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A MULTI-ORDER DISCONTINUOUS GALERKIN MONTE CARLO
METHOD FOR HYPERBOLIC PROBLEMS WITH STOCHASTIC
PARAMETERS

MOHAMMAD MOTAMED* AND DANIEL APPELOf

Abstract. We present a new multi-order Monte Carlo algorithm for computing the statistics of
stochastic quantities of interest described by linear hyperbolic problems with stochastic parameters.
The method is a non-intrusive technique based on a recently proposed high-order energy-based dis-
continuous Galerkin method for the second-order acoustic and elastic wave equations. The algorithm
is built upon a hierarchy of degrees of polynomial basis functions rather than a mesh hierarchy used
in multi-level Monte Carlo. Through complexity theorems and numerical experiments, we show that
the proposed multi-order method is a valid alternative to the current multi-level Monte Carlo method
for hyperbolic problems. Moreover, in addition to the convenience of working with a fixed mesh,
which is desirable in many real applications with complex geometries, the multi-order method is
particularly beneficial in reducing errors due to numerical dispersion in long-distance propagation of
waves. The numerical examples verify that the multi-order approach is faster than the mesh-based
multi-level approach for waves that traverse long distances.

Key words. Hyperbolic problems; Wave propagation; Stochastic parameters; Uncertainty quan-
tification; Multi-level Monte Carlo; Discontinuous Galerkin; Multi-order Monte Carlo

AMS subject classifications.

1. Introduction. Wave propagation problems are mathematically described by
hyperbolic partial differential equations (PDEs). In real applications, such as seis-
mology, acoustics, and electromagnetism, the problem is subject to uncertainty, due
to the lack of knowledge (epistemic uncertainty) and/or intrinsic variabilities of the
physical system (aleatoric uncertainty). For instance, in earthquake ground motion,
both kinds of uncertainties are present due to the scarcity of measured soil parame-
ters and inherent variations in the location of the focus and the intensity of seismic
sources. To account for uncertainties, PDE models are often formulated in a prob-
abilistic framework, where uncertain input parameters are described by stochastic
fields, which can in turn be approximated by a finite number of random variables. A
major problem is then the forward propagation of uncertainty, where uncertainties in
the input parameters are propagated through the model to obtain information about
uncertain output quantities of interest (Qols).

The most popular method for propagating stochastic uncertainty in PDE models
is Monte Carlo sampling [8], where sample statistics of output Qols are computed
from independent realizations drawn from the input probability distributions. While
being very flexible and easy to implement, this technique features a very slow conver-
gence rate. More recently, spectral approaches, such as stochastic Galerkin [9] and
stochastic collocation [17, 19], have been proposed, which exploit the possible regu-
larity that output Qols might have with respect to the input parameters. This opens
up the possibility to use deterministic approximations of the response function (i.e.
the solution of the problem as a function of the input parameters) based on global
polynomials. Such approximations are expected to yield a very fast convergence in
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the presence of high stochastic regularity.

Solutions to parametric hyperbolic PDEs are in general non-smooth with respect
to the parameters, and therefore related stochastic Qols are often not regular; see [15,
16, 4]. Consequently, spectral methods may not be applicable to stochastic hyperbolic
problems, and Monte Carlo sampling needs to be employed. Several variants of Monte
Carlo sampling have recently been proposed to accelerate the slow convergence of the
Monte Carlo method. These recent methods include multi-level Monte Carlo (MLMC)
[10, 6, 5, 7], multi-index Monte Carlo [11], quasi-Monte Carlo [12], and multi-level
quasi Monte Carlo [13]. In the particular case of hyperbolic problems, multi-level
Monte Carlo approaches have been developed [14, 18], based on finite volume and
finite difference techniques.

In the present work, we will develop a new variant of Monte Carlo sampling, re-
ferred to as multi-order Monte Carlo (MOMC). Compared to multi-level Monte Carlo,
the method has two new components: 1) it is based on a recently proposed energy-
based discontinuous Galerkin method for deterministic hyperbolic problems [3, 2];
and 2) it is built upon a hierarchy of orders of discontinuous Galerkin basis functions
rather than a mesh hierarchy used in multi-level Monte Carlo. The new method is
particularly advantageous for dealing with wave propagation and non-smooth Qols,
because: a) the energy-based discontinuous Galerkin method is capable of accurately
treating discontinuities in the PDE coefficients and the PDE data; b) the construction
of an order hierarchy based on high-order schemes, such as discontinuous Galerkin,
allows us to significantly reduce wave dispersion and produce smaller errors; c) the
method uses a fixed mesh at all levels which is beneficial when waves propagate in
complicated media where re-meshing is a cumbersome task. The third advantage is of
practical importance for instance when the material parameters come from a Bayesian
seismic tomography at fixed resolution. Through complexity theorems and numerical
experiments, we will demonstrate that the proposed multi-order method is a valid
alternative to the current multi-level Monte Carlo method for hyperbolic problems
with rough parameters. Moreover, in addition to the convenience of working with
a fixed mesh, which is desirable in many real applications with complex geometries,
the multi-order method is particularly beneficial in reducing errors due to numerical
dispersion in long-time propagating waves. The numerical examples verify that the
multi-order approach is faster than the mesh-based multi-level approach for waves
that traverse long distances. Note that the MOMC requires that p-refinement can be
efficiently used, which is the case for the examples considered here.

