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The fluid–solid interaction (FSI) problem is customarily solved by starting with the fluid 
dynamics component. One chooses an established computational fluid dynamics (CFD) 
method and subsequently embeds the solid phase dynamics within the CFD solution 
leading to either a monolithic or a staggered/co-simulated solution. The approach discussed 
here takes the opposite tack. We start with a differential variational framework to handle 
the solid phase; i.e., the multi-body dynamics problem in the presence of contact, friction, 
and bilateral kinematic constraints. The dynamics of the fluid phase, which is captured via 
smoothed particle hydrodynamics (SPH), is subsequently embedded into this framework 
in which the incompressibility attribute of the flow is enforced via kinematic constraint 
equations that involve SPH particles. The resulting monolithic FSI solution methodology 
relies on a half-implicit symplectic time integration method that uses a matrix-free 
iterative approach to solve a cone constrained quadratic optimization problem at each time 
step. This problem yields the contact forces, friction forces, boundary condition Lagrange 
multipliers, fluid–solid coupling terms, and bilateral constraint Lagrange multipliers. The 
solution of the optimization problem represents the computationally taxing component of 
the method. Large integration time steps, tight enforcement of incompressibility, a unified 
approach for handling the fluid and solid phases, and linear scaling are listed as the 
attractive attributes of the proposed method. The numerical experiments reported include 
three validation studies (incompressibility, dam break, and sloshing), a scaling analysis, and 
a tracked vehicle fording simulation.

© 2018 Elsevier Inc. All rights reserved.

1. Preliminaries

We are interested in the dynamics of articulated mechanical systems operating while totally or partially immersed in 
a fluid. Examples include particles in suspension; fully saturated soils; submersible vehicles, which contain rigid and/or 
flexible components; or other collections of objects whose mutual interaction, while governed by friction and contact forces, 
is modulated by the presence of the fluid phase via two-way coupling. For the purpose of introducing the modeling and 
numerical solution framework promoted herein, we concentrate on the fluid – rigid-body two way coupling. The case of 
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Fig. 1. The ith contact between two bodies A and B .

flexible/compliant bodies interacting with fluid, which can be similarly treated albeit using a more cumbersome notation, is 
discussed in [1].

2. The dynamics of the solid phase

2.1. The equations of motion

The time-evolution of a collection of nb rigid bodies interacting through friction and contact is described herein us-
ing Cartesian coordinates associated with each body j, where 1 ≤ j ≤ nb . The array of generalized coordinates q =
[rT1 , εT

1 , . . . , rTnb , ε
T
nb

]T ∈ R
7nb , and its time derivative q̇ = [ṙT1 , ̇εT

1 , . . . , ̇rTnb , ̇ε
T
nb

]T ∈ R
7nb , are used to represent the state of 

the system, where for body j, r j and ε j are the absolute position of the center of mass and the body orientation Euler 
parameters, respectively. For the body-centroidal and principal reference frame, ε j are defined with respect to a global and 
inertial reference frame. The time derivative ε̇ j of the Euler parameters can be replaced with a different set of unknowns; 
i.e., the angular velocity in local coordinates ω̄ j , which ushers in the velocity v = [ṙT1 , ω̄T

1 , . . . , ̇rTnb , ω̄
T
nb

]T . Using this notation, 
the time evolution of a system of bodies that interact with each other through contact, friction, external forces, and bilateral 
constraints is the solution of a set of differential algebraic equations, see for instance [2],

q̇ = Ls(q)v (1a)

Msv̇ = fs(t,q,v) + Gsλ̂s +
∑

i∈A(q,δ)

(
γ̂ s
i,n D

s
i,n + γ̂ s

i,u D
s
i,u + γ̂ s

i,w Ds
i,w

)︸ ︷︷ ︸
ith frictional contact force

(1b)

0 = gs(q, t) (1c)

i ∈ As(q(t)) :

⎧⎪⎨⎪⎩
0 ≤ Cs

i (q) ⊥ γ̂ s
i,n ≥ 0(

γ̂ s
i,u, γ̂

s
i,w

)
= argmin√

γ 2
u +γ 2

w≤μs
i γ̂

s
i,n

vT ·
(
γu Ds

i,u + γw Ds
i,w

)
(1d)

The differential equations in Eq. (1a) relate the time derivative of the generalized positions q and velocities v through a 
linear transformation defined by a block diagonal matrix Ls(q) [3]. The force balance equation in Eq. (1b) ties together the 
inertial force that employs the constant generalized mass matrix Ms ∈ R

6nb×6nb , the external force fs(t, q, v), the bilateral 
constraint force Gs(t, q)λ̂s , and the frictional contact forces. The superscript “s” emphasizes that these are solid-phase spe-
cific quantities. The bilateral constraint force, which is impressed by the set of bilateral kinematic constraints, see Eq. (1c), 
restricts the relative motion of solid bodies via the Lagrange multiplier λ̂s . In practical applications, the bilateral constraints 
in Eq. (1c) are associated with the presence of mechanical joints. For instance, a vehicle suspension is attached to the chassis 
using revolute joints, spherical joints, etc., which define the expression of the projection operator Gs .
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The summation for frictional contact forces, which are emphasized in Eq. (1b) using an under-brace, runs over all the 
contacts in the active set As(q, δ); i.e., the collection of NK active contacts associated with pairs of bodies which given 
a generalized position q are within a relative distance less than or equal to a user prescribed threshold δ ≥ 0. A contact 
scenario is shown in Fig. 1. For two bodies A and B in contact, 0 ≤ A < B ≤ nb , let s̄i,A and s̄i,B be the location of the contact 
point with respect to the reference frame of body A and B , respectively. Since we are concerned with rigid bodies, A �= B; 
the ground is assigned A = 0, and no self-contact is assumed. If the bodies in contact are defined by smooth boundaries, 
let ni be the unit vector denoting the contact normal direction, and ui and wi be two unit vectors that span the contact 
plane at the point of contact. By convention, ni points towards the interior of B , and {ni, ui, wi} form a right-hand reference 
frame. The contact force, Fi , associated with contact i can be decomposed into normal and tangential/frictional components, 
Fi,N and Fi,T , respectively, where Fi,N = γ̂ s

i,nni and Fi,T = γ̂ s
i,uui + γ̂ s

i,wwi . As far as body B is concerned, γ̂ s
i,n ≥ 0.

Finally, the first row in Eq. (1d) poses a complementarity condition: the product of the gap function and the normal 
force, while both nonnegative quantities, is always zero. Specifically, if there is a gap between the bodies; i.e., 0 ≤ Cs

i (q), 
then the normal force γ̂ s

i,n is zero. Conversely, if the gap is zero, the normal force is nonnegative. The friction force is tied 
to the value of the normal force via the Coulomb friction model. Using a maximum dissipation principle, see, for instance [4], 
the Coulomb friction force is obtained for each contact i ∈ As(q, δ) as the solution of the optimization problem in Eq. (1d). 
Its solution provides the components γ̂ s

i,u and γ̂ s
i,w of the friction force given a friction coefficient μi , the velocity v, and 

the normal force at the contact point γ̂ s
i,n . A transformation matrix Ai = [ni, ui, wi] ∈ R

3×3 is used for contact i to express 
the frictional contact force in the global frame. The projection matrix Ds

i ∈ R
6nb×3,

Ds
i = [03×3, . . . ,03×3,−AT

i ,AT
i AA ˜̄si,A,03×3, . . . ,03×3,A

T
i ,−AT

i AB ˜̄si,B ,03×3, . . . ,03×3]T , (2)

is used to express the generalized frictional contact force. Here, AA and AB are the body A and B rotational matrices, 
respectively; a tilde over a vector denotes its skew-symmetric matrix [3]; and, in terms of notation, Ds

i ≡ [Ds
i,n, D

s
i,u, D

s
i,u] for 

the columns of the projection operator Ds
i [2].

