

1 **A MULTI-ORDER DISCONTINUOUS GALERKIN MONTE CARLO
2 METHOD FOR HYPERBOLIC PROBLEMS WITH STOCHASTIC
3 PARAMETERS**

4 MOHAMMAD MOTAMED* AND DANIEL APPELÖ†

5 **Abstract.** We present a new multi-order Monte Carlo algorithm for computing the statistics of
6 stochastic quantities of interest described by linear hyperbolic problems with stochastic parameters.
7 The method is a non-intrusive technique based on a recently proposed high-order energy-based dis-
8 continuous Galerkin method for the second-order acoustic and elastic wave equations. The algorithm
9 is built upon a hierarchy of degrees of polynomial basis functions rather than a mesh hierarchy used
10 in multi-level Monte Carlo. Through complexity theorems and numerical experiments, we show that
11 the proposed multi-order method is a valid alternative to the current multi-level Monte Carlo method
12 for hyperbolic problems. Moreover, in addition to the convenience of working with a fixed mesh,
13 which is desirable in many real applications with complex geometries, the multi-order method is
14 particularly beneficial in reducing errors due to numerical dispersion in long-distance propagation of
15 waves. The numerical examples verify that the multi-order approach is faster than the mesh-based
16 multi-level approach for waves that traverse long distances.

17 **Key words.** Hyperbolic problems; Wave propagation; Stochastic parameters; Uncertainty quan-
18 tification; Multi-level Monte Carlo; Discontinuous Galerkin; Multi-order Monte Carlo

19 **AMS subject classifications.**

20 **1. Introduction.** Wave propagation problems are mathematically described by
21 hyperbolic partial differential equations (PDEs). In real applications, such as seis-
22 mology, acoustics, and electromagnetism, the problem is subject to uncertainty, due
23 to the lack of knowledge (epistemic uncertainty) and/or intrinsic variabilities of the
24 physical system (aleatoric uncertainty). For instance, in earthquake ground motion,
25 both kinds of uncertainties are present due to the scarcity of measured soil parame-
26 ters and inherent variations in the location of the focus and the intensity of seismic
27 sources. To account for uncertainties, PDE models are often formulated in a prob-
28 abilistic framework, where uncertain input parameters are described by stochastic
29 fields, which can in turn be approximated by a finite number of random variables. A
30 major problem is then the forward propagation of uncertainty, where uncertainties in
31 the input parameters are propagated through the model to obtain information about
32 uncertain output quantities of interest (QoIs).

33 The most popular method for propagating stochastic uncertainty in PDE models
34 is Monte Carlo sampling [8], where sample statistics of output QoIs are computed
35 from independent realizations drawn from the input probability distributions. While
36 being very flexible and easy to implement, this technique features a very slow conver-
37 gence rate. More recently, spectral approaches, such as stochastic Galerkin [9] and
38 stochastic collocation [17, 19], have been proposed, which exploit the possible regu-
39 larity that output QoIs might have with respect to the input parameters. This opens
40 up the possibility to use deterministic approximations of the response function (i.e.
41 the solution of the problem as a function of the input parameters) based on global
42 polynomials. Such approximations are expected to yield a very fast convergence in

*Department of Mathematics and Statistics, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131. motamed@math.unm.edu.

†Department of Mathematics and Statistics, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131. appelo@math.unm.edu.

Funding: Supported in part by NSF Grant DMS-1319054. Any conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of NSF.

43 the presence of high stochastic regularity.

44 Solutions to parametric hyperbolic PDEs are in general non-smooth with respect
45 to the parameters, and therefore related stochastic QoIs are often not regular; see [15,
46 16, 4]. Consequently, spectral methods may not be applicable to stochastic hyperbolic
47 problems, and Monte Carlo sampling needs to be employed. Several variants of Monte
48 Carlo sampling have recently been proposed to accelerate the slow convergence of the
49 Monte Carlo method. These recent methods include multi-level Monte Carlo (MLMC)
50 [10, 6, 5, 7], multi-index Monte Carlo [11], quasi-Monte Carlo [12], and multi-level
51 quasi Monte Carlo [13]. In the particular case of hyperbolic problems, multi-level
52 Monte Carlo approaches have been developed [14, 18], based on finite volume and
53 finite difference techniques.

54 In the present work, we will develop a new variant of Monte Carlo sampling, re-
55 ferred to as *multi-order Monte Carlo* (MOMC). Compared to multi-level Monte Carlo,
56 the method has two new components: 1) it is based on a recently proposed energy-
57 based discontinuous Galerkin method for deterministic hyperbolic problems [3, 2];
58 and 2) it is built upon a hierarchy of orders of discontinuous Galerkin basis functions
59 rather than a mesh hierarchy used in multi-level Monte Carlo. The new method is
60 particularly advantageous for dealing with wave propagation and non-smooth QoIs,
61 because: a) the energy-based discontinuous Galerkin method is capable of accurately
62 treating discontinuities in the PDE coefficients and the PDE data; b) the construction
63 of an order hierarchy based on high-order schemes, such as discontinuous Galerkin,
64 allows us to significantly reduce wave dispersion and produce smaller errors; c) the
65 method uses a fixed mesh at all levels which is beneficial when waves propagate in
66 complicated media where re-meshing is a cumbersome task. The third advantage is of
67 practical importance for instance when the material parameters come from a Bayesian
68 seismic tomography at fixed resolution. Through complexity theorems and numerical
69 experiments, we will demonstrate that the proposed multi-order method is a valid
70 alternative to the current multi-level Monte Carlo method for hyperbolic problems
71 with rough parameters. Moreover, in addition to the convenience of working with
72 a fixed mesh, which is desirable in many real applications with complex geometries,
73 the multi-order method is particularly beneficial in reducing errors due to numerical
74 dispersion in long-time propagating waves. The numerical examples verify that the
75 multi-order approach is faster than the mesh-based multi-level approach for waves
76 that traverse long distances. Note that the MOMC requires that p -refinement can be
77 efficiently used, which is the case for the examples considered here.

78 The outline of the paper is as follows. In Section 2 we formulate the mathematical
79 problem and briefly address the numerical treatment of the problem with relation
80 to stochastic regularity. The energy-based discontinuous Galerkin solver is briefly
81 reviewed in Section 3. In Section 4, we present an adaptation of the multi-level
82 Monte Carlo algorithm to the elastic wave equations discretized by the discontinuous
83 Galerkin method. The new multi-order Monte Carlo method is presented in Section 5.
84 In Section 6 we perform some numerical examples that verify our theoretical results.
85 Finally, we present our conclusions in Section 7.

86 **2. Problem Statement.** In this section, we first present the mathematical for-
87 mulation of the stochastic problem. We then address the numerical treatment of the
88 problem with relation to stochastic regularity.

89 **2.1. Mathematical formulation.** Let $D \subset \mathbb{R}^d$ be a compact d -dimensional
90 spatial domain, where $d = 2, 3$. As the prototype model for wave propagation subject
91 to uncertainty, we consider the following initial boundary value problem (IBVP) for

92 the elastic wave equation with stochastic parameters:

$$93 \quad (1) \quad \begin{aligned} \varrho(\mathbf{x}, \mathbf{y}) \mathbf{u}_{tt}(t, \mathbf{x}, \mathbf{y}) - \nabla \cdot \boldsymbol{\sigma}(\mathbf{u}(t, \mathbf{x}, \mathbf{y})) &= \mathbf{f}(t, \mathbf{x}, \mathbf{y}), & \text{in } [0, T] \times D \times \Gamma, \\ \mathbf{u}(0, \mathbf{x}, \mathbf{y}) = \mathbf{g}_1(\mathbf{x}, \mathbf{y}), \quad \mathbf{u}_t(0, \mathbf{x}, \mathbf{y}) = \mathbf{g}_2(\mathbf{x}, \mathbf{y}), & & \text{on } \{t = 0\} \times D \times \Gamma, \\ \boldsymbol{\sigma}(\mathbf{u}(t, \mathbf{x}, \mathbf{y})) \cdot \hat{\mathbf{n}} = \mathbf{0}, & & \text{on } [0, T] \times \partial D \times \Gamma, \end{aligned}$$

94 where $\mathbf{u} = (u_1, \dots, u_d)^\top \in \mathbb{R}^d$ is the real-valued displacement vector, $t \in [0, T]$ is the
95 time, $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$ is the vector of spatial variables, $\mathbf{y} = (y_1, \dots, y_N) \in \Gamma \subset$
96 \mathbb{R}^N is a random vector, representing the uncertainty in the problem, and $\hat{\mathbf{n}}$ denotes the
97 outward unit normal to the boundary ∂D . We use the convention that ∇ represents
98 the gradient operator with respect to the spatial variables \mathbf{x} . The stress tensor $\boldsymbol{\sigma}$ for
99 isotropic materials reads

$$100 \quad (2) \quad \boldsymbol{\sigma}(\mathbf{u}) = \lambda(\mathbf{x}, \mathbf{y}) \nabla \cdot \mathbf{u} I + \mu(\mathbf{x}, \mathbf{y}) (\nabla \mathbf{u} + (\nabla \mathbf{u})^\top).$$

101 The material parameters are the density ϱ and Lame's parameters λ and μ . The
102 sources of uncertainty are the material parameters (ϱ, λ, μ) , the force term \mathbf{f} , and the
103 initial data, $\mathbf{g}_1, \mathbf{g}_2$, characterized by $N \in \mathbb{N}_+$ independent random variables y_1, \dots, y_N
104 with a bounded joint probability density $\rho(\mathbf{y}) = \prod_{n=1}^N \rho_n(y_n) : \Gamma \rightarrow \mathbb{R}_+$.

