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Abstract

Self-assembling peptides containing aromatic groups are an attractive target for bio-

electronic materials design due to their ease of manufacture, biocompatibility, aqueous

solubility, and chemical tunability. Microscopic understanding of the properties that

control assembly is a prerequisite for rational design. In this work, we study the as-

sembly of a family of DXXX-Π-XXXD oligopeptides possessing a π-conjugated core

flanked by Asp-terminated tetrapeptide wings that display pH-triggered assembly into

supramolecular aggregates. We develop a coarse-grained patchy particle model to con-

duct molecular dynamics simulations of the assembly of ten thousand oligopeptides over

hundreds of nanometers and hundreds of microseconds. We study the effects of core

and side chain interaction strength and side chain steric volume upon the morphology

and kinetics of assembly. By characterizing the rate and fractal dimension of hierarchi-

cal nanoaggregate growth, we identify parameter regimes that favor rapid assembly of

linear aggregates and map these regimes to sequence-defined candidate peptides for ex-

perimental synthesis and testing. This work establishes new understanding of assembly

on previously unexplored time and length scales and presents an efficient and extensible

protocol for computational screening and prediction of promising peptide chemistries

to assemble nanostructures with desirable optoelectronic properties.
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1. INTRODUCTION

Oligopeptides containing embedded π-conjugated subunits within the backbone have emerged

as a valuable class of easily synthesized, biocompatible building blocks for triggerable self-

assembly into micron-size β-sheet-like aggregates driven by hydrophobicity, π-stacking, and

hydrogen bonding interactions1–16. Electronic delocalization between overlapping π-orbitals,

proton transfer along hydrogen bonds17, and potentially other more complex electronic ef-

fects18 endow the supramolecular aggregates with emergent optical and electronic properties

including fluorescence, electron transport, and exciton migration that make them attractive

candidates for bioelectronic applications such as photovoltaics, energy harvesting and trans-

port, biosensors, transistors, and light-emitting diodes12,19–40. The chemical diversity of pep-

tide sequences and conjugated core chemistries – together with their water solubility, biocom-

patibility, and ease of synthesis – renders π-conjugated oligopeptides highly tunable building

blocks that can be manipulated to control emergent structure and function21,23,24,35,41–52.

Molecular interactions between the oligopeptide building blocks govern the assembly

behavior into supramolecular aggregates of micron-size or larger on time scales of tens of

seconds41,53,54. All-atom molecular simulations have proven extremely valuable in probing

the molecular-level forces and mechanisms driving assembly such as the relative impor-

tance of aromatic and hydrogen bonding interactions in these and other systems of or-

ganic electronics24,35,41,55–65. Experimental work employing a range of techniques such as mi-

crorheology, circular dichroism, confocal fluorescence microscopy, cryo-electron microscopy,

atomic force microscopy, laser scanning microscopy, transmission electron microscopy, spec-

trophotometry and fluorometry, has characterized macroscopic features of the supramolec-

ular assemblies such as their critical fiber formation concentration, critical gel concentra-

tion, surface roughness, height profile, fibril thickness and aspect ratio, linear viscoelastic

moduli, charge transport, hole mobility, electrical resistance, and absorption/emission spec-

tra14,24,32–34,39,41,54,66–70. Bridging the disparate time and length scales between the micro-
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scopic interactions probed by atomistic molecular dynamics and the macroscale structures

characterized by experiment has proven challenging, but is of importance in determining how

molecular chemistry influences and may be controlled to dictate supramolecular morphology

and function.

One route to engage this problem is through coarse-grained molecular models that are

more computationally efficient and permit access to far longer time and length scales than all-

atom calculations. Since thermodynamic and folding behavior of many colloidal and protein

systems depends only on a few key parameters71–73, coarse-grained models can be designed to

isolate, probe, and identify the most important effects governing self-assembly74–77 and pro-

vide insight into the key microscopic interactions and physicochemical properties governing

aggregation78–80. For example, using a bead-spring representation with additional angular

flexibility constraints to model amyloid-type assembly, Ranganathan et al. showed that both

interaction strength and stiffness are important factors governing the morphology of final

self-assembled structures78. Sărić, Vácha, Frenkel and coworkers developed a series of top-

down minimal models81 to accurately predict the effect of different surface types on amyloid

fibril formation82, identify a proposed oligomer-dependent nucleation mechanism83, probe

the effect of surface coverage of fibrils on amyloid fibril nucleation and growth80, and model

pore formation in lipid membranes84,85. We have previously employed coarse-grained bead-

level models of π-conjugated oligopeptides to reveal a hierarchical aggregation mechanism

over length scales of tens of nanometers and time scales of hundreds of nanoseconds, fitted

Smoluchowski coagulation models to extract aggregation rate constants and extrapolate the

assembly dynamics, and studied the influence upon assembly of pH and flow55,56.

Patchy particle models are a particular class of coarse-grained molecular models that have

demonstrated great promise and flexibility in modeling colloids and peptides with directional

interactions81,86–94. These models employ coarse-grained representations of molecular groups

as typically spherical or ellipsoidal beads decorated by attractive surface patches that model

directional–and potentially specific–intermolecular interactions. The effects of patch shape
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and rotational entropy have been studied computationally and experimentally95–97, as have

the effects of decoupling rotational and translational diffusivity on pathways of aggregation98.

Since they can reproduce experimental phase behavior, they have also been used to study

phase transitions in colloids and proteins99,100 and probe how the interactions and environ-

mental conditions affect the phase diagrams of the resulting morphological structures101–103.

Lomakin et al. introduced what they referred to as an “aelotopic” model of proteins, in which

each protein was modeled as a sphere with interactions that depended on orientation, and

showed that the directionality thus captured was responsible for generic features of protein

aggregative properties in solution104. Hloucha et al. refined this template by introducing

spheres with complementary potentials referred to as “patches-antipatches” to study virial

coefficients in a system of bovine chymotrypsinogen in solution105. Kern and Frenkel81 de-

scribed a model of spheres decorated with directional square well patches to study the effects

of directional interactions and interaction strength on the fluid–fluid coexistence curve of an

abstract model system that could represent either colloids or proteins. In a similar vein,

Zhang and Glotzer showed that using small rigid spheres as the source of directional inter-

actions could be tuned to result in a plethora of different self-assembled structures86. Using

a patch-antipatch idea, Dorsaz et al.92 successfully modeled particular aspects of protein

crystallization, and Morgan et al.106 derived a minimalist design rule for the assembly of a

Bernal spiral. Long et al. used a machine learning approach to design patchy colloids to

assemble into specific target structures107–110. Xu et al. and Liu et al. probed the depen-

dence of self-assembled structures on aspect ratios of the central body and produced phase

diagrams with respect to aspect ratios and concentrations111,112, while Carpency, Gunton,

and Rickman studied the separate effects of shape anisotropy and patchiness on the phase

transitions of two-patch and four-patch Kern-Frenkel patchy particles113.