2.2. Elements of the numerical solution

The mixed differential variational inequality problem in Eq. (1) is discretized to yield the mathematical program with 
complementarity and equality constraints in Eq. (3). The discretization is based on a symplectic half-implicit Euler method 
[5] used to advance the state of the system from time t(l) to t(l+1) with a step size �t . The instantaneous Lagrange multi-
pliers are scaled to become constraint reaction impulses: λ ≡ �t λ̂ for bilateral constraints; and, γ ≡ �t γ̂α , α ∈ {n, u, w}, 
for the normal (n) and two tangential friction (u and w) forces. This discretization yields a first-order scheme [6]:

Generalized positions︷ ︸︸ ︷
q(l+1) = q(l) +

Step size︷︸︸︷
�t Ls(q(l))︸ ︷︷ ︸

Velocity transformation matrix

v(l+1) (3a)

Ms(

Gen. speeds︷ ︸︸ ︷
v(l+1) −v(l)) = �t fs(t(l),q(l),v(l))︸ ︷︷ ︸

Applied impulse

+
Bilat. constr. impulse︷ ︸︸ ︷

Gsλs,(l+1) +Dsγ s,(l+1)︸ ︷︷ ︸
Frictional contact reaction impulses

(3b)

0 = 1

�t
gs(q(l), t(l))︸ ︷︷ ︸

Stabilization term

+Gs,T v(l+1) + gst (3c)

i ∈ As,(l) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 ≤

Stabilization term︷ ︸︸ ︷
1

�t
C s
i (q

(l))+Ds,T
i,n v

(l+1)

Relaxation term︷ ︸︸ ︷
−μs

i

√
(Ds,T

i,u · v(l+1))2 + (Ds,T
i,w · v(l+1))2 ⊥ γ

s,(l+1)
i,n ≥ 0(

γ
s,(l+1)
i,u , γ

s,(l+1)
i,w

)
= argmin√

γ 2
u +γ 2

w≤μs
i γ

s,(l+1)
i,n

vT ·
(
γu Ds

i,u + γw Ds
i,w

)
,

(3d)

where Ds ≡ [Ds
1 Ds

2 . . .Ds
NK

] ∈R
6nb×3NK , and gst ≡ ∂gs

∂t is the partial derivative of the bilateral constraints with respect to time. 
For the unilateral; i.e., non-penetration or inequality, constraints the friction cone Ki associated with contact event i ∈ As,(l)

is defined as Ki ≡ {[x, y, z]T ∈ R
3 : 0 ≤ x and μi x −

√
y2 + z2 ≥ 0}. The polar cone K◦

i associated with the friction cone 
Ki is defined as K◦

i ≡ {[a, b, c]T ∈ R
3 : ax + by + cz ≤ 0 ∀ [x, y, z]T ∈ Ki}. For equality constraints, the cone B j ≡ R and 

the polar cone B◦
j ≡ {y : x · y ≤ 0 ∀ x ∈ B j}. Note that this polar cone set has only one element: B◦

j = {0}. Next, define two 

quantities: di ≡ [ 1
�t C

s,(l)
i , 0, 0]T + Ds,T

i (v(l) + �t Ms,−1 fs,(l)) ∈ R
3 and b j ≡ 1

�t g
s,(l)
j + ∂gs,(l)j

∂t + Gs,T
j (v(l) + �t Ms,−1 fs,(l)) ∈ R, 

already available at t(l) . Define Ps ≡
[
Ds,(l)
i Gs,(l)

]
∈ R

6nb×(3NK +NB ) , and
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ν(l+1)
s ≡

[
γ s,(l+1)

λs,(l+1)

]
∈R

3NK+NB , ps ≡
[
ds,T
1 , . . . ,ds,T

NK
,bs1, . . . ,b

s
NB

]T ∈ R
3NK+NB .

The discretized problem can be posed as a Cone Complementarity Problem (CCP): find ν(l+1)
s such that

Cs,k � ν(l+1)
s,k ⊥ −(ps +Nsν

(l+1)
s )k ∈ C◦

s,k , (4)

where Ns ≡ PT
s M

s,−1Ps , Cs ≡ Ks,1 ⊕ . . . ⊕Ks,NK ⊕ B1 ⊕ . . . ⊕ BNB , and C◦
s ≡ K◦

s,1 ⊕ . . . ⊕K◦
s,NK

⊕ B◦
1 ⊕ . . . ⊕ B◦

NB
. As shown 

in [2], this CCP represents the first order optimality condition [7] for the convex quadratic optimization problem with conic 
constraints

ν(l+1)
s =min

ν

1

2
νTNsν + pT

s ν

subject to νs,k ∈ Cs,k .

(5)

Once available, ν(l+1)
s is used in Eq. (3b) to obtain the velocities v(l+1) , which are then used in Eq. (3a) to get the generalized 

positions q(l+1) . This completes the t(l+1) state update.
The key steps of the solution methodology are as follows: the unilateral and equality kinematic constraints are imposed 

at the velocity level. Any constraint drift at the position level is remedied via the terms labeled “Stabilization term” in 
Eqs. (3c) and (3d). Introducing the “Relaxation term” in Eq. (3d) changes the nature of the numerical problem from a 
nonlinear complementarity problem into a CCP. The latter is equivalently posed as a quadratic optimization problem with 
conic constraints. The optimization problem is convex, which ensures a global solution. Moreover, the solution is unique in 
velocities and therefore positions [8].

3. Handling the dynamics of the fluid phase

3.1. The equations of motion

The time evolution of the fluid phase is the solution of a set of partial differential equations that capture the mass 
and momentum balance, see Eq. (6). Under the assumption of dealing with Newtonian incompressible fluids, the mass and 
momentum balance equations are stated as [9,10]

ρ̇ = −ρ∇·v f (6a)

v̇ f = − 1

ρ
∇p + μ

ρ
∇2v f + f̂ f , (6b)

where μ is the fluid viscosity, ρ the fluid density, v f and p are the flow velocity and pressure, respectively, and f̂ f is the 
fluid external body force. Mass conservation can be posed as one of the following conditions:

∇·v f = 0 (7a)

ρ̇ = 0 , (7b)

the latter stating that density is constant along particle paths. Herein, we assume that the density is time and material point 
independent, and, with ρ0 constant, we use everywhere

ρ = ρ0 , (7c)

in lieu of the differential counterpart in Eq. (7b).

3.2. Elements of the numerical solution

For the discretization of the Navier–Stokes equations we draw on the Smoothed Particle Hydrodynamics (SPH) method-
ology [11,12], a meshless method that dovetails well with the Lagrangian perspective of the solid phase. In SPH, the fluid 
domain is discretized via moving particles. A particle a has mass ma associated with the representative volume dV, carries 
all of the essential field properties, and influences its neighborhood via a smoothing function W that uses a character-
istic smoothing length h to establish a compact support domain. Any field property is evaluated as a weighted sum of 
contributions made by the particles in the vicinity of a location of interest [13].
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Fig. 2. (a): Boundary conditions and/or fluid–solid coupling imposed via ghost SPH particles deployed in a buffer volume on and near the surface of the 
solid. The ghost particles are rigidly attached to solid; (b) Boundary conditions enforced in CFSPH via non-penetration unilateral constraints posed as 
complementarity conditions; (c) Moving solid interacting with SPH particle – the particle is shown moving in tangent plane with velocity vT .

