions into account.

νh =min(νmax, νEV ), (40)

νEV =αEV h ρh(x, t)|rEV (x, t)|, (41)

νmax =αmax h ρh(x, t)max
y∈D

(

√

u2
h(y, t) + v2h(y, t) +

√

γTh(y, t)

)

, (42)

where Th = ph/ρh is the temperature, h = min(hx, hy) is the grid size and

rEV = ∂tSh + ((uS)h)x + ((vS)h)y ≥ 0. (43)

To discretize the entropy residual rEV , we again use BDF for the time
derivative and centered finite differences for the spatial derivatives,

∂x(uS)
n
jk =

(uS)nj+1,k − (uS)nj−1,k

2hx

, (44)

∂y(vS)
n
jk =

(vS)nj,k+1 − (vS)nj,k−1

2hy

. (45)

On the domain [xL, xR] × [yB, yT ], we use the subscript jk to indicate that
the variable attached is evaluated at x = xL + jhx and y = yB + khy.

5.5.1 Explosion/Implosion Test

First we solve a radially symmetric Riemann problem from Toro [24]. The
computational domain is D = [−1, 1] × [−1, 1], and the initial data corre-
sponding to an expanding wave is

(ρ, u, v, p)(r, t) =

{

(1, 0, 0, 1) r < 0.4,

(1, 0, 0, 0.1) r > 0.4.
(46)

For an imploding wave, the initial data is,

(ρ, u, v, p)(r, t) =

{

(1, 0, 0, 1) r > 0.4,

(1, 0, 0, 0.1) r < 0.4.
(47)
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Figure 8: Solution to explosion problem at time t = 0.25. To the left:
explosion, to the right: implosion. The numerical solutions (circles) are
computed using Nx = Ny = 100 elements.

The boundary conditions are imposed by setting the solution on the
boundary so that it stays the same as the solution at the initial time. The
simulation is performed until time t = 0.25, before any waves reach the
boundary of the domain. We plot the 2D solution in Figure (8). In Fig-
ure (9), we present a cross section of the density at time t = 0.25 with
Nx = Ny = 100 elements against computed “exact” solution obtained with
Nx = Ny = 400 elements.

5.5.2 Shock Vortex Interaction

Next we consider the interaction of a shock and a vortex. In general shock-
vortex interactions can produce small scales in the form of acoustic waves,
and other interesting wave patterns. It has received substantial interest in
the literature, see for example [21, 25, 4, 5].

In this experiment, a strong stationary shock with Mach number 2/
√
1.4 ≈

1.69 collides with a weak vortex with a Mach number 6/2π ≈ 0.81. The com-
putational domain is D = [−9, 3]× [−4, 4] and the initial data is

(ρ, u, v, p)(r, t) =

{

(ρvor, uvor, vvor, pvor) x > −4,
(2.18,−0.92, 0, 3.17) x < −4,

(48)
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Figure 9: Cross section of the density for radially symmetric problem along
x axis at time t = 0.25. To the left: explosion, to the right: implosion. The
numerical solutions (circles) are computed using Nx = Ny = 100 elements,
“exact” solutions (solid lines) are computed using Nx = Ny = 400 elements.

where

ρvor =

[

1− (γ − 1)β2

8γπ2
e1−x2

−y2
]1/(γ−1)

(49)

uvor = 2− β

2π
ye(1−x2

−y2)/2 (50)

vvor =
β

2π
xe(1−x2

−y2)/2 (51)

pvor = ργ, (52)

and β = 6.
As the vortex passes through the shock, the shock is distorted and the

vortex is compressed into an elliptical shape. This phenomena is due to the
fact that the vortex is relatively weak compared to the shock. The results
are consistent with [25]. In Figure 10, we compare snapshots of the density
Schlieren using two different sets of entropy viscosity parameters, see Table
5. Although the schlierens are plotted on the same color scale, notice that
the structures are more pronounced in the pictures on the right column.

5.5.3 Fluid Flow in Jet

As a final example we simulate a planar Mach 2/
√
1.4 ≈ 1.69 jet. The

domain D = [−15, 55] × [−17.5, 17.5] is discretized using of 500 × 250 cells.
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Figure 10: The density schlieren at different times, from top to bottom t ≈
1.97, t ≈ 2.95, t ≈ 3.94 and t ≈ 4.92. Left: vortex shock interaction 1,
right: vortex interaction 2, with parameters given in Table 5. The numerical
solutions are obtained with Nx = 720, Ny = 480 elements.
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The initial data is
(ρ, u, v, p)(x, y, t) = (1, 0, 0, 1). (53)

We model the jet nozzle by a simple momentum forcing over a 1×1 patch
at the left edge of the computational. The jet is started impulsively causing
a relatively strong compression to be generated. This wave sharpens up to a
shock wave that is handled by the entropy viscosity as it is propagated from
the nozzle and out into a damping absorbing layer of super-grid type, see [1].

In Figures (11)-(13) we display snapshots of the vorticity, dilatation and
density Schlieren. We note that the viscosity we use here is purely for the
regularization of shocks so there is no reason to believe that the flow that
we compute resembles reality. Nevertheless, the example illustrates the new
methods ability to handle rapidly started flows. Also, it is likely that the
particular form of the artificial viscosity does not effect the robustness of the
method.

6 Conclusion

In conclusion we have demonstrated that flux-conservative Hermite methods
are suitable for solving nonlinear conservation laws, especially in the presence
of shocks. The new methods still converges at a rate of (2m+ 1) for smooth
problems.

The adaptation of the entropy viscosity method to Hermite methods suc-
cessfully suppresses oscillations near shocks, but we find that our current im-
plementation is quite dissipative when solving the Shu-Osher problem. For
contact waves we proposed a modification to the entropy viscosity method
which eliminates a large amount of the spurious viscosity at contact discon-
tinuities.
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