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Theoretical Study of Ductile Fracture in Steel Structures
in the Presence of Spatial Variability in Toughness

Vincente Pericoli, S.M.ASCE"'; and Amit Kanvinde, M.ASCE?

Abstract: Micromechanical or local models are increasingly used for predicting microvoid-growth—induced ductile fracture in structural
steel components. Methods to calibrate and apply these models presume that both calibration specimens and prototypical components are
spatially homogenous in terms of material toughness. This presumption conflicts with test data that show significant variability in material
toughness of coupons extracted from a larger steel sample. Spatial variability of toughness in structural components has the potential to
diminish deformation capacity due to the statistical size effect, which arises from weakest-link sampling. To examine this issue, two material
representations are evaluated against a set of 32 experiments on two types of structural steel, using a maximum likelihood estimation—based
approach. One approach represents the material as homogenous with random toughness (as implicitly assumed by prevailing methods),
whereas the other represents the material as heterogeneous with spatially random toughness. No significant difference is observed between
the two approaches in predicting test data. This suggests that the material is approximately homogenous over the sizes of the tested coupons,
with spatial variability present only over larger length scales. To examine the potential effects of such variability, parametric finite-element
studies are conducted on a prototypical fracture-critical detail. The results confirm the statistical size effect, such that larger details have
lower deformation capacity. Current methods are not able to capture this effect when transferring fracture toughness from lab-scale to
archetype-scale components. A parameter is proposed to facilitate this type of scaling. DOI: 10.1061/(ASCE)ST.1943-541X.0002008.
© 2018 American Society of Civil Engineers.
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Introduction

Over the last three decades, beginning with the 1994 Northridge
and 1995 Kobe earthquakes, approaches to predict steel fracture
in civil structures have made significant progress. Linear-elastic
fracture mechanics or elastic-plastic fracture mechanics are ad-
equate to assess brittle fractures similar to those observed in the
1994 Northridge Earthquake (Chi et al. 2000). Other situations,
e.g., post-Northridge steel connections as outlined in FEMA
(2000), that may not have a pre-existing crack or that involve large-
scale yielding prior to fracture, invalidate the assumptions of linear-
elastic or elastic-plastic fracture mechanics (Anderson 1995).
Micromechanics-based or local fracture models overcome these
limitations, and major advances have been made in their develop-
ment and application (Besson et al. 2006), with the result that they
are increasingly used by the research and engineering communities
(Kiran and Khandelwal 2013; Amiri et al. 2013; Kanvinde 2017).
In contrast to far-field parameters such as the stress intensity factor
K or the J-integral J;, local criteria are expressed as critical com-
binations of continuum strains and stresses. The functional forms of
these criteria reflect micromechanisms such as microvoid growth
and coalescence (Rice and Tracey 1969) associated with ductile
fracture, or granular cleavage (Ritchie et al. 1973) associated with
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brittle fracture. Adaptations of these models to civil structures
address shear-dominated stress states (Wen and Mahmoud 2016;
Smith et al. 2014) and earthquake-induced cyclic loading
(Kanvinde and Deierlein 2007). This paper focuses on local models
used to predict ductile crack initiation due to microvoid growth
and coalescence, e.g., the void growth model of Hancock and
Mackenzie (1976). Prediction of ductile crack initiation is critical
from the standpoint of structural performance assessment because it
is usually the precursor to brittle propagation in steel components
without sharp cracks.

Mechanistic aspects of local models for ductile fracture are
mature, meaning that the underlying micromechanisms are well-
understood, and the associated functional forms have been exten-
sively validated (Kanvinde 2017). However, other aspects of these
models are not so well-developed. For example, it is nominally
assumed (with the exception of weld regions) that structural com-
ponents are spatially homogenous in terms of material tough-
ness (Prinz and Richards 2015; Khandelwal and El-Tawil 2007).
Although this assumption may be justified for coupon-scale
(~50 mm) laboratory tests or components in which a small re-
gion of the material is strained, its extension to prototype-scale
components (>500 mm) is questionable. This is because larger
components subject a greater volume of material to high strains,
leading to a higher probability of sampling weak links in the
material microstructure, ultimately diminishing deformation capac-
ity. Statistical size-effects are well-documented in the literature for
both steel (Weibull 1939) and concrete (Bazant 2005), indicating
that the assumption of spatial homogeneity results in nonconserva-
tive estimates of fracture. Although this is concerning in itself,
closer scrutiny reveals additional problems
1. The notion of spatial homogeneity conflicts with material

calibration data sets, which routinely suggest significant varia-

bility (coefficient of variation on the order of 15-22%) in
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material toughness parameters (Kanvinde and Deierlein 2006;

Liao et al. 2012). Because these calibration specimens

(~10-50 mm) are usually extracted from a larger (>500 mm)

parent sample of steel (e.g., a rolled plate or section), the varia-

bility among them confirms that the parent sample is internally
heterogeneous.

2. Local models require resolution of stress and strain fields
over length scales on the order of steel grain size (~0.1 mm).
The notion of material homogeneity is not well-supported at
this scale due to heterogeneities in crystal structure and irregu-
larly distributed inclusions (de Geus et al. 2015; Jeulin and
Ostoja-Starzewski 2001).

3. Experimental data (e.g., Myers et al. 2010; Hazarabedian et al.
2002) also support the weakest-link hypothesis. Specifically,
larger components exhibit lower unit resistance to fracture and
also show lower variability in fracture strength or deformation,
because fracture is controlled by extreme (lower) values of
material toughness. This is consistent with extreme value theory
(Bazant et al. 2004). Methods that presume the material to
be homogenous cannot reproduce these trends, impeding the
extrapolation of lab-scale calibration tests to larger structural
components.

These issues are also problematic when viewed against current
trends in structural performance assessment that emphasize accu-
rate characterization of extreme limit states in a probabilistic frame-
work (FEMA 2009). Motivated by these issues, this paper critically
examines (1) alternative methodologies to represent spatial varia-
tion in material toughness as it pertains to ductile initiation,
(2) implications of disregarding spatial variation, and (3) strategies
to mitigate scaling effects in the presence of this variability. The
paper begins by providing background with respect to previous
work in this area. This is followed by a discussion of an experimen-
tal program conducted by Kanvinde and Deierlein (2004). These
tests are used as a test bed for examining alternative representations
of spatial variations in material toughness, which are discussed in a
subsequent section. Finally, parametric finite-element (FE) simula-
tions are presented to examine the effects of spatial variability on
fracture in a prototypical detail.

Background

This section summarizes research on ductile fracture in structural
steel as it pertains to this study, including (1) an established local
model for ductile fracture and (2) previously developed approaches
for considering spatial randomness in the context of brittle as well
as ductile fracture.

