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The method is a non-intrusive technique based on a recently proposed high-order energy-based dis-7
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which is desirable in many real applications with complex geometries, the multi-order method is13
particularly beneficial in reducing errors due to numerical dispersion in long-distance propagation of14
waves. The numerical examples verify that the multi-order approach is faster than the mesh-based15
multi-level approach for waves that traverse long distances.16

Key words. Hyperbolic problems; Wave propagation; Stochastic parameters; Uncertainty quan-17
tification; Multi-level Monte Carlo; Discontinuous Galerkin; Multi-order Monte Carlo18

AMS subject classifications.19

1. Introduction. Wave propagation problems are mathematically described by20

hyperbolic partial differential equations (PDEs). In real applications, such as seis-21

mology, acoustics, and electromagnetism, the problem is subject to uncertainty, due22

to the lack of knowledge (epistemic uncertainty) and/or intrinsic variabilities of the23

physical system (aleatoric uncertainty). For instance, in earthquake ground motion,24

both kinds of uncertainties are present due to the scarcity of measured soil parame-25

ters and inherent variations in the location of the focus and the intensity of seismic26

sources. To account for uncertainties, PDE models are often formulated in a prob-27

abilistic framework, where uncertain input parameters are described by stochastic28

fields, which can in turn be approximated by a finite number of random variables. A29

major problem is then the forward propagation of uncertainty, where uncertainties in30

the input parameters are propagated through the model to obtain information about31

uncertain output quantities of interest (QoIs).32

The most popular method for propagating stochastic uncertainty in PDE models33

is Monte Carlo sampling [8], where sample statistics of output QoIs are computed34

from independent realizations drawn from the input probability distributions. While35

being very flexible and easy to implement, this technique features a very slow conver-36

gence rate. More recently, spectral approaches, such as stochastic Galerkin [9] and37

stochastic collocation [17, 19], have been proposed, which exploit the possible regu-38

larity that output QoIs might have with respect to the input parameters. This opens39

up the possibility to use deterministic approximations of the response function (i.e.40

the solution of the problem as a function of the input parameters) based on global41

polynomials. Such approximations are expected to yield a very fast convergence in42
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the presence of high stochastic regularity.43

Solutions to parametric hyperbolic PDEs are in general non-smooth with respect44

to the parameters, and therefore related stochastic QoIs are often not regular; see [15,45

16, 4]. Consequently, spectral methods may not be applicable to stochastic hyperbolic46

problems, and Monte Carlo sampling needs to be employed. Several variants of Monte47

Carlo sampling have recently been proposed to accelerate the slow convergence of the48

Monte Carlo method. These recent methods include multi-level Monte Carlo (MLMC)49

[10, 6, 5, 7], multi-index Monte Carlo [11], quasi-Monte Carlo [12], and multi-level50

quasi Monte Carlo [13]. In the particular case of hyperbolic problems, multi-level51

Monte Carlo approaches have been developed [14, 18], based on finite volume and52

finite difference techniques.53

In the present work, we will develop a new variant of Monte Carlo sampling, re-54

ferred to as multi-order Monte Carlo (MOMC). Compared to multi-level Monte Carlo,55

the method has two new components: 1) it is based on a recently proposed energy-56

based discontinuous Galerkin method for deterministic hyperbolic problems [3, 2];57

and 2) it is built upon a hierarchy of orders of discontinuous Galerkin basis functions58

rather than a mesh hierarchy used in multi-level Monte Carlo. The new method is59

particularly advantageous for dealing with wave propagation and non-smooth QoIs,60

because: a) the energy-based discontinuous Galerkin method is capable of accurately61

treating discontinuities in the PDE coefficients and the PDE data; b) the construction62

of an order hierarchy based on high-order schemes, such as discontinuous Galerkin,63

allows us to significantly reduce wave dispersion and produce smaller errors; c) the64

method uses a fixed mesh at all levels which is beneficial when waves propagate in65

complicated media where re-meshing is a cumbersome task. The third advantage is of66

practical importance for instance when the material parameters come from a Bayesian67

seismic tomography at fixed resolution. Through complexity theorems and numerical68

experiments, we will demonstrate that the proposed multi-order method is a valid69

alternative to the current multi-level Monte Carlo method for hyperbolic problems70

with rough parameters. Moreover, in addition to the convenience of working with71

a fixed mesh, which is desirable in many real applications with complex geometries,72

the multi-order method is particularly beneficial in reducing errors due to numerical73

dispersion in long-time propagating waves. The numerical examples verify that the74

multi-order approach is faster than the mesh-based multi-level approach for waves75

that traverse long distances. Note that the MOMC requires that p-refinement can be76

efficiently used, which is the case for the examples considered here.77

The outline of the paper is as follows. In Section 2 we formulate the mathematical78

problem and briefly address the numerical treatment of the problem with relation79

to stochastic regularity. The energy-based discontinuous Galerkin solver is briefly80

reviewed in Section 3. In Section 4, we present an adaptation of the multi-level81

Monte Carlo algorithm to the elastic wave equations discretized by the discontinuous82

Galerkin method. The new multi-order Monte Carlo method is presented in Section 5.83

In Section 6 we perform some numerical examples that verify our theoretical results.84

Finally, we present our conclusions in Section 7.85

2. Problem Statement. In this section, we first present the mathematical for-86

mulation of the stochastic problem. We then address the numerical treatment of the87

problem with relation to stochastic regularity.88

2.1. Mathematical formulation. Let D ⊂ R
d be a compact d-dimensional89

spatial domain, where d = 2, 3. As the prototype model for wave propagation subject90

to uncertainty, we consider the following initial boundary value problem (IBVP) for91
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the elastic wave equation with stochastic parameters:92

(1)
̺(x,y)utt(t,x,y) −∇ · σ(u(t,x,y)) = f(t,x,y), in [0, T ]×D × Γ,
u(0,x,y) = g1(x,y), ut(0,x,y) = g2(x,y), on {t = 0} ×D × Γ,
σ(u(t,x,y)) · n̂ = 0, on [0, T ]× ∂D × Γ,

93

where u = (u1, . . . , ud)
⊤ ∈ R

d is the real-valued displacement vector, t ∈ [0, T ] is the94

time, x = (x1, . . . , xd) ∈ R
d is the vector of spatial variables, y = (y1, . . . , yN ) ∈ Γ ⊂95