105 We take the force term and initial data as

$$106 \quad (3) \quad \mathbf{f} \in \mathbf{L}^2((0, T); \mathbf{L}^2(D) \otimes \mathbf{L}_\rho^2(\Gamma)), \quad \mathbf{g}_1 \in \mathbf{H}^1(D) \otimes \mathbf{L}_\rho^2(\Gamma), \quad \mathbf{g}_2 \in \mathbf{L}^2(D) \otimes \mathbf{L}_\rho^2(\Gamma),$$

107 where \mathbf{L}_ρ^2 is the Hilbert space of vector-valued stochastic functions with bounded
108 second moments, \mathbf{L}^2 is the Hilbert space of square integrable vector-valued functions,
109 and \mathbf{H}^1 is the Hilbert space of vector-valued functions whose first weak derivatives
110 are square integrable. The notation \otimes denotes the tensor product space of Hilbert
111 spaces. We further assume that the data are compatible. Moreover, we assume that
112 the material parameters are uniformly coercive and bounded:

$$113 \quad (4a) \quad 0 < \varrho_{min} \leq \varrho(\mathbf{x}, \mathbf{y}) \leq \varrho_{max} < \infty, \quad \forall \mathbf{x} \in D, \quad \forall \mathbf{y} \in \Gamma,$$

$$114 \quad (4b) \quad 0 < \lambda_{min} \leq \lambda(\mathbf{x}, \mathbf{y}) \leq \lambda_{max} < \infty, \quad \forall \mathbf{x} \in D, \quad \forall \mathbf{y} \in \Gamma,$$

$$115 \quad (4c) \quad 0 < \mu_{min} \leq \mu(\mathbf{x}, \mathbf{y}) \leq \mu_{max} < \infty, \quad \forall \mathbf{x} \in D, \quad \forall \mathbf{y} \in \Gamma.$$

117 We note that assumption (4) is a natural assumption for elastic materials. We also
118 note that in real applications, the material parameters and data are often not smooth.
119 We have therefore made the minimal regularity assumptions (3)-(4) to account for
120 more general wave propagation problems. The assumptions (3)-(4) guarantee that the
121 problem (1) is well-posed: there exists a unique weak solution $\mathbf{u} \in \mathbf{C}^0([0, T]; \mathbf{H}^1(D) \otimes$
122 $\mathbf{L}_\rho^2(\Gamma))$ which depends continuously on the data; see [15, 16] for more details and
123 proofs.

124 The ultimate goal is the prediction of statistics of the wave solution \mathbf{u} or some
125 physical quantities of interest (QoIs) related to the solution, such as

$$126 \quad (5) \quad \mathcal{Q}(\mathbf{y}) = \int_0^T \int_{D_Q \subseteq D} |L(\mathbf{u})|^2(t, \mathbf{x}, \mathbf{y}) d\mathbf{x} dt,$$

127 where $L(\mathbf{u})$ may be a differential operator applied on \mathbf{u} , and $D_Q \subseteq D$ is a part
128 of the computational domain. For instance, the cases where $L(\mathbf{u})$ is \mathbf{u}, \mathbf{u}_t , and \mathbf{u}_{tt}
129 correspond to wave strength, kinetic energy, and Arias intensity, respectively.

2.2. Non-intrusive numerical methods and stochastic regularity. The goal of computations is to numerically approximate the statistical moments of the quantity (5). For instance, consider the first moment of the QoI and let \mathcal{A} be its approximation:

$$\mathbb{E}[\mathcal{Q}] = \int_{\Gamma} \mathcal{Q}(\mathbf{y}) \rho(\mathbf{y}) d\mathbf{y} \approx \mathcal{A}.$$

Non-intrusive methods, such as Monte Carlo [8] and sparse stochastic collocation [19, 17, 15], are popular sample-based approaches that rely on solving a set of deterministic problems corresponding to a set of realizations. In a non-intrusive method, the approximation \mathcal{A} involves two separate approximations: 1) the approximation of \mathcal{Q} , denoted by $\tilde{\mathcal{Q}}$; and 2) the approximation of the integral. The former needs a deterministic solver that computes $\tilde{\mathcal{Q}}$ at a set of M quadrature points, and the latter requires a quadrature rule, such as sample averages (in Monte Carlo) or Gauss or Clenshaw-Curtis quadrature (in stochastic collocation). Correspondingly, the total error in the approximation can be split into two parts:

$$\varepsilon := |\mathbb{E}[\mathcal{Q}] - \mathcal{A}| \leq \underbrace{|\mathbb{E}[\mathcal{Q}] - \mathbb{E}[\tilde{\mathcal{Q}}]|}_{\varepsilon_I} + \underbrace{|\mathbb{E}[\tilde{\mathcal{Q}}] - \mathcal{A}|}_{\varepsilon_{II}}.$$

130 The first error term ε_I corresponds to the discretization error in the deterministic
131 solver, and the second error term ε_{II} is the quadrature error. We note that in Monte
132 Carlo sampling, ε_{II} is a statistical error, as \mathcal{A} is a statistical term.

133 In general, the choice of the numerical method strongly depends on the regularity
134 of the mapping $\mathcal{Q} : \Gamma \rightarrow \mathbb{R}$, which in turn depends on the stochastic regularity of
135 the wave solution \mathbf{u} , i.e. the regularity of \mathbf{u} with respect to \mathbf{y} . In the presence of
136 high stochastic regularity, sparse stochastic collocation exhibits fast convergence in
137 the number of quadrature or collocation points and is preferable. However, if the
138 QoI is not smooth in stochastic space, Monte Carlo sampling techniques must be
139 employed. It is known that the solutions of hyperbolic problems, such as the IBVP
140 (1) with the minimal assumptions (3)-(4), are not smooth in the stochastic space;
141 see [15, 16, 4]. Consequently, the QoI (5) does not have stochastic regularity. We
142 therefore need to employ MC-based sampling techniques. The most popular one is
143 the classical Monte Carlo method. While being very flexible and easy to implement,
144 this technique features a very slow convergence rate. More recently, several variants
145 of Monte Carlo are proposed to accelerate the slow convergence of the Monte Carlo
146 method, including multi-level Monte Carlo [10, 6, 5, 7], multi-index Monte Carlo [11],
147 quasi-Monte Carlo [12], and multi-level quasi Monte Carlo [13]. In the particular
148 case of hyperbolic problems, multi-level Monte Carlo approaches have been developed
149 [14, 18], based on finite volume and finite difference techniques.

150 In the present work, we will develop a new variant of Monte Carlo sampling, which
151 we call the multi-order Monte Carlo method. The method is based on a recently
152 proposed energy-based discontinuous Galerkin method for deterministic hyperbolic
153 problems [3] and is built upon a hierarchy of orders of basis functions rather than
154 a mesh hierarchy used in multi-level Monte Carlo. In what follows, we will briefly
155 review the deterministic solver in Section 3. We then present a multi-level and the
156 new multi-order algorithms based on the energy-based discontinuous Galerkin method
157 in Sections 4 and 5, respectively.

158 **3. Deterministic solvers: energy based discontinuous Galerkin meth-
159 ods.** In this section we briefly review the deterministic solver is the basis for our

160 multi-level and multi-order Monte Carlo methods. As we aim for arbitrary order of
 161 accuracy in space as well as in time we combine a new class of spatial dG discretization
 162 with Taylor series time-stepping.

163 **3.1. Spatial discretization by an energy based discontinuous Galerkin
 164 method.** Our spatial discretization is an direct application of the formulation de-
 165 scribed for general second order wave equations in [3] and for the elastic wave equa-
 166 tion in [2]. Here we outline the spatial discretization for the special case of the scalar
 167 wave equation in one dimension and refer the reader to [3] for the general case. We
 168 note that an open source implementation of the method used for the example with
 169 the elastic wave equation in Section 6.2 is available, [1].

170 The energy of the scalar wave equation is

$$171 \quad H(t) = \int_D \frac{v^2}{2} + G(x, u_x) dx,$$

172 where $G(x, u_x) = c^2(x)u_x^2/2$ is the potential energy density, v is the velocity or the
 173 time derivative of the displacement, $v = u_t$. The wave equation, written as a second
 174 order equation in space and first order in time then takes the form

$$175 \quad u_t = v, \quad v_t = -\delta G,$$

176 where δG is the variational derivative of the potential energy

$$177 \quad \delta G = -(G_{u_x})_x = -(c^2(x)u_x)_x.$$

178 For the continuous problem the change in energy is

$$179 \quad (6) \quad \frac{dH(t)}{dt} = \int_D vv_t + u_t(c^2(x)u_x)_x dx = [u_t(c^2(x)u_x)]_{\partial D},$$

180 where the last equality follows from integration by parts together with the wave
 181 equation. Now, a variational formulation that mimics the above energy identity can
 182 be obtained if the equation $v - u_t = 0$ is tested with the variational derivative of the
 183 potential energy. Let Ω_j be an element and $\Pi^s(\Omega_j)$ be the space of polynomials of
 184 degree s , then the variational formulation on that element is:

185 PROBLEM 1. *Find $v^h \in \Pi^s(\Omega_j)$, $u^h \in \Pi^r(\Omega_j)$ such that for all $\psi \in \Pi^s(\Omega_j)$,*
 186 $\phi \in \Pi^r(\Omega_j)$

$$187 \quad (7) \quad \int_{\Omega_j} c^2 \phi_x \left(\frac{\partial u_x^h}{\partial t} - v_x^h \right) dx = [c^2 \phi_x \cdot n (v^* - v^h)]_{\partial \Omega_j},$$

$$188 \quad (8) \quad \int_{\Omega_j} \psi \frac{\partial v^h}{\partial t} + c^2 \psi_x \cdot u_x^h dx = [\psi (c^2 u_x)^*]_{\partial \Omega_j}.$$

189 Let $[[f]]$ and $\{f\}$ denote the jump and average of a quantity f at the interface
 190 between two elements, then, choosing the numerical fluxes as

$$191 \quad v^* = \{v\} - \tau_1[[c^2 u_x]] \\ 192 \quad (c^2 u_x)^* = \{c^2 u_x\} - \tau_2[[v]],$$

193 will yields a contribution $-\tau_1([[c^2 u_x]])^2 - \tau_2([[v]])^2$ from each element face to the
 194 change of the discrete energy

$$195 \quad \frac{dH^h(t)}{dt} = \frac{d}{dt} \sum_j \int_{\Omega_j} \frac{(v^h)^2}{2} + G(x, u_x^h).$$

196 Physical boundary conditions can also be handled by appropriate specification of the
 197 numerical fluxes, see [3] for details. The above variational formulation and choice
 198 of numerical fluxes results in an energy identity similar to (6). However, as the
 199 energy is invariant to certain transformations the variational problem does not fully
 200 determine the time derivatives of u^h on each element and independent equations
 201 must be introduced. In this case there is one invariant and an independent equation
 202 is $\int_{\Omega_j} \left(\frac{\partial u^h}{\partial t} - v^h \right) = 0$. For the general case and for the elastic wave equation see [3]
 203 and [2].