In this work, we develop a patchy particle model with which to study the hierarchical

self-assembly of the DXXX-Π-XXXD family of π-conjugated oligopeptides into β-sheet-like

aggregates with optical and electronic functionality24,35,41,42,53–56,70 (Fig. 1a). The Π subunit
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represents a π-conjugated core such as oligophenylenevinylene (OPV) or perylenediimide

(PDI) and the X represents one of the 20 natural amino acids. We further restrict our study

to symmetric chemistries D-X3-X2-X1-Π-X1-X2-X3-D where the N-to-C directionality of the

tetrapeptide wings proceeds away from the core such that the molecule possesses two Asp

residue C-termini. The number of peptides in the family is (p× 203), where p is the number

of Π cores to be considered. At high pH (pH & 7) the C-termini and terminal Asp side

chain carboxyl groups are deprotonated and each peptide carries a (-4) charge that prohibits

large-scale assembly by Coulombic repulsion; these groups protonate at low pH (pH . 1)

to produce neutral oligopeptides and trigger supramolecular assembly by hydrophobicity,

π-stacking, and hydrogen bonding24,35,41,53. The morphology and optoelectronic function-

ality of the terminal supramolecular aggregates can be controlled by the chemistry of the

π-conjugated core and amino acid sequence of the peptide wings24,41,54,70. Prior computa-

tional studies have employed all-atom and united atom (i.e., bead-level) molecular models

to study the morphology, thermodynamics, and kinetics of assembly24,35,41,42,55,56, but the

computational expense associated with these calculations limited study to a restricted num-

ber of chemistries in simulations comprising a few hundred monomers over time scales of

100 ns and length scales of 10 nm. In contrast, our patchy particle model is capable of

reaching time scales of 100 µs and length scales of 100 nm in simulations comprising 10,000

monomers. The model is also sufficiently computationally inexpensive to efficiently scan

over a broad parameter range and screen the diversity of molecular chemistries within the

DXXX-Π-XXXD family. The patchy particle model therefore exists at a resolution that is

inexpensive enough to efficiently scan through chemical space and probe mesoscopic length

and time scales, while retaining sufficient molecular detail to allow us to resolve the micro-

scopic physicochemical determinants of assembly behavior. We exploit these properties of

the model to pursue the main goals of this work: (i) to identify parameter regimes of our

patchy particle model that promote favorable self-assembly, and (ii) to translate these results

into new molecular understanding of assembly and design precepts for rational engineering
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2. METHODS

2.1 Patchy particle model of DXXX-Π-XXXD oligopeptides

We formulated our patchy particle model with three major design principles in mind. First,

so as to enable inexpensive large-scale molecular simulation and limit the extent of parameter

screening required for model parameterization, we assert that the model contain a relatively

small number of parameters controlling the salient features of DXXX-Π-XXXD oligopeptide

assembly: the linear geometry of the molecule, the directional character of cofacial core–core

interactions, and the variability of peptide side chain chemistries. Second, the model should

reproduce the gross structural features of aggregation observed in prior all-atom and coarse-

grained simulations35,55,56. In particular, the observation of branched fibrillar structures

with a fractal dimension of D ∼1.5 on length scales of ∼10 nm and a hierarchy of the

growth of different cluster types. Third, while the model may not maintain amino acid-level

resolution, it should admit an approximate mapping from our previously-established Martini

model for DXXX-Π-XXXD peptides that does maintain distinct amino acid identities55. The

difference in resolution between the two models means that the mapping from the higher-

resolution Martini model to the lower-resolution patchy particle model may be non-injective

(i.e., not one-to-one, with the result that multiple Martini peptides correspond to the same

patchy particle model) and non-surjective (i.e., particular parameterizations of the patchy

particle model may not correspond to the Martini model of any realizable oligopeptide).

Nevertheless, the existence of an approximate mapping is vital in both defining the physically

realizable parameter range in the patchy particle model (i.e., forward mapping), and in

identifying realizable oligopeptide chemistries corresponding to promising parameter regimes

of the patchy particle model (i.e., reverse mapping).

8



2.1.1. Model construction

Building upon previous patchy particle models of self-assembling peptides established by

Vácha, Sărić, and Frenkel80,83,115 and of self-assembling colloids established by Zhang and

Glotzer86, we construct a patchy particle model of a DXXX-Π-XXXD oligopeptide as illus-

trated in Fig. 1b. Three overlapping spherical backbone (BB) beads represent the three

(poly)aromatic rings comprising a π-conjugated core. Six sticky patches represented by

rigidly attached aromatic (A) beads are placed on the top and bottom of the long axis of

the three BB beads to represent the directionally-specific cofacial π-π interactions of the

aromatic rings. In principle, the arrangements of the spheres comprising the sticky patches

could be modified to probe the effects of aromatic core geometry, similar to Sărić et al.80, but

we do not study this effect here. A single large side chain (SC) bead affixed rigidly on either

end of the three core beads represents the peptide wings. Since charges on the symmetric

peptide wings are known to prevent large-scale assembly due to unfavorable Coulombic inter-

actions24,42, for the purposes of this work we consider only uncharged SC beads and model

interactions between the three bead types using 12-6 Lennard-Jones (LJ) potentials116.

It is clear that the highly coarse-grained nature of this model integrates out many of

the atomistic level details of the peptides. Most egregiously, the patchy particle model is

fully rigid and the peptide wings represented by a single sphere. Nevertheless, the model

is designed to retain the essential molecular geometry – an elongated monomer comprising

peptidic and aromatic subunits – and interactions – peptide wings capable of mutual stack-

ing and a π-conjugated core with preferred parallel stacking orientations. We demonstrate

in Section 3.2.3 that despite its simplicity, this relatively simplistic model is capable of re-

producing the salient features of peptide aggregation. The trade-off for this simplicity is

access to vastly longer length and time scales than would be possible with higher resolution

descriptions. In particular, our patchy particle model permitted simulation of about ten

thousand monomers on length scales of hundreds of nanometers and time scales of hundreds

of microseconds. This represents approximately 250× longer length scales and 2000× longer
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time scales than were accessible in previous studies35,55,56, enabling access to long-time and

many-body behaviors out of reach to finer resolution models. Furthermore, the simplicity

of the model is a virtue in interpretably illuminating the effect of different model parame-

ters on self-assembled morphologies and growth kinetics. Finally, the inexpensive model can

be used to rapidly and efficiently explore different parameter regimes to search for combi-

nations producing desirable assembly behaviors, and then the parameters mapped back to

physically realizable peptide chemistries for investigation by higher resolution calculations

and ultimately experimentation (see Section 3.3).

We now describe the fixed parameters of the model, which are set by appealing to simple

geometric considerations and by analogy with the DFAG-OPV3-GAFD system studied pre-

viously35,55,56, which consists of mirror symmetric peptide wings comprising Ala, Gly, and

Phe residues flanking an oligo(p-phenylenevinylene)3 (OPV3) aromatic core. The mass of

a single BB bead is set to m∗ = 108 amu, close to one-third the mass of an OPV3 core

(∼ 112 amu), while the mass of a single SC bead is set to 3.75m∗ = 405 amu, close to the

mass of a DFAG tetrapeptide (∼ 407 amu). The A beads carry no mass and are virtual

attractive particles. The LJ diameter of the BB beads is set to σBB = 2−1/6 nm, such that

the length of the aromatic core de→e = 2dLJ
min = 2

(

21/6σLJ
BB

)

= 2× (21/6 × 2−1/6 nm) = 2 nm

is approximately that of an OPV3 core (∼ 1.88 nm)55. The LJ diameter of the A beads is

set to σA = 25/6/8 nm and are centered at a radial distance of 0.475 nm from the center of

the BB beads in order to mitigate their protusion above the surface of the BB beads and

therefore any spurious geometric effects associated with corrugations of the BB bead surface

and interlocking of the patchy particles117. The cutoff radius for LJ interactions is set to 2.0

nm. The beads constituting the peptide define a rigid body.

2.1.2. Model parameterization

The remaining free parameters in the model are the LJ diameter of the side chain beads,

σSC , the LJ well depth of the beads representing the side chains, εSC , the LJ well depth of
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the beads representing non-cofacial aromatic core interactions, εBB, and the LJ well depth

of beads representing cofacial aromatic core interactions, εA (Fig. 1b). We describe in this

section how we defined the range of appropriate values for these parameters in order to span

the chemical space of realizable π-conjugated cores and peptide wings.

Side chain diameter, σSC.