R
N is a random vector, representing the uncertainty in the problem, and n̂ denotes the96

outward unit normal to the boundary ∂D. We use the convention that ∇ represents97

the gradient operator with respect to the spatial variables x. The stress tensor σ for98

isotropic materials reads99

(2) σ(u) = λ(x,y)∇ · u I + µ(x,y) (∇u + (∇u)⊤).100

The material parameters are the density ̺ and Lame’s parameters λ and µ. The101

sources of uncertainty are the material parameters (̺, λ, µ), the force term f , and the102

initial data, g1,g2, characterized by N ∈ N+ independent random variables y1, . . . , yN103

with a bounded joint probability density ρ(y) =
∏N

n=1 ρn(yn) : Γ→ R+.104

We take the force term and initial data as105

(3) f ∈ L2((0, T );L2(D)⊗L2
ρ(Γ)), g1 ∈ H1(D)⊗L2

ρ(Γ), g2 ∈ L2(D)⊗L2
ρ(Γ),106

where L2
ρ is the Hilbert space of vector-valued stochastic functions with bounded107

second moments, L2 is the Hilbert space of square integrable vector-valued functions,108

and H1 is the Hilbert space of vector-valued functions whose first weak derivatives109

are square integrable. The notation ⊗ denotes the tensor product space of Hilbert110

spaces. We further assume that the data are compatible. Moreover, we assume that111

the material parameters are uniformly coercive and bounded:112

0 < ̺min ≤ ̺(x,y) ≤ ̺max <∞, ∀x ∈ D, ∀y ∈ Γ,(4a)113

0 < λmin ≤ λ(x,y) ≤ λmax <∞, ∀x ∈ D, ∀y ∈ Γ,(4b)114

0 < µmin ≤ µ(x,y) ≤ µmax <∞, ∀x ∈ D, ∀y ∈ Γ.(4c)115116

We note that assumption (4) is a natural assumption for elastic materials. We also117

note that in real applications, the material parameters and data are often not smooth.118

We have therefore made the minimal regularity assumptions (3)-(4) to account for119

more general wave propagation problems. The assumptions (3)-(4) guarantee that the120

problem (1) is well-posed: there exists a unique weak solution u ∈ C0([0, T ];H1(D)⊗121

L2
ρ(Γ)) which depends continuously on the data; see [15, 16] for more details and122

proofs.123

The ultimate goal is the prediction of statistics of the wave solution u or some124

physical quantities of interest (QoIs) related to the solution, such as125

(5) Q(y) =

∫ T

0

∫

DQ⊆D

|L(u)|2(t,x,y) dx dt,126

where L(u) may be a differential operator applied on u, and DQ ⊆ D is a part127

of the computational domain. For instance, the cases where L(u) is u,ut, and utt128

correspond to wave strength, kinetic energy, and Arias intensity, respectively.129
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2.2. Non-intrusive numerical methods and stochastic regularity. The
goal of computations is to numerically approximate the statistical moments of the
quantity (5). For instance, consider the first moment of the QoI and let A be its
approximation:

E[Q] =

∫

Γ

Q(y) ρ(y) dy ≈ A.

Non-intrusive methods, such as Monte Carlo [8] and sparse stochastic collocation
[19, 17, 15], are popular sample-based approaches that rely on solving a set of deter-
ministic problems corresponding to a set of realizations. In a non-intrusive method,
the approximation A involves two separate approximations: 1) the approximation
of Q, denoted by Q̃; and 2) the approximation of the integral. The former needs a
deterministic solver that computes Q̃ at a set of M quadrature points, and the latter
requires a quadrature rule, such as sample averages (in Monte Carlo) or Gauss or
Clenshaw-Curtis quadrature (in stochastic collocation). Correspondingly, the total
error in the approximation can be split into two parts:

ε := |E[Q]−A| ≤ |E[Q]− E[Q̃]|
︸ ︷︷ ︸

εI

+ |E[Q̃]−A|
︸ ︷︷ ︸

εII

.

The first error term εI corresponds to the discretization error in the deterministic130

solver, and the second error term εII is the quadrature error. We note that in Monte131

Carlo sampling, εII is a statistical error, as A is a statistical term.132

In general, the choice of the numerical method strongly depends on the regularity133

of the mapping Q : Γ → R, which in turn depends on the stochastic regularity of134

the wave solution u, i.e. the regularity of u with respect to y. In the presence of135

high stochastic regularity, sparse stochastic collocation exhibits fast convergence in136

the number of quadrature or collocation points and is preferable. However, if the137

QoI is not smooth in stochastic space, Monte Carlo sampling techniques must be138

employed. It is known that the solutions of hyperbolic problems, such as the IBVP139

(1) with the minimal assumptions (3)-(4), are not smooth in the stochastic space;140

see [15, 16, 4]. Consequently, the QoI (5) does not have stochastic regularity. We141

therefore need to employ MC-based sampling techniques. The most popular one is142

the classical Monte Carlo method. While being very flexible and easy to implement,143

this technique features a very slow convergence rate. More recently, several variants144

of Monte Carlo are proposed to accelerate the slow convergence of the Monte Carlo145

method, including multi-level Monte Carlo [10, 6, 5, 7], multi-index Monte Carlo [11],146

quasi-Monte Carlo [12], and multi-level quasi Monte Carlo [13]. In the particular147

case of hyperbolic problems, multi-level Monte Carlo approaches have been developed148