The outline of the paper is as follows. In Section 2 we formulate the mathematical
problem and briefly address the numerical treatment of the problem with relation
to stochastic regularity. The energy-based discontinuous Galerkin solver is briefly
reviewed in Section 3. In Section 4, we present an adaptation of the multi-level
Monte Carlo algorithm to the elastic wave equations discretized by the discontinuous
Galerkin method. The new multi-order Monte Carlo method is presented in Section 5.
In Section 6 we perform some numerical examples that verify our theoretical results.
Finally, we present our conclusions in Section 7.

2. Problem Statement. In this section, we first present the mathematical for-
mulation of the stochastic problem. We then address the numerical treatment of the
problem with relation to stochastic regularity.

2.1. Mathematical formulation. Let D C R? be a compact d-dimensional
spatial domain, where d = 2,3. As the prototype model for wave propagation subject
to uncertainty, we consider the following initial boundary value problem (IBVP) for
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the elastic wave equation with stochastic parameters:

Q(Xuy) utt(taan) -V U(u(t7x7Y)) = f(t7x7Y)7 in [OaT] X D x Fu

(1) u(07X7 y) = gl(xuy)u Ut(O,X, y) = g2(x,y), on {t = 0} x D x F,
U(u(taxv Y)) n=0, on [O,T] x 0D x T,

where u = (u1,...,uq)" € R? is the real-valued displacement vector, t € [0,T] is the

time, x = (21,...,24) € R? is the vector of spatial variables, y = (y1,...,yy) €' C

RY is a random vector, representing the uncertainty in the problem, and f denotes the
outward unit normal to the boundary 0D. We use the convention that V represents
the gradient operator with respect to the spatial variables x. The stress tensor o for
isotropic materials reads

(2) o) = \x,y)V-ul+pux,y)(Vut (Vu)').

The material parameters are the density o and Lame’s parameters A and pu. The
sources of uncertainty are the material parameters (g, A, i), the force term f, and the
initial data, g1, g2, characterized by N € N independent random variables y1, ..., yn
with a bounded joint probability density p(y) = Hﬁ;l pn(yn) : T = R4

We take the force term and initial data as

(3) £ e L?((0,T);L*(D)®L2(I)), g € H'(D)®LT), g € L*(D)oL(D),

where Lﬁ is the Hilbert space of vector-valued stochastic functions with bounded
second moments, L? is the Hilbert space of square integrable vector-valued functions,
and H! is the Hilbert space of vector-valued functions whose first weak derivatives
are square integrable. The notation ® denotes the tensor product space of Hilbert
spaces. We further assume that the data are compatible. Moreover, we assume that
the material parameters are uniformly coercive and bounded:

(4a) 0 < Omin < 0(X,¥) < Omae <00, Vxe€D, Vyerl,
(4b) 0 < Amin SAXK,Y) < Mg <00, VxeD, Vyel,
(4c) 0 < fimin < (X, Y) < flmaz <00, Vxe€D, Vyel.

We note that assumption (4) is a natural assumption for elastic materials. We also
note that in real applications, the material parameters and data are often not smooth.
We have therefore made the minimal regularity assumptions (3)-(4) to account for
more general wave propagation problems. The assumptions (3)-(4) guarantee that the
problem (1) is well-posed: there exists a unique weak solution u € C°([0, T]); H' (D) ®
L2(T)) which depends continuously on the data; see [15, 16] for more details and
proofs.

The ultimate goal is the prediction of statistics of the wave solution u or some
physical quantities of interest (Qols) related to the solution, such as

T
(5) Ay) :/0 /D . |L(u)?(t,x,y) dx dt,

where L(u) may be a differential operator applied on u, and Dg C D is a part
of the computational domain. For instance, the cases where L(u) is u,u;, and uy
correspond to wave strength, kinetic energy, and Arias intensity, respectively.
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2.2. Non-intrusive numerical methods and stochastic regularity. The
goal of computations is to numerically approximate the statistical moments of the
quantity (5). For instance, consider the first moment of the Qol and let A be its
approximation:

E[Q] = / Q) ply)dy ~ A.

Non-intrusive methods, such as Monte Carlo [8] and sparse stochastic collocation
[19, 17, 15], are popular sample-based approaches that rely on solving a set of deter-
ministic problems corresponding to a set of realizations. In a non-intrusive method,
the approximation A involves two separate approximations: 1) the approximation
of Q, denoted by Q; and 2) the approximation of the integral. The former needs a
deterministic solver that computes Q at a set of M quadrature points, and the latter
requires a quadrature rule, such as sample averages (in Monte Carlo) or Gauss or
Clenshaw-Curtis quadrature (in stochastic collocation). Correspondingly, the total
error in the approximation can be split into two parts:

e = |E[Q] — A| < |E[Q] — E[Q]| + [E[Q] — A

€1 Err

The first error term e; corresponds to the discretization error in the deterministic
solver, and the second error term ;7 is the quadrature error. We note that in Monte
Carlo sampling, €5 is a statistical error, as A is a statistical term.

In general, the choice of the numerical method strongly depends on the regularity
of the mapping Q : I' — R, which in turn depends on the stochastic regularity of
the wave solution u, i.e. the regularity of u with respect to y. In the presence of
high stochastic regularity, sparse stochastic collocation exhibits fast convergence in
the number of quadrature or collocation points and is preferable. However, if the
Qol is not smooth in stochastic space, Monte Carlo sampling techniques must be
employed. It is known that the solutions of hyperbolic problems, such as the IBVP
(1) with the minimal assumptions (3)-(4), are not smooth in the stochastic space;
see [15, 16, 4]. Consequently, the Qol (5) does not have stochastic regularity. We
therefore need to employ MC-based sampling techniques. The most popular one is
the classical Monte Carlo method. While being very flexible and easy to implement,
this technique features a very slow convergence rate. More recently, several variants
of Monte Carlo are proposed to accelerate the slow convergence of the Monte Carlo
method, including multi-level Monte Carlo [10, 6, 5, 7], multi-index Monte Carlo [11],
quasi-Monte Carlo [12], and multi-level quasi Monte Carlo [13]. In the particular
case of hyperbolic problems, multi-level Monte Carlo approaches have been developed
[14, 18], based on finite volume and finite difference techniques.