This parameter represents the van der Waals volume occupied by the tetrapeptide wing,

encapsulated as the size of the SC sphere. We determine an appropriate range of values

for this parameter by estimating the solvent-accessible surface area (SASA) for amino acid

residues modeled by the coarse-grained Martini force field (Section 2.2). We specify σSC as

the diameter of a sphere possessing the same surface area as that computed for the Martini

model of the tetrapeptide. We verified in the case of DFAG that for such short peptides the

measured SASA of the complete tetrapeptide chain is equal within error bars to the sum of

the SASAs computed for the individual amino acid residues. Employing this procedure, we

identified σDAAA = 1.25 nm for the smallest A residue in the Martini model, and σDWWW

= 1.63 nm for the largest W residue. Accordingly, we identify σSC = 1.0-1.75 nm as an

appropriate physically meaningful range over which to to study the excluded volume of the

peptide wings.

Side chain well depth, εSC.

This parameter characterizes the interaction strength between peptide wings. An appropriate

range for this parameter may be estimated by constructing predictions for the dimerization

potential of mean force (PMF) of isolated DXXX tetrapeptides. These calculations also

provide a mapping from a sequence-defined chemistry to a patchy particle model, and can

be used to perform the reverse mapping to identify candidate chemistries corresponding to

particularly promising patchy particle parameterizations (see Section 3.3). We define an

appropriate range of εSC by appealing to our prior work in which we trained a quantita-
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tive structure property relationship (QSPR) model to accurately predict the dimerization

free energies for nonpolar DXXX-NDI-XXXD and DXXX-PDI-XXXD oligopeptides42. The

model was trained over dimerization PMFs computed for a subset of peptide sequences using

molecular dynamics simulations of all-atom oligopeptide representations in implicit solvent.

To extract from the QSPR model an estimate of the dimerization free energy of the pep-

tide wings alone ∆Fwing, we compute dimerization PMFs for isolated NDI and PDI cores

using the simulation protocol detailed in Ref.42 and subtract these values of ∆Fcore from the

QSPR model predictions. For a particular tetrapeptide sequence, we take the average of the

predictions from the NDI and PDI QSPR models and divide the result in half to provide

an estimate of εSC for a single DXXX peptide wing. The dimerization PMF is found to

span a range of ∆Fwing = (-60)-5 kBT at T = 298 K over all nonpolar peptide sequences

considered. Since repulsive interactions and overly attractive interactions are both known to

lead to poorly aligned oligopeptide aggregates42,56, this motivates us to consider a parameter

range of εSC = 0.2-10 kBT at T = 298 K.

Non-cofacial aromatic interaction well depth, εBB.

This parameter controls the non-cofacial (i.e., non-parallel stacked) interaction strength be-

tween the backbone particles constituting the π-conjugated aromatic core. Umbrella sam-

pling calculations conducted using a Martini model of an OPV3 core reveal a ∆F ncf
core =

(-9)-(-3) kBT free energy well for non-cofacial dimerization at T = 298 K (see Section 2.2).

Since our patchy particle model comprises three BB beads, this suggests that we employ

εBB = 1-3 kBT . This is in line with the Lennard-Jones energy parameter of ε = 1 kBT

corresponding to the Martini SC5 bead used to represent the two C atoms comprising one

edge of an aromatic ring118,119. Although an attractive εBB is found to be essential in pro-

moting the formation of well-aligned aggregates, computational exploration also reveals the

dependence of cluster growth rates and morphologies to be quite insensitive to its value – a

6000% change in εBB over the range 0.01–0.6 kBT produced only a ∼16% change in cluster
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growth rates – motivating us to fix it at εBB = 1 kBT at T = 298 K.

Cofacial aromatic interaction well depth, εA.

This parameter controls the cofacial (i.e., parallel stacked) interaction strength between

the backbone particles constituting the π-conjugated aromatic core. Umbrella sampling

calculations conducted using a Martini model of an OPV3 core reveal a ∆F cf
core = (-18)

kBT free energy well for cofacial dimerization at T = 298 K (Section 2.2). Eliminating

the (-3) kBT attributable to the non-cofacial aromatic interactions, this suggests a cofacial

interaction free energy of ∼2.5 kBT for each of the two A beads decorating each side of each

of the three BB particles. The strength of this interaction can be modulated by changing

the chemistry or number of fused aromatic rings in each subunit of the core. Accordingly,

we elect to consider a 300% change in this parameter to scan over εA = 2.5-7.5 kBT at T

= 298 K in order to study the influence of the strength of π-π stacking interactions upon

assembly.

2.2 Martini model simulations in Gromacs

Coarse-grained simulations of the oligopeptides were conducted using the Martini model in

which approximately four atoms are lumped to each coarse-grained bead120. This model

resolution presents a judicious balance between molecular realism and efficient simulation.

We have previously constructed a model of the DFAG-OPV3-GAFD chemistry based on

the Martini model that we explicitly reparameterized against all-atom simulations to better

reproduce the molecular level thermodynamics55. We also conducted simulations of single

amino acids represented in the original Martini model version 2.2119 to help inform param-

eter selection. Calculations were performed in the Gromacs 4.6 suite121, employing Martini

polarizable water122. Simulations were conducted in an NPT ensemble at 298 K and 1 atm,

employing a velocity rescaling thermostat123 and a Parrinello-Rahman barostat124. Three di-

mensional periodic boundary conditions were employed. Electrostatics were treated with the
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reaction field method with εr = 2.5 and εrf = ∞122. Lennard-Jones interactions were shifted

smoothly to zero at rV DW = 1.1 nm. The classical equations of motion were integrated using

the leap-frog algorithm125 with a time step of 5 fs.

Solvent accessible surface area calculations used to estimate σSC were conducted in 5.7×

5.7× 5.7 nm3 boxes using the Gromacs gmx SASA tool126,127 with the radii of the beads set

to one half of their Martini LJ σ parameters. Estimates for εBB and εA were generated from

umbrella sampling calculations in 10×10×16 nm3 boxes to compute the dimerization PMF

well depth for cofacial (i.e., parallel stacked) and non-cofacial (i.e., edge stacked) dimerization

of the OPV3 cores. Umbrella sampling along the dimerization pathway was conducted in

windows at 0.1 nm increments in the center of mass separation between the peptides along

the z-direction, employing harmonic restraints of kumb = 103 kJ/mol.nm2 parallel to the

pulling direction and krest = 104 kJ/mol.nm2 perpendicular to the pulling direction in order

to maintain in-register stacking. A 1 ns equilibration run was conducted in each umbrella

window followed by a 14 ns production run. The PMF was estimated to within a tolerance

of 10−6 by combining the umbrella sampling data using the Weighted Histogram Analysis

Method (WHAM)128. Uncertainties were estimated by block averaging. Simulations were

conducted on a single Intel Xeon E5-2660 2.2 GHz core achieving execution rates of 17.5

ns/day.

2.3 Patchy particle simulations in HOOMD

Simulations of peptides modeled by the patchy particle model were conducted in HOOMD

2.1.7129,130. We employ reduced units where the unit of distance is d∗ = 1 nm, the unit of

mass is m∗ = 108 amu, and the unit of energy is such that ε∗/kBT = 1.0 at 298 K, from which

we compute a reduced unit of time τ ∗ =
√

m∗(d∗)2

ε∗
= 6.6 ps. The coarse-grained nature of the

patchy particle model integrates out configurational degrees of freedom and also smooths the

underlying potential energy landscape, leading to artificial acceleration of the system dynam-

ics120,131,132. We have previously shown in simulations of DFAG-OPV3-GAFD peptides that
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there is no significant speedup in moving from an all-atom to a Martini model description55.

We use a similar approach here to ascertain the speedup in moving from the Martini model

to a patchy particle description. Specifically, we conduct simulations of isolated peptides at

298 K and 1 bar under each model, track the mean squared displacement, and employ the

Einstein relation116 to estimate translational diffusion coefficients of DMartini = (7±2)×10−6

cm2/s and Dpatchy = (3.4± 0.9)× 10−2 cm2/s. Matching the diffusivities implies a ∼5000×

speedup of the patchy particle model relative to Martini, and therefore all-atom, time scales.

