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Abstract

Self-assembling peptides containing aromatic groups are an attractive target for bio-
electronic materials design due to their ease of manufacture, biocompatibility, aqueous
solubility, and chemical tunability. Microscopic understanding of the properties that
control assembly is a prerequisite for rational design. In this work, we study the as-
sembly of a family of DXXX-II-XXXD oligopeptides possessing a mw-conjugated core
flanked by Asp-terminated tetrapeptide wings that display pH-triggered assembly into
supramolecular aggregates. We develop a coarse-grained patchy particle model to con-
duct molecular dynamics simulations of the assembly of ten thousand oligopeptides over
hundreds of nanometers and hundreds of microseconds. We study the effects of core
and side chain interaction strength and side chain steric volume upon the morphology
and kinetics of assembly. By characterizing the rate and fractal dimension of hierarchi-
cal nanoaggregate growth, we identify parameter regimes that favor rapid assembly of
linear aggregates and map these regimes to sequence-defined candidate peptides for ex-
perimental synthesis and testing. This work establishes new understanding of assembly
on previously unexplored time and length scales and presents an efficient and extensible
protocol for computational screening and prediction of promising peptide chemistries

to assemble nanostructures with desirable optoelectronic properties.



1. INTRODUCTION

Oligopeptides containing embedded 7-conjugated subunits within the backbone have emerged
as a valuable class of easily synthesized, biocompatible building blocks for triggerable self-
assembly into micron-size [-sheet-like aggregates driven by hydrophobicity, m-stacking, and
hydrogen bonding interactions' 6. Electronic delocalization between overlapping m-orbitals,
proton transfer along hydrogen bonds!?, and potentially other more complex electronic ef-
fects!'® endow the supramolecular aggregates with emergent optical and electronic properties
including fluorescence, electron transport, and exciton migration that make them attractive
candidates for bioelectronic applications such as photovoltaics, energy harvesting and trans-
port, biosensors, transistors, and light-emitting diodes 2%, The chemical diversity of pep-
tide sequences and conjugated core chemistries — together with their water solubility, biocom-
patibility, and ease of synthesis — renders m-conjugated oligopeptides highly tunable building
blocks that can be manipulated to control emergent structure and function?!2324,3541752,
Molecular interactions between the oligopeptide building blocks govern the assembly
behavior into supramolecular aggregates of micron-size or larger on time scales of tens of

41,53,54 — All-atom molecular simulations have proven extremely valuable in probing

seconds
the molecular-level forces and mechanisms driving assembly such as the relative impor-
tance of aromatic and hydrogen bonding interactions in these and other systems of or-
ganic electronics 2435415565 " Experimental work employing a range of techniques such as mi-
crorheology, circular dichroism, confocal fluorescence microscopy, cryo-electron microscopy,
atomic force microscopy, laser scanning microscopy, transmission electron microscopy, spec-
trophotometry and fluorometry, has characterized macroscopic features of the supramolec-
ular assemblies such as their critical fiber formation concentration, critical gel concentra-
tion, surface roughness, height profile, fibril thickness and aspect ratio, linear viscoelastic
moduli, charge transport, hole mobility, electrical resistance, and absorption/emission spec-

14,24,32-34,39,41,54,66-70

tra Bridging the disparate time and length scales between the micro-



scopic interactions probed by atomistic molecular dynamics and the macroscale structures
characterized by experiment has proven challenging, but is of importance in determining how
molecular chemistry influences and may be controlled to dictate supramolecular morphology
and function.