In the present work, we will develop a new variant of Monte Carlo sampling, which
we call the multi-order Monte Carlo method. The method is based on a recently
proposed energy-based discontinuous Galerkin method for deterministic hyperbolic
problems [3] and is built upon a hierarchy of orders of basis functions rather than
a mesh hierarchy used in multi-level Monte Carlo. In what follows, we will briefly
review the deterministic solver in Section 3. We then present a multi-level and the
new multi-order algorithms based on the energy-based discontinuous Galerkin method
in Sections 4 and 5, respectively.

3. Deterministic solvers: energy based discontinuous Galerkin meth-
ods. In this section we briefly review the deterministic solver is the basis for our

4
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multi-level and multi-order Monte Carlo methods. As we aim for arbitrary order of
accuracy in space as well as in time we combine a new class of spatial dG discretization
with Taylor series time-stepping.

3.1. Spatial discretization by an energy based discontinuous Galerkin
method. Our spatial discretization is an direct application of the formulation de-
scribed for general second order wave equations in [3] and for the elastic wave equa-
tion in [2]. Here we outline the spatial discretization for the special case of the scalar
wave equation in one dimension and refer the reader to [3] for the general case. We
note that an open source implementation of the method used for the example with
the elastic wave equation in Section 6.2 is available, [1].

The energy of the scalar wave equation is

2

v

H(t) = / — + G(x, uy)dx,
D 2

where G(z,u,) = c¢?(x)u?/2 is the potential energy density, v is the velocity or the

time derivative of the displacement, v = u;. The wave equation, written as a second

order equation in space and first order in time then takes the form

ug =v, v =—0G,
where G is the variational derivative of the potential energy
6G = —(Gy,)e = —(P(x)ug)s.
For the continuous problem the change in energy is

(6) dli—t(t) = /D vy 4 ug (A (2)ug) e dr = [ug(c*(x)ug)]op,

where the last equality follows from integration by parts together with the wave
equation. Now, a variational formulation that mimics the above energy identity can
be obtained if the equation v — u; = 0 is tested with the variational derivative of the
potential energy. Let 2, be an element and II°(€);) be the space of polynomials of
degree s, then the variational formulation on that element is:

PROBLEM 1. Find v" € TI°(£);), u" € TI"(Q;) such that for all 1 € T%(;),
¢ € II"(€)

(7) / CQ(bz <8(;1‘t}11 _ 1}2) dr = [C2¢m 'n (’U* _ Uh)]aﬂj,
Q;
h
(8) /Q. ¢% +C21/)m uZ dr = [1/) (62 Um)*]aszj-

Let [[f]] and {f} denote the jump and average of a quantity f at the interface
between two elements, then, choosing the numerical fluxes as

v* = {0} — mifle? ug]]
(¢ ue)" = {c? ug} — mof[v],

will yields a contribution —7q([[c? u.]])? — 72([[v]])? from each element face to the
change of the discrete energy

dHM(t)  d (vh)?2
dt = %;/] 2 +G(ZZ?,’U,Z)




Physical boundary conditions can also be handled be appropriate specification of the

numerical fluxes, see [3] for details. The above variational formulation and choice

of numerical fluxes results in an energy identity similar to (6). However, as the

energy is invariant to certain transformations the variational problem does not fully

determine the time derivatives of u" on each element and independent equations

must be introduced. In this case there is one invariant and an independent equation
Auh

is fﬂj (W - vh) = 0. For the general case and for the elastic wave equation see [3]

and [2].
Here we always choose 7; > 0 (so called upwind or Sommerfeld fluxes) which
typically result in methods that are ¢ = r + 1 order accurate in space.

3.2. Taylor series time-stepping. In order to match the order of accuracy in
space and time we employ Taylor series time-stepping. Assuming that all the degrees
of freedom have been assembled into a vector w we can write the semi-discrete method
as wy = Aw with A being a matrix representing the spatial discretization. Assuming
we know the discrete solution at the time ¢,, we can advance it to the next time step
tn+1 = tn + At by the simple formula

(At)?
2!
=w(t,) + At Aw(t,) + %AQW(%) .

Wty + At) = w(t,) + At we(t,) + Wit (tn) ...

The stability domain of the Taylor series which truncates at time derivative number
Nt includes the imaginary axis if mod(Nt,4) = 3 or mod(Nr,4) = 0. However as we
use a slightly dissipative spatial discretization the spectrum of our discrete operator
will be contained in the stability domain of all sufficiently large choices of Nt (i.e. the
N should not be smaller than the spatial order of approximation). Note also that the
stability domain grows linearly with the number of terms. We thus consider methods
based on the combination of the spatial dG discretization of order g combined with a
Taylor series with Ny = 2[4], where [.] is the ceiling operator. This yields methods
of order of accuracy min(q, N1). We note that we will use this choice of Nt for both
multi-level and multi-order based MC methods in Sections 4 and 5. We also note
that below we exclusively use the mesh size h as a discretization parameter, but that
it is directly proportional to the temporal discretization size At, through the CFL
condition.