The translational self-diffusion is likely to be the most salient quality determining speedup

since it governs the mean free path between the collisions necessary for aggregation. Ac-

cordingly, each HOOMD time step of τ ∗ = 6.6 ps corresponds to τ ∗patchy ≈ 33 ns. In the

remainder of this article, we correct for this speedup when reporting time in real units. We

note that this speedup was a primary motivating factor for the development of the patchy

particle model, as it enables access to orders of magnitude longer time and length scales than

those attainable by higher resolution models.

It is a primary goal of this study to explore how values of εA, εSC , and σSC , correspond-

ing to different oligopeptide chemistries, influence the morphology and kinetics of peptide

aggregation. To this end, we sweep over the physically motivated ranges of each of these by

conducting five independent simulations at each of the 5×4×3 = 60 parameter combinations

listed in Table 1. Simulations are initialized by arranging 10,648 patchy particles over a uni-

form cubic lattice within a 158× 158× 158 nm3 cubic box, corresponding to a concentration

of 4.4 mM. Experimental studies of oligopeptide assembly have been conducted up to 0.86

mM54. We study five-fold higher concentrations in order to accelerate and better observe

large-scale assembly within our simulation cell. Further, we have previously demonstrated

that the aggregation mechanism of DFAG-OPV3-GAFD peptides is independent of concen-

tration over the range 5–44 mM55. Langevin dynamics simulations are conducted from the

initial monodisperse state at a reduced temperature of T ∗ = 1, with diameter-scaled damping

coefficients of γi = λdi, where λ = 1 m∗/d∗τ ∗, and di is the LJ minimum of the ith particle.
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A total of 2 × 107 Langevin steps of dt∗ = 10−3 are performed, corresponding to 660 µs of

simulation. After the first 6× 105 time steps (19.8 µs) are discarded for equilibration, after

which time the temperature and pressure attain stable values and the remaining 1.94× 107

time steps (640.2 µs) are allocated to production runs. Simulations were conducted on 4 ×

NVIDIA GK110 (K20X) “Kepler” GPUs on the Blue Waters supercomputer at the Univer-

sity of Illinois at Urbana-Champaign achieving execution rates of 240 time steps per second

(∼680 µs/day).

Table 1: Table of Patchy Parameters1

εSC (kBT ) σSC (nm) εA (kBT )
0.2 1.00 2.5
0.9 1.25 5.0
2.0 1.50 7.5
6.0 1.75
10.0

2.4 Cluster types

We have previously defined hierarchical criteria by which to judge whether pairs of patchy

particles should be judged to be associated into a single aggregate. In particular, we defined

three different classes of cluster: (i) aligned clusters, which are made up of molecules with

well-aligned aromatic cores, (ii) optical clusters, which are made of molecules with proximate

but not necessarily well-stacked aromatic cores, and (iii) contact clusters, which are made

up of molecules with any proximate beads in the aromatic core or peptide wings55,56. Given

the coarse resolution of our patchy particle model, we focus in this work on two cluster

definitions: contact clusters and optical clusters.

Contact clusters. Two peptides are defined to belong to the same contact cluster if the

intermolecular distance between any pair of beads is below a cutoff distance threshold. This

1Parameter values employed in the patchy particle model parameter sweep. A total of 5 × 4 × 3 =

60 different parameter sets were considered corresponding to all εA, εSC , and σSC combinations. Five

independent simulations were performed at each parameter set.
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presents a relatively loose definition of association, since the peptides cores are not necessarily

mutually well aligned and therefore may lack the π-π stacking and electronic delocalization

necessary to endow the aggregate with optoelectronic functionality. Mathematically, a pair

of peptides a and b reside in a contact cluster if Rcon
a,b < Rcon

cut , where,

Rcon
a,b = min

i∈a
min
j∈b

rij, (1)

wherein rij is the distance between beads i and j. We specify Rcon
cut = max(21/6σBB + 0.1

nm, 21/6σSC + 0.1 nm) such that two monomers are considered to be in a cluster if two of

their beads are within 0.1 nm of the LJ minima of the larger of the SC and BB beads.

Optical clusters. Two peptides are defined to belong to the same optical cluster if the

distance between any pair of A beads is below a cutoff distance threshold. This metric assures

that the peptide cores are in close proximity and interacting approximately cofacially and

may therefore exhibit optoelectronic functionality, although they do not necessarily display

perfect in-register stacking. Specifically, a pair of peptides a and b are in an optical cluster

if Ropt
a,b < Ropt

cut , where,

Ropt
a,b = min

i∈(A beads∈a)
min

j∈(A beads∈b)
rij, (2)

and Ropt
cut = 0.35 nm. This somewhat restrictive cutoff is chosen because the A beads are

centered at 0.475 nm from the center of the BB beads, so two monomers reside within the

same optical cluster if the BB bead centers lie within (0.35 + 2×0.475) = 1.3 nm. This

metric therefore embodies both core proximity and cofacial interaction. By construction,

the metric defining an optical cluster nests it within a contact cluster: peptides in an optical

cluster are also in a contact cluster, but the inverse is not true. Accordingly, optical clusters

are constrained to be equal or smaller in size to the contact cluster within which they reside.
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3. RESULTS AND DISCUSSION

The primary goals of this work are to (i) discern what parameter regimes of our patchy

particle model promote favorable self-assembly rates and morphologies, and (ii) translate

these findings into new understanding of large-scale and long-time assembly and design

precepts for rational design of candidate oligopeptide chemistries. We engage these goals

by determining how the side chain well depth εSC , side chain diameter σSC , and cofacial

aromatic well depth εA affect the mechanisms, kinetics, and morphology of self-assembly in

our patchy particle model of DXXX-Π-XXXD oligopeptides. We focus on the growth rate

of optical and contact clusters and the fractal nature of the aggregates formed. We use

these findings to draw conclusions about the physical principles governing aggregation and

how to modify the interactions through judicious selection of peptide chemistry to promote

desirable assembly behaviors.

We focus on the kinetics and morphology of assembly rather than the thermodynamics be-

cause the emergent large-scale aggregates are expected to be out-of-equilibrium, kinetically-

trapped states rather than globally-stable thermodynamic minima. For the majority of

supramolecular self-assembled aggregates formed from small molecule building blocks, the

thermodynamic minima is expected to be a crystal whereas the commonly observed self-

assembled aggregates are frequently metastable, kinetically-trapped gel-like or fibrillar states133–135.

The latter morphologies are often of engineering interest since the pathway dependence

of their formation can be exploited to produce tunable and responsive aggregates136,137,

and their formation is consistent with a model in which assembly is under kinetic con-

trol56,70,134,135. The pathway dependence of assembly has been previously exploited in the

case of the DXXX-Π-XXXD family wherein the final aggregate morphology has been tuned

by the presence or absence of an external flow field to modulates the extent of branched

versus linear aggregates54. We have previously conducted thermodynamic stability analyses

of small oligomers of up to five peptides whose structure does approximate equilibrated as-
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semblies35,42. Although interesting in quantifying (meta)stability, a similar analysis of the

large scale kinetically-trapped aggregates is less illuminating than a kinetic approach that

seeks to quantify the rate and morphology of assembly without appealing to thermodynamic

stability concerns.

3.1 Absolute and relative growth rate of optical clusters

The supramolecular aggregates formed by peptide self-assembly are endowed with opto-

electronic functionality by electronic delocalization over the parallel stacked π-conjugated

cores19–22. Our definition of optical clusters identifies such well-stacked configurations, dis-

tinct from the less well-aligned aggregates identified merely as contact clusters (Section 2.4).