204 Here we always choose $\tau_i > 0$ (so called upwind or Sommerfeld fluxes) which
 205 typically result in methods that are $q = r + 1$ order accurate in space.

206 **3.2. Taylor series time-stepping.** In order to match the order of accuracy in
 207 space and time we employ Taylor series time-stepping. Assuming that all the degrees
 208 of freedom have been assembled into a vector \mathbf{w} we can write the semi-discrete method
 209 as $\mathbf{w}_t = A\mathbf{w}$ with A being a matrix representing the spatial discretization. Assuming
 210 we know the discrete solution at the time t_n we can advance it to the next time step
 211 $t_{n+1} = t_n + \Delta t$ by the simple formula

$$212 \quad \mathbf{w}(t_n + \Delta t) = \mathbf{w}(t_n) + \Delta t \mathbf{w}_t(t_n) + \frac{(\Delta t)^2}{2!} \mathbf{w}_{tt}(t_n) \dots \\ 213 \quad = \mathbf{w}(t_n) + \Delta t A \mathbf{w}(t_n) + \frac{(\Delta t)^2}{2!} A^2 \mathbf{w}(t_n) \dots$$

214 The stability domain of the Taylor series which truncates at time derivative number
 215 N_T includes the imaginary axis if $\text{mod}(N_T, 4) = 3$ or $\text{mod}(N_T, 4) = 0$. However as we
 216 use a slightly dissipative spatial discretization the spectrum of our discrete operator
 217 will be contained in the stability domain of all sufficiently large choices of N_T (i.e. the
 218 N_T should not be smaller than the spatial order of approximation). Note also that the
 219 stability domain grows linearly with the number of terms. We thus consider methods
 220 based on the combination of the spatial dG discretization of order q combined with a
 221 Taylor series with $N_T = 2\lceil \frac{q}{2} \rceil$, where $\lceil \cdot \rceil$ is the ceiling operator. This yields methods
 222 of order of accuracy $\min(q, N_T)$. We note that we will use this choice of N_T for both
 223 multi-level and multi-order based MC methods in Sections 4 and 5. We also note
 224 that below we exclusively use the mesh size h as a discretization parameter, but that
 225 it is directly proportional to the temporal discretization size Δt , through the CFL
 226 condition.

227 **4. A multi-level discontinuous Galerkin Monte Carlo method.** In this
 228 section, we present an adaptation of the multi-level Monte Carlo algorithm to the
 229 elastic wave equations discretized by the dG method. We note that although MLMC
 230 algorithms for hyperbolic PDEs based on finite difference and finite volume methods
 231 have already been introduced [14, 18], the analysis of MLMC based on the dG method
 232 is different and results in new theoretical results. It also serves as a basis for developing
 233 the new MOMC method.

234 We follow [10] and build a mesh hierarchy with a decreasing sequence of mesh
 235 sizes $h_0 > h_1 > \dots > h_L$. For instance we take

$$236 \quad (9) \quad h_l = h_0 \beta^{-l}, \quad l = 0, 1, \dots, L, \quad \beta \geq 2.$$

We denote by \mathcal{Q}_l , the discretization of \mathcal{Q} by the dG method on the mesh at the l -th

level with mesh size h_l . We then use a telescoping sum formulation and write

$$\mathbb{E}[\mathcal{Q}] = \mathbb{E}[\mathcal{Q} - \mathcal{Q}_L] + \mathbb{E}[\mathcal{Q}_L], \quad \mathbb{E}[\mathcal{Q}_L] = \mathbb{E}[\mathcal{Q}_0] + \sum_{l=1}^L \mathbb{E}[\mathcal{Q}_l - \mathcal{Q}_{l-1}].$$

237 The MLMC estimator approximates the terms in the telescoping sum by sample
238 averages

$$239 \quad (10) \quad \mathcal{A}_{\text{MLMC}} = \frac{1}{M_0} \sum_{m_0=1}^{M_0} \mathcal{Q}_0^{(m_0)} + \sum_{l=1}^L \frac{1}{M_l} \sum_{m_l=1}^{M_l} (\mathcal{Q}_l^{(m_l)} - \mathcal{Q}_{l-1}^{(m_l)}).$$

Here, $\mathcal{Q}_l^{(m_l)} := \mathcal{Q}_l(\mathbf{y}^{(m_l)})$, with $m_l = 1, \dots, M_l$, are M_l realizations of \mathcal{Q}_l corresponding to M_l independent samples $\{\mathbf{y}^{(m_l)}\}_{m_l=1}^{M_l}$ of the random vector \mathbf{y} . The total MLMC error reads

$$\varepsilon_{\text{MLMC}} = |\mathbb{E}[\mathcal{Q}] - \mathcal{A}_{\text{MLMC}}| \leq \underbrace{|\mathbb{E}[\mathcal{Q} - \mathcal{Q}_L]|}_{\varepsilon_I} + \underbrace{|\mathbb{E}[\mathcal{Q}_L] - \mathcal{A}_{\text{MLMC}}|}_{\varepsilon_{II}}.$$

240 The first error term ε_I is the discretization error in the dG solver, or the weak error,
241 which satisfies

$$242 \quad (11) \quad \varepsilon_I \leq c_1 h_L^{q_1}, \quad \forall \mathbf{y} \in \Gamma,$$

243 where q_1 is related to the order q of the dG method, and c_1 is a positive constant
244 which may depend on \mathcal{Q} . Moreover, by the central limit theorem, the statistical error
245 ε_{II} satisfies

$$246 \quad (12) \quad \varepsilon_{II} \lesssim c_\alpha \sqrt{\mathbb{V}[\mathcal{A}_{\text{MLMC}}]} = c_\alpha \sqrt{\frac{\mathbb{V}[\mathcal{Q}_0]}{M_0} + \sum_{l=1}^L \frac{\mathbb{V}[\mathcal{Q}_l - \mathcal{Q}_{l-1}]}{M_l}} =: c_\alpha \sqrt{\sum_{l=0}^L \frac{V_l}{M_l}},$$

247 where $V_0 = \mathbb{V}[\mathcal{Q}_0]$ and $V_l = \mathbb{V}[\mathcal{Q}_l - \mathcal{Q}_{l-1}]$ for $l \geq 1$. Here, the notation \lesssim is interpreted
248 in the following statistical sense:

$$249 \quad (13) \quad P\left(\varepsilon_{II} \leq c_\alpha \sqrt{\sum_{l=0}^L \frac{V_l}{M_l}}\right) \rightarrow 2\phi(c_\alpha) - 1, \quad \text{as } M_l \rightarrow \infty,$$

250 where P is a probability measure, and $\phi(c_\alpha) = \int_{-\infty}^{c_\alpha} \frac{1}{\sqrt{2\pi}} \exp(-\tau^2/2) d\tau$ is the cumulative
251 density function (CDF) of a standard normal random variable. The larger the
252 confidence parameter $c_\alpha > 0$, the higher the probability that $\varepsilon_{II} \leq c_\alpha \sqrt{\sum_{l=0}^L V_l/M_l}$
253 holds. We further note that we have the strong error

$$254 \quad (14) \quad \mathbb{V}[\mathcal{Q} - \mathcal{Q}_l] \leq \mathbb{E}[(\mathcal{Q} - \mathcal{Q}_l)^2] \leq c_2 h_l^{q_2}, \quad \forall \mathbf{y} \in \Gamma.$$

4.1. Numerical algorithm. An error-complexity analysis is needed to optimally select the computational parameters, including the number of samples at different levels $\{M_l\}_{l=0}^L$, and the final level L . We introduce a splitting parameter θ and write

$$\varepsilon_{\text{MLMC}} \leq \varepsilon_I + \varepsilon_{II} \lesssim (1 - \theta) \varepsilon_{\text{TOL}} + \theta \varepsilon_{\text{TOL}}, \quad \theta \in (0, 1),$$

where the errors ε_I and ε_{II} are given by (11) and (12), respectively. Moreover, noting that the cost of computing $\mathcal{Q}_l^{(m_l)} - \mathcal{Q}_{l-1}^{(m_l)}$ in the MLMC estimator (10) is dominated by the cost of computing $\mathcal{Q}_l^{(m_l)}$, which is $W_l \propto h_l^{-\gamma_1}$, the total computational cost of MLMC reads

$$W_{\text{MLMC}} \propto \sum_{l=0}^L M_l W_l, \quad W_l \propto h_l^{-\gamma_1}.$$

255 Here, $\gamma_1 = d + 1 \geq 2$ is the space-time dimension and determines the number of
256 degrees of freedom in the deterministic solver. We then take the following iterative
257 strategy, consisting of two main steps:

1. *Optimal number of samples.* We obtain the optimal number of samples at different levels by minimizing the total computational cost W_{MLMC} subject to the accuracy constraint $\varepsilon_{II} \lesssim \theta \varepsilon_{\text{TOL}}$. Following the standard approach in MLMC [10], we use the method of Lagrange multipliers. With the Lagrangian

$$\mathcal{L}(M_l, \nu) := \sum_{l=0}^L M_l W_l + \nu \left(\sum_{l=0}^L \frac{V_l}{M_l} - \left(\frac{\theta \varepsilon_{\text{TOL}}}{c_\alpha} \right)^2 \right),$$

258 and the optimality equations $\partial_{M_l} \mathcal{L} = \partial_\nu \mathcal{L} = 0$, we obtain

$$259 \quad (15) \quad M_l = \left[\left(\frac{\theta \varepsilon_{\text{TOL}}}{c_\alpha} \right)^{-2} \sqrt{\frac{V_l}{W_l}} \sum_{\ell=0}^L \sqrt{V_\ell W_\ell} \right], \quad W_l \propto h_l^{-\gamma_1}.$$

260 2. *Stopping criterion.* We start with $L = 2$ and iteratively add levels until $\varepsilon_I \leq$
261 $(1 - \theta) \varepsilon_{\text{TOL}}$ is achieved. To find a practical stopping criterion, we start by writing

$$262 \quad (16) \quad \mathbb{E}[\mathcal{Q} - \mathcal{Q}_L] = \sum_{l=L+1}^{\infty} \mathbb{E}[\mathcal{Q}_l - \mathcal{Q}_{l-1}] = \mathbb{E}[\mathcal{Q}_L - \mathcal{Q}_{L-1}] \sum_{l=L+1}^{\infty} \frac{\mathbb{E}[\mathcal{Q}_l - \mathcal{Q}_{l-1}]}{\mathbb{E}[\mathcal{Q}_L - \mathcal{Q}_{L-1}]}.$$