3.2.1. The classical, weakly compressible SPH (WCSPH) approach
In this classical approach, the density is usually obtained using [14]

ρi =
∑
j

m jWij or, (8a)

dρi

dt
= ρi

∑
j

m j

ρ j
v f
i j·∇iWij , (8b)

where a subscript i indexes a quantity associated with particle i, and the superscript f is used in conjunction with the fluid 
phase. Moreover, xi j = xi − x j , v

f
i j = v f

i − v f
j , Wij = W (xi j, h), and ∇i is the gradient with respect to the xi position of SPH 

particle i. Each approach in Eq. (8) has its own merits and drawbacks, and an implementation might alternatively use both 
in conjunction with a density re-initialization method, see, for instance, [15].

The momentum equation Eq. (6b) is discretized at an arbitrary location xi as [16,17]

dv f
i

dt
= −

∑
j

m j

[(
pi

ρi
2

+ p j

ρ j
2

)
∇iWij − (μi + μ j)xi j ·∇iWij

ρ̄2
i j(x

2
i j + εh2)

v f
i j

]
+ f̂ fi , (9)

where ε is a regularization coefficient and ρ̄i j is the average density of particles i and j. In WCSPH, the pressure is related 
to the density through the Murnaghan–Tait equation of state

p =
(
c2sρ0/γ

){
(ρ/ρ0)

γ − 1
}

, (10)

where cs is the numerical speed of sound and γ adjusts the stiffness of the pressure–density relationship.
Succinctly, at each time step tn , the solution is advanced as follows. First, the value of ρ is used in the state equation 

to compute p. The density and pressure are used in Eqs. (8b) and (9) to calculate the particle’s density and velocity rates 
of change; alternatively, Eq. (8a) could be considered in place of Eq. (8b) to calculate density directly. A second order 

explicit mid-point scheme [18] updates the particle’s position via 
dxi
dt

= v f
i . In the so-called extended SPH approach [19], 

the particle velocity that entered the right hand side of Eqs. (8b) as well as the definition of 
dxi
dt

is replaced with v̂ f
i

v̂ f
i = v f

i − 1

2

∑
j

m j

v f
i j

ρ̄i j
Wij . (11)

The fluid–solid coupling Several methods have been proposed in literature for fixed or moving solid boundary in WCSPH, 
see, for instance, [17,20–22]. In the past, we employed the “dummy particle” approach of [23,24], in which Boundary 
Condition Enforcing (BCE) particles were distributed in/on the rigid [25] or flexible [26] bodies. The “dummy particle” 
approach is shown in Fig. 2(a) using four layers of BCE particles, which are constrained to move with the solid body. 
At the fluid–solid interface, via Eqs. (8) and (9), each BCE particle captures an interaction force due to the presence of 
nearby fluid particles. The velocity and pressure of a BCE particle that enters those equations can be estimated in two 
different ways. The particle velocity can be replaced by the local velocity of the moving, solid-phase, boundary; the pressure 
requires a projection from the fluid domain [24]. Alternatively, in the so called “momentum-balance” solution, the velocity 
of each BCE particle is calculated so that when combined with the fluid contribution it results in the assigned wall velocity; 
additionally, the BCE particle pressure is obtained from a force balance at the boundary [21]. The momentum-balance 
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approach performs better in imposing the no-slip condition, particularly when the external body force is significant [27]. All 
these approaches are straightforward to implement, yet incompressibility is only weakly enforced and integration step sizes 
are small.

3.2.2. The proposed, constraint-based approach
The WCSPH solution requires an equation of state for closure. The higher the speed of sound cs and/or exponent γ , 

the closer the numerical solution comes to the abstraction of incompressible fluid. However, this renders the problem 
numerically stiff, which places a tight upper bound on the integration step size. To solve this conundrum, an implicit or 
semi-implicit approach can dismiss the equation of state and determine the pressure by enforcing the solenoidal nature of 
the velocity field. In this context, by using the mass balance equation as a constraint on the dynamics of the fluid phase, 
the pressure trades its thermodynamic meaning as sensitivity of the internal energy with respect to the volume element 
for one in which the pressure gradient represents the force field that enforces the incompressibility condition. A fractional 
step approach reminiscent of the methodology proposed for classical CFD in [28] has been outlined in conjunction with 
SPH in [29]. Enforcing the incompressibility via a pressure projection step then calls for the solution of an elliptical Poisson 
problem. This adds to the computational cost per numerical integration step, yet allows for larger time steps. One drawback 
of this methodology is that enforcing the divergence free condition in velocities only enforces that the time derivative of 
the density stays constant. This, however, does not protect against drift in constraint satisfaction. Several corrections to 
address drift have been proposed in [29]. The first and more common approach remains rooted into a velocity projection 
via the solution of a Poisson problem but yields methods that improve (i) the boundary condition enforcement in the 
Poisson problem [30,31]; and/or (ii) the splitting that handles the viscosity in time-explicit [32,23,33] or -implicit [34]
fashions. A second approach that enforces incompressibility operates directly on the expression of the density. Indeed, 
the condition ρi = ρ0 becomes a holonomic kinematic constraint that leads to the presence of reaction forces whose net 
effect is that of adjusting SPH particle trajectories to maintain density invariance. This approach has been proposed in 
[35] and revisited in [36,37]. Enforcing incompressibility via a kinematic constraint is attractive since (a) it prevents drift 
in enforcing the incompressibility condition, and (b) it does not pose additional challenges for enforcing the boundary 
conditions in the Poisson problem. The latter issue is particularly daunting given that handling boundary conditions in 
SPH is not straightforward and remains a topic of ongoing research. Typically, one resorts to adding dummy [23] or ghost 
particles [38] to capture the fluid–solid interaction. The process is nontrivial for moving solid bodies or when handling walls 
with corners and nooks [24].

The approach proposed herein enforces the incompressibility via holonomic kinematic constraints. As shown shortly, the 
discretized equations of motion for the fluid component assume a form that is identical to that of the discretized equations 
of motion that govern the time evolution of a constrained rigid, multi-body system. This opens the door to numerical 
solutions that handle the FSI problem in one framework. To this end, we formulate the following holonomic kinematic 
constraint in conjunction with each SPH particle: the density ρi at the location of particle i should assume at all times the 
target density ρ0; i.e.,

g f
i ≡ ρi − ρ0

ρ0
= 0 , (12)

where g f (x) = 0NF is the collection of incompressibility constraints.
The starting point in setting up the constrained-fluid SPH (CFSPH) approach is the observation that when expressing a 

derivative ∂ A
∂x in SPH, it is recommended to use the identity

∂ A

∂x
= 1




[
∂ (
A)

∂x
− A

∂


∂x

]
,

where 
 is a sufficiently differentiable function [14]. Setting 
 = 1 in conjunction with the mass balance equation leads to 
Eq. (8b) of WCSPH. In CFSPH, the choice 
 = ρ leads to

ġ f
i = d

dt
(
ρi

ρ0
− 1) =

∑
j

m j

ρ0
v f
i · ∇iWij −

∑
j

m j

ρ0
v f
j · ∇iWij = 0 . (13)

In anticipation of the numerical solution method used in CFSPH, the generalized force projection operators for the density 
constraint associated with particle i are evaluated as

G f
ii = 1

ρ0

∑
k �=i

mk∇Wik ∈R
1×3 and G f

i j = −mj

ρ0
∇Wij ∈R

1×3 for i �= j , 1 ≤ j ≤ NF . (14)

Each density constraint contributes one row in the kinematic constraint Jacobian matrix, the latter being of size NF ×
3NF , where NF is the number of SPH fluid particles. Each row i has three values in columns 3i, 3i + 1, and 3i + 2; 
and three values for each neighboring SPH particle j; i.e., a particle which is sufficiently close to particle i to impact 
the value of the density at the location of the latter. The sparsity pattern of the Jacobian changes in time, but the fill-in 
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stays roughly the same since over time each SPH particle is expected to have a relatively constant number of neighbor 
particles.