Coalescence
and fracture

Dimpled fracture surface

Void Growth Model for Predicting Ductile Fracture in
Structural Steel

The void growth model (VGM) (McClintock 1968; Rice and
Tracey 1969) is an extensively verified (Chen and Butler 2013;
Panontin and Sheppard 1995) criterion to simulate ductile fracture
that initiates through the processes of microvoid growth and coa-
lescence (Fig. 1). The VGM criterion is

fracture
/ " exp(1.5xT) ~de, =n2m, overany r>0* (1)
0

where 7 = indicator of microvoid growth, and represents damage at
any continuum location; and 7, = critical value of 1, and may be
interpreted as a material capacity or resistance to ductile fracture,
calibrated through coupon testing (Myers et al. 2010), whereas 7 is
the counterpart demand, determined by integrating stress and strain
quantities (i.e., the triaxiality T = o,,/0, and the equivalent plastic
strain €,,) usually obtained from FE simulations of the component
of interest. To ensure sufficient sampling of microstructural fea-
tures, ductile fracture is predicted at any location when the criterion
described by Eq. (1) is satisfied at all locations over any line seg-
ment of [* originating at that location (Panontin and Sheppard
1995; Chi et al. 2006). Thus the VGM is defined by two param-
eters, 7)., and [*. The criterion in Eq. (1) and the associated sam-
pling check may be expressed more conveniently in mathematical
form as

Nreg = Ner (2)
where

nreg(x) = mgx(mln(n[x’ X+ l*}ﬁ)) (3)
where 7 = demand at any location x [determined from Eq. (1)];
min(n[x, X + [*]y) = minimum value of 7 over a line segment of
length [* originating at x; and ¢ = arbitrary direction in space, such
that the regularized value of 7, i.e., 7,4, is the maximum of such
minima over segments radiating in all directions from x. Once
transformed in this manner, a pointwise check applied to the regu-
larized 7, field results in predictions of fracture identical to those
based on Eq. (1) followed by the explicit sampling check over
the neighborhood. This means that the fracture criterion may be
expressed more conveniently as

Mg 2 Ner (4)
where 737" = maximum value of 7,,, over the entire volume of the
specimen or component. Formulation of the VGM in this manner
is crucial for this study, which heavily relies on pointwise evalu-
ations of the fracture criterion to analyze the influence of spatial
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Fig. 1. Microvoid nucleation, growth, and coalescence leading to dimpled surface characteristic of ductile fracture in low-carbon structural steel
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Fig. 2. Schematic illustration of prevalent methodology for predicting fracture in steel components using local models

randomness. Nonregularized stresses (which are unbounded in the
vicinity of sharp flaws) invalidate these evaluations. Accordingly,
the approach presented in this paper, and subsequent references to
the VGM, are based on the regularized interpretation and pointwise
evaluations (e.g., 1) generically refers to 7),,,). Fig. 2 schematically
illustrates the methodology for predicting ductile fracture initiation
using the VGM (or similar models). The main elements of this
methodology are (1) calibration of the toughness parameter 7, and
length scale [* using coupon tests; circumferentially notched tensile
(CNT) specimens have flat gradients unaffected by /*, and are used
to isolate and calibrate 7)., (and its statistical distribution, through
replicate tests), and sharp cracked geometries with steep gradients,
such as compact tension (CT) specimens, enable effective calibra-
tion of [* once 7)., has been calibrated; (2) simulation of stress
triaxiality and plastic strain fields, usually using FE simulation; and
(3) evaluation of the VGM criterion, i.e., Eq. (4), to determine frac-
ture initiation. This methodology implicitly presumes that the
material is spatially homogenous, i.e., 7., is constant throughout
the component. This is inconsistent with experimental data that
indicate variability over larger material samples.

Previous Research to Incorporate Spatial Randomness
into Fracture Prediction in Steel

The Weibull stress approach (Beremin 1983) reflects weakest-
link processes that trigger stress-controlled cleavage fracture, by
expressing the fracture criterion in a probabilistic manner

Py =1—exp[—(o/0,)"] (5)

where

1/m
Oy = |:(1/V0) A O—Zleak ’ dV:| (6)

0,, = demand quantity determined as a volume averaged peak
(i.e., maximum principal tensile) stress over the entire component
volume 2, and when calculated in this manner, o,, corresponds
to a consistent probability of failure, considering weakest-link
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sampling; o, and m = model parameters, referred to as Weibull
moduli; and V, = arbitrary reference volume, selected in conjunc-
tion with the Weibull moduli. Beremin (1983) outlined theoretical
underpinnings of this approach, and Matos and Dodds (2001) and
Lambert-Perlade et al. (2004) summarized refinements and appli-
cations to structural engineering problems (beam-column connec-
tions and welded connections).

Pineau and Joly (1991) incorporated weakest-link processes in
ductile fracture by establishing relationships between distributions
of a critical void ratio and the critical J-integral J;c. Devillers-
Guerville et al. (1997) conducted a process similar to that shown
in Fig. 2, with the exception that the coupons and the structural
component were divided into a grid of regions, each with its own
material toughness [represented as void porosity within a Gurson
(1977) model], sampled from a predetermined distribution. Becker
(1987) conducted similar simulations. These studies indicated that
spatially distributed material properties decrease deformation ca-
pacity, due to weakest-link—controlled localization. However, the
cited research (informed by small-scale coupons) assumed the ma-
terial to be spatially stationary (i.e., porosities for all regions in the
grid are independently, and identically distributed), an assumption
that is not validated. Additionally, those studies used graphical
measurements of porosities in the material, which is somewhat
constraining because (1) the relatively small volumes of materials
(~1 cm) sampled in the measurements may not be representative of
larger volumes of material sampled in structural components; and
(2) toughness parameters such as 7,,., which is back-calibrated from
mechanical tests) are more indicative of physical response than
are porosities inferred from graphical measurements. Furthermore,
the length scales associated with the sampling (analogous to the
volume V, in the Weibull stress approach) were not explicitly iden-
tified, potentially leading to mesh-dependence as different grid
sizes are used for material toughness simulation. Myers et al.
(2009) addressed the issue of spatial variability in steel fracture for
base plate connections by considering a finite number of discrete
candidate locations for fracture, recognizing the potential for
variability between these. However, their approach did not ex-
plicitly consider the spatially continuous variation of properties.
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Table 1. Test Data from Kanvinde and Deierlein (2004)

Displacement at
fracture, A, (mm)