Assuming $|\mathbb{E}[\mathcal{Q}_l - \mathcal{Q}_{l-1}]| \approx c h_l^{q_1}$, we have

$$\frac{|\mathbb{E}[\mathcal{Q}_l - \mathcal{Q}_{l-1}]|}{|\mathbb{E}[\mathcal{Q}_L - \mathcal{Q}_{L-1}]|} \approx \frac{h_l^{q_1}}{h_L^{q_1}} = \frac{h_0^{q_1} \beta^{-l q_1}}{h_0^{q_1} \beta^{-L q_1}} = \beta^{(L-l) q_1}.$$

Hence

$$\varepsilon_I = |\mathbb{E}[\mathcal{Q} - \mathcal{Q}_L]| \leq |\mathbb{E}[\mathcal{Q}_L - \mathcal{Q}_{L-1}]| \sum_{k=1}^{\infty} \beta^{-k q_1} = \frac{1}{\beta^{q_1} - 1} |\mathbb{E}[\mathcal{Q}_L - \mathcal{Q}_{L-1}]|,$$

263 where the last equality follows from the geometrical series $\sum_{k=0}^{\infty} (\beta^{-q_1})^k = \frac{1}{1 - \beta^{-q_1}}$,
264 since $\beta^{-q_1} < 1$. Consequently, the condition we use to add levels in the numerical
265 algorithm is

$$266 \quad (17) \quad \max_{j \in \{0,1,2\}} \frac{\beta^{-j q_1}}{\beta^{q_1} - 1} |\mathbb{E}[\mathcal{Q}_{L-j} - \mathcal{Q}_{L-j-1}]| \leq (1 - \theta) \varepsilon_{\text{TOL}}.$$

267 This criterion will ensure that the deterministic error approximated by an extrapolation
268 from either of the three finest meshes is within the desired range.

269 Now, assuming that we have made the assignment $L \leftarrow L + 1$, we note that in
 270 order to compute the number of samples by (15), we need to compute the variances
 271 $\{V_l\}_{l=0}^L$. Setting $\mathcal{Q}_{-1}^{(m)} = 0$, the variances are approximated by

272 (18)
$$V_l \approx \frac{1}{M_l} \sum_{m=1}^{M_l} \left(\left(\mathcal{Q}_l^{(m)} - \mathcal{Q}_{l-1}^{(m)} \right)^2 - \bar{G}_l^2 \right), \quad \bar{G}_l \approx \frac{1}{M_l} \sum_{m=1}^{M_l} (\mathcal{Q}_l^{(m)} - \mathcal{Q}_{l-1}^{(m)}),$$

273 where $\{M_l\}_{l=0}^L$ are the available number of samples in previous iterations. When a
 274 new level L is added, the variance at the new level V_L cannot be approximated by (18),
 275 since the number of samples at the new level is not known. In this case, thanks to the
 276 strong error estimate (14), assuming $V_l = \mathbb{E}[\mathcal{Q}_l - \mathcal{Q}_{l-1}] \approx c h_l^{q_2}$, we first approximate
 277 V_L in terms of the variance at the previous level V_{L-1} by

278 (19)
$$V_L \approx \beta^{-q_2} V_{L-1},$$

279 and then update the number of samples $\{M_l\}_{l=0}^L$ including the number of samples at
 280 the new level by (15). The expected values $\mathbb{E}[\mathcal{Q}_{L-j} - \mathcal{Q}_{L-j-1}]$ in (17), with $j = 0, 1, 2$,
 281 are also approximated by \bar{G}_{L-j} in (18).

The MLMC algorithm is outlined in Algorithm 1.

Algorithm 1 MLMC algorithm

Start with $L = 2$, and generate a mesh hierarchy $\{h_l\}_{l=0}^L$ by (9).

Choose an initial set $\{M_l\}_{l=0}^L$ of samples.

loop

Approximate $\{V_l\}_{l=0}^L$ by (18).

Update the optimal number of samples $\{M_l\}_{l=0}^L$ by (15).

if (17) is satisfied

Compute $\mathcal{A}_{\text{MLMC}}$ by (10) and terminate the loop.

else

Set $L := L + 1$ and $h_L = h_0 \beta^{-L}$.

Approximate V_L by (19) and compute $\{M_l\}_{l=0}^L$ by (15).

end if

end loop

282
 283 If it is possible to establish bounds on the strong and weak error and the work at
 284 each level, the complexity of Algorithm 1 is guaranteed by the following theorem.

285 THEOREM 1. Consider a mesh hierarchy $h_l = h_0 \beta^{-l}$, with $\beta \geq 2$, and let \mathcal{Q}_l be
 286 the q -th order accurate dG approximation of \mathcal{Q} on a mesh with mesh size h_l . If there
 287 are positive constants $c_1, c_2, c_3, \gamma_1 > 0$ such that

288 (A1)
$$\mathbb{E}[\mathcal{Q} - \mathcal{Q}_l] \leq c_1 h_l^{q_1}, \quad q_1 \geq \gamma_1/2,$$

 (A2)
$$\mathbb{V}[\mathcal{Q} - \mathcal{Q}_l] \leq \mathbb{E}[|\mathcal{Q} - \mathcal{Q}_l|^2] \leq c_2 h_l^{q_2}, \quad q_2 > \gamma_1,$$

 (A3)
$$W_l \leq c_3 h_l^{-\gamma_1}, \quad 9$$

289 then, for any $\varepsilon_{\text{TOL}} < e^{-1}$, there exists an $L \in \mathbb{N}$ and a sequence $\{M_l\}_{l=0}^L$ such that the
290 estimator $\mathcal{A}_{\text{MLMC}}$ has an error $\varepsilon_{\text{MLMC}} \lesssim \varepsilon_{\text{TOL}}$ with a computational cost proportional to
291 $\varepsilon_{\text{TOL}}^{-2}$.

292 *Proof.* By writing $V_l = \mathbb{V}[\mathcal{Q}_l - \mathcal{Q}_{l-1}] = \mathbb{V}[\mathcal{Q} - \mathcal{Q}_{l-1}] - \mathbb{V}[\mathcal{Q} - \mathcal{Q}_l]$ and using the
293 triangular inequality and (A2), we get

294 (20)
$$V_l \leq c h_l^{q_2}, \quad c = c_2(1 + \beta^{q_2} + 2\beta^{q_2/2}).$$

295 Moreover, by minimizing $\mathbb{V}[\mathcal{A}_{\text{MLMC}}]$, or equivalently minimizing ε_{II} , for a fixed com-
296 putational cost W_{MLMC} , we obtain from (A3) and (20):

297 (21)
$$M_l \propto \sqrt{\frac{V_l}{W_l}} \propto h_l^{(\gamma_1+q_2)/2}.$$

We follow [10] and select L to be

$$L = \left\lceil \frac{\log(2c_1 h_0^{q_1} \varepsilon_{\text{TOL}}^{-1})}{q_1 \log \beta} \right\rceil.$$

298 We therefore have

299 (22)
$$\frac{1}{2} \varepsilon_{\text{TOL}} \beta^{-q_1} < c_1 h_L^{q_1} \leq \frac{1}{2} \varepsilon_{\text{TOL}}.$$

300 By the right inequality in (22) and (A1), the deterministic error is bounded by

301 (23)
$$\varepsilon_I \leq \frac{1}{2} \varepsilon_{\text{TOL}}.$$

Moreover, since $h_l = \beta^{L-l} h_L$, we have

$$\sum_{l=0}^L h_l^{-\gamma_1} = h_L^{-\gamma_1} \sum_{l=0}^L \beta^{-\gamma_1 l} \leq h_L^{-\gamma_1} \sum_{l=0}^{\infty} \beta^{-\gamma_1 l} = h_L^{-\gamma_1} \frac{\beta^{\gamma_1}}{\beta^{\gamma_1} - 1}.$$

Now, by the left inequality in (22) we have $h_L^{-\gamma_1} < (2c_1/\varepsilon_{\text{TOL}})^{\gamma_1/q_1} \beta^{\gamma_1}$, thus

$$\sum_{l=0}^L h_l^{-\gamma_1} \leq \frac{\beta^{2\gamma_1}}{\beta^{\gamma_1} - 1} (2c_1)^{\gamma_1/q_1} \varepsilon_{\text{TOL}}^{-\gamma_1/q_1},$$

302 and since $\varepsilon_{\text{TOL}} < e^{-1}$ and $\gamma_1/q_1 \leq 2$, then $\varepsilon_{\text{TOL}}^{-\gamma_1/q_1} \leq \varepsilon_{\text{TOL}}^{-2}$, and hence

303 (24)
$$\sum_{l=0}^L h_l^{-\gamma_1} \leq \frac{\beta^{2\gamma_1}}{\beta^{\gamma_1} - 1} (2c_1)^{\gamma_1/q_1} \varepsilon_{\text{TOL}}^{-2}.$$

304 Now, motivated by (21), we set

305 (25)
$$M_l = \left\lceil \frac{4 \varepsilon_{\text{TOL}}^{-2} c c_{\alpha}^2 h_0^{(q_2-\gamma_1)/2}}{1 - \beta^{-(q_2-\gamma_1)/2}} h_l^{(\gamma_1+q_2)/2} \right\rceil,$$

which gives

306
$$\frac{c c_{\alpha}^2}{M_l} \leq \frac{1}{4} \varepsilon_{\text{TOL}}^2 h_0^{-(q_2-\gamma_1)/2} (1 - \beta^{-(q_2-\gamma_1)/2}) h_l^{-(\gamma_1+q_2)/2}.$$

Then, by (20) we have

$$c_\alpha^2 \sum_{l=0}^L \frac{V_l}{M_l} \leq \sum_{l=0}^L \frac{c c_\alpha^2}{M_l} h_l^{q_2} \leq \frac{1}{4} \varepsilon_{\text{TOL}}^2 h_0^{-(q_2-\gamma_1)/2} (1 - \beta^{-(q_2-\gamma_1)/2}) \sum_{l=0}^L h_l^{(q_2-\gamma_1)/2}.$$

306 Moreover, we have

$$307 \quad (26) \quad \sum_{l=0}^L h_l^{(q_2-\gamma_1)/2} = h_0^{(q_2-\gamma_1)/2} \sum_{l=0}^L (\beta^{-(q_2-\gamma_1)/2})^l < \frac{h_0^{(q_2-\gamma_1)/2}}{1 - \beta^{-(q_2-\gamma_1)/2}}.$$