4. A multi-level discontinuous Galerkin Monte Carlo method. In this
section, we present an adaptation of the multi-level Monte Carlo algorithm to the
elastic wave equations discretized by the dG method. We note that although MLMC
algorithms for hyperbolic PDEs based on finite difference and finite volume methods
have already been introduced [14, 18], the analysis of MLMC based on the dG method
is different and results in new theoretical results. It also serves as a basis for developing
the new MOMC method.

We follow [10] and build a mesh hierarchy with a decreasing sequence of mesh
sizes hg > h1 > ... > hy. For instance we take

(9) h=hoft, 1=0,1,...,L, fB>2

We denote by Qy, the discretization of @ by the dG method on the mesh at the I-th
6
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level with mesh size h;. We then use a telescoping sum formulation and write

E[Q] =E[Q— Q1] +E[Q1],  E[Qr] =E[Q]+ ) E[Q— Q4]
=1

The MLMC estimator approximates the terms in the telescoping sum by sample
averages

(10) Anive = —— Z Qomo) + Z Z Q(ml ml))-

ﬂ%o 1 7nl 1

Here, lel = Qu(y™)), with my = 1,..., M;, are M; realizations of Q; correspond-
ing to M; independent samples {y (™ }%[;:1 of the random vector y. The total MLMC
error reads

EMLMc = |E[Q] - AMLMC| < |E[Q - QL” + |E[QL] - AMLMC| .

€r €11

The first error term €5 is the discretization error in the dG solver, or the weak error,
which satisfies

(11) er < e hf, Vyel,

where ¢; is related to the order ¢ of the dG method, and ¢; is a positive constant
which may depend on Q. Moreover, by the central limit theorem, the statistical error
ey satisfies

(12) €11 S Ca V[AMLMC] = Ca

where Vo = V[Qp] and V; = V[Q;— Q1] for [ > 1. Here, the notation < is interpreted
in the following statistical sense:

)—>2¢(ca) 1, as M, — oo,

where P is a probability measure, and ¢(cq) = [ -4 Tz exp (=7 2/2)dr is the cumu-
lative density function (CDF) of a standard normal random variable. The larger the

confidence parameter ¢, > 0, the higher the probability that e;; < ¢ \/ZZL:o Vi/ M,
holds. We further note that we have the strong error

(14) V[Q - Q) <E[(Q— Q)% < 2 h?, Vy eTl.

4.1. Numerical algorithm. An error-complexity analysis is needed to opti-
mally select the computational parameters, including the number of samples at dif-
ferent levels {M;}% . and the final level L. We introduce a splitting parameter 6 and
write

Evrme S €7+ 511 (1 - 9) Eror + 0 Eror, 0 e (07 1);
7
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where the errors e and 77 are given by (11) and (12), respectively. Moreover, noting
that the cost of computing Q("” Q("” in the MLMC estimator (10) is dominated

by the cost of computing Ql , which is W; o< h; ™, the total computational cost of

MLMC reads
L

Wime &y MWi,  Wiochy ™
1=0
Here, vy = d + 1 > 2 is the space-time dimension and determines the number of
degrees of freedom in the deterministic solver. We then take the following iterative
strategy, consisting of two main steps:

1. Optimal number of samples. We obtain the optimal number of samples at different
levels by minimizing the total computational cost Wy uc subject to the accuracy
constraint 77 < 0 epeor,. Following the standard approach in MLMC [10], we use the
method of Lagrange multipliers. With the Lagrangian

L L
0
E(Mlay) ::ZMlWl+V Z ETOL)2)7
=0 1=0

OL

and the optimality equations Oy, £ = 0, L = 0, we obtain

Ocrorr—2 [V
15 M:[ﬂ’ =t \/VW], Wi oc b
(15) l ( - ) W ; e We 1 o< hy

2. Stopping criterion. We start with L = 2 and iteratively add levels until e; <
(1 — 0) eror is achieved. To find a practical stopping criterion, we start by writing

— E[Q/— Q1]
(16) E[Q-9Qi]= E[Q, — Q1] =E[Qr — Q1] —_—.
! ;i-l l:;kl E[Qr - Qr]
Assuming [E[Q; — Q;—1]| &~ c¢h]*, we have
E[Q = Q]| W _ hg s _ gl-bar,
[E[Qr — Qrll AT hE @
Hence
> 1
er =|E[Q - 91]| < |E[QL — Qr-1]] Zﬂ_k "= Bo 1 |E[Qr — Qr—-1]l,
k=1

_ 1
= 15
since 879 < 1. Consequently, the condition we use to add levels in the numerical
algorithm is

where the last equality follows from the geometrical series > po (877 )"

—Jja

(17) |E[QL—; — Qr—j—1]| < (1 —0)eror.

max
jefo,1,2y B —1

This criterion will ensure that the deterministic error approximated by an extrapola-
tion from either of the three finest meshes is within the desired range.

8
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269 Now, assuming that we have made the assignment L <— L + 1, we note that in
270 order to compute the number of samples by (15), we need to compute the variances

{Vi}E,. Setting Q(ﬂ) = 0, the variances are approximated by

N
-~

M, M,

1 2 - 1

o2 (18) Vim A Z ((le) _ ng‘f) _ Gl2> , G~ SR Z (o™ — o™y,
! m=1 ! m=1

273 where {Ml}zL:o are the available number of samples in previous iterations. When a
274 new level L is added, the variance at the new level V, cannot be approximated by (18),
275 since the number of samples at the new level is not known. In this case, thanks to the
276 strong error estimate (14), assuming V; = V[Q; — Q;_1] ~ ¢ h{?, we first approximate
277 Vi, in terms of the variance at the previous level Vi, _1 by
278 (19) Vi~ B2V,
279 and then update the number of samples {M;}L  including the number of samples at

280 the new level by (15). The expected values E[Qr—; —Qr— ;1] in (17), with j = 0,1,2,
281 are also approximated by Gp_; in (18).