Maximum 7 at
fracture®

Specimen Number of  Stress triax Coefficient of Coefficient of
Steel type type Dimensions® (mm) replicates at fracture ~ Mean variation Mean variation
A572 CNT D, =127, D; = 6.35; Ry = 1.524 2 1.33 0.58 0.06 0.94 0.12
CNT D, =12.7; D; = 6.35; Ry = 3.175 3 1.12 0.95 0.10 1.52 0.18
CNT D, =127, D; = 6.35; Ry = 6.35 2 0.94 1.26 0.02 1.37 0.03
CT W =50.8; a/W =05 2 2.14 0.77 0.16 1.56° 0.33¢
BN W =50.8; a/W = 0.5; R = 0.79375 3 0.60 2.08 0.06 1.13¢ 0.06°
RS W =508, L; =76.2; ty =9.5; Ry = 19.0 2 0.87 6.29 0.01 2.27 0.01
BH W =508, Lg =76.2; ty =9.5; Dg = 12.7 2 0.68 3.51 0.02 1.90 0.05
BB W =50.8; Lc =76.2; ty =9.5; Dg = 12.7 2 0.68 3.40 0.12 1.84 0.24
HPS70W CNT D, =127, D; = 6.35; Ry = 1.524 2 1.51 0.84 0.03 3.46 0.04
CNT D, =12.7; D; = 6.35; Ry = 3.175 2 1.24 1.54 0.13 4.67 0.22
CT W =50.8; a/W = 0.5 2 2.12 0.91 0.11 3.82° 0.26°
BN W =50.8; a/W = 0.5; R = 0.79375 2 0.70 8.20 0.09 3.63¢ 0.08°
RS W =508, Lg =76.2; ty =9.5; Ry = 12.7 2 1.06 5.41 0.05 3.74 0.16
BH W =50.8; Lc =76.2; ty =9.5; Dg = 12.7 2 0.90 3.78 0.05 3.25 0.12
BB W =508, L; =76.2; ty =9.5; Dp = 12.7 2 0.89 4.09 0.03 3.51 0.05

“Dimensional quantities in Fig. 3.
bSpatially maximum over the entire component.

“In high-gradient tests, the maximum 7 [regularized according to Eq. (3)] is a function of the I*.

Other relevant research on metals (albeit in a nonstructural engi-
neering context) includes work by Ponson et al. (2013), de Geus
etal. (2015), and Paquet and Ghosh (2011). Outside of ductile frac-
ture in steel, consideration of spatial randomness is more common;
e.g., Andrade et al. (2008) studied the stability of granular media
and Feng et al. (2011) studied the properties of laminated
composites.

Experimental Data Set and Complementary
Finite-Element Simulations

Table 1 summarizes the experimental data set comprising 32 ex-
periments [based on Kanvinde and Deierlein (2004)] used in this
study. These experiments encompassed two varieties of low-carbon
structural steel, an A572 plate steel with a nominal yield stress of
345 MPa and a high-performance bridge steel (HPS70W) with a
nominal yield stress of 485 MPa. Table 2 indicates material-specific
data for these steels. Fig. 3 shows the specimen geometries tested—
each provides a different level of stress triaxiality, which can be
further controlled with parametric variations (e.g., notch size)
within specimen types. The circumferentially notched tensile spec-
imens are effective for calibrating the toughness parameter (7),.,.) of
the VGM and other local models because the stress-strain gradients
in the CNT specimens (in the region of fracture, i.e., at the center of
the notch) are fairly flat, such that the toughness parameter 7., may
be calibrated independently from the length scale [*, which is

Table 2. Material Properties for the Two Steels Used in the Study

Average Chemical
Yield Ultimate grain (;m;lposn} o}rllt
stress stress Ductility, diameter w
Steel (MPa) (MPa) dy/d f“ (mm) Carbon  Sulfur
A572 345 586 1.50 0.0189 0.22 0.015
HPS70W 552 690 1.95 0.0067 0.08 0.006

“Ratio of initial:fracture diameter of tension coupon.

© ASCE

04018024-4

engaged in specimens with steeper stress-strain gradients. The
blunt-notched (BN) and the compact-tension specimens produced
steeper gradients in the vicinity of the notch or crack, enabling
material sampling over small (~0.2 mm?) volumes (because the
zone of high-strain is fairly concentrated at the crack tip) and ef-
fective calibration of [*. The reduced-section pull plates and the
specimens with holes—i.e., reduced-section (RS), bolt-hole (BH),
and bolt-bearing (BB) specimens—represent conditions similar to
those in smooth structural specimens (e.g., reduced beam sections
and bolted connections) and sample a larger volume of material
relative to the other specimens. Specimens with higher gradients
also enable meaningful examination of the interactions of stress-
gradients with material heterogeneity. Collectively, the considered
tests interrogated a range of stress states, stress-strain gradients,
and sampling volumes. Replicate specimens were tested for each
parameter set, providing information about randomness.

Table 1 also summarizes the deformation recorded to identify
the instant of fracture. This deformation was measured over an
appropriate gauge length or between two locations on the specimen
(Fig. 3). For the CT specimens, the deformation corresponded to
attainment of the J;- value determined in accordance with ASTM
E1820 (ASTM 2013), in which crack initiation is estimated through
a check of unloading compliance. For the other specimens, the ini-
tiation of fracture was identified either by a sudden change in slope
of the load-deformation curve or through visual examination.
Fig. 4(a) shows a representative load-deformation curve for a
CNT specimen, in which ductile fracture is detected through a sud-
den change in slope, whereas Fig. 4(b) shows a BN specimen in
which ductile fracture is detected visually because the load defor-
mation curve does not show a discernible change at the point of
fracture. For each experiment, the fracture deformation is denoted
A}'{’acture,tmt’
denotes steel type.

Continuum FE simulations were conducted to complement each
of the experiments (Fig. 5). Constitutive response (with a von Mises
yield surface) was represented as a combination of kinematic hard-
ening through the Armstrong and Frederick (1966) model, and
isotropic hardening was represented through an exponential rule.

where index i corresponds to test number and index j
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Fig. 4. Detection of ductile fracture through (a) change in load-deformation curve, e.g., for CNT; (b) visual observation, e.g., for BN