308 Hence, the statistical error is bounded by

$$309 \quad (27) \quad \varepsilon_{II} \lesssim c_\alpha \sqrt{\sum_{l=0}^L \frac{V_l}{M_l}} \leq \frac{1}{2} \varepsilon_{\text{TOL}}.$$

By (23) and (27), the total error reads $\varepsilon_{\text{MLMC}} \lesssim \varepsilon_{\text{TOL}}$. It is left to show that the computational cost is proportional to $\varepsilon_{\text{TOL}}^{-2}$. By (25), we have

$$M_l < \frac{4 \varepsilon_{\text{TOL}}^{-2} c c_\alpha^2 h_0^{(q_2-\gamma_1)/2}}{1 - \beta^{-(q_2-\gamma_1)/2}} h_l^{(\gamma_1+q_2)/2} + 1.$$

310 Hence, by (A3), the computational cost reads

$$311 \quad W_{\text{MLMC}} = \sum_{l=0}^L M_l W_l \leq c_3 \sum_{l=0}^L M_l h_l^{-\gamma_1} \\ 312 \quad < c_3 \sum_{l=0}^L \left(\frac{4 \varepsilon_{\text{TOL}}^{-2} c c_\alpha^2 h_0^{(q_2-\gamma_1)/2}}{1 - \beta^{-(q_2-\gamma_1)/2}} h_l^{(q_2-\gamma_1)/2} + h_l^{-\gamma_1} \right).$$

Eventually, by (26) and (24), we obtain

$$W_{\text{MLMC}} < c_w \varepsilon_{\text{TOL}}^{-2}, \quad c_w = 4 c_3 c c_\alpha^2 h_0^{q_2-\gamma_1} (1 - \beta^{-(q_2-\gamma_1)/2})^{-2} + c_3 (2 c_1)^{\gamma_1/q_1} \frac{\beta^{2\gamma_1}}{\beta^{\gamma_1} - 1}.$$

313 This completes the proof. \square

314 Note that for the sake of brevity we considered only the special case $\theta = 1/2$ in
315 Theorem 1 but that it can be extended to the case of a general θ by tracking the
316 splitting of the error in the proof.

317 **5. A multi-order discontinuous Galerkin Monte Carlo method.** In this
318 section, we describe the new MOMC algorithm and present error and convergence
319 analysis.

320 The new algorithm will first construct a fixed mesh, with a mesh size h , and
321 build an order hierarchy with an increasing sequence of degrees of polynomial basis
322 functions, or equivalently a sequence of dG orders $q_0 < q_1 < \dots < q_L$. For instance
323 we take

$$324 \quad (28) \quad q_l = q_0 + \beta l, \quad l = 0, 1, \dots, L, \quad q_0 \geq 1, \quad \beta \geq 1.$$

325 Denote by Q_l the approximation of Q by a q_l -th order dG on the fixed mesh. Using
 326 the same telescoping sum formulation as in MLMC and approximating the terms by
 327 sample averages, we write the MOMC estimator as

328 (29)
$$\mathcal{A}_{\text{MOMC}} = \frac{1}{M_0} \sum_{m_0=1}^{M_0} \mathcal{Q}_0^{(m_0)} + \sum_{l=1}^L \frac{1}{M_l} \sum_{m_l=1}^{M_l} (\mathcal{Q}_l^{(m_l)} - \mathcal{Q}_{l-1}^{(m_l)}).$$

Here, $\mathcal{Q}_l^{(m_l)} := \mathcal{Q}_l(\mathbf{y}^{(m_l)})$, is one realization of \mathcal{Q}_l corresponding to a sample $\mathbf{y}^{(m_l)}$ of the random vector \mathbf{y} . The total MOMC error reads

$$\varepsilon_{\text{MOMC}} = |\mathbb{E}[\mathcal{Q}] - \mathcal{A}_{\text{MOMC}}| \leq \underbrace{|\mathbb{E}[\mathcal{Q} - \mathcal{Q}_L]|}_{\varepsilon_I} + \underbrace{|\mathbb{E}[\mathcal{Q}_L] - \mathcal{A}_{\text{MOMC}}|}_{\varepsilon_{II}}.$$

329 The first error term ε_I is the discretization error in the dG solver,

330 (30)
$$\varepsilon_I \leq c_1 h^{q_{1L}}, \quad q_{1L} := \kappa_1 q_L, \quad \forall \mathbf{y} \in \Gamma,$$

331 where $\kappa_1 > 0$ is related to the convergence of the dG solver in approximating $\mathbb{E}[\mathcal{Q}]$.
 332 The statistical error ε_{II} , interpreted in the statistical sense similar to (13), satisfies

333 (31)
$$\varepsilon_{II} \lesssim c_\alpha \sqrt{\mathbb{V}[\mathcal{A}_{\text{MOMC}}]} = c_\alpha \sqrt{\frac{\mathbb{V}[\mathcal{Q}_0]}{M_0} + \sum_{l=1}^L \frac{\mathbb{V}[\mathcal{Q}_l - \mathcal{Q}_{l-1}]}{M_l}} =: c_\alpha \sqrt{\sum_{l=0}^L \frac{V_l}{M_l}}.$$

334 The strong error also satisfies

335 (32)
$$\mathbb{V}[\mathcal{Q} - \mathcal{Q}_l] \leq \mathbb{E}[(\mathcal{Q} - \mathcal{Q}_l)^2] \leq c_2 h^{q_{2l}}, \quad q_{2l} = \kappa_2 q_l, \quad \forall \mathbf{y} \in \Gamma,$$

336 where $\kappa_2 > 0$ is related to the convergence of the dG solver in approximating $\mathbb{V}[\mathcal{Q}]$.

5.1. Numerical algorithm. Similar to MLMC, an error-complexity analysis is needed to optimally select the computational parameters. We split the total error by introducing a splitting parameter θ and write

$$\varepsilon_{\text{MOMC}} \leq \varepsilon_I + \varepsilon_{II} \lesssim (1 - \theta) \varepsilon_{\text{TOL}} + \theta \varepsilon_{\text{TOL}}, \quad \theta \in (0, 1),$$

where the errors ε_I and ε_{II} are given by (30) and (31), respectively. Moreover, noting that the cost of computing $\mathcal{Q}_l^{(m_l)} - \mathcal{Q}_{l-1}^{(m_l)}$ in the MOMC estimator (29) is dominated by the cost of computing $\mathcal{Q}_l^{(m_l)}$, which is $W_l \propto q_l^{\gamma_2}$, the total computational cost of MOMC reads

$$W_{\text{MOMC}} \propto \sum_{l=0}^L M_l W_l, \quad W_l \propto q_l^{\gamma_2}.$$

337 Here, $\gamma_2 = d + 2 \geq 3$ determines the cost of the deterministic dG solver. We then
 338 take the following iterative strategy, consisting of two main steps:

339 1. *Optimal number of samples.* We obtain the optimal number of samples in a similar
 340 way as MLMC:

341 (33)
$$M_l = \left\lceil \left(\frac{\theta \varepsilon_{\text{TOL}}}{c_\alpha} \right)^{-2} \sqrt{\frac{V_l}{W_l}} \sum_{\ell \neq 0}^L \sqrt{V_\ell W_\ell} \right\rceil, \quad W_l \propto q_l^{\gamma_2}.$$

2. *Stopping criterion.* We start with $L = 2$ and iteratively add levels until $\varepsilon_I \leq (1 - \theta) \varepsilon_{\text{TOL}}$ is achieved. To find a practical stopping criterion, we start with (16) and assume that $|\mathbb{E}[\mathcal{Q}_l - \mathcal{Q}_{l-1}]| \approx c h^{\kappa_1 q_L}$. We then have

$$\frac{|\mathbb{E}[\mathcal{Q}_l - \mathcal{Q}_{l-1}]|}{|\mathbb{E}[\mathcal{Q}_L - \mathcal{Q}_{L-1}]|} \approx \frac{h^{\kappa_1 q_l}}{h^{\kappa_1 q_L}} = h^{\kappa_1 (q_l - q_L)} = h^{\kappa_1 \beta (l - L)}.$$

Hence

$$\varepsilon_I = |\mathbb{E}[\mathcal{Q} - \mathcal{Q}_L]| \leq |\mathbb{E}[\mathcal{Q}_L - \mathcal{Q}_{L-1}]| \sum_{k=1}^{\infty} h^{k \kappa_1 \beta} = \frac{h^{\kappa_1 \beta}}{1 - h^{\kappa_1 \beta}} |\mathbb{E}[\mathcal{Q}_L - \mathcal{Q}_{L-1}]|,$$

342 where the last equality follows from the geometrical series $\sum_{k=0}^{\infty} (\beta^{-q_1})^k = \frac{1}{1 - h^{\kappa_1 \beta}}$,
343 since $h^{\kappa_1 \beta} < 1$. Consequently, the condition we use to add levels in the numerical
344 algorithm is

$$345 \quad (34) \quad \max_{j \in \{0, 1, 2\}} \frac{h^{(j+1) \kappa_1 \beta}}{1 - h^{\kappa_1 \beta}} |\mathbb{E}[\mathcal{Q}_{L-j} - \mathcal{Q}_{L-j-1}]| \leq (1 - \theta) \varepsilon_{\text{TOL}}.$$

346 This will ensure that the deterministic error approximated by an extrapolation form
347 either of the three finest meshes is within the desired range.

348 Similar to the MLMC strategy, we approximate the variances $\{V_l\}_{l=0}^L$ in (33)
349 by (18). When a new level L is added, the variance at the new level V_L cannot be
350 approximated by (18), since the number of sample at the new level is not known. In
351 this case, thanks to the strong error estimate (32), assuming $V_l = \mathbb{V}[\mathcal{Q}_l - \mathcal{Q}_{l-1}] \approx$
352 $c h^{\kappa_2 q_l}$, we first approximate V_L in terms of the variance at the previous level V_{L-1}
353 by

$$354 \quad (35) \quad V_L \approx h^{\kappa_2 \beta} V_{L-1}$$

355 and then update the number of samples $\{M_l\}_{l=0}^L$ including the number of samples at
356 the new level by (33). The expected values $\mathbb{E}[\mathcal{Q}_{L-j} - \mathcal{Q}_{L-j-1}]$ in (34), with $j = 1, 2, 3$,
357 are also approximated by \tilde{G}_{L-j} in (18).