An insufficient number of fluid particles associated with the typical SPH discretization leads to poor approximations of 
the density near free-surface boundaries or walls. This particle deficiency is addressed as follows: for SPH particles close to 
a free surface or wall, the density in Eq. (12) assumes the expression [39]

ρi =
∑N

j m jWij∑N
j

m j
ρ j

Wij

.

CFSPH treatment of boundaries Boundary conditions (BC) associated with fixed boundaries (walls) are posed as non-
penetration, unilateral, constraints just like when handling contact for the solid phase. Referring to Fig. 2(b) and (c), if 
the gap between an SPH particle and a wall is greater than zero, the normal force imposed by the wall upon particle is 
zero; vice-versa, if the gap is less than or equal to zero, a nonzero normal force γ̂ bc

n enforces the non-penetration condi-
tion. The BC yields a complementarity equation that captures a unilateral kinematic constraint. Friction between the solid 
boundaries and the fluid models both energy losses at the fluid–solid interface as well as no-slip conditions. These model-
ing decisions made in conjunction with the SPH spatial discretization of the Navier–Stokes equations lead to the following 
differential variational inequality problem [1]:

ẋ = v f (15a)

v̇ f = f f
(
t,x,v f

)
︸ ︷︷ ︸

Body, Pressure, Visc. force

+
Incompres. enforcing︷ ︸︸ ︷

G f λ̂ f +
Boundary coupling︷ ︸︸ ︷

Dbc γ̂ bc (15b)

g f (x, t)︸ ︷︷ ︸
Density constraints (incompres. enforcement)

= 0 (15c)

k ∈ Abc(x(t), δbc) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0 ≤ γ̂ bc

k,n ⊥
Fluid–solid nonpenetration condition︷︸︸︷

Cbc
k (x) ≥ 0

(
γ̂ bc
k,u, γ̂

bc
k,w

)
= argmin√

γ 2
u +γ 2

w≤μbc
k γ̂ bc

k,n

F–S coupling dissipation energy︷ ︸︸ ︷
vTk

(
γuu

bc
k + γwwbc

k

)
,

(15d)

where x = [xT1 , . . . , xTNF
]T ∈ R

3NF , f f
(
t,x,v f

)
is defined as the right side of Eq. (9), G f ∈ R

3NF ×NF is defined via Eq. (14), 
and ̂λ f ∈ R

NF is the associated Lagrange multiplier. The BC enforcing is captured in Eq. (15d) where for a x(t) distribution 
of the SPH particles, Abc(x(t), δbc) denotes the collection of contact events triggered by SPH particles that are within a 
threshold distance δbc ≥ 0 from a wall. Note that the same SPH particle, in theory, can be involved in more than one 
contact event. When within δbc from a wall, a fluid particle j is treated as a rigid sphere that, depending on its velocity 
v f
j , might inelastically collide within the current time-step �t with a wall and subsequently mutually interact via frictional 

contact. This unilateral constraint looks like the one encountered when handling rigid bodies but with one caveat: the fluid 
particle only has translational degrees of freedom, which simplifies the constraint. Defining Abc

k ≡ [nbc
k , ubc

k , wbc
k ] ∈ R

3×3, 
the projection operator Dbc

k , which for a contact event k projects the frictional contact force γ̂ bc upon the SPH particle j, 
assumes the expression

Dbc
k =

[
03×3, . . . ,03×3,−Abc,T

k ,03×3, . . . ,03×3

]T ≡ [Dbc
k,n Dbc

k,u Dbc
k,w ] ∈ R

3NF ×3 .

This is the analog of the projector operator in Eq. (2). The projection operator Dbc ≡ [Dbc
1 . . .Dbc

Nbc
] ∈ R

3NF ×3Nbc and asso-
ciated Lagrange multiplier γ̂ bc ∈ R

3Nbc come into play to enforce non-penetration conditions between fluid particles and 
boundaries/walls. Here Nbc = |Abc(x(t), q(t), δbc)| is the number of contact events between SPH particles and boundaries. It 
changes at each time step and is determined via a proximity computation stage that parallels the collision detection task 
for the solid phase. Finally, in Eq. (15d), the maximum dissipation principle ties the power dissipated to the value of the 
friction force γuubc

k + γwwbc
k and the relative velocity vk between the SPH particle and the solid. A zero friction coefficient 

μbc
k indicates no wettability, with larger values increasingly arresting the slip of the SPH particles.

CFSPH time discretization The differential variational inequality in Eq. (15) is discretized via the half-implicit symplectic 
Euler scheme used for the solid component, see Eq. (3):
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x(l+1) = x(l) + �t v f ,(l+1) (16a)
Generalized speeds︷ ︸︸ ︷

v f ,(l+1) −v f ,(l) = �t f f ,(l)(t,x,v f ) +
Density Impulse︷ ︸︸ ︷
G f λ f ,(l+1) +Dbcγ bc,(l+1)︸ ︷︷ ︸

Boundary Impulse

(16b)

0 = 1

�t
g f (x(l))︸ ︷︷ ︸

Density Stabilization

+G f ,T v f ,(l+1) (16c)

k ∈ Abc,(l) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ Cbc
k (x(l))

�t︸ ︷︷ ︸
Contact Stabilization

+Dbc,T
k,n v f ,(l+1)

Relaxation Term︷ ︸︸ ︷
−μbc

k

√(
Dbc,T
k,u v f ,(l+1)

)2 +
(
Dbc,T
k,w v f ,(l+1)

)2 ⊥ γ
bc,(l+1)
k,n ≥ 0

(
γ

bc,(l+1)
k,u , γ

bc,(l+1)
k,w

)
= argmin√

γ 2
u +γ 2

w≤μbc
k γ

bc,(l+1)
k,n

v f ,(l+1),T
(
γuDbc

k,u + γwDbc
k,w

) (16d)

In Eq. (16), any quantity without a superscript or with superscript (l) is evaluated at time t(l); any quantity evaluated 
at t(l+1) displays a (l + 1) superscript. Equation (16b) is the discretized version of Eq. (15b) upon multiplication by the 
step size �t . Therefore, unknowns are now impulses rather than Lagrange multipliers; i.e., λ f ≡ �t λ̂ f and γ bc ≡ �t γ̂ bc . 
Equation (16c) is a first order Taylor series truncation of Eq. (15c), when the latter is enforced in the configuration at the 
end of the time step; i.e., x(l+1) . The “Density Stabilization” term 1

�t g
f (x(l)) compensates for violations in satisfying the 

density kinematic constraint in Eq. (15c), an approach that follows in the steps of the constraint stabilization proposed 
in [40]. In doing so, we don’t enforce the density constraint at the position level but rather constrain the velocity of the 
SPH particles by imposing a velocity-level equation that accounts at t(l+1) for any density drift manifest at t(l) . The same 
“stabilization” approach is embraced to enforce the BC non-penetration condition. Moreover, for a fluid–solid interaction 
event k ∈Abc,(l) , the Taylor expansion of the gap function evaluated at t(l+1) is: (a) truncated to first order; and, (b) relaxed 
via a “Relaxation Term” to transform the discretized equations of motion in Eq. (16) into a CCP, as done for the solid body 
dynamics discretization in Eq. (3d). Let

d f
i ≡ [ 1

�t
Cbc,(l)
i , 0, 0]T +Dbc,(l),T

i (v f ,(l) + �t f f ,(l)) ∈ R
3

b f
j ≡ 1

�t
g f ,(l)
j + G f ,(l),T

j (v f ,(l) + �t f f ,(l)) ∈R .