For each steel type, constitutive model parameters were calibrated
through an automated process developed by Smith et al. (2017) to
produce high-quality fits between the load deformation response
of FE simulations and the corresponding tests; Fig. 4 shows a
representative load-deformation response from FE simulations.
Axisymmetric elements (eight-node reduced integration) were used
to model the CNT specimens, whereas plane-strain elements (eight-
node reduced integration) were used to model the CT specimens.
In the BN, RS, BB, and BH geometries, out-of-plane bulging
and necking necessitated the use of three-dimensional elements
(20-node reduced integration). For each of the models, mesh-
sensitivity studies were used to ensure that stress and strain gra-
dients were simulated accurately. The number of elements in the
models ranged from 1,500 in the models for the CNT specimens
to 52,000 in the models for the BN specimens.
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All models were loaded in a manner similar to the correspond-
ing experiments, and the stress-strain field was computed at all spa-
tial locations at each instant of loading. The axisymmetric (for
CNT specimens) and plane-strain models (for the CT specimens)
achieved computational efficiency by collapsing a dimension (an-
gular for the axisymmetric model and out-of-plane for the plane-
strain model), recognizing that the stress-strain fields are constant
over the collapsed dimension. These collapsed dimensions cannot
represent physical material locations which contribute to the prob-
ability of weakest-link fracture. As a result, they are not appropriate
for volume sampling. Accordingly, the angular and out-of-plane
dimensions were regenerated by replicating the stress-strain field
at these locations as determined from the FE simulations. This
resulted in proxy models in which the 7-field is available at all
locations in a three-dimensional sense. A similar process was
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Fig. 5. Finite-element models showing contours of / for (a) CNT—axisymmetric; (b) CT—plane strain, only crack tip mesh shown; (¢) BN—3D,
2 model with one plane of symmetry; (d) RS—1/8th model with three planes of symmetry; (¢) BH—1/8th model with three planes of symmetry;

(f) BB—1/4th model with two planes of symmetry

conducted for the three-dimensional simulations (i.e., for the BN,
RS, BB, and BH geometries) because they were simulated with
symmetry considerations for computational efficiency (Fig. 5). For
these, proxies were developed by regenerating physical locations
across planes of symmetry to represent the full material volume.
Once the stress-strain fields (for each loading instant at each ma-
terial location within the proxies) are established in this manner,
the instant of fracture may be predicted when the critical condition
[Eq. (4)] is satisfied at any location in the model. Evaluation of
this condition requires calibration of material parameters (i.e., 7,
and [*) as well as an appropriate representation of the spatial vari-
ability in the material toughness 7., which must be prescribed at
all locations. The next section discusses two alternative represen-
tations of spatial variability.

Methodologies to Represent Spatial Variation in
Fracture Toughness

Once the FE models (or their proxies) are developed as outlined in
the preceding section, representations of spatial variability in 7,
(hereafter generically referred to as material toughness) may be
attached to them; this section considers two alternative representa-
tions. One is the homogenous representation, which represents the
prevailing methodology, whereas the other considers spatial vari-
ability in a manner analogous to the Weibull stress method, albeit
in the context of ductile fracture.

Homogenous Random Material

The homogenous random (HR) material method represents the
conventional assumption usually implicit in simulating structural
components using local models (Fig. 2), such that 7., and [* are
constant over the entire component. Variation is noted in deforma-
tion capacity for even nominally identical specimens (Table 1). To
explain this, the HR representation implicitly posits that although
the specimens themselves are internally homogenous (each with a
constant 7,,), 7., itself is a random quantity. This may be inter-
preted to mean that the specimens are sampled from a population
of homogenous materials with random toughness (denoted 1k to
indicate that it represents the toughness of the HR material). Clearly
this is not true, because all the specimens were extracted from
larger samples (e.g., rolled plates or beams) rather than a population
of homogenous materials. A more liberal interpretation is that the
specimens are homogenous over their own respective volumes,
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even if they are sampled from a larger, spatially heterogeneous plate
or beam. In either case, representation of the material in this manner
(i.e., homogenous but random) is accomplished by defining the
statistical distribution for 7R, whereas [* (which itself is a sam-
pling length scale) is assumed to be deterministic. Based on Myers
et al. (2014), a truncated normal distribution was selected to re-

present randomness in 1R, This distribution (Fig. 6) is defined

¥
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Fig. 6. Schematic illustration of calibration process for HR material
representation
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by three parameters: the mean and standard deviation p,x, o,
and the lower bound value LB,ux. Including [*, the HR material
representation was thus defined by four material parameters. Maxi-
mum likelihood estimation (MLE) was used to calibrate these
parameters. Myers et al. (2014) provided details of this process
as they pertain to calibrating material toughness (Fig. 6); a brief
summary of the steps is as follows:

1. A trial set of the material parameters {t,yx, o,x, LB,y I* }
is selected.

2. Using the first three (i.e., i, O piir LB,]ﬁ,R), a trial probability
distribution function (PDF) is generated for nfE,

3. For each FE model (corresponding to a test specimen, defined
by the indexes i and j, corresponding to the specimen number
and steel type, respectively), a relationship is established be-
tween 7/ and the failure deformation A}/ .., rgy- This is
done by examining the greatest value of 7 at any location in
the proxy model for a given deformation and setting it equal
to /R then recording the corresponding failure deformation.
In all cases, this relationship is monotonic (i.e., A¥) .0 rem
increases with nR).

4. Using this relationship and equal probability mapping (Benjamin
and Cornell 2014), the PDF of nfIR is transformed to the

PDF f}/p(A})

fracture
This PDF is conditional on the trial material parameters

{pe oy LBy I}y

5. The PDF generated in this manner may be used in conjunction
with experimental data to estimate the likelihood of observing
the experimental response of the specimen i, j, given the as-
sumed set of parameters using the following relationship:

HR
er 2

trial

) of the failure deformation A")’Qiactwe_FEM.

LlI:IJR = leJR A;‘tiacture,test) (7)

This equation inserts the experimental observation of fracture
j‘tiacture,test
the assumed set of parameters.

6. Furthermore, the likelihood of observing the entire data set
for the particular material (defined by the index j) may be
calculated as the product of the likelihoods of observing the
experimental response of each of the specimens

into the PDF generated using the FE simulation and

n

LI ({ . 0w, LB e, U} ia) = HLEJR (8)
i1

The likelihood calculated in this manner represents a notional
rather than an actual (Hoel 1962) probability of observing the
experimental data set given the trial set of parameters {f,,
opr, LB, '}, for material j. A search algorithm is used to
determine the optimal set of parameters that maximizes the likeli-
hood L/ ({ s, oy, LB, '} . ); this is retained as the cali-
brated set of material parameters for a given material. Table 3

summarizes the parameters { i, s, o, , LB, x, I* }Opn,ma , calibrated

Table 3. Calibrated Model Parameters for HR and SR Material
Representations

Fracture model parameters (calibrated using MLE)

Steel Model  p, o, LB, ~m I (mm) L
A572 HR 1.340 058 0.854 N/A 0344 3.6 x10*
SR 1.340 0.58 0.854 oo 0.344 3.6 x 10?

in this way for both steels in Table 1. The use of MLE to calibrate
the parameters offers advantages over moment fitting, in which
sample means, standard deviations (and higher moments) are used
to define probability distributions. In addition to robustness and
efficiency (Hampel et al. 1986), MLE also provides a way to quan-
titatively assess the relative likelihood of different methodologies or
material representations. More specifically, the likelihoods for each
steel variety corresponding to the optimal parameter sets may be
multiplied together, to determine L%/ as

n=2

L;(I)tRul = H Lj({:“’r]f’,.R s OpliR, LaniR s l*}optimal) (9)
j=1

where Li0%! = likelihood of the entire approach (i.e., the HR rep-
resentation of the material, choice of probability distribution func-
tions, and calibrated parameters) being true. This likelihood may
then be compared with counterpart values calculated for alternative
methodologies for relative assessment. For the HR material repre-
sentation, Lg% = 4.7 x 10*. This value is meaningful only in a
relative sense, when compared with its counterpart value for the
alternate hypothesis, which is discussed next.