358 The MOMC algorithm is outlined in Algorithm 2.

359 **LEMMA 2.** *For every positive real number $r < 1$ and every positive integer $p \geq 1$,
360 we have*

$$361 \quad (36) \quad \sum_{l=0}^{\infty} r^{(q_0 + \beta l)} (q_0 + \beta l)^p = \sum_{k=1}^p \tilde{c}_k r^k f^{(k)}(r), \quad f(r) = \frac{r^{q_0}}{1 - r^{\beta}}.$$

Proof. We start with the following geometrical series sum, thanks to $r^{\beta} < 1$:

$$\sum_{l=0}^{\infty} (r^{\beta})^l = \frac{1}{1 - r^{\beta}}.$$

Hence

$$\sum_{l=0}^{\infty} r^{q_0 + \beta l} = \frac{r^{q_0}}{1 - r^{\beta}} =: f(r).$$

We differentiate the above formula with respect to r to obtain

$$\sum_{l=0}^{\infty} (q_0 + \beta l) r^{q_0 + \beta l - 1} = \frac{d}{dr} f(r).$$

Algorithm 2 MOMC algorithm

Start with $L = 2$, and generate an order hierarchy $\{q_l\}_{l=0}^L$ by (28).

Choose an initial set $\{M_l\}_{l=0}^L$ of samples.

loop

 Approximate $\{V_l\}_{l=0}^L$ by (18).

 Update the optimal number of samples $\{M_l\}_{l=0}^L$ by (33).

if (34) is satisfied

 Compute $\mathcal{A}_{\text{MOMC}}$ by (29) and terminate the loop.

else

 Set $L := L + 1$ and $q_L = q_0 + \beta L$.

 Approximate V_L by (35) and compute $\{M_l\}_{l=0}^L$ by (33).

end if

end loop

We then multiply it by r to obtain

$$\sum_{l=0}^{\infty} (q_0 + \beta l) r^{q_0 + \beta l} = r \frac{d}{dr} f(r).$$

362 We obtain (36) by repeating the above process, i.e. differentiate with respect to r and
363 then multiply by r , p times. \square

364 **THEOREM 3.** Consider an order hierarchy $q_l = q_0 + \beta l$, with $l = 0, 1, \dots, L$, where
365 $q_0 \geq 1$ and $\beta \geq 1$ are constants. Let \mathcal{Q}_l be the semi-discretization of \mathcal{Q} by the q_l -th
366 order dG method on a mesh with a fixed mesh size $h < 1$. If there are constants
367 $c_1, c_2, c_3, \gamma_1, \gamma_2 > 0$ such that

$$(A4) \quad |\mathbb{E}[\mathcal{Q} - \mathcal{Q}_l]| \leq c_1 h^{q_{1l}}, \quad q_{1l} = \kappa_1 q_l, \quad \kappa_1 q_0 \geq \gamma_1/2,$$

$$(A5) \quad \mathbb{V}[\mathcal{Q} - \mathcal{Q}_l] \leq \mathbb{E}[|\mathcal{Q} - \mathcal{Q}_l|^2] \leq c_2 h^{q_{2l}}, \quad q_{2l} = \kappa_2 q_l, \quad \kappa_2 q_0 > \gamma_1,$$

$$(A6) \quad W_l \leq c_3 h^{-\gamma_1} q_l^{\gamma_2},$$

369 then, for any $\varepsilon_{\text{TOL}} < e^{-1}$, there exists an $L \in \mathbb{N}$ and a sequence $\{M_l\}_{l=0}^L$ such that the
370 estimator $\mathcal{A}_{\text{MOMC}}$ has an error $\varepsilon_{\text{MOMC}} \lesssim \varepsilon_{\text{TOL}}$ with a computational cost proportional to
371 $\varepsilon_{\text{TOL}}^{-2}$.

372 *Proof.* By writing $V_l = \mathbb{V}[\mathcal{Q}_l - \mathcal{Q}_{l-1}] = \mathbb{V}[\mathcal{Q} - \mathcal{Q}_{l-1}] - \mathbb{V}[\mathcal{Q} - \mathcal{Q}_l]$ and using the
373 triangular inequality and (A5), we get

$$374 \quad (37) \quad V_l \leq c h^{q_{2l}}, \quad c = c_2(1 + h^{-\kappa_2 \beta} + 2 h^{-\kappa_2 \beta/2}).$$

375 Moreover, by minimizing $\mathbb{V}[\mathcal{A}_{\text{MOMC}}]$, or equivalently minimizing ε_{II} , for a fixed com-
376 putational cost W_{MOMC} , we obtain from (A6) and (37):

$$377 \quad (38) \quad M_l \propto \sqrt{V_l/W_l} \propto h^{(\gamma_1 + q_{2l})/2} q_l^{-\gamma_2/2}.$$

We select L to be

$$L = \left\lceil \frac{\log(2c_1 h^{\kappa_1 q_0} \varepsilon_{\text{TOL}}^{-1})}{\log(h^{-\kappa_1 \beta})} \right\rceil.$$

Hence

$$\frac{\log(2c_1 h^{\kappa_1 q_0} \varepsilon_{\text{TOL}}^{-1})}{\log(h^{-\kappa_1 \beta})} \leq L < \frac{\log(2c_1 h^{\kappa_1 q_0} \varepsilon_{\text{TOL}}^{-1})}{\log(h^{-\kappa_1 \beta})} + 1.$$

378 By the rules of logarithms and simple algebraic manipulations, we get

$$379 \quad (39) \quad \frac{1}{2} \varepsilon_{\text{TOL}} h^{\kappa_1 \beta} < c_1 h^{\kappa_1 q_L} \leq \frac{1}{2} \varepsilon_{\text{TOL}}.$$

380 By the right inequality in (39) and (A4), the deterministic error is bounded by

$$381 \quad (40) \quad \varepsilon_I \leq \frac{1}{2} \varepsilon_{\text{TOL}}.$$

By the left inequality in (39), we have

$$h^{-\kappa_1 q_L} < 2c_1 h^{-\kappa_1 \beta} \varepsilon_{\text{TOL}}^{-1},$$

and hence by taking logarithm and rearranging we obtain

$$q_L < \frac{\log(2c_1 h^{-\kappa_1 \beta})}{\log(h^{-\kappa_1})} + \frac{1}{\log(h^{-\kappa_1})} \log(\varepsilon_{\text{TOL}}^{-1}) =: \hat{c}_1 + \hat{c}_2 \log(\varepsilon_{\text{TOL}}^{-1}),$$

where the constants \hat{c}_1 and \hat{c}_2 are independent of ε_{TOL} and L . The right hand side of the above inequality is a logarithmic growth and can be bounded by an algebraic growth. In particular, there exists a constant \hat{c} such that

$$\hat{c}_1 + \hat{c}_2 \log(\varepsilon_{\text{TOL}}^{-1}) < \hat{c} \varepsilon_{\text{TOL}}^{-2/(\gamma_2+1)},$$

and hence

$$q_L < \hat{c} \varepsilon_{\text{TOL}}^{-2/(\gamma_2+1)}.$$

382 We therefore have

$$383 \quad (41) \quad \sum_{l=0}^L q_l^{\gamma_2} < (L+1) q_L^{\gamma_2} < q_L^{\gamma_2+1} < \hat{c}^{\gamma_2+1} \varepsilon_{\text{TOL}}^{-2}.$$

384 Now, motivated by (38), we set

$$385 \quad (42) \quad M_l = \left\lceil 4 \varepsilon_{\text{TOL}}^{-2} c c_\alpha^2 S h^{(\gamma_1 + \kappa_2 q_l)/2} q_l^{-\gamma_2/2} \right\rceil,$$

where

$$S = h^{-\gamma_1/2} \sum_{k=1}^{\lceil \gamma_2/2 \rceil} \tilde{c}_k h^{k \kappa_2/2} f^{(k)}(r), \quad f(r) = \frac{r^{q_0}}{1 - r^\beta}, \quad r = h^{\kappa_2/2} < 1.$$

From (42) we get

$$\frac{c c_\alpha^2}{M_l} \leq \frac{1}{4} \varepsilon_{\text{TOL}}^2 S^{-1} h^{-(\gamma_1 + \kappa_2 q_l)/2} q_l^{\gamma_2/2}.$$

Then, by (37) we have

$$c_\alpha^2 \sum_{l=0}^L \frac{V_l}{M_l} \leq \sum_{l=0}^L \frac{c c_\alpha^2}{M_l} h^{\kappa_2 q_l} \leq \frac{1}{4} \varepsilon_{\text{TOL}}^2 S^{-1} \sum_{l=0}^L h^{(\kappa_2 q_l - \gamma_1)/2} q_l^{\gamma_2/2}.$$

386 Moreover, by Lemma 2 with $r := h^{\kappa_2/2} < 1$ and $p := \lceil \gamma_2/2 \rceil > 1$, we have

$$387 \quad (43) \quad \sum_{l=0}^L h^{(\kappa_2 q_l - \gamma_1)/2} q_l^{\gamma_2/2} < h^{-\gamma_1/2} \sum_{l=0}^{\infty} h^{\kappa_2 (q_0 + \beta l)/2} (q_0 + \beta l)^{\lceil \gamma_2/2 \rceil} < S.$$

388 Hence, the statistical error is bounded by

$$389 \quad (44) \quad \varepsilon_{II} \lesssim c_\alpha \sqrt{\sum_{l=0}^L \frac{V_l}{M_l}} \leq \frac{1}{2} \varepsilon_{\text{TOL}}.$$

By (40) and (44), the total error reads $\varepsilon_{\text{MOMC}} \lesssim \varepsilon_{\text{TOL}}$. It is left to show that the computational cost is proportional to $\varepsilon_{\text{TOL}}^{-2}$. By (42), we have

$$M_l < 4 \varepsilon_{\text{TOL}}^{-2} c c_\alpha^2 S h^{(\gamma_1 + \kappa_2 q_l)/2} q_l^{-\gamma_2/2} + 1.$$

390 Hence, by (A6), the computational cost reads

$$391 \quad W_{\text{MOMC}} = \sum_{l=0}^L M_l W_l \leq c_3 \sum_{l=0}^L M_l h^{-\gamma_1} q_l^{\gamma_2} \\ 392 \quad < 4 c_3 \varepsilon_{\text{TOL}}^{-2} c c_\alpha^2 S \sum_{l=0}^L h^{(\kappa_2 q_l - \gamma_1)/2} q_l^{\gamma_2/2} + c_3 h^{-\gamma_1} \sum_{l=0}^L q_l^{\gamma_2}.$$