In order to promote the rapid formation of well-aligned supramolecular aggregates, we adopt

as our dual objective functions (i) the absolute growth rate of optical clusters, and (ii) the

growth rate of optical clusters relative to contact clusters. Quantification and maximization

of these two measures with respect to the patchy particle model parameters εSC , σSC , and εA

allows us to identify parameter regimes in which we observe rapid formation of well-aligned

optical clusters, but not at the expense of poorly aligned aggregation into disordered contact

clusters. It is desirable that the growth rate of optical clusters be both fast and as close as

possible to that of contact clusters since this corresponds to rapid growth of aggregates with

well-aligned interacting aromatic cores. We recall that the two cluster measures are hierar-

chical: optical clusters are also contact clusters, but the inverse is not true. Accordingly,

optical cluster size and growth rate is constrained to be smaller than or equal to contact

cluster size and growth rate.
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3.1.1. Modeling growth kinetics by Smoluchowski coagulation theory

We quantify the formation rates of optical and contact clusters by tracking the mass-averaged

cluster size56,138,139,

µ2(t) =
1

mmon

∑N
i=1 m

2
iNi(t)

∑N
i=1 miNi(t)

=

∑N
i=1 i

2Ni(t)
∑N

i=1 iNi(t)
, (3)

where mi = mmoni is the mass of a cluster containing i monomers of mass mmon, Ni(t) is

the number of clusters of size i in the simulation at time t, and cluster size is reported in

terms of the number of monomers. The mass-averaged cluster size is an experimentally-

accessible observable that is often preferred over the number-average µ1 as it is less sensitive

to fluctuations in the numbers of light clusters140. For each of our 60 parameter settings

(Table 1), we track the time evolution of µopt
2 (t) and µcon

2 (t). Fig. 2 presents illustrative

examples of the optical and contact cluster time evolution for four selected parameter sets..

We have previously employed the Smoluchowski coagulation theory of irreversible ag-

gregation to model cluster formation138,141–148 in smaller systems comprising hundreds of

monomers over hundreds of nanoseconds55,56. We note that the good description afforded

by a model that does not include fragmentation supports a model of kinetically controlled

aggregation leading to the formation of kinetically-trapped aggregates. The continuous time

Smoluchowski coagulation equation for irreversible aggregation and discrete aggregate sizes

is55,56,141,
dnr

dt
=

1

2

r−1
∑

i=1

Ki,r−ini(t)nr−i(t)−
∞
∑

i=1

Kr,inr(t)ni(t), (4)

where t is time, Ki,j is a second order rate constant kernel for the association of two aggregates

of size i and j, and nr(t) is the number concentration of aggregates of size r at time t. The

observed trends in µ2 indicate that the Smoluchowski model also presents an appropriate

description for the formation rate of optical – after a ∼250 µs transient – and contact clusters

in these much larger systems of nearly 11,000 monomers over hundreds of microseconds. In
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particular, the linear growth kinetics are consistent with a size-independent kernel Ki,j = K,

for which the analytical prediction of the Smoluchowski model for the mass-averaged cluster

size under arbitrary initial conditions is138,141,143,

µ2(t) = µ2(t0) + k(t− t0), (5)

where µ2(t0) is the mass-averaged cluster size at t0, k = KM1 = 2/tc is the lumped charac-

teristic coagulation rate constant incorporating the effect of concentration146, M1 is the total

concentration of monomers in the system, and tc is the characteristic coagulation time138.

We superpose the best least squares fit of Eqn. 5 to the recorded mass averaged optical

and contact cluster size for the four selected parameter sets presented in Fig. 2 to illustrate

empirical estimation of k and t0 from our data.

We present in Figs. 3 and 4 the best fit values of kopt and kcon at each of the 60 parameter

settings, and in Fig. 5 the ratio of these rates. We recall that our dual objectives are

maximization of kopt (Fig. 3) and kopt/kcon (Fig. 5). In performing the fits, we adopt tcon
0 = 0

µs and topt
0 = 264 µs to reflect the presence of the initial transient in optical cluster formation.

The origin of this transient is the different length scales of aggregation (see also Section 3.2)

and the different ways in which optical clusters can form, either by initial collision of two

clusters in a manner that allows the A beads to immediately interact, or by rearrangement

of monomers within contact clusters to accommodate these cofacial interactions. There

is an initially rapid increase in optical cluster size due to rapid agglomeration of peptide

monomers from the monodisperse state into small contact clusters in which mutual core

alignment of monomers among small aggregates is relatively fast, and formation of optical

clusters proceeds by both collision and monomer rearrangement. This is succeeded by a

slower growth phase in which aggregation proceeds by the collision of larger aggregates. The

morphology of the small-scale aggregates controls the likelihood that there will be exposed

A beads, which in turns controls the likelihood that two colliding aggregates will interact via
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cofacial core–core interactions and form an optical cluster. Time scales for rearrangement of

monomers in these larger clusters is much longer than that for rearrangement in the smaller

clusters, so the slowdown in the growth rate occurs due to the fact that after a certain size,

optical clusters tend to form primarily through collision. This effect is responsible for the

slowdown at longer times of the initially rapid optical cluster formation rate. We previously

noted a similar effect that we ascribed to the decrease in optical cluster mobility and available

surface area with increasing size and charge, and which we modeled using a size-dependent

optical cluster growth rate55,56. We were unable to reach long enough time and length

scales in our prior work to be able to decisively distinguish between a discrete change in

growth mechanism and a continuous one; here on time scales of hundreds of microseconds

we definitively show a clear convergence to linear growth after an initial transient. Contact

cluster formation, on the other hand, exhibits no initial transient since aggregation is largely

independent of the microscopic details of the cluster morphology, with cluster formation

simply requiring that any two beads in the clusters lie within the cutoff distance threshold.

3.1.2. Small εSC promotes rapid optical cluster growth.

Inspection of Fig. 3 illustrates that the side chain interaction strength εSC has the strongest

influence on the optical cluster growth rate. At fixed σSC and εA, reducing εSC to make

the side chains less strongly interacting results in an increase of kopt and faster formation

of optical clusters. The increase in growth rate goes up significantly once εSC is lowered

beneath εBB = 1 kBT . The most pronounced increase in assembly rate occurs upon lowering

εSC from 0.9 kBT to 0.2 kBT , which results in an average 30-fold increase of kopt per kBT ,

compared to an average 5-fold increase per kBT for lowering εSC from 2 kBT to 0.9 kBT and

from 6 kBT to 2 kBT , and only an average 1.2-fold increase per kBT for lowering εSC from

10 kBT to 6 kBT . Recalling that the interaction strength of the core (BB) beads is εBB = 1

kBT , this observation is consistent with a mechanism in which reducing the “stickiness” of the

side chains below that of the cores begins to promote well-aligned cluster assembly through
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aggregation driven largely by core–core rather than core–side chain or side chain–side chain

interactions, such that further decreases in εSC are significantly more effective in increasing

optical cluster rate than those when εSC > εBB.

The influence of side chain diameter σSC on the growth rate is less pronounced. In a gross

sense, larger values of σSC tend to elevate kopt for εSC < 0.9 kBT but depress it for εSC > 0.9

kBT . However, there is marked non-monotonicity in these trends, and there is evidence for

a weak maxima and minima of kopt as a function of σSC for particular choices of {εSC , εA}

pairs. This non-monotonic behavior may be understood as the competition of (at least)

two effects of increasing side chain diameter: (i) it increases the growth rate by increasing

monomer cross-section for productive associative collisions, but (ii) it reduces the range of

possible configurations accessible to optical clusters and hampers mutual rearrangements to

favor well-aligned core stacking through steric hindrances.

The effect of the cofacial interaction strength εA is also relatively weak, having relatively

minor impact on the shape and vertical shift of the εSC − σSC surfaces presented in Fig.

3. The only exception to this trend occurs at εSC = 0.2 kBT and σSC = 1.75 nm, where

dropping εA from 7.5 kBT to 2.5 kBT induces a 5000% increase in kopt from (2.0±0.5)×10−4

ns−1 to (1.0± 0.2)× 10−2 ns−1. This indicates that in a regime where side chains are weakly

interacting and bulky, weaker cofacial interactions are important in promoting good core

alignment, likely due to allowing for easier configurational rearrangement.