All quantities that enter the computation of d f
i and b f

j are computed based on information available at the beginning of 
the step; i.e., at t(l) . Likewise, let

P f ≡
[
Dbc,(l) G f ,(l)

]
∈ R

3NF×(3Nbc+NF ) ,

ν(l+1)
f ≡

[
γ f ,(l+1)

λ f ,(l+1)

]
∈R

3Nbc+NF and,

p f ≡
[
d f ,T
1 , . . . ,d f ,T

NK
,b f

1 , . . . ,b f
NB

]T ∈R
3Nbc+NF .

Next, define the convex hyper-cone C f ≡Kbc,1 ⊕ . . . ⊕Kbc,Nbc ⊕B1 ⊕ . . . ⊕BNF and its polar counterpart C◦
f ≡K◦

bc,1 ⊕ . . . ⊕
K◦

bc,Nbc
⊕B◦

1 ⊕ . . . ⊕B◦
NF

. Here, Kbc,i ≡ {[x, y, z]T ∈R
3 : 0 ≤ x and μbc

i x −√y2 + z2 ≥ 0} and K◦
bc,i is the associated polar 

cone. Defining N f ≡ PT
f P f , after algebraic manipulations [2], the discretized problem leads to a CCP: find ν(l+1)

f such that

C f ,k � ν(l+1)
f ,k ⊥ −(p f +N f ν

(l+1)
f )k ∈ C◦

f ,k .

As shown in [2], this CCP represents the first order optimality condition [7] for the convex quadratic optimization problem 
with conic constraints

ν(l+1)
f =min

ν

1

2
νTN f ν + pT

f ν

subject to ν f ,k ∈ C f ,k .

(17)

At t(l+1) , the optimization problem is solved for ν(l+1)
f employing the same techniques used for the problem in Eq. (17). 

Upon finding ν(l+1) , one has the set of Lagrange multipliers associated with enforcing the incompressibility constraints 
f
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λ f ,(l+1) , the non-penetration constraints γ
bc,(l+1)
k,n , and the mutual interaction at the fluid-wall interface γ

bc,(l+1)
k,u and 

γ
bc,(l+1)
k,w . The new velocities v f ,(l+1) are computed expeditiously using Eq. (16b). Subsequently, the new SPH positions are 

computed using Eq. (16a).

4. The fluid–solid coupled dynamics problem

The coupled fluid–solid (FS) interaction solution builds on notation introduced in §2 and §3 as the discretized equations 
of motion are a straight splicing of the equations for the solid and fluid phases. A coupling force term comes into play 
by means of a projection operator DF S that yields the generalized forces acting on a subset of SPH particles and the 
moving solid bodies that these particles interact with. The collection of all FS events at time t(l) provides the active set 
A(l),F S (x, q, δF S ). For an event j ∈A(l),F S , the projection operator is defined as

DF S
j ≡

[
03×3, . . . ,−AF S,T

j ,03×3, . . . ,03×3, . . . ,A
F S,T
j ,

(
−AF S,T

j AB ˜̄s j,B
)T

,03×3, . . .
]T ∈R

(3NF +6nb)×3 ,

where for unilateral event j, by convention, the first column is associated with the normal nF S
j component of the force, 

while the other two columns of DF S
j are tied to the uF S

j and wF S
j components of the tangential force. Above, AF S

j ≡
[nF S

j , uF S
j , wF S

j ] ∈ R
3×3 is the orientation matrix associated with FS event j; AB = A (εB) is the rotation matrix of body B

involved in event j; and, s̄ j,B is the contact location in body B relative coordinates. Associated with event j is a Lagrange 
multiplier γ F S

j ∈ R
3 that yields the coupling force DF S

j γ F S
j . The force impressed upon an SPH particle as a result of the 

non-penetration condition is registered with a flipped sign by the solid, which also experiences a corresponding torque. 
Insofar the FS projection operator is concerned, it can be represented in two equivalent forms:

DF S
j =

[
DF S

j,n, DF S
j,u, DF S

j,w

]
≡
[
DF

j
DS

j

]
∈ R

(3NF+6nb)×3 ,

with DF S ≡
[
DF S
1 DF S

2 . . .
]

∈ R
(3NF +6nb)×3NF S , where NF S = |AF S,(l)|. The discretized equations of motion for a coupled FS 

problem assume then the form

x(l+1) = x(l) + �t v f ,(l+1)

q(l+1) = q(l) + �t Ls(q(l)) v(l+1)

v f ,(l+1) − v f ,(l) = �t f f (t(l),x(l),v f ,(l)) + G f λ f ,(l+1) +Dbcγ bc,(l+1) +DFγ F S,(l+1)

Ms(v(l+1) − v(l)) = �t fs(t(l),q(l),v(l)) + Gsλs,(l+1) +Dsγ s,(l+1) +DSγ F S,(l+1)

0 = 1

�t
g f (x(l)) + G f ,T v f ,(l+1)

0 = 1

�t
gs(q(l), t(l)) + Gs,T v(l+1) + gst (q

(l), t(l))

k ∈ Abc,(l) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ Cbc

k (x(l))

�t +Dbc,T
k,n v f ,(l+1)−μbc

k

√(
Dbc,T
k,u v f ,(l+1)

)2 +
(
Dbc,T
k,w v f ,(l+1)

)2 ⊥ γ
bc,(l+1)
k,n ≥ 0(

γ
bc,(l+1)
k,u , γ

bc,(l+1)
k,w

)
= argmin√

γ 2
u +γ 2

w≤μbc
k γ

bc,(l+1)
k,n

v f ,(l+1),T
(
γuDbc

k,u + γk,wDbc
k,w

)

i ∈ As,(l) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ Cs

i (q
(l))

�t + Ds,T
i,n v

(l+1) − μs
i

√
(Ds,T

i,u · v(l+1))2 + (Ds,T
i,w · v(l+1))2 ⊥ γ

s,(l+1)
i,n ≥ 0(

γ
s,(l+1)
i,u , γ

s,(l+1)
i,w

)
= argmin√

γ 2
u +γ 2

w≤μs
i γ

s,(l+1)
i,n

vT ·
(
γu Ds

i,u + γw Ds
i,w

)
.

j ∈ AF S,(l) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ C F S

j (x(l),q(l))

�t +DF S,T
j,n z(l+1)−μF S

j

√(
DF S,T

j,u z(l+1)
)2 +

(
DF S,T

j,w z(l+1)
)2 ⊥ γ

F S,(l+1)
j,n ≥ 0(

γ
F S,(l+1)
j,u , γ

F S,(l+1)
j,w

)
= argmin√

γ 2
u +γ 2

w≤μF S
j γ

F S,(l+1)
j,n

z(l+1),T
(
γuDF S

j,u + γwDF S
j,w

)

where z = [v f ,T , vs,T
]T ∈R

3NF +6nb are the system-level generalized velocities. This coupled problem is reformulated as
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y(l+1) = y(l) + �t L(l)z(l+1) (19a)

M(z(l+1) − z(l)) = �t f(t(l),y(l), z(l)) + Gλ(l+1) +Dγ (l+1) (19b)

0 = g + GT z(l+1) (19c)

j ∈ A(l) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ C j(y

(l))

�t +DT
j,nz

(l+1)−μ j

√(
DT

j,uz
(l+1)

)2 +
(
DT

j,wz(l+1)
)2 ⊥ γ

(l+1)
j,n ≥ 0(

γ
(l+1)
j,u , γ

(l+1)
j,w

)
= argmin√

γ 2
u +γ 2

w≤μ jγ
(l+1)
j,n

z(l+1),T
(
γuD j,u + γwD j,w

)
.