By (43) we obtain

$$W_{\text{MOMC}} < c_w \varepsilon_{\text{TOL}}^{-2}, \quad c_w = 4 c_3 c c_\alpha^2 S^2 + c_3 \hat{c}^{\gamma_2+1} h^{-\gamma_1}.$$

393 This completes the proof. \square

394 **REMARK 1.** *Theorems 1 and 3 show that, under the same accuracy constraint*
395 *($\varepsilon_{\text{MLMC}} \lesssim \varepsilon_{\text{TOL}}$ and $\varepsilon_{\text{MOMC}} \lesssim \varepsilon_{\text{TOL}}$), the total computational cost of both MLMC and*
396 *MOMC is proportional to $\varepsilon_{\text{TOL}}^{-2}$. This verifies that MOMC is a valid alternative to*
397 *MLMC for hyperbolic problems. In addition, we will present numerical evidence (see*
398 *Figures 1 and 4) that the multi-order approach is faster than the mesh-based multi-*
399 *level approach for waves that traverse long distances. This superiority of MOMC*
400 *over MLMC is due to the advantage of high-order schemes in controlling dispersive*
401 *errors in wave propagation problems. In principle, this claim can be made rigorous by*
402 *carefully tracking the the effects of dispersive errors on the constant c_w , which appears*
403 *in the computational cost. Such analysis is the topic of future work.*

404 **6. Numerical examples.** In this section we present numerical results from
405 problems in (1+1) and (2+1) dimensions demonstrating the performance of the two
406 methods described above. The first example considers the scalar wave equation, and
407 the second example considers the elastic wave equation. For the details of the dG
408 deterministic solver, we refer to [2, 3].

6.1. Example 1. We first consider the scalar wave equation in (1+1) dimensions on the domain $D = [0, 10]$ and with a potential energy density $G(x) = (c(x)u_x)^2/2$. We take the initial data to be

$$u(x,0) = e^{-(x-5)^2}, \quad v(x,0) = 0,$$

413 and impose homogenous Dirichlet conditions on both boundaries. Here the square
 414 of the wave speed is assumed to be uncertain in the x direction and modeled by 10
 415 independent and uniformly distributed random variables $y_i = U[0, 1]$. Precisely the
 416 piecewise constant wave speed is

$$417 \qquad \qquad c^2(x, \mathbf{y}) = 1 + \frac{y_i}{100}, \quad x \in [i-1, i], \quad i = 1, \dots, 10.$$

418 We perform the simulations by starting both methods on a uniform grid conforming
 419 with the wave speed. In MLMC we choose the base element size is $h_0 = 1$ with
 420 the fixed order $q = 4$, and in MOMC we choose the fixed mesh size $h = 1$ and start
 421 with the order $q_0 = 4$, corresponding to a fourth order space-time accurate method
 422 in the displacement u .

423 The quantity of interest is

$$\mathcal{Q}(\mathbf{y}) = \left(\int_D |u(T, x, \mathbf{y})|^2 dx \right)^{\frac{1}{2}},$$

425 where T is the final time and the integral in x is approximated by sufficiently accurate
 426 Gauss-Legendre-Lobatto quadrature.

427 The parameters in MOMC are $(\gamma_2, \kappa_1, \kappa_2) = (2, 1, 2)$ and the parameters in
 428 MLMC are $(\gamma_1, q_1, q_2) = (2, 4, 8)$. For MLMC we set $\beta = 2$ and for MOMC we
 429 present results for $\beta = 1$ and 2. For both methods we set $\theta = 1/2$ and $c_\alpha = 1.96$.

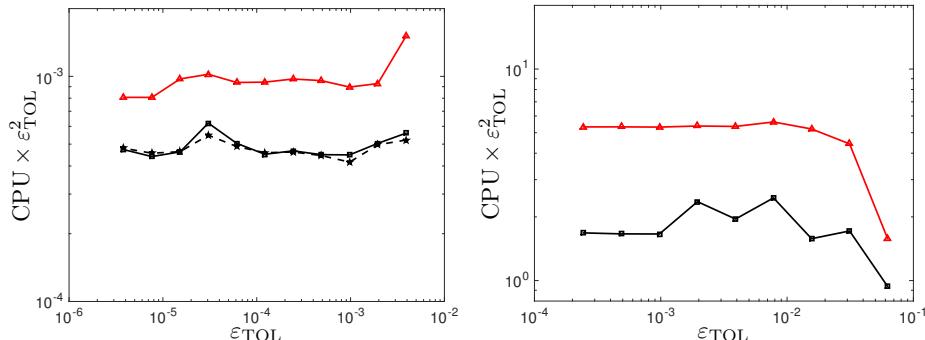


FIG. 1. Product of CPU time and the square of the tolerance. The red curves with triangles represents MLMC and the black curves with squares represents MOMC with $\beta = 2$ and the dashed line MOMC with $\beta = 1$. The left figure is for $T = 20$ and the right is for $T = 200$. For this problem MOMC uses about 1.8 and 3.2 times less CPU-time to reach a given tolerance.

430 To illustrate the advantage of using MOMC we consider two final simulation times.
 431 First we set $T = 20$ and perform simulations with tolerances $\varepsilon_{\text{TOL}} = 2^{-8-s}$, $s = 0, \dots, 10$. These simulations are performed three times with different random seeds.
 432 In a second set of simulations we increase the final time to $T = 200$ and perform simulations
 433 with tolerances $\varepsilon_{\text{TOL}} = 2^{-7-s}$, $s = 0, \dots, 5$. For the second set of simulations
 434 we only present results for $\beta = 2$ for MOMC.

436 To confirm the complexity results of Theorem 1 and 3 we plot the product of the
 437 square of the tolerance and total CPU time as a function of tolerance. The results
 438 for both final times can be found in Figure 1. As can be seen to the left in Figure
 439 1, for the short time $T = 20$, MOMC is about 1.8 times faster than MLMC for both
 440 choices of β in MOMC. For the longer simulation time we find that MOMC is about
 441 3.2 times faster than MLMC.

442 For the short time simulation we also report the distributions of the number of
 443 samples per level for the three different methods and for the different tolerances. As
 444 can be seen in Figure 2, at higher levels, where the deterministic solver per sample
 445 is computationally costly, the number of samples (or the number of the determinis-
 446 tic solves) are much smaller than the number of samples at lower levels, where the
 447 deterministic solver per sample is computationally cheap. This intuitively show why
 MLMC and MOMC work.

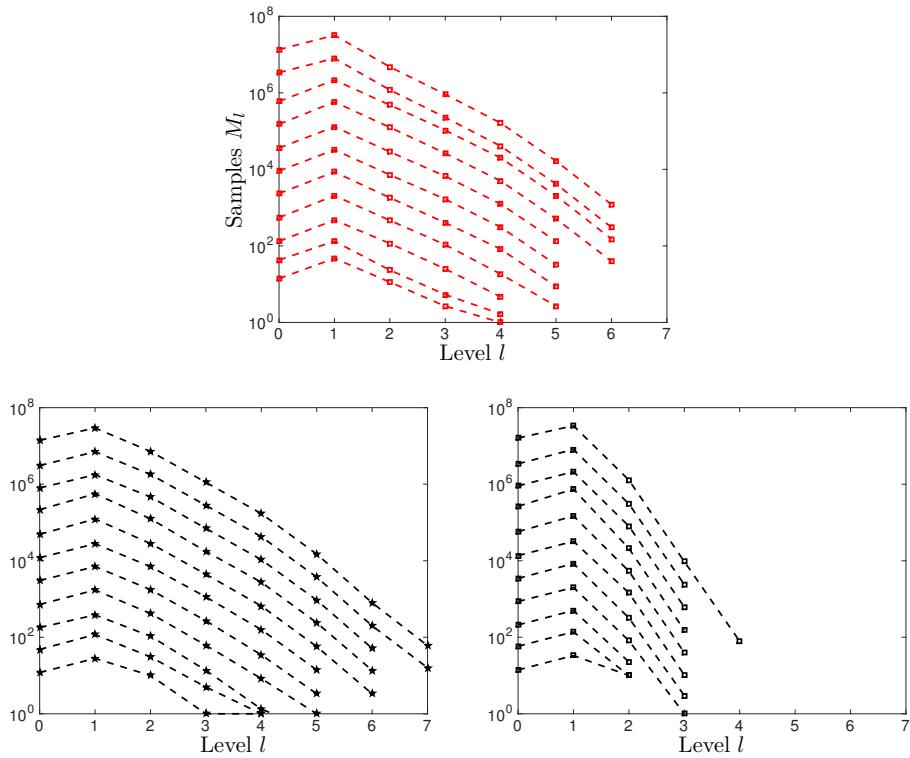


FIG. 2. Number of samples per level for different tolerances $\varepsilon_{\text{TOL}} = 2^{-8-s}$, $s = 0, \dots, 10$. In each figure, the strictest tolerance corresponds to the curve with the highest number of samples. The number of samples are monotonically decreasing as the tolerance is relaxed. On top MLMC, bottom left MOMC with $\beta = 1$, and bottom right MOMC with $\beta = 2$.

448

449 **6.2. Example 2.** In this example we consider the elastic wave equation with
 450 traction free boundary conditions on the domain $D = (x_1, x_2) \in [-1, 1] \times [-2, 2]$. In
 451 MLMC, the domain D is discretized with square elements with sides $h_l = h_0 \beta^{-l}$, with
 452 $\beta = 2$ and $h_0 = \frac{1}{2}$, and we use dG with the fixed order $q = 4$. In MOMC we choose
 453 the fixed mesh size $h = 1/2$ and start with the order $q_0 = 4$. The material properties
 454 are taken to be piecewise constant but different above and below $x_2 = 0$, precisely

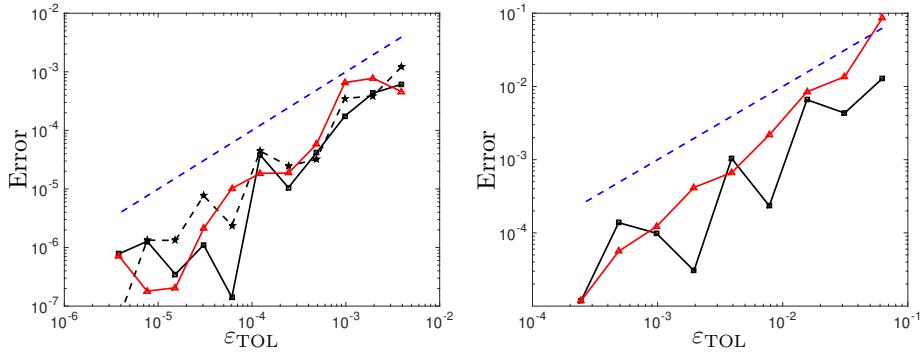


FIG. 3. Verification that the tolerance is met. Plotted is the error as a function of the tolerance for MLMC (solid red with triangles), MOMC and $\beta = 1$ (dashed black with pentagrams) and MOMC and $\beta = 2$ (solid black with squares). The left figure is for $T = 20$ and the right is for $T = 200$.