Stationary Random Material

Unlike the HR material discussed above, the stationary random
(SR) material representation is able to simulate weakest-link sam-
pling by representing the material toughness 7., as spatially ran-
dom but stationary, meaning that the probability distribution of
7., at all locations is identical and independent of nearby values
of 7,,.. For this purpose, the Weibull stress approach (outlined pre-
viously for brittle cleavage) is adapted to ductile fracture initiation.
First, the demand quantity .. (the peak principal stress for brittle
fracture) is replaced with 7, and its counterpart capacity o, is
replaced by 75K (the superscript denotes the SR representation).
Second, a threshold term 7),, is introduced to recognize a lower-
bound to the material toughness. As pointed out by Gao et al.
(1998) and Matos and Dodds (2001), the absence of a threshold
admits the possibility of the weakest links having zero (or negli-
gible) toughness. However, because the weakest links control fail-
ure probabilities of the entire specimen or component, this results in
unrealistic simulation of response. Specifying a positive threshold
value of the capacity parameter alleviates this problem. Egs. (10)
and (11) express the result of these adaptations

n—nm \" 4V
P*(fracture) =1 —exp [—/ <4) C—
v\ =) Vo

when 7 > 7, (10)

P*(fracture) =0 when 1<y, (11)

where P*(fracture) = probability of fracture given the applied
n-field, which may be computed at any location using Eqgs. (1)
and (3), and the material parameters 773X, m, and 7,;,; 75K = material
toughness parameter analogous to o, in Eq. (5); and m = variability
in the material toughness. The parameters 1,,, 73, and m must be
selected in concert with an arbitrary reference volume V,,, which is
selected to be unity (i.e., I mm?) by convention (Matos and Dodds
2001). Once these three parameters are selected, the probability
of fracture at any instant of loading may be readily computed
by evaluating Eqgs. (10) and (11), in which the integrand of Eq. (10)
is evaluated over the entire component. As m — oo, the cumulative

HPS-70W ~ HR 0082 177 298 na 0169 13x10" distribution function (CDF) represented by Eqs. (10) and (11) ap-
SR 0.082 1.77 2098 00 0.169 1.3 x 10" .. . SR /o . .

proaches a Heaviside function centered at 777 (with no dispersion),
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which represents a spatially homogenous material. However,
because the formulation does not admit a random value of 13K, the
material is not only homogenous but also deterministic. As a result,
it cannot replicate the HR material (for any values of the parameters
N MoK, and m) even in its limit as m — oo. Formulating the
toughness capacity 13F as a random variable mitigates this issue.
More specifically, the probability P*(fracture) may be reinter-
preted to represent the probability of fracture conditional on a value
of 38, such that P*(fracture) = P(fracture|nk). Following
this, the total probability of fracture may be expressed as

o0
P(racture) = [~ P(fracturelit}) - ) - dntf
—00

/”P%ﬁmmwwfmﬁydﬁf (12)

In Eq. (12) (which is an application of the law of total proba-
bility, in which the left-hand side is the marginal distribution),
F(5R) is the probability distribution function of 1K, which is as-
sumed to be a truncated normal distribution (i.e., identical to that
determined for the HR representation) and is characterized by three
parameters, i.e., ji,sr, o s and LB, sc. Of these, the latter may be
determined as LB, sz = 1y, because it represents a lower bound on
n:F. The SR representation has five parameters, i.e., j,sx, s,
LB,sz, m, and [* (which is assumed to be deterministic). When
formulated in this way, the SR material representation contains
the HR material representation. Specifically, the HR representa-
tion becomes a special case of the SR representation when the
parameters are chosen as follows: m = 0o, pysp = pinz, oyse =
oy, and LB,skx = LB,ux = 1,;,. Calibration of parameters for the
SR representation follows a MLE-based process similar to that
described previously and illustrated schematically in Fig. 6 for the
HR representation, albeit with some differences. Briefly, the pro-
cess includes the following steps:

1. A trial parameter set including five parameters {“nff’gnff’
LB,se,m,I"},,, is selected.

2. For each FE simulation (corresponding to a specimen), the
n-field is determined at each loading deformation using Eqs. (1)
and (3) and subsequently used to evaluate the probability
in Eqgs. (10) and (11). This results in a relationship between
the loading deformation and probability of fracture, i.e., the
CDF of the fracture deformation of that particular specimen i
and steel type j, conditional on the assumed value of R,

ie., Fif(AY racture|Ter)- This process is repeated for all values

of n3R for which the probability density is nonnegligible.
3. The marginal CDF of the fracture deformation is determined as

00
(Afiacture) = / (Afiacturem(f) f(ncr) gf
SR

| (13)

er

where the distribution of 73X is generated from the simulated
parameters fi,sk, sk, and LB, sk.

4. The marginal CDF generated by Eq. (13) is numerically differ-
entiated to generate the PDF of the fracture displacement,
ie., f;l/ (Aljiacrure)

5. The PDF may be used in conjunction with experimental data to
estimate the likelihood of observing the experimental response
of the specimen i and steel type j, in a manner similar to that for

the HR representation, i.e., L% = (A

fracture, les[)
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6. Subsequent steps involve (1) maximization of the likelihood for
each steel, using a process similar to that for the HR representa-
tion [Eq. (8)] to calibrate the optimal material parameters in
Table 3; and (2) multiplication of the likelihoods corresponding
to the optimal parameters for each steel type to determine Lg‘}‘i“l,
representing the efficacy of the entire approach, including ma-
terial representation; LG is determined as 4.7 x 10%0.