3.1.3. Small εSC and σSC promote similar optical and contact cluster growth

rates.

Considering Fig. 5, similar trends emerge in the dependence of the optical to contact cluster

growth rate upon the model parameters. This parity can be understood because the param-

eters have a far stronger influence on the growth kinetics for optical clusters than contact

clusters, inducing kopt to span a range of five orders of magnitude compared to only one for

kcon (cf. Figs. 3 and 4). Once again, the side chain interaction strength has the strongest
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influence, with small values of εSC promoting commensurate growth rates of optical and con-

tact clusters such that kopt/kcon approaches unity. Smaller values of the side chain diameter

σSC tend to promote similar optical and contact cluster growth rates, although this trend is

muted for εSC = 0.2 kBT . The influence of the cofacial interaction strength εA is relatively

weak, except for – as was observed for the absolute optical cluster growth rate – εSC = 0.2

kBT and σSC = 1.75 nm, where dropping εA from 7.5 kBT to 2.5 kBT induces a 5000%

increase in kopt/kcon from (1.6± 0.5)× 10−2 to (8± 2)× 10−1.

3.2 Fractal dimension, linearity, and length scales of self-assembled

aggregates and networks

In addition to promoting rapid absolute and relative optical cluster growth, it is also desir-

able to increase the linearity of the self-assembled aggregates. Experimental measurements

demonstrate that increased fibril linearity can be correlated with improved optoelectronic

properties53,54, so it is an additional objective for the assembly process that it result in close

to 1D supramolecular assemblies over large length scales.

3.2.1. Quantification of fractal dimensionality

We characterize the degree and length scales over which the peptides self-assemble into ap-

proximately linear aggregates as a function of the model parameters by calculating the fractal

dimension of the system55,149,150. We estimate the fractal dimension through a numerical ap-

proximation to the correlation integral,

C(r) = lim
N→∞

g

N2
, (6)

where g is the number of points separated by a distance less than r. The correlation integral

grows with the fractal dimension D of a system as C(r) ∼ rD, providing a measure of how

the system fills space. We make a discrete approximation to the correlation integral of our
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system by using a Heaviside function H 55,150,151,

C(r) ≈
1

N(N − 1)

N
∑

i,j=1,i 6=j

H
(

r− rCOM
ij

)

, (7)

where rCOM
ij is the distance between the centers of mass of monomers i and j. By computing

C(r) at a number of time points over the final 600 µs of each simulation trajectory, we verify

that the correlation integral is converged, and that the estimate from the terminal frame is

representative of the late-stage self-assembled morphology of the system.

3.2.2. Fractal dimension varies with length scale and model parameters

We present in Fig. 6 the correlation integrals computed from the terminal frame of the five

independent simulations conducted at each of 60 different parameter settings. Plotted on

log-log axes, the slope of a tangent line to the curve provides an estimate of the fractal

dimensionality D as a function of observation length scale r. Collating the data from all

calculations makes it challenging to pick out any particular parameter set, but the intention

of this plot is to show the relative similarity of the trends in fractal dimension over the

wide range of parameters considered. Moreover, the data suggest a natural partitioning

of the correlation integral into four distinct regimes. Regimes I and IV have very simple

interpretations. Regime I (r ≤ 2.5 nm) is defined by half the linear extent of a single

peptide monomer, and the correlation integral, initially zero due to the excluded volume of

the peptides, exhibits a sharp jump. Regime IV (r > 121.5 nm) exhibits a plateau in the

correlation integral due to the finite size of the simulation box.

Regime III (30.1 nm ≤ r < 121.5 nm) corresponds to observations on the scale of tens

of peptide lengths, wherein data from all 60 different parameter sets collapse onto a single

curve with slope (2.15 ± 0.06). This observation reveals that the fractal dimension of the

self-assembled system at large length scales is insensitive to the particulars of the molecular

level chemistry, and the system forms a fractal network with dimensionality DIII = (2.15±
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0.06). Representative snapshots of this network are presented for selected parameter settings

in Fig. 7, revealing the hierarchical aggregation of elongated micelles and ribbons into a

branched porous network, the nodes of which are formed by the intersection of pseudo-

linear supramolecular aggregates. This network is consistent with experimental “matted

hair” morphologies of oligopeptide aggregates assembled under quiescent conditions in the

absence of aligning hydrodynamic flows that are observed on length scales of ∼1 µm53,70.

The observation of this large-scale network under all parameter settings suggests that its

highly conserved formation arises from the intrinsic geometry of the peptide monomers. The

structure formed is not space filling due to an entropic and energetic preference for parallel

stacking: entropically, elongated rods tend to align to preserve translational entropy at the

cost of rotational97,152,153, and energetically there is a larger number of favorable interactions

available along their long axis. Assembly is anticipated to proceed under kinetic control

(Section 3.1), so it is expected that these aggregates are not thermodynamic minima but

rather morphological states that serve as dynamical attractors for the assembly kinetics of the

peptide family under conditions of rapid acidification, and which do not depend sensitively

on the chemical details of the oligopeptide monomers. The true thermodynamic minimum

is anticipated to be a crystal133–135, but more sophisticated free energy calculations would

be required to resolve this question and quantify the metastability of the observed fractal

aggregates154.

Regime II (2.5 nm ≤ r< 30.1 nm) is defined on length scales of about one to ten of peptide

diameters and corresponds to the rough length scale of fibril width observed experimentally

(∼10 nm)41,53,70. The spread in the correlation integral curves within this region indicates

that the dimensionality of the self-assembled aggregates on these length scales is influenced

by the parameters εSC , σSC , and εA. Further analysis shows that all curves within Regime II

are better modeled by a two-piece linear fit as opposed to a single linear regression as judged

by the Akaike Information Criterion155. This analysis reveals that Regime II may actually

be divided further into two sub-regions Regime II-A and II-B. We perform the two-piece
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fit and identify the optimal location for the crossover point using the L-method of Salvador

and Chan156. The precise location of the crossover depends on the parameter set under

consideration, but falls within the range 5.0–12.3 nm as indicated by the red shading in Fig.

6.

Regime II-A (2.5 nm ≤ r < 5.0–12.3 nm) spans length scales between about two and

ten core–core stacked peptides. Fig. 8 shows how DII−A varies as a function of the model

parameters, spanning a range of 1.4–1.9. As was the case for cluster growth rates, εA has very

little influence upon the fractal dimensionality. This parameter governs the strength of the

cofacial interactions that, by construction, mediate parallel stacked linear aggregates, and so

this weak dependence is unsurprising. Conversely, the side chain parameters have a relatively

large influence upon dimensionality. Large εSC promotes fractal dimensions approaching 2,

corresponding to micellar porous networks on a small scale (Fig. 7d,h), whereas small values

favor more linear aggregates with dimensionality closer to 1.5 (Fig. 7a-c), corresponding to

more core-interacting assemblages. For εSC < 2 kBT , both sufficiently small and sufficiently

large values of σSC favor more linear aggregates, but small values of σSC favor isolated

ribbon-like stacks (Fig. 7c), medium values of σSC favor ribbon-like assemblies that stack

side to side (Fig. 7a), and large values of σSC favor twisted one-dimensional fibrils (Fig. 7b).

Notably, there is a moderate anticorrelation between the fractal dimension in Regime II-A

and the optical cluster growth rate (ρPearson = −0.47, p < 10−6).