455 they are

456 (45)
$$(\rho, \lambda, \mu) = \begin{cases} (1, 4, 1 + y_1) & x_2 > 0, \\ (1, 4, 1 + y_2) & x_2 < 0, \end{cases}$$

457 where y_1 and y_2 are uniform random variables on $[0, 1]$. Note that the grid coincides
458 with the material interface at $x_2 = 0$, so that the order of the dG method is not
459 affected by the jump discontinuity in μ . The initial data is chosen to be

460
$$u_1 = e^{-6((x_1 - 0.15)^2 + (x_2 - 0.1)^2)}, \quad u_2 = e^{-6((x_1 - 0.12)^2 + (x_2 - 0.14)^2)}, \quad v_1 = v_2 = 0.$$

461 Here u_1 and u_2 are the displacements and v_1 and v_2 are the velocities.

462 The quantity of interest is

463
$$Q(y) = \left(\int_D u_1(T, \mathbf{x}, \mathbf{y})^2 + u_2(T, \mathbf{x}, \mathbf{y})^2 d\mathbf{x} \right)^{\frac{1}{2}},$$

464 where T is the final time of the simulation.

465 We present results for three different final times $T = 1, 10$ and 100 . In Figure
466 4 we plot the product of the square of the tolerance and total CPU time as a func-
467 tion of tolerance for the three different final times. The results are for MOMC with
468 $(\gamma_2, \kappa_1, \kappa_2) = (4, 1, 2)$ and $\beta = 1$ and for MLMC with $(\gamma_1, q_1, q_2) = (3, 4, 8)$ and $\beta = 2$.
For both methods we set $\theta = 1/2$ and $c_\alpha = 1.96$.

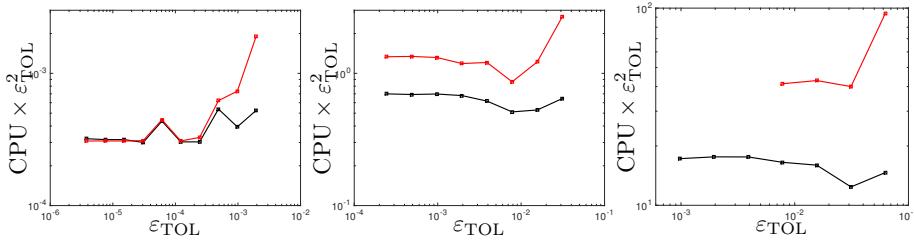


FIG. 4. From left to right $T = 1, 10, 100$. MLMC (red), MOMC with $\beta = 1$ (black).

469
470 As in the previous example, as the final time becomes longer the advantage of
471 the MOMC method becomes more pronounced. In this case the computational time

472 is about the same when $T = 1$, about 1.9 times faster when $T = 10$ and 2.4 times
473 faster when $T = 100$. Again we find that the tolerance is met for both the methods
474 and for all the final times, see Figure 5.

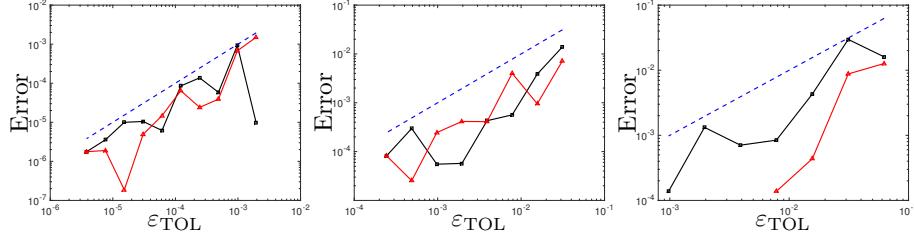


FIG. 5. Verification that the tolerance is met. From left to right $T = 1, 10, 100$. MLMC (red), MOMC with $\beta = 1$ (black).

475 **7. Conclusion.** We presented the multi-order Monte Carlo method for forward
476 propagation of uncertainties in hyperbolic problems. Here the method used an ar-
477bitrary order energy-based discontinuous Galerkin discretization to build order hier-
478archies but we note that the MOMC method could of course also use any suitable
479discretization capable of discretization at arbitrary order. In fact, the complexity
480theorems we have presented do not rely on the dG method but are general in that
481they accept any discretization.

482 We found that the optimal complexity of the original MLMC method also carries
483 over to our multi-order Monte Carlo method and that the new method is faster when
484 the problem at hand requires propagation of waves over long distances. Another
485 feature of the MOMC is that a single mesh can be generated, something that may
486 be of practical importance both for increased set-up time as well as for the ability to
487 load balance parallel computations once and for all in the beginning of a simulation.

488 Our method illustrates the power of the multi-level Monte Carlo framework and
489 how easily it can be adopted and extended. We are currently exploring extensions of
490 the MOMC method to other hyperbolic problems and more realistic applications and
491 we are also working on extending it to the *hp*-refinement regime.

492

REFERENCES

- 493 [1] D. APPELÖ AND T. HAGSTROM, *dg-DATH: Discontinuous Galerkin Solver by Daniel Appelo &*
494 *Thomas Hagstrom for the Elastic Wave Equation*, 2015, [https://bitbucket.org/appelo/dg-
495 dath_elastic_v1.0](https://bitbucket.org/appelo/dg-dath_elastic_v1.0).
- 496 [2] D. APPELÖ AND T. HAGSTROM, *An energy-based discontinuous Galerkin discretization of the*
497 *elastic wave equation in second order form*, Computer Methods in Applied Mechanics and
498 *Engineering*, xxx (2016), p. xxx.
- 499 [3] D. APPELÖ AND T. HAGSTROM, *A new discontinuous Galerkin formulation for wave equations*
500 *in second order form*, Siam Journal On Numerical Analysis, 53 (2016), pp. 2705–2726.
- 501 [4] I. BABUŠKA, M. MOTAMED, AND R. TEMPONE, *A stochastic multiscale method for the elas-*
502 *todynamic wave equations arising from fiber composites*, Computer Methods in Applied
503 *Mechanics and Engineering*, 276 (2014), pp. 190–211.
- 504 [5] A. BARTH, C. SCHWAB, AND N. ZOLLINGER, *Multilevel Monte Carlo finite element method for*
505 *elliptic PDEs with stochastic coefficients*, Numer. Math., 199 (2011), pp. 123–161.
- 506 [6] K. A. CLIFFE, M. B. GILES, R. SCHEICHL, AND A. L. TECKENTRUP, *Multilevel Monte Carlo*
507 *methods and applications to elliptic PDEs with random coefficients*, Comput. Visual Sci.,
508 14 (2011), pp. 3–15.
- 509 [7] N. COLLIER, A.-L. HAJI-ALI, F. NOBILE, E. VON SCHWERIN, AND R. TEMPONE, *A continuation*
510 *multilevel Monte Carlo algorithm*, BIT Numer. Math., (2014). (in press).

511 [8] G. S. FISHMAN, *Monte Carlo: Concepts, Algorithms, and Applications*, Springer- Verlag, New
512 York, 1996.

513 [9] R. G. GHANEM AND P. D. SPANOS, *Stochastic finite elements: A spectral approach*, Springer,
514 New York, 1991.

515 [10] M. B. GILES, *Multilevel Monte Carlo path simulation*, Oper. Res., 56 (2008), pp. 607–617.

516 [11] A.-L. HAJI-ALI, F. NOBILE, AND R. TEMPONE, *Multi-index Monte Carlo: when sparsity meets
517 sampling*, Numerische Mathematik, (2015).

518 [12] T. Y. HOU AND X. WU, *Quasi-Monte Carlo methods for elliptic PDEs with random coefficients
519 and applications*, J. Comput. Phys., 230 (2011), pp. 3668–3694.

520 [13] F. Y. KUO, C. SCHWAB, AND I. H. SLOAN, *Multi-level quasi-Monte Carlo finite element meth-
521 ods for a class of elliptic PDEs with random coefficients*, Foundations of Computational
522 Mathematics, 15 (2015), pp. 411–449.

523 [14] S. MISHRA AND C. SCHWAB, *Sparse tensor multi-level Monte Carlo finite volume methods
524 for hyperbolic conservation laws with random initial data*, Mathematics of computation, 81
525 (2012), pp. 1979–2018.

526 [15] M. MOTAMED, F. NOBILE, AND R. TEMPONE, *A stochastic collocation method for the sec-
527 ond order wave equation with a discontinuous random speed*, Numer. Math., 123 (2013),
528 pp. 493–536.

529 [16] M. MOTAMED, F. NOBILE, AND R. TEMPONE, *Analysis and computation of the elastic wave
530 equation with random coefficients*, Computers and Mathematics with Applications, 70
531 (2015), pp. 2454–2473.

532 [17] F. NOBILE, R. TEMPONE, AND C. G. WEBSTER, *A sparse grid stochastic collocation method for
533 partial differential equations with random input data*, SIAM J. Numer. Anal., 46 (2008),
534 pp. 2309–2345.

535 [18] J. SUKYS, S. MISHRA, AND C. SCHWAB, *Multi-level Monte Carlo finite difference and finite
536 volume methods for stochastic linear hyperbolic systems*, in Monte Carlo and Quasi-Monte
537 Carlo Methods, J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, eds., vol. 65 of Springer
538 Proceedings in Mathematics and Statistics, Springer, 2012, pp. 649–666.

539 [19] D. XIU AND J. S. HESTHAVEN, *High-order collocation methods for differential equations with
540 random inputs*, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139.