An examination of Table 3 and the likelihoods yields three
interesting observations. First, the net likelihood L’S’}é“’ for the
SR representation is identical to its counterpart L% for the
homogenous representation. Second, for each steel, the 1nd1v1dual
likelihoods L’SR are equal to the corresponding likelihoods L7,p.
Third, for each steel type, the optimal parameters for the SR rep-
resentation all converge to m = oo, and the other parameters are
identical to those for the HR representation, i.e., p,sx = pur,
ok = op, and LB, sc = LBk = ny,. Because the HR represen-
tation is a special case of the SR representation, these observations
suggest that this special case is the most likely. In itself, this implies
that spatial randomness is absent, and the material is homogenously
random. However, for each of the steel types tested by Kanvinde
and Deierlein (2004) and examined in this study, all specimens
were extracted from the same sample of material—either a rolled
plate or a rolled beam—and showed significant variability, provid-
ing evidence of spatial heterogeneity within the larger sample.
A closer analysis of the results and the underlying theory resolves
this apparent contradiction. Specifically, the SR representation only
represents spatial heterogeneity within the sampled volumes of
the specimens considered (or, more specifically, volumes of regions
that undergo plastic strain), and the results (which converge to
the HR representation) indicate that the specimens are effectively
homogenous over these volumes, notwithstanding the possible
variability in constitutive properties, which this study did not con-
sider. However, when considered with variability in toughness in
specimens extracted from a larger volume of material, this suggests
that the material is heterogeneous over larger scales. In the context
of previously established frameworks for heterogeneous materials,
this finding may also be interpreted to mean that the coupon-scale
specimens are smaller than a true representative volume element
(RVE) (Hill 1963) due to gradual, larger-scale gradients in material
toughness. Yin et al. (2008) and Kanit et al. (2003) identified this
problem with the RVE framework for metals and composite mate-
rials, respectively, and suggested strategies to mitigate its limita-
tions. The next section presents a series of FE simulations of a
generic component to examine implications of this observation
from the standpoint of predicting fracture in structural components.

Simulation of Prototype-Scale Bending Plates with
Spatially Correlated Material Properties

The preceding section, when considered along with the experi-
mental data in Table 1, suggests that (1) spatial variability in
material toughness is present in structural steel and (2) the length
scales associated with this variability are larger than the size of
plastically strained regions of lab-scale specimens commonly used
for material calibration (i.e., those in Table 1). From the perspective
of structural performance assessment, it is important to know
whether the prevalent framework (i.e., the HR representation) is
adequate to simulate fracture in structural components and the
degree to which limitations of the HR representation compro-
mise assessments of structural reliability. Examining this rigor-
ously requires (1) calibration specimens extracted in a manner
(e.g., from preselected locations) to systematically interrogate spa-
tial variability and (2) validation through replicate prototype-scale
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Fig. 7. Plate bending detail: (a) schematic illustration; (b) analogous region of base plate or similar structural component

experiments. Such studies have not been conducted for structural
steel. In the absence of such information, FE simulations may be
used to parametrically investigate the potential effect of spatial vari-
ability and randomness (and the limitations of the current approach
to address it) on the fracture prediction of prototypical structural
components.

To this end, this section describes a series of parametric simu-
lations on a bending plate detail (Fig. 7). This bending plate rep-
resents a generic, fracture-critical detail (in terms of geometry,
scale, and stress state) commonly found in many structural compo-
nents, such as brackets, column base plates, and beam end plates,
subjected to bending. Based on the previous sections, these simu-
lations have the following characteristics: (1) although the bending
plates are spatially heterogeneous when considered in their entirety,
they may be considered homogenous over volumes that correspond
to plastically strained regions in the test specimens described pre-
viously; and (2) the probabilistic distribution of the material tough-
ness of these volumes is consistent with that defined for the HR
representation, with its attendant parameters (i.e., Hppry Ok,
LB, and [*) for the A572 steel (Table 3). This means that cou-
pons, if extracted from the simulated bending plate components,
would follow the statistical distribution of 7)., for the A572 steel
as determined from actual test data (Table 1). The plate tip displace-
ment A (Fig. 8) is retained as the deformation measure indicative
of structural performance. Within these constraints, the FE simu-
lations examined (1) the overall specimen scale, represented by the
width of the plate b (Fig. 7); a range of values of b between 50 and
300 mm was investigated; and (2) the spatial correlation between
7., at various material locations to provide a sense of the extent to
which regions of clustered low-toughness may impact macroscale
fracture. This study represented the spatial correlation through a
semivariogram (Clark 1979)

Cov(h) = 1—~(h) (14)

where
) =LA Ghen h <
=Ty e
~y(h) =1 when i > \ (15)
Eq. (14) provides the covariance between the 7). values at

any two material locations separated by a distance s. The semivar-
iogram is a well-established concept in random field theory and
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provides a rational basis for representing the internal correlation
structure within a continuum, such that locations separated by large
distances have uncorrelated material properties, whereas coincident
material locations have identical material properties. The parameter
A is a correlation radius, such that A = oo represents a perfectly
homogenous material, whereas A = 0 represents a spatially station-
ary material (such as the SR material described previously). Con-
sequently, A may be interpreted as a length scale corresponding
to spatial variability. This study examined values of A in the range
5-5,000 mm.

The FE simulations themselves were qualitatively similar to
those described previously in terms of meshing and constitutive
models; Fig. 8 shows a representative deformed mesh. Constitu-
tive parameters calibrated previously for the AS572 steel were
used to provide representation of realistic material response. The
bending plate detail may be appropriately simulated through two-
dimensional plane-strain FE models (Fig. 8). Similar to the previ-
ously discussed plane-strain simulations for the CT specimens,

i/

Predicted location of
fracture

Fig. 8. Plane-strain finite-element model for bending plate detail
showing contours of 7
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three-dimensional proxy models are regenerated from a single two-
dimensional FE model by replicating the 7 field as determined from
the plane-strain simulations through the out-of-plane dimension,
representing the plate width b. As a result, the dimension b may
be conveniently varied (by generating a proxy model of a different
width) without running additional FE simulations. For each of
the proxies (i.e., the plate widths b), material representations cor-
responding to each value of A were generated. Specifically, for each

A this included the following steps:

1. Each proxy was discretized into cubes of dimension [,
wherein each cube may have a single value of 7,,. These cubes
did not (in general) correspond to finite-element size, which
was on the order of 0.33 mm to simulate local strain gradients.
The cubes only represented regions over which the 7)., may be
considered constant. The mapping between the constant 7)., and
finite elements was implemented through a specially developed
MATLAB script. Because the dimension [, defines the volume

Viom = L3y Over which 7, is considered constant, it may be
interpreted as a discretization parameter. Convergence studies
indicated that if /,,,,, was less than \/2, the results were virtually
insensitive to [;,,. All results in this section are for such con-
verged values of j,yp,.