These observations may be understood as a transition between core-mediated (ribbon-

like) and side chain-mediated (porous micellar) interactions. When the side chains are suf-

ficiently sticky (that is when εSC is large enough), core–core interactions are disfavored in

comparison to side chain interactions, leading to small core-stacked aggregates of approx-

imately two-three monomers interacting more promiscuously and forming porous micellar

structures, similar to the micelles identified by Vácha and Frenkel as one phase of a system

of spherocylindrical monomers with attractive end caps115. For side chains that are less

sticky, a sufficiently small σSC lessens the likelihood of any side chain interactions, leading to
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lower-dimensional ribbon-like structures, similar to the parallel stacking identified by Vácha

and Frenkel as one phase of a system of spherocylindrical monomers without attractive end

caps115. As σSC approaches σBB, side chain interactions can lead to more interactions be-

tween ribbons, but a sufficiently large σSC forces the formation of a twisting one-dimensional

structure instead of a flat ribbon, which does not interact easily in a flat stack-to-stack man-

ner (compare Fig. 7b with Fig. 7c), leading to a lowered dimensionality. The observed

anticorrelation of the growth rate of optical clusters with the dimension of the resulting ag-

gregates demonstrates that the final details of the aggregate structure are at least partially

mediated by the kinetics of aggregation, as has also been observed experimentally54,70.

Regime II-B (5.0–12.3 nm ≤ r < 30.1 nm) spans length scales between about ten and

thirty core–core stacked monomers. These length scales are larger than the scale of local

packing but smaller than the scale of onset of the parameter-independent porous fractal net-

work. The dependence of DII−B on the model parameters is illustrated in Fig. 9, spanning

a range of 0.9-1.8. The primary discriminant of the dimensionality of the supramolecular

aggregates over these length scales is the side chain diameter σSC , with small side chains

promoting lower-dimensional aggregates (Fig. 7a,c,f,h), and larger side chains favoring as-

semblies with DII−B → 2 (Fig. 7b,e,g). There is a weak minimum observed for εSC = 2 kBT ,

which becomes mildly less pronounced as εA increases. Notably, there is a relatively strong

correlation between the fractal dimension in Regime II-B and the contact cluster growth rate

(Pearson correlation coefficient ρPearson = 0.82, p < 10−6).

Regime II-B comprises the length scale of transition between the scale of lower-dimensional

packing and the scale of the two-dimensional porous network. Systems that grow more slowly

are somewhat disconnected on this length scale (cf. Fig. 7a,c) and their dimension is lower

because of the gaps in the self-assembled network. Increasing the side chain radius increases

the growth rate and DII−B approaches 2 as it increases the size and collisional cross section

of the monomers. The mild decrease observed with decreasing εSC corresponds to a mild

decrease in the probability of a productive collision for the more side chain-mediated growth
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that occurs when εSC > εBB. The mild increase observed with decreasing εSC further is

attributable to lowering side chain disruptions to primarily core-mediated growth.

3.2.3. The patchy particle model successfully recapitulates properties predicted

by the Martini model and measured by experiment

Our model successfully captures aspects of peptide self-assembly previously reported in both

experimental and computational studies. Experimentally, the DXXX-OPV3-XXXD and

similar systems have been shown to robustly form porous networks of fibrils with widths

on the order of tens of nanometers on scales of hundreds of nanometers24,34,53,70, with the

precise morphology controlled by both peptide chemistry24 and assembly conditions54,70. In

good agreement with these experimental observations, we observe the robust formation of

porous, branched networks with fractal dimension D ≈ 2 on the order of tens to hundreds

of nanometers, and fibril widths on the order of ten nanometers.

The fractal dimension and specific morphologies of these aggregates on shorter length

scales is controlled by the specific interactions of the cores and side chains. Prior compu-

tational work employing the Martini model that lumps approximately four atoms into each

coarse-grained bead showed that the DFAG-OPV3-GAFD system forms amorphous aggre-

gates with dimension ∼1.5 on length scales of tens of nanometers and that there is a hierarchy

of optical and contact clusters55. The results from the present patchy particle model are in

good agreement with these observations, predicting the same hierarchy of optical and contact

clusters and the formation of aggregates with fractal dimensionality on these length scales of

0.9–1.9 depending on the precise choice of parameters. The patchy particle model was not

parameterized against these higher-resolution simulation results, and the good agreement

with the more detailed model provides a validation of its predictive power.
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3.3 Pareto optimization of relative optical cluster growth rate and

supramolecular linearity

3.3.1. Identification of Pareto frontier

Having determined the kinetic and morphological properties of assembly under different

parameter choices, we now seek to identify the parameter set that (i) maximizes the relative

rate of optical to contact cluster growth kopt/kcon to assure the formation of large optical

aggregates, and (ii) minimizes the fractal dimension in Regime II-A DII−A to produce linear

fibrils on ∼10 nm length scales that are expected to exhibit good electronic and optical

properties due to core–core π stacking. We engage this multi-objective optimization problem

by identifying the Pareto frontier within the ensemble of 60 parameter settings explored

(Table 1). A point is defined to reside on the Pareto frontier if no other point in the ensemble

is superior in all components of the objective function157. In the present case, Pareto optimal

parameter sets {εSC , σSC , εA} are those for which no other parameter set produces both larger

kopt/kcon and smaller DII−A. Pareto frontier points are optimal in the respect that improving

any one component of the objective function necessitates a degradation in another. The

relative importance of the various components of the objective function may be weighted to

ultimately prefer one Pareto optimal point over another.

We present in Fig. 10a a kopt/kcon–DII−A scatter plot for the 60 {εSC , σSC , εA} parameter

sets. The plot reveals relative growth rate and fibril fractal dimensionality are negatively

correlated, possessing a Pearson correlation coefficient of ρ(kopt/kcon, DII−A) = −0.52 (p <

10−6). This connection between kinetics and morphology can be understood as similar optical

and contact cluster growth rates producing aggregates with well-aligned aromatic cores that

promote linear growth. The Pareto frontier comprises only two points P1 and P2, but four

additional points EP1–EP4 are Pareto proximate in that they have errorbars that overlap

with those of either P1 or P2. We identify the particular parameter sets corresponding to

these six points in Fig. 10b. The Pareto optimal and Pareto proximate points all possess the
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smallest values of εSC = 0.2 kBT studied in this work, but a wide range of σSC and εA values.

The optimality of small side chain interaction strength εSC may have been anticipated from

Figs. 5 and 8 where small εSC led to elevated relative optical to contact growth rates and

more linear aggregates within Regime II-A. Coloring the scatter plot by εSC in Fig. 10c

clearly illustrates this trend, with increasing εSC away from the Pareto frontier. The side

chain size σSC has a non-monotonic influence on the relative optical cluster growth rate

(Fig. 5) and fractal dimension (Fig. 8) at εSC = 0.2 kBT . Coloring the scatter plot by σSC

in Fig. 10d fails to resolve any clear trends in this parameter with respect to proximity to

the Pareto frontier. As noted previously, εA has a weak effect on both the relative growth

rate and fractal dimensionality, and the scatter plot colored by this model parameter in Fig.

10e fails to show any clear dependency in either component of the objective function.

In sum, the Pareto analysis reveals good regions of parameter space and also provides new

understanding of the important determinants of assembly: εSC should be tuned to a small

value, the precise value of εA is unimportant over the range considered, and the dependence

on σSC is relatively complex and non-monotonic. We also note that all Pareto optimal

candidates possess εSC = 0.2 kBT at the lowest end of the range considered in this work.

Although this range was defined by physically motivated concerns (Section 2.1.1), the results

of our analysis suggest that it would likely be worthwhile to extend our investigation to even

smaller values of the side chain well depth, and even explore weakly repulsive interactions.

3.3.2. Identification of optimal peptide chemistries

The Pareto analysis identified six patchy particle parameter combinations that produced

desirable assembly behaviors. To translate this analysis to peptide design, we now proceed

to identify particular oligopeptide chemistries consistent with these parameter sets. Our

results have shown εA to have a rather weak influence on relative growth rate kopt/kcon (Fig.