[14, 18], based on finite volume and finite difference techniques.149

In the present work, we will develop a new variant of Monte Carlo sampling, which150

we call the multi-order Monte Carlo method. The method is based on a recently151

proposed energy-based discontinuous Galerkin method for deterministic hyperbolic152

problems [3] and is built upon a hierarchy of orders of basis functions rather than153

a mesh hierarchy used in multi-level Monte Carlo. In what follows, we will briefly154

review the deterministic solver in Section 3. We then present a multi-level and the155

new multi-order algorithms based on the energy-based discontinuous Galerkin method156

in Sections 4 and 5, respectively.157

3. Deterministic solvers: energy based discontinuous Galerkin meth-158

ods. In this section we briefly review the deterministic solver is the basis for our159
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multi-level and multi-order Monte Carlo methods. As we aim for arbitrary order of160

accuracy in space as well as in time we combine a new class of spatial dG discretization161

with Taylor series time-stepping.162

3.1. Spatial discretization by an energy based discontinuous Galerkin163

method. Our spatial discretization is an direct application of the formulation de-164

scribed for general second order wave equations in [3] and for the elastic wave equa-165

tion in [2]. Here we outline the spatial discretization for the special case of the scalar166

wave equation in one dimension and refer the reader to [3] for the general case. We167

note that an open source implementation of the method used for the example with168

the elastic wave equation in Section 6.2 is available, [1].169

The energy of the scalar wave equation is170

H(t) =

∫

D

v2

2
+G(x, ux)dx,171

where G(x, ux) = c2(x)u2x/2 is the potential energy density, v is the velocity or the172

time derivative of the displacement, v = ut. The wave equation, written as a second173

order equation in space and first order in time then takes the form174

ut = v, vt = −δG,175

where δG is the variational derivative of the potential energy176

δG = −(Gux
)x = −(c2(x)ux)x.177

For the continuous problem the change in energy is178

(6)
dH(t)

dt
=

∫

D

vvt + ut(c
2(x)ux)x dx = [ut(c

2(x)ux)]∂D,179

where the last equality follows from integration by parts together with the wave180

equation. Now, a variational formulation that mimics the above energy identity can181

be obtained if the equation v − ut = 0 is tested with the variational derivative of the182

potential energy. Let Ωj be an element and Πs(Ωj) be the space of polynomials of183

degree s, then the variational formulation on that element is:184

Problem 1. Find vh ∈ Πs(Ωj), u
h ∈ Πr(Ωj) such that for all ψ ∈ Πs(Ωj),185

φ ∈ Πr(Ωj)186

∫

Ωj

c2φx

(
∂uhx
∂t
− vhx

)

dx = [c2φx · n
(
v∗ − vh

)
]∂Ωj

,(7)187

∫

Ωj

ψ
∂vh

∂t
+ c2ψx · u

h
x dx = [ψ (c2 ux)

∗]∂Ωj
.(8)188

Let [[f ]] and {f} denote the jump and average of a quantity f at the interface189

between two elements, then, choosing the numerical fluxes as190

v∗ = {v} − τ1[[c
2 ux]]191

(c2 ux)
∗ = {c2 ux} − τ2[[v]],192

will yields a contribution −τ1([[c
2 ux]])

2 − τ2([[v]])
2 from each element face to the193

change of the discrete energy194

dHh(t)

dt
=

d

dt

∑

j

∫

Ωj

(vh)2

2
+G(x, uhx).195
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Physical boundary conditions can also be handled be appropriate specification of the196

numerical fluxes, see [3] for details. The above variational formulation and choice197

of numerical fluxes results in an energy identity similar to (6). However, as the198

energy is invariant to certain transformations the variational problem does not fully199

determine the time derivatives of uh on each element and independent equations200

must be introduced. In this case there is one invariant and an independent equation201

is
∫

Ωj

(
∂uh

∂t − v
h
)

= 0. For the general case and for the elastic wave equation see [3]202

and [2].203

Here we always choose τi > 0 (so called upwind or Sommerfeld fluxes) which204

typically result in methods that are q = r + 1 order accurate in space.205

3.2. Taylor series time-stepping. In order to match the order of accuracy in206

space and time we employ Taylor series time-stepping. Assuming that all the degrees207

of freedom have been assembled into a vectorw we can write the semi-discrete method208

as wt = Aw with A being a matrix representing the spatial discretization. Assuming209

we know the discrete solution at the time tn we can advance it to the next time step210

tn+1 = tn +∆t by the simple formula211

w(tn +∆t) = w(tn) + ∆twt(tn) +
(∆t)2

2!
wtt(tn) . . .212

= w(tn) + ∆t Aw(tn) +
(∆t)2

2!
A2 w(tn) . . .213

The stability domain of the Taylor series which truncates at time derivative number214

NT includes the imaginary axis if mod(NT, 4) = 3 or mod(NT, 4) = 0. However as we215

use a slightly dissipative spatial discretization the spectrum of our discrete operator216

will be contained in the stability domain of all sufficiently large choices of NT (i.e. the217

NT should not be smaller than the spatial order of approximation). Note also that the218

stability domain grows linearly with the number of terms. We thus consider methods219

based on the combination of the spatial dG discretization of order q combined with a220

Taylor series with NT = 2⌈ q2⌉, where ⌈.⌉ is the ceiling operator. This yields methods221

of order of accuracy min(q,NT). We note that we will use this choice of NT for both222

multi-level and multi-order based MC methods in Sections 4 and 5. We also note223

that below we exclusively use the mesh size h as a discretization parameter, but that224

it is directly proportional to the temporal discretization size ∆t, through the CFL225

condition.226

4. A multi-level discontinuous Galerkin Monte Carlo method. In this227

section, we present an adaptation of the multi-level Monte Carlo algorithm to the228

elastic wave equations discretized by the dG method. We note that although MLMC229

algorithms for hyperbolic PDEs based on finite difference and finite volume methods230

have already been introduced [14, 18], the analysis of MLMC based on the dG method231

is different and results in new theoretical results. It also serves as a basis for developing232

the new MOMC method.233

We follow [10] and build a mesh hierarchy with a decreasing sequence of mesh234

sizes h0 > h1 > . . . > hL. For instance we take235

(9) hl = h0 β
−l, l = 0, 1, . . . , L, β ≥ 2.236

We denote by Ql, the discretization of Q by the dG method on the mesh at the l-th

6
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level with mesh size hl. We then use a telescoping sum formulation and write

E[Q] = E[Q−QL] + E[QL], E[QL] = E[Q0] +
L∑

l=1

E[Ql −Ql−1].

The MLMC estimator approximates the terms in the telescoping sum by sample237

averages238

(10) AMLMC =
1

M0

M0∑

m0=1

Q
(m0)
0 +

L∑

l=1

1

Ml

Ml∑

ml=1

(Q
(ml)
l −Q

(ml)
l−1 ).239

Here, Q
(ml)
l := Ql(y

(ml)), with ml = 1, . . . ,Ml, are Ml realizations of Ql correspond-

ing toMl independent samples {y(ml)}Ml

ml=1 of the random vector y. The total MLMC
error reads

εMLMC = |E[Q]−AMLMC| ≤ |E[Q−QL]|
︸ ︷︷ ︸

εI

+ |E[QL]−AMLMC|
︸ ︷︷ ︸

εII

.