(19d)

When advancing the system state from t(l) to t(l+1) , the system-level active set associated with the unilateral events A(l) ≡
As,(l) ∪Abc,(l) ∪AF S,(l) is identified using a collision detection/proximity computation analysis carried out at t(l) . In a broad 
sense, the term “unilateral event” for j in Eq. (19d) is used in conjunction with a contact event between two solids, a 
boundary condition interaction between an SPH particle and a wall, or a two-way coupling condition between an SPH 
particle and a moving solid. Two sets of Lagrange multipliers λ and γ are associated with equality kinematic constraints 
and unilateral events, respectively. For the former, λ f ∈ R

NF and λs ∈ R
NB ; for the latter, γ s ∈ R

3NK , γ bc ∈ R
3Nbc , and 

γ F S ∈ R
3NF S , respectively. In the end,

γ ≡
⎡⎣ γ bc

γ s

γ F S

⎤⎦ ∈R
3(Nbc+NK+NF S ) , λ ≡

[
λ f

λs

]
∈R

NF +NB .

Three vector quantities used in Eq. (19): the generalized positions, generalized forces, and equality constraint violations, 
respectively, are defined as

y ≡
[
x
q

]
∈R

3NF +7nb , f ≡
[
f f

fs

]
∈R

3NF +6nb , g ≡
[ 1

�t g
f (x(l))

1
�t g

s(q(l), t(l)) + gst

]
∈R

NF +NB . (20)

Several matrix quantities are defines as follows. First, the coefficient matrix in the complementarity conditions is called D; 
the coefficient matrix in the velocity-level kinematic constraints is G:

D ≡
[
Dbc 0 DF

0 Ds DS

]
∈R

(3NF +6nb)×3(Nbc+NK+NF S ) , G ≡
[
G f 0
0 Gs

]
∈R

(3NF+6nb)×(NF +NB ) .

Second, the system-level mass matrix and the transformation matrix that ties the generalized velocities to the first time 
derivative of the generalized positions are defined as

M ≡
[

I3NF 03NF ×6nb
06nb×3NF Ms

]
, L ≡

[
I3NF 03NF×6nb

07nb×3NF Ls

]
.

Let

di ≡ [ 1

�t
C (l)
i , 0, 0]T +D(l),T

i (z(l) + �t M−1f) ∈R
3

b j ≡ g(l)
j + G(l),T

j (z(l) + �t M−1f) ∈R ,

and define

P ≡ [D G
] ∈ R

(3NF+6nb)×
[
3(Nbc+NK+NF S )+NF +NB

]
,

ν(l+1) ≡
[
γ (l+1)

λ(l+1)

]
(21)

p f ≡
[
d f ,T
1 , . . . ,d f ,T

NK
,b f

1 , . . . ,b f
NB

]T ∈R
3(Nbc+NK+NF S )+NF +NB .

Next, define N ≡ PTM−1P, the convex hyper-cone CF S ≡KF S,1 ⊕ . . .⊕KF S,NF S , and its polar counterpart C◦
F S ≡K◦

F S,1 ⊕ . . .⊕
K◦

F S,NF S
. Here, KF S,i ≡ {[x, y, z]T ∈ R

3 : 0 ≤ x and μF S
i x −√

y2 + z2 ≥ 0} and K◦
F S,i is the associated polar cone. After 

algebraic manipulations [2], the discretized problem leads to a CCP: find ν(l+1) such that

Ck � ν(l+1)
k ⊥ −(p+Nν(l+1))k ∈ C◦

k , (22)

where C ≡ Cs ⊕C f ⊕CF S . Following the approach [2], this CCP can be shown to represent the first order optimality condition 
[7] for the convex quadratic optimization problem with conic constraints
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Fig. 3. Log of solver residual vs. CFSPH particle count. The iteration budget was 800 for both Jacobi and APGD.

ν(l+1) =min
ν

1

2
νTNν + pT ν

subject to ν(l+1)
k ∈ Ck .

(23)

At each t(l+1) , the optimization problem above is solved for ν(l+1) by using a Nesterov or Barzilai–Borwein type solution 
[41,42]. Upon finding the numerical solution of the optimization problem, one has the set of Lagrange multipliers that 
enforces the collection of unilateral and the bilateral constraints. A new system configuration at the velocity level z(l+1) is 
computed via Eq. (19b). Along with a new set of velocities goes a set of generalized positions computed via Eq. (19a).

5. Numerical experiments

CFSPH has been implemented in an open source simulation engine called Chrono [43,44]. Therein, three parallel algo-
rithms compute the active sets As,(l) , Abc,(l) , and AF S,(l) . As the solid bodies vary in size vastly, a broad-phase step is 
performed to prune bodies that are not in contact in order to determine a list of potential contact pairs. This list is subse-
quently processed using a Minkowski Portal Refinement algorithm [45,46] to provide actual contact information. Proximity 
computation for the SPH particles relies on a customized spatial subdivision algorithm that leverages their equal-size com-
pact support attribute [47]. The fluid-particle/solid-body proximity computation uses the grid involved in the broad-phase 
step for solid bodies. The implementation relies on parallel computing via OpenMP [48] and the Blaze library [49].

5.1. A CCP solver comparison for the CFSPH approach

The computational bottleneck in CFSPH is associated with the solution of the optimization problem in Eq. (23). For larger 
problems, see, for instance, §5.5, the optimization problem is posed in millions of variables and brings forward millions of 
conic and equality constraints. In this section we highlight the performance of the Accelerated Projected Gradient Descent 
(APGD) method, which is a Nesterov-type algorithm [50] recently introduced in [41] to handle large CCPs. We compare 
APGD’s performance to that of Projected Jacobi, the go-to parallel solver for handling CCPs like the one in Eq. (22), to 
demonstrate that solvers such as APGD or Barzilai–Borwein [42], render the proposed solution methodology effective.

In a first numerical experiment the number of SPH particles in a rectangular container was gradually increased to assess 
convergence speed. Both Jacobi and APGD performed exactly 800 iterations towards solving the CCP at t(l) > t(0) using 
�t = 1e−3 s. Each SPH particle had a mass of 0.02 kg, a kernel radius of 0.032 m, and a rest density of 1000 kg/m3. For all 
numerical experiments herein, all quantities are expressed in SI units unless explicitly stated otherwise. For various particle 
counts, Fig. 3 shows that in 800 iterations APGD achieves a residual r several orders of magnitude smaller in approximately 
the same amount of time as Jacobi (see also Fig. 4). Using notation introduced in Eqs. (22) and (23) and the cone projection 
operator �C [41], the residual r, which is a metric used in the CFSPH stopping criteria, is defined as

r ≡ ‖ψ‖2, where ψ ≡ 1

gd
(ν − �C (ν − gd (Nν + p))) and gd ≡ 1

|A(l)|2 .