2. For each such discretization, 800 realizations of a spatial field
of 7., (essentially representing a value of 7)., in each cube) were
generated as part of a Monte Carlo simulation (Benjamin and
Cornell 2014). Each realization represented a configuration of
the 7., field which was equally as likely to occur as any of
the other realizations. To generate these fields, MATLAB code
was developed to implement a sequential Gaussian simulation
process. This process, described in detail by Goovaerts (1997),
involved the following steps to develop each single realization:
a. Generate a random path which visits each V., in the

domain. This may be done by numbering each V,,, and then
randomizing the order in which they are visited.

b. For each V,,, along the path, a random value u may be si-
mulated from a Gaussian distribution with mean and variance
e aé. For the first Vy,,,,,, the distribution is standard normal,
ie., ug =0, o%; = 1. For the remaining V), the distribution
is standard normal conditioned on all previously simulated u,
using the correlation structure (i.e., spatial dependence) de-
fined by Eq. (14). The conditional standard normal distri-
bution may be expressed analytically through the mean and
variance parameters (Goovaerts 1997), which are expressed
in matrix form as pg =kT-K~!'-uand aé =1-kT.-K 1.k,
where K is a matrix containing the covariance between all

LLLLLLLLLLLLLLL Y
JLLLLLLLLL L Y

(@)

(b)

previously simulated locations, Kk is a vector containing the
covariance between the current Vi, location and all pre-
viously simulated locations, and u is a vector of all previously
simulated values.

c. After generating values for each V., in the domain, the stan-
dard normal variable # may be transformed to 7., via the
inverse CDF function, i.e., 1., = F~'(G(u)), where F~!()
is the inverse CDF of the 7., distribution (Table 3) and G(-)
is the standard Gaussian CDF.

3. Fig. 9 shows sample realizations of the 7., field for selected
values of ); increasing values of A resulted in larger clusters
Of 776‘/"

4. For each realization of the 7., field, the fracture displacement
A fraciure measured at the tip of the plate (Fig. 8) was deter-
mined; this was done in an identical manner as for the pre-
viously discussed (i.e., SR and HR) material representations,
i.e., Afracure Was the displacement when the demand 7 at
any location (as determined through the FE model) exceeded
the capacity 7)., (determined through Steps 1-2) at that
location.

These steps resulted in 800 values of Ay, ¢ (0ne correspond-
ing to each Monte Carlo realization of the spatial field) for each
combination of » and A. The primary objective of this section is
to examine the extent to which spatial variability (over scales larger
than commonly interrogated for material test coupons) may influ-
ence deformation capacities of prototype-scale structural compo-
nents. Therefore Figs. 10(a and b) plot the median and standard
deviation of Ay, (as determined from the Monte Carlo
simulations) against the correlation radius for three plate widths,
i.e., b =50, 100, and 300 mm. The following observations may
be made:

1. As the correlation radius A increased, both the median and
standard deviation of Ay, increased. This was expected be-
cause a low correlation radius results in a more heterogeneous
material (Fig. 9), such that the fracture deformation (which is
controlled by weakest-links) is more sensitive to extreme values.
As A — oo, both the median and standard deviation approached
that for a perfectly homogenous material whose toughness is
sampled from a distribution (i.e., the HR material).

2. A closer examination of the curves indicates that for a given ),
the deformation capacity decreased with plate size, which is
indicative of the well-known statistical size effect. Fig. 11
(discussed subsequently) addresses this in greater detail.

3. In addition to the trends themselves, the degree of sensitivity of
At racrure 1o A was particularly notable. Specifically, for all plate

LLLLLLLLLLLLLLL Y

Fig. 9. Sample realizations of 7, field (shown on only one surface for clarity) for three values of the correlation radius A, showing clustering as A
increases from O (uncorrelated, stationary material) to 1,250 mm; A = oo corresponds to homogenous material
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Fig. 11. Dependence of fracture deformation on normalized size b/\: (a) median; (b) standard deviation

widths, the value of Ag,4epre for a A = 100 mm was approxi-

mately 25% greater than the value for A = 1,000 mm. The dif-

ference (which is controlled by the difference in the median and
lower bound values of 7),.,.) diminished for larger values of A as
the curve saturated.

Point 3 is especially concerning, because all parametric simu-
lations discussed in this section (even with widely varying values
of \) correspond to a single parent distribution of 7,,, which is
defined by the parameters corresponding to the HR representation
(Table 3). This implies that if small-scale coupons were extracted
from the various material representations in Figs. 9(a—c), they
would (in theory) yield an identical distribution of 7,.,, because cur-
rent methodology (Fig. 2) does not consider spatial variability or
allow for determination of A. Perhaps more importantly, in its ap-
plication, the current methodology does not provide a way to dis-
tinguish between different values of A, which, as evidenced by
Fig. 10, has a strong influence on structural performance. Further-
more, A¢yqcnre 18 Most sensitive to A for values of <1,000 mmA.
The test specimens (Table 1) were all extracted from rolled plates
whose maximum dimension was less than 1,000 mm, indicative of
significant variation over this distance, implying that A may be well
within the range in which it strongly influences structural perfor-
mance. Given the sensitivity of Af,cqr t0 A, this further suggests
that the fracture deformation of the bending plate cannot be pre-
dicted with confidence by the current methodology, which does
not consider the effect of \.

To further evaluate the size effect, Figs. 11(a and b) plot the
mean and standard deviation of Ay, against a normalized size
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parameter b/ ), i.e., the width of the plate (or size) relative to the
correlation radius. The curves for the various plate widths [which
were separated in Figs. 10(a and b)] are virtually coincident after
the normalization. This indicates that b/\ is an effective parame-
ter for assessing the size effect, because it reconciles differences
between the different plate widths. The coincident curves (which
may be effectively treated as one, for the purposes of discussion)
have the following characteristics:

1. As expected, both the mean and standard deviation of Af,.4¢pure
decreased with respect to the size parameter b/\. This is con-
sistent with previous discussion, which noted a size-effect for
larger components whose response is controlled by weakest-link
processes.

2. The decrease in the mean and standard deviation of Af,cpre
was rapid for values of <2.0b/\; for larger values of b/ a
decrease was still noted, although it was not quite as rapid.
For example, for b/\ = 0-2 the mean Ay, decreased by
30%, whereas for b/\ = 4-6 it decreased by 1%. This type
of information is critical when transferring material parameters
between components of different sizes, such as between lab-
scale coupons and archetype-scale components. As an example,
based on the trends observed in Fig. 11, it may be argued that
results may be transferred with greater confidence between
components with b/ in the range 4-6, than between compo-
nents with b/ in the range 0-4.