The first error term εI is the discretization error in the dG solver, or the weak error,240

which satisfies241

(11) εI ≤ c1 h
q1
L , ∀y ∈ Γ,242

where q1 is related to the order q of the dG method, and c1 is a positive constant243

which may depend on Q. Moreover, by the central limit theorem, the statistical error244

εII satisfies245

(12) εII . cα
√

V[AMLMC] = cα

√
√
√
√V[Q0]

M0
+

L∑

l=1

V[Ql −Ql−1]

Ml
=: cα

√
√
√
√

L∑

l=0

Vl
Ml

,246

where V0 = V[Q0] and Vl = V[Ql−Ql−1] for l ≥ 1. Here, the notation . is interpreted247

in the following statistical sense:248

(13) P
(

εII ≤ cα

√
√
√
√

L∑

l=0

Vl
Ml

)

→ 2φ(cα)− 1, as Ml →∞,249

where P is a probability measure, and φ(cα) =
∫ cα
−∞

1√
2 π

exp (−τ2/2)dτ is the cumu-250

lative density function (CDF) of a standard normal random variable. The larger the251

confidence parameter cα > 0, the higher the probability that εII ≤ cα

√
∑L

l=0 Vl/Ml252

holds. We further note that we have the strong error253

(14) V[Q−Ql] ≤ E[(Q−Ql)
2] ≤ c2 h

q2
l , ∀y ∈ Γ.254

4.1. Numerical algorithm. An error-complexity analysis is needed to opti-
mally select the computational parameters, including the number of samples at dif-
ferent levels {Ml}

L
l=0, and the final level L. We introduce a splitting parameter θ and

write
εMLMC ≤ εI + εII . (1− θ) εTOL + θ εTOL, θ ∈ (0, 1),

7
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where the errors εI and εII are given by (11) and (12), respectively. Moreover, noting

that the cost of computing Q
(ml)
l −Q

(ml)
l−1 in the MLMC estimator (10) is dominated

by the cost of computing Q
(ml)
l , which is Wl ∝ h

−γ1

l , the total computational cost of
MLMC reads

WMLMC ∝

L∑

l=0

MlWl, Wl ∝ h
−γ1

l .

Here, γ1 = d + 1 ≥ 2 is the space-time dimension and determines the number of255

degrees of freedom in the deterministic solver. We then take the following iterative256

strategy, consisting of two main steps:257

1. Optimal number of samples. We obtain the optimal number of samples at different
levels by minimizing the total computational cost WMLMC subject to the accuracy
constraint εII . θ εTOL. Following the standard approach in MLMC [10], we use the
method of Lagrange multipliers. With the Lagrangian

L(Ml, ν) :=

L∑

l=0

MlWl + ν
(

L∑

l=0

Vl
Ml
−
(θ εTOL

cα

)2)
,

and the optimality equations ∂Ml
L = ∂νL = 0, we obtain258

(15) Ml =
⌈(θ εTOL

cα

)−2

√

Vl
Wl

L∑

ℓ=0

√

VℓWℓ

⌉

, Wl ∝ h
−γ1

l .259

2. Stopping criterion. We start with L = 2 and iteratively add levels until εI ≤260

(1− θ) εTOL is achieved. To find a practical stopping criterion, we start by writing261

(16) E[Q−QL] =

∞∑

l=L+1

E[Ql −Ql−1] = E[QL −QL−1]

∞∑

l=L+1

E[Ql −Ql−1]

E[QL −QL−1]
.262

Assuming |E[Ql −Ql−1]| ≈ c h
q1
l , we have

|E[Ql −Ql−1]|

|E[QL −QL−1]|
≈
hq1l
hq1L

=
hq10 β−l q1

hq10 β−L q1
= β(L−l) q1 .

Hence

εI = |E[Q−QL]| ≤ |E[QL −QL−1]|

∞∑

k=1

β−k q1 =
1

βq1 − 1
|E[QL −QL−1]|,

where the last equality follows from the geometrical series
∑∞

k=0(β
−q1)k = 1

1−β−q1
,263

since β−q1 < 1. Consequently, the condition we use to add levels in the numerical264

algorithm is265

(17) max
j∈{0,1,2}

β−j q1

βq1 − 1

∣
∣E[QL−j −QL−j−1]

∣
∣ ≤ (1 − θ) εTOL.266

This criterion will ensure that the deterministic error approximated by an extrapola-267

tion from either of the three finest meshes is within the desired range.268
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Now, assuming that we have made the assignment L ← L + 1, we note that in269

order to compute the number of samples by (15), we need to compute the variances270

{Vl}
L
l=0. Setting Q

(m)
−1 = 0, the variances are approximated by271

(18) Vl ≈
1

Ml

Ml∑

m=1

((

Q
(m)
l −Q

(m)
l−1

)2

− Ḡ2
l

)

, Ḡl ≈
1

Ml

Ml∑

m=1

(
Q

(m)
l −Q

(m)
l−1

)
,272

where {Ml}
L
l=0 are the available number of samples in previous iterations. When a273

new level L is added, the variance at the new level VL cannot be approximated by (18),274

since the number of samples at the new level is not known. In this case, thanks to the275

strong error estimate (14), assuming Vl = V[Ql −Ql−1] ≈ c h
q2
l , we first approximate276

VL in terms of the variance at the previous level VL−1 by277

(19) VL ≈ β
−q2 VL−1,278

and then update the number of samples {Ml}
L
i=0 including the number of samples at279

the new level by (15). The expected values E[QL−j−QL−j−1] in (17), with j = 0, 1, 2,280

are also approximated by ḠL−j in (18).281

The MLMC algorithm is outlined in Algorithm 1.

Algorithm 1 MLMC algorithm

Start with L = 2, and generate a mesh hierarchy {hl}
L
l=0 by (9).

Choose an initial set {Ml}
L
l=0 of samples.

loop

Approximate {Vl}
L
l=0 by (18).

Update the optimal number of samples {Ml}
L
l=0 by (15).

if (17) is satisfied

Compute AMLMC by (10) and terminate the loop.

else

Set L := L+ 1 and hL = h0 β
−L.