Note that if ν = ν∗ is optimal, then �C (ν∗ − gd (Nν∗ + p)) = ν∗ , so ψ = 0. Conversely, if ν is not optimal,
�C (ν − gd (Nν + p)) = ν − gdψ . The left hand side is equivalent to taking a steepest descent step of length gd and project-
ing back onto the feasible set C via �C . The right hand side says that the same point is reached by taking a step of length 
gd in the direction opposite of ψ . A low value for ψ and thus for r suggests that the algorithm reached, or is close to, an 
equilibrium point.

Fig. 4 presents a scaling analysis – for various problem sizes it reports the amount of time required to perform the said 
800 iterations. Jacobi and APGD scale linearly with problem size and require comparable amounts of time, yet the APGD 
solution is “more converged” (see Fig. 3). The results were obtained on a 40 core Intel Xeon® CPU E5-2650 v3 @ 2.30 GHz 
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Fig. 4. Time taken to perform 800 iterations for different number of CFSPH particles.

Fig. 5. Log residual vs. iteration count for a CFSPH simulation with 131918 particles.

CPU using 128 GB of DDR4 2133 MHz memory. Finally, Fig. 5 illustrates the decrease of r during one time step when 
simulating 131918 CFSPH particles.

5.2. Compressibility analysis

In this experiment we monitor the time evolution of the density for a fluid stored in a rectangular container of dimen-
sions 1.1 m × 1.1 m × 1.2 m (length/width/height). There are NF = 57 735 inviscid fluid particles; each particle has a mass 
of 0.02 kg, a kernel radius of 0.032 m and a rest density of ρ0 = 1000 kg/m3. The particles are moving under the influence 
of internal forces and gravity. Fig. 6 reports levels of error in enforcing incompressibility. At time t(l) , the vertical axis shows 
the relative error

% error(l) ≡ (
1

ρ0NF

NF∑
i=1

ρ
(l)
i − 1) × 100 .

The solver tolerance, which is tied to the residual r of section §5.1, was gradually tightened: 1e−1, 1e−2, 1e−3, 1e−4, 
1e−6, and 1e−8. The analysis was carried out for a 10 second time span and Fig. 6 shows error values for the last two 
seconds of simulation. As expected, smaller residuals r; i.e., more stringent stopping criteria, led to more accurate results.

Next, we report on an experiment to illustrate that the proposed numerical solution, relative to the weakly compressible 
solution, operates at large times, a consequence of the (i) unified approach used to handle the solid and fluid phases; 
and, (ii) the use of a half-implicit symplectic integration method borrowed from solid mechanics. To this end, we contrast 
CFSPH with the open-source solver DualSPHysics [51], which is anchored in an WCSPH-type approach outlined in §3.2.1. 
The CFSPH solution, found using the Barzilai–Borwein solver in Chrono[42], was used with r = 10−8. For DualSPHysics, the 
CFL number is set to 0.1 and the speed of sound cs , see Eq. (10), is chosen to obtain several levels of compressibility. 
Fig. 7 confirms that the level of compressibility in WCSPH is controlled via cs . As shown with solid lines, increasing cs
leads to smaller density errors. However, higher cs values translate into stiffer problems that require smaller integration 
step sizes. Thus, at one end of the spectrum, WCSPH uses small yet computationally inexpensive time steps. At the other 
end of the spectrum, CFSPH uses a half-implicit numerical integrator that allows for large albeit computationally heavy 
times steps. Against this backdrop, Fig. 7 answers the following question: what value of cs and �tC F S P H should be used 
for DualSPHysics and CFSPH, respectively, so that the quality of the solutions produced by these two solvers is comparable? 
Note that by choosing a tolerance of 1e−8 for the CCP, both the CFSPH solution quality as well as the simulation duration 
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Fig. 6. CFSPH: sensitivity of compressibility relative error with respect to solver tolerance.

Fig. 7. CFSPH vs. WCSPH (DualSPHysics [51]) comparison for relative error in compressibility level. Only first six seconds out of 20 second long simulation 
shown.

are exclusively controlled by the size of �t . Indeed, CFSPH and DualSPHysics solutions that are qualitatively the same are 
obtained when using �tC F S P H = 1e−2 and respectively cs = 93.9 m/s, which leads to �tW C S P H = 9.2e−5. This indicates 
that DualSPHysics will take approximately 100× more integration steps to accomplish the same level of accuracy, albeit 
each step will be significantly faster than one CFSPH time step. Against backdrop, when the two solvers produced a similar 
quality solution, they required about the same amount of time to finish the 20 s long simulation. Overall, CFSPH was 1.5×
faster than WCSPH when �tW C S P H = 9.2e−5 and �tC F S P H = 1e−2. It should be pointed out that no systematic attempt 
was made to tune either solver and a comparison in terms of efficiency fell outside the scope of this contribution. The 
simulations were performed on a 40 core Intel(R) Xeon® CPU E5-2650 v3 @ 2.30 GHz processor with 128 GB of DDR4 
2133 MHz memory.

5.3. Dam break analysis

The collapse of a liquid column is a standard test performed to validate an SPH implementation. To that end, we simulate 
the water-front propagation of a L = 1 cube of water placed on the leftmost side of a cubic container and released over a dry 
bed at t(gH)1/2 = 0. In the 3D case studied the flow is inviscid and g = 1. In Fig. 8, we compare the non-dimensional front 
position x f ront/H as a function of the time scale, t(gH)1/2, against experimental [52] and simulation results [21]. At early 
stages, CFSPH agrees well with the experiment, yet it gradually over-predicts the experimental results after t(gH)1/2 ≈ 2. 
We attribute this discrepancy to the inviscid flow assumption which becomes inaccurate as the flow speed (∝ tangent line 
in Fig. 8) increases and the effect of the viscosity term, ∇2v, in the Navier–Stokes equations becomes significant. Moreover, 
smaller front propagation speeds are expected for viscous fluids. Thus, it stands to a reason that the numerical results 
over-estimate the experimental results.
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Fig. 8. Water-front propagation study of dam break analysis.

Fig. 9. Wave shape in sloshing [53]: (a) asymmetric waves; (b) symmetric waves. Mode numbers m and n associated with symmetric and asymmetric 
modes, respectively; d is the horizontal displacement of the center of mass from the stationary location in the left-to-right, in-plane direction. Gravitational 
acceleration is vertical, pointing down.

5.4. Sloshing simulation

Under an inviscid flow assumption, there are 2D fluid sloshing scenarios that can be characterized analytically. Consider a 
rectangular tank filled with fluid to a height h and subject to a forced vibration of the form X0 sin( f t), see Fig. 9. According 
to [53], the analytical solution for the free surface profile is a combination of series of symmetric and asymmetric motion 
modes. The natural frequencies of the antisymmetric, ωn , and symmetric modes, ωm , can be expressed as

ω2
n = (2n − 1)π

( g

w

)
tanh

[
(2n − 1)π

(
h

w

)]
ω2

m = 2mπ
( g

w

)
tanh

[
2mπ

(
h

w

)]
,

where n and m are mode numbers, g is the value of the gravitational acceleration, and w is the tank width; i.e., the tank 
dimension in the direction of oscillation. The relations above imply that the natural frequencies of the symmetric modes are 
all higher than the corresponding antisymmetric frequencies. Since there is no lateral motion of the fluid center of mass for 
symmetric modes, they produce no net lateral force/torque on the sloshing tank.