5) and fractal dimension DII−A (Fig. 8), so we instead focus on tuning εSC and σSC . Since

the patchy particle model was parameterized for an oligo(p-phenylenevinylene)3 (OPV3)
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aromatic core, we can consider the design procedure to be the identification of optimal

peptide wings for a DXXX-OPV3-XXXD molecule. We perform the reverse mapping of the

patchy particle parameters εSC and σSC using the techniques detailed in Section 2.1.2: σSC

is estimated from the sums of the SASAs for individual amino acid residues, and εSC for a

particular peptide wing sequence is computed from our previously published QSPR model42.

The QSPR model was developed for peptide wings containing the ten nonpolar amino

acid residues at the low pH (pH . 1) at which assembly proceeds: Ala, Gly, Glu, Ile,

Leu, Met, Phe, Trp, Tyr, and Val (Asp residues are excluded as these are reserved to

serve as the C-terminal triggers for pH-mediated assembly)42. We present in Fig. 11 a εSC-

σSC scatter plot for the 103 = 1000 nonpolar oligopeptide side chain chemistries for which

estimates of dimerization free energies are available from the QSPR model (grey crosses).

Each point possesses an estimated uncertainty of 3 kBT in εSC arising from the QSPR

model42 and uncertainties in σSC propagated from the SASA calculations. We superpose

onto this plot the three εSC-σSC values – (εSC ,σSC) = { (0.2 kBT , 1.25 nm), (0.2 kBT ,

1.5 nm), (0.2 kBT , 1.75 nm)}– corresponding to the set of two Pareto optimal and four

Pareto proximate parameter sets identified from the patchy particle model parameter scan

(green crosses). Reverse mapping these optimal parameter sets to particular oligopeptide

chemistries is performed by identifying those chemistries for which a Pareto optimal point

lies within their error bars. This procedure identifies five particular DXXX-OPV3-XXXD

oligopeptide sequences with XXX = {GAG, GGA, GGG, FMI, MFI}. Three oligopeptide

chemistries with small amino acids in the peptide wings – GAG, GGA, and GGG – fall near

the (εSC ,σSC) = (0.2 kBT , 1.25 nm) Pareto point at the lower edge of physically realizable

peptide wing volumes. Two chemistries with somewhat bulkier wings – FMI and MFI – lie

near the (εSC ,σSC) = (0.2 kBT , 1.5 nm) point. No chemistries lie near the (εSC ,σSC) = (0.2

kBT , 1.75 nm) point due to the absence of physically realizable peptide sequences with such

large volumes.

This analysis has served to map the regions of optimal parameter space identified in the
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large-scale patchy particle simulations to particular oligopeptide chemistries that are pre-

dicted to possess favorable self-assembly behaviors. The value of the coarse-grained screen-

ing and reverse mapping procedure is in presenting an efficient means to direct the search

of chemical space towards promising oligopeptide chemistries. In particular, we have identi-

fied five candidates for future computational and experimental testing within the 203=8000

members of the DXXX-OPV3-XXXD family. Of these candidates, DGAG-OPV3-GAGD has

been previously studied and shown to possess desirable optoelectronic properties24. The in-

corporation of Phe residues has been shown to improve aggregation158, and while many such

chemistries have been studied both computationally and experimentally15,35,41,55,58, neither

DFMI nor DMFI has previously been considered. The computational screening and design

protocol based on our coarse-grained patchy particle model has therefore identified previ-

ously studied oligopeptide chemistries known to possess desirable optoelectronic properties

and which were designed based on chemist’s intuition, and has also predicted new, and

possibly unexpected, promising regions of oligopeptide sequence space.

4. CONCLUSIONS

Inspired by the work of Sărić et al.80,83 and Zhang et al.86, we have developed a patchy

particle model of the DXXX-Π-XXXD system of optoelectronic self-assembling peptides.

Through simplification of the atomistic details and the use of high-performance cyber in-

frastructure, we were able to directly simulate the self-assembly of ten thousand monomers

over hundreds of nanometers and hundreds of microseconds, while still preserving the salient

features of the DXXX-Π-XXXD system. The morphological predictions of the patchy model

are consistent with experimental measurements and prior molecular simulations employing

a higher resolution model, but the model enables access to very long time and length scales

with near molecular-level resolution. Furthermore, the inexpensive computational cost of the

model enables us to screen over a large parameter space of intermolecular interactions to effi-

ciently identify the important physico-chemical determinants of good assembly behavior and
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promising parameter regimes for more detailed computational or experimental investigation.

Our model provides new molecular-level understanding of the key determinants of DXXX-

Π-XXXD self-assembly. Decreasing the peptide wing well depth εSC below the well depth

of the non-cofacial interactions of aromatic cores εBB leads to significant increase in both

absolute and relative contact cluster growth. The strongest determinant of contact cluster

growth rate is the excluded volume of the peptide wings, with increasing σSC corresponding

to an increase in the collisional cross section and hence an increase in the overall growth

rate. For sufficiently weakly interacting peptide wings, both increasing and decreasing the

excluded volume of the wing leads to the formation of linear aggregates with different mi-

croscopic morphologies (flat ribbon versus twisted fibril). The small-scale dimensions of

aggregates at all parameter sets are correlated with their respective optical cluster growth

rates, demonstrating the important connection between kinetics and morphology. On length

scales exceeding ∼30 nm, we observe the the formation of an approximately two-dimensional

porous network, the dimensionality of which is insensitive to the particular choice of param-

eters. The assembly rates and resultant morphologies are very weakly dependent on the

interaction strength of the parallel stacked interactions εA over the range of 2.5-7.5 kBT at

T = 298 K.

We performed a Pareto optimization in the relative rate of optical to contact cluster

growth kopt/kcon and fractal dimension DII−A of the aggregates over ∼2.5-12 nm length

scales, in order to identify {εSC , σSC , εA} parameter sets that produced large, linear optical

clusters with good core–core alignment that are expected to possess desirable optical and

electronic properties. We identified six optimal candidates and interrogated these results to

derive insights into the important determinants of aggregation. We found that small εSC

values favor good assembly behavior, suggesting that minimizing the interaction strength

of the peptide wings – or even exploring weakly repulsive peptide wings – may serve as a

precept for rational oligopeptide design. We also uncovered a complex and non-monotonic

dependence of assembly quality upon σSC that is worthy of further study, and an almost
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complete insensitivity to εA. By mapping the Pareto optimal patchy particle models to

sequence-defined oligopeptides, we identified five DXXX-OPV3-XXXD chemistries for future

computational and experimental study.

Our results also suggest a number of follow-up investigations. First, the Pareto frontier

defines a tighter region of εSC − σSC − εA parameter space for more detailed exploration by

our patchy particle model. Second, we propose using the five chemistries identified as lying

near the Pareto frontier as the starting points for an active learning procedure conducted

using higher resolution bead-level models to further refine a pool of candidates for all-atom

simulation or experimental testing159–164. Third, we propose to perform simulations of aggre-

gation using our patchy particle model under non-equilibrium flow54,56. These calculations

would allow us to access the length and time scales upon which flow is predicted to have an

important influence on aggregation, permit direct comparisons of the observed morphologies

with experiment, furnish molecular-level understanding of the coupling between flow and

chemistry upon assembly, and perhaps provide new precepts by which to design optimal

flow fields.

Overall, this work has explored the interactions of the DXXX-Π-XXXD system at the

mesoscale to provide new fundamental understanding of the important molecular determi-

nants of assembly behavior, permit rapid screening over molecular parameter space, and

identify good parameter regimes favoring assembly of large, linear optical clusters with well-

aligned cores. It provides new rational design principles by which to rationally engineer

self-assembling oligopeptides to fabricate supramolecular assemblies for bioelectronic appli-

cations, and establishes a new coarse level within a hierarchy of molecular models of varying

resolution with which to characterize and engineer these molecules.
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