Approximate VL by (19) and compute {Ml}
L
l=0 by (15).

end if

end loop

282

If it is possible to establish bounds on the strong and weak error and the work at283

each level, the complexity of Algorithm 1 is guaranteed by the following theorem.284

Theorem 1. Consider a mesh hierarchy hl = h0 β
−l, with β ≥ 2, and let Ql be285

the q-th order accurate dG approximation of Q on a mesh with mesh size hl. If there286

are positive constants c1, c2, c3, γ1 > 0 such that287

(A1) |E[Q−Ql]| ≤ c1 h
q1
l , q1 ≥ γ1/2,

(A2) V[Q−Ql] ≤ E[|Q − Ql|
2] ≤ c2 h

q2
l , q2 > γ1,

(A3) Wl ≤ c3 h
−γ1

l ,
288
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then, for any εTOL < e−1, there exists an L ∈ N and a sequence {Ml}
L
l=0 such that the289

estimator AMLMC has an error εMLMC . εTOL with a computational cost proportional to290

εTOL

−2.291

Proof. By writing Vl = V[Ql −Ql−1] = V[Q−Ql−1]− V[Q −Ql] and using the292

triangular inequality and (A2), we get293

(20) Vl ≤ c h
q2
l , c = c2(1 + βq2 + 2 βq2/2).294

Moreover, by minimizing V[AMLMC], or equivalently minimizing εII , for a fixed com-295

putational cost WMLMC, we obtain from (A3) and (20):296

(21) Ml ∝

√

Vl
Wl
∝ h

(γ1+q2)/2
l .297

We follow [10] and select L to be

L =

⌈
log(2c1 h

q1
0 εTOL

−1)

q1 log β

⌉

.

We therefore have298

(22)
1

2
εTOL β

−q1 < c1 h
q1
L ≤

1

2
εTOL.299

By the right inequality in (22) and (A1), the deterministic error is bounded by300

(23) εI ≤
1

2
εTOL.301

Moreover, since hl = βL−l hL, we have

L∑

l=0

h−γ1

l = h−γ1

L

L∑

l=0

β−γ1 l ≤ h−γ1

L

∞∑

l=0

β−γ1 l = h−γ1

L

βγ1

βγ1 − 1
.

Now, by the left inequality in (22) we have h−γ1

L < (2c1/εTOL)
γ1/q1 βγ1 , thus

L∑

l=0

h−γ1

l ≤
β2γ1

βγ1 − 1
(2c1)

γ1/q1 εTOL

−γ1/q1 ,

and since εTOL < e−1 and γ1/q1 ≤ 2, then εTOL

−γ1/q1 ≤ εTOL

−2, and hence302

(24)
L∑

l=0

h−γ1

l ≤
β2γ1

βγ1 − 1
(2c1)

γ1/q1 εTOL

−2.303

Now, motivated by (21), we set304

(25) Ml =

⌈
4 εTOL

−2 c c2α h
(q2−γ1)/2
0

1− β−(q2−γ1)/2
h
(γ1+q2)/2
l

⌉

,305

which gives

c c2α
Ml
≤

1

4
εTOL

2 h
−(q2−γ1)/2
0 (1 − β−(q2−γ1)/2)h

−(γ1+q2)/2
l .
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Then, by (20) we have

c2α

L∑

l=0

Vl
Ml
≤

L∑

l=0

c c2α
Ml

hq2l ≤
1

4
εTOL

2 h
−(q2−γ1)/2
0 (1− β−(q2−γ1)/2)

L∑

l=0

h
(q2−γ1)/2
l .

Moreover, we have306

(26)

L∑

l=0

h
(q2−γ1)/2
l = h

(q2−γ1)/2
0

L∑

l=0

(
β−(q2−γ1)/2

)l
<

h
(q2−γ1)/2
0

1− β−(q2−γ1)/2
.307

Hence, the statistical error is bounded by308

(27) εII . cα

√
√
√
√

L∑

l=0

Vl
Ml
≤

1

2
εTOL.309

By (23) and (27), the total error reads εMLMC . εTOL. It is left to show that the
computational cost is proportional to εTOL

−2. By (25), we have

Ml <
4 εTOL

−2 c c2α h
(q2−γ1)/2
0

1− β−(q2−γ1)/2
h
(γ1+q2)/2
l + 1.

Hence, by (A3), the computational cost reads310

WMLMC =

L∑

l=0

MlWl ≤ c3

L∑

l=0

Mlh
−γ1

l311

< c3

L∑

l=0

(
4 εTOL

−2 c c2α h
(q2−γ1)/2
0

1− β−(q2−γ1)/2
h
(q2−γ1)/2
l + h−γ1

l

)

.312

Eventually, by (26) and (24), we obtain

WMLMC < cW εTOL

−2, cW = 4 c3 c c
2
α h

q2−γ1

0 (1−β−(q2−γ1)/2)−2+c3 (2 c1)
γ1/q1

β2 γ1

βγ1 − 1
.

This completes the proof.313

Note that for the sake of brevity we considered only the special case θ = 1/2 in314

Theorem 1 but that it can be extended to the case of a general θ by tracking the315

splitting of the error in the proof.316

5. A multi-order discontinuous Galerkin Monte Carlo method. In this317

section, we describe the new MOMC algorithm and present error and convergence318

analysis.319

The new algorithm will first construct a fixed mesh, with a mesh size h, and320

build an order hierarchy with an increasing sequence of degrees of polynomial basis321

functions, or equivalently a sequence of dG orders q0 < q1 < . . . , < qL. For instance322

we take323

(28) ql = q0 + β l, l = 0, 1, . . . , L, q0 ≥ 1, β ≥ 1.324
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Denote by Ql the approximation of Q by a ql-th order dG on the fixed mesh. Using325

the same telescoping sum formulation as in MLMC and approximating the terms by326

sample averages, we write the MOMC estimator as327

(29) AMOMC =
1

M0

M0∑

m0=1

Q
(m0)
0 +

L∑

l=1

1

Ml

Ml∑

ml=1

(Q
(ml)
l −Q

(ml)
l−1 ).328

Here, Q
(ml)
l := Ql(y

(ml)), is one realization of Ql corresponding to a sample y(ml) of
the random vector y. The total MOMC error reads

εMOMC = |E[Q]−AMOMC| ≤ |E[Q−QL]|
︸ ︷︷ ︸

εI

+ |E[QL]−AMOMC|
︸ ︷︷ ︸

εII

.