The MLMC algorithm is outlined in Algorithm 1.

Algorithm 1 MLMC algorithm

Start with L = 2, and generate a mesh hierarchy {h;}~ , by (9).
Choose an initial set {M;}£, of samples.
loop
Approximate {V;}/, by (18).
Update the optimal number of samples {M;}/, by (15).
if (17) is satisfied
Compute Aypyc by (10) and terminate the loop.
else
Set L:=L+1and hy =ho S~ L.
Approximate V7, by (19) and compute {M;}~, by (15).

end if
end loop
282
283 If it is possible to establish bounds on the strong and weak error and the work at

284 each level, the complexity of Algorithm 1 is guaranteed by the following theorem.

285 THEOREM 1. Consider a mesh hierarchy hy = ho =", with 8 > 2, and let Q; be
286 the q-th order accurate dG approximation of Q on a mesh with mesh size hy. If there
287 are positive constants c1,ca,cs,¥1 > 0 such that

(A1) [E[Q— Q]| < c1h*, @ > /2,
288 (A2) V[Q— Q] <E[Q- Q| <c2hf, q>m,
(AS’) W; <e3 h;’“, 9
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then, for any ero, < e~ !, there exists an L € N and a sequence {MZ}ILZO such that the
estimator Aypyc has an error €ypye S €ror With a computational cost proportional to

Eror

Proof. By writing V) = V[Q; — Q,_1] = V[Q — Q;—1] — V[Q — Q;] and using the

triangular inequality and (A2), we get

(20) Vi<ch,  c=co(l+ 8% 42522,

Moreover, by minimizing V[ Ay yc], or equivalently minimizing e;;, for a fixed com-

putational cost Wyyc, we obtain from (A8) and (20):

| Vi +42)/2
(21) M, x W o hl('y1 9)/2,

We follow [10] and select L to be

I [log(2cl hd' ETOLl)—‘
q1 log 3 '

We therefore have

1 _ 1
(22) 5 Eror BT < ¢ h%l < 5 €roL-

By the right inequality in (22) and (A1), the deterministic error is bounded by

1
(23) er < 3 EroL-
Moreover, since h; = B! hy, we have

L L [eS) ot
Zhl—% _ h;% Zﬁ—’Yll < hz% ZB—%l — h;% B )
1=0 1=0 1=0 pr -1

Now, by the left inequality in (22) we have h; " < (2¢1/eror)H/9 B, thus

L

271
Zhl*’n < [351 — (201)’71/111 ETOL—’Yl/lh,
=0

and since g0, < e~ and v1/q1 < 2, then eror M < ero. 72, and hence

= g / 2
o _
(24) ; S gy (20 M e
Now, motivated by (21), we set
. 4eror 2 Cci h(gq2771)/2 (v1+g2)/2
(25) M, = ’V 1-— B—(Q2—V1)/2 hl ’

which gives

9
O
oN

< 5T0L2 ha(qz—%)ﬂ (1— /8_((12_’71)/2) hl—(%-i-qz)/?_

RNy

M,
10
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Then, by (20) we have

Vel 1 (g2-m1)/ )/
e “Tap - 2p—(a2—71)/2 11 _ p—(q2—71)/2 q2—71)/2
CZMl ZM S4 N )Zh12 o
1=0 1=0 1=0
Moreover, we have
L L h(()qgf’n)/2

(26) = g @

(27)

By (23) and (27), the total error reads EMLMC < eron. It is left to show that the

~

computational cost is proportional to 1o, 2. By (25), we have

_ —1)/2
depor 2ec? hgp )/

1 — B—(a2—m)/2

Ml < hl(’Y1+q2)/2+1'

Hence, by (A8), the computational cost reads

L L
Wase = 3 MWy < e3 Y My ™
=0 =0
2 h(Qz*’)’l)/Q

L
deror 2 cc? hy (g2—71)/2 -7
< ;( 1 — p—(a2=m)/2 y +hy '

Eventually, by (26) and (24), we obtain

ﬁ2%
B — 1’

This completes the proof. a

Whime < cw ETOL_27 cw =4cs Cci hgz_% (1_ﬁ_(qz_71)/2)_2+03 (2 01)71/111

Note that for the sake of brevity we considered only the special case § = 1/2 in
Theorem 1 but that it can be extended to the case of a general 6 by tracking the
splitting of the error in the proof.

5. A multi-order discontinuous Galerkin Monte Carlo method. In this
section, we describe the new MOMC algorithm and present error and convergence
analysis.

The new algorithm will first construct a fixed mesh, with a mesh size h, and
build an order hierarchy with an increasing sequence of degrees of polynomial basis

functions, or equivalently a sequence of dG orders ¢y < ¢1 < ..., < qr. For instance
we take
(28) ql:q0+ﬂl’ l:0,17"'7L7 q0217 /821'

11
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Denote by @; the approximation of @ by a ¢;-th order dG on the fixed mesh. Using
the same telescoping sum formulation as in MLMC and approximating the terms by
sample averages, we write the MOMC estimator as

(29) Asonie = Mio Z ’"”’+Z Z Q"™ — o™y,
mo=1 m;=1

Here, Ql(ml) = Q (y(ml)), is one realization of Q; corresponding to a sample y(") of
the random vector y. The total MOMC error reads

EmomMc = |E[Q] - -AMOMC| S |E[Q - QLH + |E[QL] - -AMOMC| .