Although the parameter b/\ appears to be quite useful, it
requires the determination of the correlation radius . At present,
there are no data for this, although the variation within specimens
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extracted from samples of size <1,000 mm suggests that \ is lower
than this value. This suggests that characterizing A (or, more gen-
erally, information about spatial variability) is critical for scaling
and transferring fracture toughness results between components/
specimens of dissimilar size.

Summary, Conclusions, and Limitations

Despite advances in the mechanistic aspects of local models for
ductile fracture in structural steel, spatial variability in toughness
is commonly disregarded in the calibration and application of these
models. This contradicts experimental data, which show significant
variability in properties of coupons extracted from larger plates
or rolled shapes. Notwithstanding this, current methodologies for
applying local models assume calibration specimens and structural
components to be spatially homogenous, disregarding weakest-link
processes in ductile fracture. This is problematic for predicting
ductile fracture initiation in large structural components based on
calibration data from smaller coupon specimens. Spatial variability
potentiates a statistical size effect due to weakest-link sampling,
with the prospect of unconservative predictions of fracture.

Motivated by this, this study considered two competing repre-
sentations of the spatial distribution of the material toughness
parameter 7).,. One is the prevailing methodology, which assumes
that the material is homogenous, i.e., 7)., is constant within a com-
ponent or specimen. However, as is often assumed in practice, this
.- itself may be random to reflect variability between replicate
components; this is denoted the homogenous random representa-
tion. The other (denoted the stationary random representation) was
inspired by the Weibull stress approach (Beremin 1983), which ad-
mits spatial variability within a component. The relative efficacy of
these approaches was assessed through a MLE-based method. The
key finding is that the SR representation does not offer a significant
improvement over the HR representation in terms of reproducing
test data. In fact, the parameters of the SR representation converged
to those that represent an HR material, suggesting that the tested
coupons may be considered homogenous over their respective vol-
umes, although the 7, varies from coupon to coupon. However,
these coupons (of sizes <30 mm) were extracted from a single
piece of material (~1,000 mm). Considered together, these obser-
vations suggest that variability in material toughness is present,
albeit over length scales larger than coupon size. Test data that
rigorously measure this type of variation are not available in the
literature. Consequently, the implications of this finding were ex-
amined parametrically through FE simulations on a bending plate
model that represented a generic fracture-critical detail.

The bending plate was used to examine material representations
that reflect homogeneity over lengths corresponding to coupon
sizes but that admit heterogeneity over larger scales (which is
consistent with the implications of the HR versus SR study). Within
this construct, materials were simulated as ranging from being
spatially uncorrelated (i.e., a correlation radius A = 0) to highly
correlated (A = 5,000 mm), i.e., approaching homogenous as
A — o0. The width of the bending plate was varied as an additional
parameter. The results indicate that estimates of A, varied by
as much as 23% for A values in the range 50-750 mm. This is a
concerning observation because these disparate estimates were all
consistent with the statistical distribution of 7, as obtained from
test data (in accordance with current calibration procedures). With-
out an independent characterization of A, it is not possible to
determine which of these estimates represents true response. Addi-
tionally, a statistical size effect was observed, such that plates with
greater width showed lower deformation capacity. However, the
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width of the plate normalized by the correlation radius, i.e., b/,
was strongly correlated with deformation capacity, suggesting that
b/ \ is an effective scaling parameter for transferring test data from
coupon to component scales.

The limitations of the study must be considered in its interpre-
tation and generalization. First, the experimental data set was of a
modest size, and included two types of low-carbon steel. Because
spatial variability is directly linked to microstructure (e.g., inclusion
distribution and grain size), extrapolation to other steel varieties
requires caution. Second, weakest-link analogies are usually more
appropriate for brittle fracture, because failure of the weakest link
rapidly propagates to the entire component. However, in this case
it is critical to note that the weakest-link analogy was not used for
complete fracture of the component but rather to predict the initia-
tion of ductile fracture only, at the first location at which such a
weakest link was encountered. Although the analogy is defensible
in this context, the notion of weakest-link failure may still be ques-
tioned due to the possibility of stress redistribution and deformation
ductility at microstructural scales. Third, all uncertainty in the
estimates was assumed to arise from randomness in the material
toughness, implicitly assuming that the predictive model itself
(i.e., the VGM) is unbiased and accurate—this assumption is also
subject to criticism. Specifically, more-refined models have addi-
tional parameters and are able to simulate more general cases with
greater accuracy. For example, Kanvinde and Deierlein (2006)
addressed cyclic loading and fracture, whereas models by Bao and
Wierzbicki (2004) and Benzerga et al. (2004) addressed low triax-
iality and void coalescence, respectively. The higher accuracy and
generality of these models is accompanied by a greater number
of parameters that require calibration. In the context of this study,
which focuses on randomness and spatial variability, an increase
in the number of parameters triggers a highly disproportionate
increase in the effort/expense of calibration because cross-
correlations and other conditional relationships must either be cali-
brated or assumed (the latter creating the potential for additional
error). Consequently, this study selected the VGM, recognizing its
limitations. Moreover, even within the VGM, only the 7., is as-
sumed to be random and heterogeneous, whereas [* is assumed
to be deterministic. The additional complexity required to calibrate
the joint distributions of 7)., and /*, in addition to their spatial ran-
domness, is outside the purview of this study. In addition to the
aforementioned limitations of the VGM itself, the stress and strain
fields on which the VGM (or other damage mechanics models) re-
lies are sensitive to the material constitutive parameters (i.e., yield
surface and hardening laws), and to constitutive model itself (in this
case, the Armstrong-Frederick model). These constitutive parame-
ters are subject to issues similar to the fracture toughness param-
eters, i.e., uncertainty in estimation (e.g., Cooke and Kanvinde
2015) or spatial variability. This study did not examine the effect
of these uncertainties, and their interaction with fracture toughness.
As aresult, it was not possible to determine what the effect of these
interactions may be.

The plate bending simulations were numerical experiments on
hypothetical structural details to probe the possible limitations of
the prevailing framework. Without complementary experimental
data (including the characterization of the correlation radius M),
these limitations cannot be confirmed. Nevertheless, the simu-
lations pointed to the potential existence of these limitations, to
motivate future research. Additionally, these simulations used a
simplistic representation of the spatially correlated material, with
one parameter A. Although this is appropriate for an exploratory
examination, more-sophisticated complex material structures, such
as anisotropy, may require alternate representations of the spa-
tially random field. Finally, this study focused on ductile fracture
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initiation. Although this is important, it is only one process (along
with ductile propagation, transition to cleavage, and brittle propa-
gation) contributing to structural failure. Moreover, fracture initi-
ation itself may be preceded by fatigue damage. Despite these
limitations, the study provokes critical examination of flaws in the
current methodology to predict ductile fracture and provides direc-
tion for future research.
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