The first error term εI is the discretization error in the dG solver,329

(30) εI ≤ c1 h
q1L , q1L := κ1 qL, ∀y ∈ Γ,330

where κ1 > 0 is related to the convergence of the dG solver in approximating E[Q].331

The statistical error εII , interpreted in the statistical sense similar to (13), satisfies332

(31) εII . cα
√

V[AMOMC] = cα

√
√
√
√V[Q0]

M0
+

L∑

l=1

V[Ql −Ql−1]

Ml
=: cα

√
√
√
√

L∑

l=0

Vl
Ml

.333

The strong error also satisfies334

(32) V[Q−Ql] ≤ E[(Q−Ql)
2] ≤ c2 h

q2l , q2l = κ2 ql, ∀y ∈ Γ,335

where κ2 > 0 is related to the convergence of the dG solver in approximating V[Q].336

5.1. Numerical algorithm. Similar to MLMC, an error-complexity analysis is
needed to optimally select the computational parameters. We split the total error by
introducing a splitting parameter θ and write

εMOMC ≤ εI + εII . (1− θ) εTOL + θ εTOL, θ ∈ (0, 1),

where the errors εI and εII are given by (30) and (31), respectively. Moreover, noting

that the cost of computing Q
(ml)
l −Q

(ml)
l−1 in the MOMC estimator (29) is dominated

by the cost of computing Q
(ml)
l , which is Wl ∝ qγ2

l , the total computational cost of
MOMC reads

WMOMC ∝

L∑

l=0

MlWl, Wl ∝ q
γ2

l .

Here, γ2 = d + 2 ≥ 3 determines the cost of the deterministic dG solver. We then337

take the following iterative strategy, consisting of two main steps:338

1. Optimal number of samples. We obtain the optimal number of samples in a similar339

way as MLMC:340

(33) Ml =
⌈(θ εTOL

cα

)−2

√

Vl
Wl

L∑

ℓ=0

√

VℓWℓ

⌉

, Wl ∝ q
γ2

l .341
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2. Stopping criterion. We start with L = 2 and iteratively add levels until εI ≤
(1− θ) εTOL is achieved. To find a practical stopping criterion, we start with (16) and
assume that |E[Ql −Ql−1]| ≈ c h

κ1 qL . We then have

|E[Ql −Ql−1]|

|E[QL −QL−1]|
≈
hκ1 ql

hκ1 qL
= hκ1 (ql−qL) = hκ1 β (l−L).

Hence

εI = |E[Q−QL]| ≤ |E[QL −QL−1]|
∞∑

k=1

hk κ1 β =
hκ1 β

1− hκ1 β
|E[QL −QL−1]|,

where the last equality follows from the geometrical series
∑∞

k=0(β
−q1)k = 1

1−hκ1 β ,342

since hκ1 β < 1. Consequently, the condition we use to add levels in the numerical343

algorithm is344

(34) max
j∈{0,1,2}

h(j+1) κ1 β

1− hκ1 β

∣
∣E[QL−j −QL−j−1]

∣
∣ ≤ (1 − θ) εTOL.345

This will ensure that the deterministic error approximated by an extrapolation form346

either of the three finest meshes is within the desired range.347

Similar to the MLMC strategy, we approximate the variances {Vl}
L
l=0 in (33)348

by (18). When a new level L is added, the variance at the new level VL cannot be349

approximated by (18), since the number of sample at the new level is not known. In350

this case, thanks to the strong error estimate (32), assuming Vl = V[Ql − Ql−1] ≈351

c hκ2 ql , we first approximate VL in terms of the variance at the previous level VL−1352

by353

(35) VL ≈ h
κ2 β VL−1354

and then update the number of samples {Ml}
L
i=0 including the number of samples at355

the new level by (33). The expected values E[QL−j−QL−j−1] in (34), with j = 1, 2, 3,356

are also approximated by ḠL−j in (18).357

The MOMC algorithm is outlined in Algorithm 2.358

Lemma 2. For every positive real number r < 1 and every positive integer p ≥ 1,359

we have360

(36)

∞∑

l=0

r(q0+β l) (q0 + β l)p =

p
∑

k=1

c̃k r
k f (k)(r), f(r) =

rq0

1− rβ
.361

Proof. We start with the following geometrical series sum, thanks to rβ < 1:

∞∑

l=0

(rβ)l =
1

1− rβ
.

Hence ∞∑

l=0

rq0+β l =
rq0

1− rβ
=: f(r).

We differentiate the above formula with respect to r to obtain

∞∑

l=0

(q0 + β l) rq0+β l−1 =
d

dr
f(r).
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Algorithm 2 MOMC algorithm

Start with L = 2, and generate an order hierarchy {ql}
L
l=0 by (28).

Choose an initial set {Ml}
L
l=0 of samples.

loop

Approximate {Vl}
L
l=0 by (18).

Update the optimal number of samples {Ml}
L
l=0 by (33).

if (34) is satisfied

Compute AMOMC by (29) and terminate the loop.

else

Set L := L+ 1 and qL = q0 + β L.

Approximate VL by (35) and compute {Ml}
L
l=0 by (33).

end if

end loop

We then multiply it by r to obtain

∞∑

l=0

(q0 + β l) rq0+β l = r
d

dr
f(r).

We obtain (36) by repeating the above process, i.e. differentiate with respect to r and362

then multiply by r, p times.363

Theorem 3. Consider an order hierarchy ql = q0+β l, with l = 0, 1, . . . , L, where364

q0 ≥ 1 and β ≥ 1 are cosntants. Let Ql be the semi-discretization of Q by the ql-th365

order dG method on a mesh with a fixed mesh size h < 1. If there are constants366

c1, c2, c3, γ1, γ2 > 0 such that367

(A4) |E[Q−Ql]| ≤ c1 h
q1l , q1l = κ1 ql, κ1 q0 ≥ γ1/2,

(A5) V[Q−Ql] ≤ E[|Q − Ql|
2] ≤ c2 h

q2l , q2l = κ2 ql, κ2 q0 > γ1,
(A6) Wl ≤ c3 h

−γ1 qγ2

l ,
368

then, for any εTOL < e−1, there exists an L ∈ N and a sequence {Ml}
L
l=0 such that the369

estimator AMOMC has an error εMOMC . εTOL with a computational cost proportional to370

εTOL

−2.371

Proof. By writing Vl = V[Ql −Ql−1] = V[Q−Ql−1]− V[Q −Ql] and using the372

triangular inequality and (A5), we get373

(37) Vl ≤ c h
q2l , c = c2(1 + h−κ2β + 2 h−κ2β/2).374

Moreover, by minimizing V[AMOMC], or equivalently minimizing εII , for a fixed com-375

putational cost WMOMC, we obtain from (A6) and (37):376

(38) Ml ∝
√

Vl/Wl ∝ h
(γ1+q2l)/2 q

−γ2/2
l .377
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We select L to be

L =

⌈
log(2c1 h

κ1 q0 εTOL

−1)

log(h−κ1 β)

⌉

.