€1 Err

The first error term ¢; is the discretization error in the dG solver,
(30) er < ¢y h8E, qiL = K1 4L, Vyel,

where 1 > 0 is related to the convergence of the dG solver in approximating E[Q].
The statistical error £y, interpreted in the statistical sense similar to (13), satisfies

L
(31) €11 S Ca V V[AMOMC] = Ca + Z V Ql 1] =:c

=1

The strong error also satisfies
(32) V[Q - Q) <E[(Q— Q)% < cp b, go1 = K2 qi, VyeT,

where k2 > 0 is related to the convergence of the dG solver in approximating V[Q)].

5.1. Numerical algorithm. Similar to MLMC, an error-complexity analysis is
needed to optimally select the computational parameters. We split the total error by
introducing a splitting parameter § and write

Emome JEr+eEnr S (1 - 9) €rorL + 95T0L7 0 e (07 1)7

where the errors e and e are given by (30) and (31), respectively. Moreover, noting
that the cost of computing Q("” QZ(T{) in the MOMC estimator (29) is dominated

by the cost of computing Ql , which is W; o« ¢/*, the total computational cost of
MOMC reads

L
WMOMCOCZMlle Wi o< q)”.
1=0
Here, 75 = d + 2 > 3 determines the cost of the deterministic dG solver. We then

take the following iterative strategy, consisting of two main steps:

1. Optimal number of samples. We obtain the optimal number of samples in a similar
way as MLMC:

Oerony 2 [V o
(33) M= [ ()7 [ VW] Wieg®,
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2. Stopping criterion. We start with L = 2 and iteratively add levels until e; <
(1 —0) eroy is achieved. To find a practical stopping criterion, we start with (16) and
assume that |E[Q; — Q;_1]| = ¢h®1 9=, We then have

|E[Ql - Ql71]| ~ h" @ — pral@—ar) — praB(1-L)
[E[Qr — Qr1)|  hmia '

Hence

s hﬂlﬂ
= [E[Q - Qu]l < [E[Qr — Q]| D ¥ = 5 [E[Qr — Qr1],

k=1

1
R
since b1 8 < 1. Consequently, the condition we use to add levels in the numerical
algorithm is

where the last equality follows from the geometrical series Y po (879)F =

hU+1D) k1 B

(34) N TR B IE[Qr—j — Qr—j1]| < (1 —0)eron
This will ensure that the deterministic error approximated by an extrapolation form
either of the three finest meshes is within the desired range.

Similar to the MLMC strategy, we approximate the variances {V;}/, in (33)
by (18). When a new level L is added, the variance at the new level V, cannot be
approximated by (18), since the number of sample at the new level is not known. In
this case, thanks to the strong error estimate (32), assuming V; = V[Q; — Q;_1] =~
ch®2 % we first approximate V7, in terms of the variance at the previous level Vi _4
by

(35) VL ~ h"*? B VL—l
and then update the number of samples {M;}£ , including the number of samples at
the new level by (33). The expected values E[Q_; —Qp_;_1] in (34), with j = 1,2, 3,

are also approximated by Gz_; in (18).
The MOMC algorithm is outlined in Algorithm 2.

LEMMA 2. For every positive real number r < 1 and every positive integer p > 1,
we have

(36) Zr%H“ Q@+ B1)P :Z r* 8 (r) f(r):—lr_q(;ﬁ.

=0 k=1

Proof. We start with the following geometrical series sum, thanks to 7% < 1:

Z 1_7aB

1=0
Hence
S +pr_ ™
quo =15 = =: f(r).
1=0

We differentiate the above formula with respect to r to obtain

S (go + g1 r it = L.

dr
=0 13
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Algorithm 2 MOMC algorithm

Start with L = 2, and generate an order hierarchy {¢;}%, by (28).
Choose an initial set {M;}EZ, of samples.
loop
Approximate {Vi}£, by (18).
Update the optimal number of samples {M;}/, by (33).
if (34) is satisfied
Compute Ayomc by (29) and terminate the loop.
else
Set L:=L+1and q, =qo+ B L.
Approximate V7, by (35) and compute {M;}~, by (33).
end if

end loop

We then multiply it by r to obtain

S (ao+ B rtB = Zf(r).

dr
1=0

We obtain (36) by repeating the above process, i.e. differentiate with respect to r and
then multiply by r, p times. ad

THEOREM 3. Consider an order hierarchy q = qo+ 081, withl =0,1,..., L, where
qgo > 1 and B > 1 are cosntants. Let Q; be the semi-discretization of Q by the q;-th
order dG method on a mesh with a fited mesh size h < 1. If there are constants
€1,C2,C3,71,7v2 > 0 such that

(A4) |E[Q— Q]| < 1 hBe, qu=FKiq, K1 =>M/2,
(A5) V[Q— Q] <E[|Q— Q)] <cah®, qu=rkoq, K2qo> M,
(A6) Wy <c3h " ¢q”,

then, for any ero, < e~ !, there exists an L € N and a sequence {Ml}lL:o such that the

estimator Ayouc has an error €youc S €ror With a computational cost proportional to
-2

EroL -

Proof. By writing Vi = V[Q; — Q;_1] = V[Q — Q;_1] — V[Q — Q)] and using the
triangular inequality and (A5), we get