The eigenfunctions slosh modes are the basis for evaluating the solution of a forced vibration. Consequently, the net 
force exerted on a sloshing tank in a forced vibration can be expressed as [53]
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Fig. 10. Net force on the sloshing tank. The tank was subjected to a lateral X0 sin(2π f t) forced vibration. Sub-figures (a) and (b) list the force magnitude 
for different vibration frequency ( f ) and amplitude (X0), respectively.

Fig. 11. Scaling analysis for sloshing problem shows linear increase in compute time with respect to the number of SPH particles involved in the simulation.
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w
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f 2

ω2
n − f 2

,

where Fx0 is the amplitude of the oscillation force, f and X0 are the frequency and magnitude of the forced vibration, and 
ml is the mass of the liquid. A comparison of the analytical and simulation results is provided in Fig. 10, where the force 
on the sloshing tank in the vibration direction is plotted for several f and X0 values. For all tests, the tank and fluid were 
initially at rest and a sinusoidal motion was applied thereafter. Except for the transient regime, for which the analytical 
solution is not valid, the CFSPH results are in good agreement with the analytical solution. Some discrepancies are noted at 
low frequency, which we attribute to the transient behavior since the simulation considers a scenario where the tank starts 
its motion from rest. Moreover, the analytical solution focuses only on the steady-state solution. The small high-frequency, 
small-amplitude vibration in the force magnitude obtained from the simulation can be decreased arbitrarily by choosing 
tighter convergence criteria. Please note that there is no physical damping, such as viscosity, to damp the small oscillations.

We close the sloshing test with a scaling analysis to underline an attractive attribute of the proposed solution: linear 
scaling with problems size. Fig. 11 reports results for the sloshing test, from 2101 up to 13 180420 SPH particles. The state 
variables that we carry with each particle are three positions, three velocities, a density and a pressure, which leads for the 
largest test to a problem with approximately 105 million states.
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Fig. 12. Notional Tracked Vehicle performing fording operation. At each time step, an optimization problem in more than two million variables is solved, 
see Eq. (23).

Fig. 13. Vertical position of a notional tracked vehicle chassis as it traverses the fording setup.

5.5. Fording analysis

In this section we scrutinize the fluid–solid coupling abilities of CFSPH by bringing into play a large number of rigid 
bodies and bilateral kinematic constraints associated with mechanical joints: e.g., revolute joints, spherical joints, etc. The 
problem investigated is that of a tracked vehicle fording, see Fig. 12. The vehicle has been modeled using Chrono::Vehicle 
[54] and contains two sets of tracks, each with 63 track shoes, a driven sprocket, an idler and five rollers. Each track shoe 
has a mass of 8.02 kg; each roller has a mass of 561.1 kg; the suspension arm mass is 75.26 kg; the sprocket’s mass is 
436.7 kg; the idler has a mass of 479.5 kg. In total, each set of tracks has a mass of 5233.26 kg. With a chassis mass of 
5489.24 kg, the total vehicle mass is 15973.8 kg. The idler is connected to the chassis via a carrier apparatus modeled 
as a translational spring damper-actuator to yield a hydraulic tensioner used for track preload. The chassis is connected to 
each set of tracks through five independent suspensions acting between each roller wheel and the chassis. The vehicle’s 
engine drives the two sprockets, one on each track, independently allowing it to perform turning maneuvers. The model has 
nb = 154 rigid bodies connected together through NB = 761 bilateral kinematic constraints with collisions being modeled 
using a total of 544 different convex shapes. For collision detection purposes, the chassis is represented as a collection 
of convex hulls closely approximating the original non-convex chassis geometry so that contact with the fluid is captured 
accurately. Each track shoe, the idler and the rollers are made up of convex primitives such as cylinders and boxes. For 
further details about the model see [55,56].

The vehicle uses a driver model that locks the steering and attempts to maintain a constant speed of 2 m/s using a 
PID controller for throttle and braking. The fording setup consists of two end platforms approximately 6.096 m (20 ft) long 
followed by a slope of length 5.18 m (17 ft) and a bottom slope of length 4.57 m (15 ft). The distance from the end platform 
to the bottom was 2.43 m (8 ft) and was filled with fluid such that half of the vehicle would be under water during the 
fording operation. Each of the 1426663 SPH particles had a mass of 3.96e−3 kg, a kernel radius of 0.032 m and a rest 
density of 1000 kg/m3. The simulation was 20 s long; the integration step size was �t = 0.001 s; the CCP solver used was 
Barzilai–Borwein [42]. Fig. 13 shows the vertical position of the chassis center of mass as a function of time. Results for the 
vehicle velocity, throttle/breaking and engine torque are shown in Fig. 14. Note that while the throttle/brake controller is 
trying to enforce a 2 m/s velocity, the vehicle is often not traveling at exactly 2 m/s as it slides down the incline, moves 
through the water and then climbs up the incline. The simulation, which required 59 hours of run time, was executed on 
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Fig. 14. Performing a fording operation using a notional tracked vehicle. (Top) Magnitude of chassis velocity over time; (Middle) Throttle/braking input for 
vehicle; (Bottom) Engine torque during driving operation.

a 40 core Intel(R) Xeon® CPU E5-2650 v3 @ 2.30 GHz processor with 128 GB of DDR4 2133 MHz memory. A simulation 
animation is available at [57], movie #129.

6. Conclusions and future work

We employ a differential variational approach used in rigid body dynamics to handle the dynamics of the fluid phase, 
which is spatially discretized via SPH. The boundary conditions as well as the fluid–solid coupling are captured via comple-
mentarity and maximum dissipation conditions enforced at the fluid–solid interface. The time–domain problem is posed as a 
large coupled system of differential, equality, and complementarity equations, which act as constraints on a set of optimiza-
tion problems, the latter associated with the maximum dissipation conditions induced by the presence of internal friction. 
Upon time discretization via a half-implicit symplectic Euler method, a nonlinear complementarity problem is relaxed to a 
CCP which is solved using customized Nesterov or Barzilai–Borwein methods. The approach has been implemented into an 
open source simulation infrastructure and shown to scale linearly. The software implementation, which runs in parallel on 
one node using the OpenMP standard, has been validated using a compressibility test, a classical dam breaking scenario, 
and a sloshing test for which an analytical solution is available. A fording simulation of a tracked vehicle has been used to 
challenge the approach via a large coupled problem with tens of rigid bodies, millions of bilateral kinematics constraints, 
and more than a million SPH particles.
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Unlike a previous effort that enforced incompressibility via a kinematic constraint [36], we maintained the nonlinear 
nature of the dissipation problem by not reverting to a linearization of the friction cones. This and/or the more effective 
CCP solvers employed might explain a significant improvement in enforcing the fluid incompressibility. Compared to the 
approach in [35], the methodology proposed goes beyond exclusive treatment of the fluid phase by bringing into discussion 
the coupling to moving solids into one unitary modeling framework that draws on differential variational inequalities.

Many aspects of the proposed solution could be improved upon and/or need further investigation. All simulations have 
been run under the assumption of an inviscid fluid. Moreover, the current scheme assumes an explicit-in-time treatment of 
the viscous force, something that could be revisited. It remains to be seen to what extent the maximum dissipation principle 
borrowed from handling friction and contact in solid dynamics is a suitable mechanism for handling boundary layer effects. 
In other words, it remains to investigate to what extent SPH endowed with a maximum dissipation principle is a good 
proxy for the physics controlling boundary layer phenomena. To speed up the simulation, certain solution components, 
e.g. proximity computation and SPH force evaluation, would benefit from execution on the GPU. Finally, handling surface 
tension via a kinematic constraint-based approach would enable the modeling of more complex physics in one unitary 
solution framework.
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