Hence
log(2c1 h

κ1 q0 εTOL

−1)

log(h−κ1 β)
≤ L <

log(2c1 h
κ1 q0 εTOL

−1)

log(h−κ1 β)
+ 1.

By the rules of logarithms and simple algebraic manipulations, we get378

(39)
1

2
εTOL h

κ1 β < c1 h
κ1 qL ≤

1

2
εTOL.379

By the right inequality in (39) and (A4), the deterministic error is bounded by380

(40) εI ≤
1

2
εTOL.381

By the left inequality in (39), we have

h−κ1 qL < 2 c1 h
−κ1 β εTOL

−1,

and hence by taking logarithm and rearranging we obtain

qL <
log(2 c1 h

−κ1 β)

log(h−κ1)
+

1

log(h−κ1)
log (εTOL

−1) =: ĉ1 + ĉ2 log (εTOL

−1),

where the constants ĉ1 and ĉ2 are independent of εTOL and L. The right hand side
of the above inequality is a logarithmic growth and can be bounded by an algebraic
growth. In particular, there exists a constant ĉ such that

ĉ1 + ĉ2 log (εTOL

−1) < ĉ εTOL

−2/(γ2+1),

and hence

qL < ĉ εTOL

−2/(γ2+1).

We therefore have382

(41)

L∑

l=0

qγ2

l < (L+ 1) qγ2

L < qγ2+1
L < ĉγ2+1 εTOL

−2.383

Now, motivated by (38), we set384

(42) Ml =

⌈

4 εTOL

−2 c c2α S h
(γ1+κ2 ql)/2 q

−γ2/2
l

⌉

,385

where

S = h−γ1/2

⌈γ2/2⌉∑

k=1

c̃k h
k κ2/2 f (k)(r), f(r) =

rq0

1− rβ
, r = hκ2/2 < 1.

From (42) we get
c c2α
Ml
≤

1

4
εTOL

2 S−1 h−(γ1+κ2 ql)/2 q
γ2/2
l .
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Then, by (37) we have

c2α

L∑

l=0

Vl
Ml
≤

L∑

l=0

c c2α
Ml

hκ2 ql ≤
1

4
εTOL

2 S−1
L∑

l=0

h(κ2 ql−γ1)/2 q
γ2/2
l .

Moreover, by Lemma 2 with r := hκ2/2 < 1 and p := ⌈γ2/2⌉ > 1, we have386

(43)

L∑

l=0

h(κ2 ql−γ1)/2 q
γ2/2
l < h−γ1/2

∞∑

l=0

hκ2 (q0+β l)/2 (q0 + β l)⌈γ2/2⌉ < S.387

Hence, the statistical error is bounded by388

(44) εII . cα

√
√
√
√

L∑

l=0

Vl
Ml
≤

1

2
εTOL.389

By (40) and (44), the total error reads εMOMC . εTOL. It is left to show that the
computational cost is proportional to εTOL

−2. By (42), we have

Ml < 4 εTOL

−2 c c2α S h
(γ1+κ2 ql)/2 q

−γ2/2
l + 1.

Hence, by (A6), the computational cost reads390

WMOMC =

L∑

l=0

MlWl ≤ c3

L∑

l=0

Ml h
−γ1 qγ2

l391

< 4 c3 εTOL

−2 c c2α S

L∑

l=0

h(κ2 ql−γ1)/2 q
γ2/2
l + c3 h

−γ1

L∑

l=0

qγ2

l .392

By (43) we obtain

WMOMC < cW εTOL

−2, cW = 4 c3 c c
2
α S

2 + c3 ĉ
γ2+1 h−γ1 .

This completes the proof.393

Remark 1. Theorems 1 and 3 show that, under the same accuracy constraint394

(εMLMC . εTOL and εMOMC . εTOL), the total computational cost of both MLMC and395

MOMC is proportional to εTOL

−2. This verifies that MOMC is a valid alternative to396

MLMC for hyperbolic problems. In addition, we will present numerical evidence (see397

Figures 1 and 4) that the multi-order approach is faster than the mesh-based multi-398

level approach for waves that traverse long distances. This superiority of MOMC399

over MLMC is due to the advantage of high-order schemes in controlling dispersive400

errors in wave propagation problems. In principle, this claim can be made rigorous by401

carefully tracking the the effects of dispersive errors on the constant cW, which appears402

in the computational cost. Such analysis is the topic of future work.403

6. Numerical examples. In this section we present numerical results from404

problems in (1+1) and (2+1) dimensions demonstrating the performance of the two405

methods described above. The first example considers the scalar wave equation, and406

the second example considers the elastic wave equation. For the details of the dG407

deterministic solver, we refer to [2, 3].408
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6.1. Example 1. We first consider the scalar wave equation in (1+1) dimensions409

on the domain D = [0, 10] and with a potential energy density G(x) = (c(x)ux)
2/2.410

We take the initial data to be411

u(x, 0) = e−(x−5)2 , v(x, 0) = 0,412

and impose homogenous Dirichlet conditions on both boundaries. Here the square413

of the wave speed is assumed to be uncertain in the x direction and modeled by 10414

independent and uniformly distributed random variables yi = U [0, 1]. Precisely the415

piecewise constant wave speed is416

c2(x,y) = 1 +
yi
100

, x ∈ [i− 1, i], i = 1, . . . , 10.417

We perform the simulations by starting both methods on a uniform grid conform-418

ing with the wave speed. In MLMC we choose the base element size is h0 = 1 with419

the fixed order q = 4, and in MOMC we choose the fixed mesh size h = 1 and start420

with the order q0 = 4, corresponding to a fourth order space-time accurate method421

in the displacement u.422

The quantity of interest is423

Q(y) =

(∫

D

|u(T, x,y)|2 dx

) 1

2

,424

where T is the final time and the integral in x is approximated by sufficiently accurate425