(37) Vi<ch®,  c=cy(l+h "8 4 2p 202

Moreover, by minimizing V[Ayouc], or equivalently minimizing ey, for a fixed com-
putational cost Wyome, we obtain from (A6) and (37):

(38) M; x \/W x pnta)/2 ql—Vz/Q.
14
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We select L to be

I— log(2c1 K190 g6, 1)
N log(h—"%18)

Hence

log(2¢1 A" 90 g1, 1) <L< log(2¢1 h"™ 9 g1, ")

1.
lOg(h_"ﬂ '6) - log(h—’il ,3) +

By the rules of logarithms and simple algebraic manipulations, we get

1 1
(39) 5 Eror hitB < e R < 5 Eror

By the right inequality in (39) and (A4), the deterministic error is bounded by
1
(40) er < 5 Eror-

By the left inequality in (39), we have
hFat < 201 b1 P epg, 7Y,
and hence by taking logarithm and rearranging we obtain

log(2 ¢y h1F) n 1
log(h="1) log(h—"1)

qr < log (eror 1) =: ¢ + & log (eror™t),

where the constants ¢; and ¢ are independent of e1o;, and L. The right hand side
of the above inequality is a logarithmic growth and can be bounded by an algebraic
growth. In particular, there exists a constant ¢ such that

1+ ¢ log (Eron 1) < éepo, Y (2D,
and hence
qr < Cepoy 2/ (2D
We therefore have
L
(41) gt < (L+1)qP < gt <@ e
1=0
Now, motivated by (38), we set
(42) M, = {4 ror 2ect § pntrza)/2 qlW/Q-‘ )
where
y [v2/2] P 0 )
- 2 ~ kro/2 k _ _ 1 ko/2
S=h"" ;Ckh 2, f(T)—mv r=h"" <1
From (42) we get
cc2 1 1,
M, < —epor 2 ST R (ntRza)/2 q?z/z.
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Then, by (37) we have

>

=0

L

L 2
Co hE 1 2 o—1 K — 2 /2
ZO i 20 < ZETOL S ;h( 2q1—71)/ ql'm '

QN

C

§|S

Moreover, by Lemma 2 with r := h*2/2 <1 and p := [y2/2] > 1, we have
L

(43) Zh K2 L —71)/2 72/2 < h—m/2 Zhnz (@+8D/2 (g0 + 1)I72/21 < 8.
1=0

=0

Hence, the statistical error is bounded by

(44)

By (40) and (44), the total error reads eyomc S Eror. It is left to show that the

~

computational cost is proportional to eror, 2. By (42), we have
M, <4ETOL CC Sh V1+H2ql)/2 72/2+1

Hence, by (A6), the computational cost reads

L L

Wuome = ZMl Wi <ecs3 ZMl h=" Q72
=0 =0

L L
<dczeron 2cct S Z przai=m)/2 quz/z +cgh™™ Z q”.

1=0 1=0
By (43) we obtain
Wionme < Cw ETOL_2, cw =4c3 cci G2 4 ez et
This completes the proof. ad

REMARK 1. Theorems 1 and 3 show that, under the same accuracy constraint
(Evpme S €ror, and Eyonc S Ero1), the total computational cost of both MLMC and
MOMC is proportional to €,0, 2. This verifies that MOMC is a valid alternative to
MLMC for hyperbolic problems. In addition, we will present numerical evidence (see
Figures 1 and /) that the multi-order approach is faster than the mesh-based multi-
level approach for waves that traverse long distances. This superiority of MOMC
over MLMC' is due to the advantage of high-order schemes in controlling dispersive
errors in wave propagation problems. In principle, this claim can be made rigorous by
carefully tracking the the effects of dispersive errors on the constant cy,, which appears
in the computational cost. Such analysis is the topic of future work.

6. Numerical examples. In this section we present numerical results from
problems in (1+1) and (2+1) dimensions demonstrating the performance of the two
methods described above. The first example considers the scalar wave equation, and
the second example considers the elastic wave equation. For the details of the dG
deterministic solver, we refer to [2, 3].
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6.1. Example 1. We first consider the scalar wave equation in (1+1) dimensions
on the domain D = [0,10] and with a potential energy density G(x) = (c(x)uz)?/2.
We take the initial data to be

u(z,0) = e~ (@=5)% v(x,0) =0,

and impose homogenous Dirichlet conditions on both boundaries. Here the square
of the wave speed is assumed to be uncertain in the = direction and modeled by 10
independent and uniformly distributed random variables y; = U[0, 1]. Precisely the
piecewise constant wave speed is

i

Az,y) =1+ 5

zelli—1,4, i=1,...,10.

We perform the simulations by starting both methods on a uniform grid conform-
ing with the wave speed. In MLMC we choose the base element size is hg = 1 with
the fixed order ¢ = 4, and in MOMC we choose the fixed mesh size h = 1 and start
with the order ¢y = 4, corresponding to a fourth order space-time accurate method
in the displacement wu.

The quantity of interest is

oty) = ( [ ()P czsc)é ,

where T is the final time and the integral in z is approximated by sufficiently accurate
Gauss-Legendre-Lobatto quadrature.

The parameters in MOMC are (v2,%1,k2) = (2,1,2) and the parameters in
MLMC are (y1,41,92) = (2,4,8). For MLMC we set § = 2 and for MOMC we
present results for 5 =1 and 2. For both methods we set § = 1/2 and ¢, = 1.96.

1
10 3t ‘—//\A—H—-\._/ 1 10
3 3
H
NmH AN _ W
X = 5~ X
: :
o
@) O
100}
10'4 L L L
10°® 10° 10 10 102 107 107 102 107
ETOL ETOL

Fi1c. 1. Product of CPU time and the square of the tolerance. The red curves with triangles
represents MLMC and the black curves with squares represents MOMC with 8 = 2 and the dashed
line MOMC with B = 1. The left figure is for T' = 20 and the right is for T' = 200. For this problem
MOMC uses abut 1.8 and 3.2 times less CPU-time to reach a given tolerance.

To illustrate the advantage of using MOMC we consider two final simulation times.
First we set T = 20 and perform simulations with tolerances etor, = 27875, s =
0,...,10. These simulations are performed three times with different random seeds.
In a second set of simulations we increase the final time to T' = 200 and perform simu-
lations with tolerances eror, = 27775, s =0, ..., 5. For the second set of simulations
we only present results for g = 2 for MOMC.
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136 To confirm the complexity results of Theorem 1 and 3 we plot the product of the
137 square of the tolerance and total CPU time as a function of tolerance. The results
438 for both final times can be found in Figure 1. As can be seen to the left in Figure
439 1, for the short time T = 20, MOMC is about 1.8 times faster than MLMC for both
440  choices of # in MOMC. For the longer simulation time we find that MOMC is about
141 3.2 times faster than MLMC.

442 For the short time simulation we also report the distributions of the number of
443 samples per level for the three different methods and for the different tolerances. As
444 can be seen in Figure 2, at higher levels, where the deterministic solver per sample
445 is computationally costly, the number of samples (or the number of the determinis-
146 tic solves) are much smaller than the number of samples at lower levels, where the
147  deterministic solver per sample is computationally cheap. This intuitively show why

MLMC and MOMC work.
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F1G. 2. Number of samples per level for different tolerances eror, = 27875, s =0,...,10. In

each figure, the strictest tolerance corresponds to the curve with the highest number of samples. The
number of samples are monotonically decreasing as the tolerance is relaxed. On top MLMC, bottom
left MOMC with 8 =1, and bottom right MOMC with 8 = 2.

448

149 6.2. Example 2. In this example we consider the elastic wave equation with
450  traction free boundary conditions on the domain D = (z1,22) € [-1,1] x [-2,2]. In
451 MLMC, the domain D is discretized with square elements with sides h; = ho~!, with
152 B =2 and hg = %, and we use dG with the fixed order ¢ = 4. In MOMC we choose
153 the fixed mesh size h = 1/2 and start with the order ¢y = 4. The material properties
154 are taken to be piecewise constant but different above and below x5 = 0, precisely
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F1c. 3. Verification that the tolerance is met. Plotted is the error as a function of the tolerance
for MLMC' (solid red with triangles), MOMC and 8 =1 (dashed black with pentagrams) and MOMC
and 8 = 2 (solid black with squares). The left figure is for T = 20 and the right is for T = 200.

they are

- (1,4,1+y1) zo > 0,
(45) (ps A1) = { (1,4,1+y2) 2 <0,

where y; and yo are uniform random variables on [0, 1]. Note that the grid coincides
with the material interface at x5 = 0, so that the order of the dG method is not
affected by the jump discontinuity in pu. The initial data is chosen to be

_ 676((m170.15)2+(m270.1)2) _ 676((m170.12)2+(m270.14)2)

U1 u9 5 ’1}12’1)2:0.

Here u; and uo are the displacements and v; and ve are the velocities.
The quantity of interest is

1
2

Q) = ([ mTxy? +urxyrix)

where T is the final time of the simulation.

We present results for three different final times 7" = 1,10 and 100. In Figure
4 we plot the product of the square of the tolerance and total CPU time as a func-
tion of tolerance for the three different final times. The results are for MOMC with
(v2, k1, k2) = (4,1,2) and 8 = 1 and for MLMC with (v1,¢1,¢2) = (3,4,8) and 8 = 2.

For both methods we set § = 1/2 and ¢, = 1.96.

5
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Fi1G. 4. From left to right T = 1,10,100. MLMC (red), MOMC with 8 =1 (black).

As in the previous example, as the final time becomes longer the advantage of
the MOMC method becomes more pronounced. In this case the computational time
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is about the same when T = 1, about 1.9 times faster when T' = 10 and 2.4 times
faster when 7" = 100. Again we find that the tolerance is met for both the methods
and for all the final times, see Figure 5.

10° 10° 10 10° 102 10 10° 102 107 10° 102
ETOL ETOL €TOL

F1G. 5. Verification that the tolerance is met. From left to right T = 1,10,100. MLMC (red),
MOMC with 8 =1 (black).

7. Conclusion. We presented the multi-order Monte Carlo method for forward
propagation of uncertainties in hyperbolic problems. Here the method used an ar-
bitrary order energy-based discontinuous Galerkin discretization to build order hier-
archies but we note that the MOMC method could of course also use any suitable
discretization capable of discretization at arbitrary order. In fact, the complexity
theorems we have presented do not rely on the dG method but are general in that
they accept any discretization.

We found that the optimal complexity of the original MLMC method also carries
over to our multi-order Monte Carlo method and that the new method is faster when
the problem at hand requires propagation of waves over long distances. Another
feature of the MOMC is that a single mesh can be generated, something that may
be of practical importance both for increased set-up time as well as for the ability to
load balance parallel computations once and for all in the beginning of a simulation.

Our method illustrates the power of the multi-level Monte Carlo framework and
how easily it can be adopted and extended. We are currently exploring extensions of
the MOMC method to other hyperbolic problems and more realistic applications and
we are also working on extending it to the hp-refinement regime.
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