Gauss-Legendre-Lobatto quadrature.426

The parameters in MOMC are (γ2, κ1, κ2) = (2, 1, 2) and the parameters in427

MLMC are (γ1, q1, q2) = (2, 4, 8). For MLMC we set β = 2 and for MOMC we428

present results for β = 1 and 2. For both methods we set θ = 1/2 and cα = 1.96.429
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Fig. 1. Product of CPU time and the square of the tolerance. The red curves with triangles
represents MLMC and the black curves with squares represents MOMC with β = 2 and the dashed
line MOMC with β = 1. The left figure is for T = 20 and the right is for T = 200. For this problem
MOMC uses abut 1.8 and 3.2 times less CPU-time to reach a given tolerance.

To illustrate the advantage of using MOMC we consider two final simulation times.430

First we set T = 20 and perform simulations with tolerances εTOL = 2−8−s, s =431

0, . . . , 10. These simulations are performed three times with different random seeds.432

In a second set of simulations we increase the final time to T = 200 and perform simu-433

lations with tolerances εTOL = 2−7−s, s = 0, . . . , 5. For the second set of simulations434

we only present results for β = 2 for MOMC.435
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To confirm the complexity results of Theorem 1 and 3 we plot the product of the436

square of the tolerance and total CPU time as a function of tolerance. The results437

for both final times can be found in Figure 1. As can be seen to the left in Figure438

1, for the short time T = 20, MOMC is about 1.8 times faster than MLMC for both439

choices of β in MOMC. For the longer simulation time we find that MOMC is about440

3.2 times faster than MLMC.441

For the short time simulation we also report the distributions of the number of442

samples per level for the three different methods and for the different tolerances. As443

can be seen in Figure 2, at higher levels, where the deterministic solver per sample444

is computationally costly, the number of samples (or the number of the determinis-445

tic solves) are much smaller than the number of samples at lower levels, where the446

deterministic solver per sample is computationally cheap. This intuitively show why447

MLMC and MOMC work.
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Fig. 2. Number of samples per level for different tolerances εTOL = 2−8−s, s = 0, . . . , 10. In
each figure, the strictest tolerance corresponds to the curve with the highest number of samples. The
number of samples are monotonically decreasing as the tolerance is relaxed. On top MLMC, bottom
left MOMC with β = 1, and bottom right MOMC with β = 2.

448

6.2. Example 2. In this example we consider the elastic wave equation with449

traction free boundary conditions on the domain D = (x1, x2) ∈ [−1, 1]× [−2, 2]. In450

MLMC, the domain D is discretized with square elements with sides hl = h0β
−l, with451

β = 2 and h0 = 1
2 , and we use dG with the fixed order q = 4. In MOMC we choose452

the fixed mesh size h = 1/2 and start with the order q0 = 4. The material properties453

are taken to be piecewise constant but different above and below x2 = 0, precisely454
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Fig. 3. Verification that the tolerance is met. Plotted is the error as a function of the tolerance
for MLMC (solid red with triangles), MOMC and β = 1 (dashed black with pentagrams) and MOMC
and β = 2 (solid black with squares). The left figure is for T = 20 and the right is for T = 200.

they are455

(45) (ρ, λ, µ) =

{
(1, 4, 1 + y1) x2 > 0,
(1, 4, 1 + y2) x2 < 0,

456

where y1 and y2 are uniform random variables on [0, 1]. Note that the grid coincides457

with the material interface at x2 = 0, so that the order of the dG method is not458

affected by the jump discontinuity in µ. The initial data is chosen to be459

u1 = e−6((x1−0.15)2+(x2−0.1)2), u2 = e−6((x1−0.12)2+(x2−0.14)2), v1 = v2 = 0.460

Here u1 and u2 are the displacements and v1 and v2 are the velocities.461

The quantity of interest is462

Q(y) =

(∫

D

u1(T,x,y)
2 + u2(T,x,y)

2 dx

) 1

2

,463

where T is the final time of the simulation.464

We present results for three different final times T = 1, 10 and 100. In Figure465

4 we plot the product of the square of the tolerance and total CPU time as a func-466

tion of tolerance for the three different final times. The results are for MOMC with467

(γ2, κ1, κ2) = (4, 1, 2) and β = 1 and for MLMC with (γ1, q1, q2) = (3, 4, 8) and β = 2.468

For both methods we set θ = 1/2 and cα = 1.96.
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Fig. 4. From left to right T = 1, 10, 100. MLMC (red), MOMC with β = 1 (black).

469
As in the previous example, as the final time becomes longer the advantage of470

the MOMC method becomes more pronounced. In this case the computational time471
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is about the same when T = 1, about 1.9 times faster when T = 10 and 2.4 times472

faster when T = 100. Again we find that the tolerance is met for both the methods473

and for all the final times, see Figure 5.474
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Fig. 5. Verification that the tolerance is met. From left to right T = 1, 10, 100. MLMC (red),
MOMC with β = 1 (black).

7. Conclusion. We presented the multi-order Monte Carlo method for forward475

propagation of uncertainties in hyperbolic problems. Here the method used an ar-476

bitrary order energy-based discontinuous Galerkin discretization to build order hier-477

archies but we note that the MOMC method could of course also use any suitable478

discretization capable of discretization at arbitrary order. In fact, the complexity479

theorems we have presented do not rely on the dG method but are general in that480

they accept any discretization.481

We found that the optimal complexity of the original MLMC method also carries482

over to our multi-order Monte Carlo method and that the new method is faster when483

the problem at hand requires propagation of waves over long distances. Another484

feature of the MOMC is that a single mesh can be generated, something that may485

be of practical importance both for increased set-up time as well as for the ability to486

load balance parallel computations once and for all in the beginning of a simulation.487

Our method illustrates the power of the multi-level Monte Carlo framework and488

how easily it can be adopted and extended. We are currently exploring extensions of489

the MOMC method to other hyperbolic problems and more realistic applications and490

we are also working on extending it to the hp-refinement regime.491
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