One route to engage this problem is through coarse-grained molecular models that are
more computationally efficient and permit access to far longer time and length scales than all-
atom calculations. Since thermodynamic and folding behavior of many colloidal and protein

71-73

systems depends only on a few key parameters , coarse-grained models can be designed to

7477

isolate, probe, and identify the most important effects governing self-assembly and pro-

vide insight into the key microscopic interactions and physicochemical properties governing

780 For example, using a bead-spring representation with additional angular

aggregation
flexibility constraints to model amyloid-type assembly, Ranganathan et al. showed that both
interaction strength and stiffness are important factors governing the morphology of final
self-assembled structures™. Sari¢, Vacha, Frenkel and coworkers developed a series of top-
down minimal models®! to accurately predict the effect of different surface types on amyloid
fibril formation®, identify a proposed oligomer-dependent nucleation mechanism®3, probe
the effect of surface coverage of fibrils on amyloid fibril nucleation and growth®, and model
pore formation in lipid membranes®85. We have previously employed coarse-grained bead-
level models of m-conjugated oligopeptides to reveal a hierarchical aggregation mechanism
over length scales of tens of nanometers and time scales of hundreds of nanoseconds, fitted
Smoluchowski coagulation models to extract aggregation rate constants and extrapolate the
assembly dynamics, and studied the influence upon assembly of pH and flow >,

Patchy particle models are a particular class of coarse-grained molecular models that have
demonstrated great promise and flexibility in modeling colloids and peptides with directional
interactions®%6 94, These models employ coarse-grained representations of molecular groups

as typically spherical or ellipsoidal beads decorated by attractive surface patches that model

directional-and potentially specific-intermolecular interactions. The effects of patch shape



9597 " as have

and rotational entropy have been studied computationally and experimentally
the effects of decoupling rotational and translational diffusivity on pathways of aggregation%.
Since they can reproduce experimental phase behavior, they have also been used to study

99,100

phase transitions in colloids and proteins and probe how the interactions and environ-

mental conditions affect the phase diagrams of the resulting morphological structures!?*103,
Lomakin et al. introduced what they referred to as an “aelotopic” model of proteins, in which
each protein was modeled as a sphere with interactions that depended on orientation, and
showed that the directionality thus captured was responsible for generic features of protein

aggregative properties in solution %4

Hloucha et al. refined this template by introducing
spheres with complementary potentials referred to as “patches-antipatches” to study virial
coefficients in a system of bovine chymotrypsinogen in solution!®®. Kern and Frenkel®' de-
scribed a model of spheres decorated with directional square well patches to study the effects
of directional interactions and interaction strength on the fluid—fluid coexistence curve of an
abstract model system that could represent either colloids or proteins. In a similar vein,
Zhang and Glotzer showed that using small rigid spheres as the source of directional inter-
actions could be tuned to result in a plethora of different self-assembled structures®®. Using

a patch-antipatch idea, Dorsaz et al.%?

successfully modeled particular aspects of protein
crystallization, and Morgan et al.'%® derived a minimalist design rule for the assembly of a
Bernal spiral. Long et al. used a machine learning approach to design patchy colloids to

107-110

assemble into specific target structures . Xu et al. and Liu et al. probed the depen-

dence of self-assembled structures on aspect ratios of the central body and produced phase

diagrams with respect to aspect ratios and concentrations!!1:112

, while Carpency, Gunton,
and Rickman studied the separate effects of shape anisotropy and patchiness on the phase
transitions of two-patch and four-patch Kern-Frenkel patchy particles 3.

In this work, we develop a patchy particle model with which to study the hierarchical
self-assembly of the DXXX-II-XXXD family of w-conjugated oligopeptides into S-sheet-like

aggregates with optical and electronic functionality 24:35:41:42:5356,70 (Rig 1a). The II subunit



represents a m-conjugated core such as oligophenylenevinylene (OPV) or perylenediimide
(PDI) and the X represents one of the 20 natural amino acids. We further restrict our study
to symmetric chemistries D-X3-Xo-X;-1I-X-X5-X3-D where the N-to-C directionality of the
tetrapeptide wings proceeds away from the core such that the molecule possesses two Asp
residue C-termini. The number of peptides in the family is (p x 203), where p is the number
of II cores to be considered. At high pH (pH 2 7) the C-termini and terminal Asp side
chain carboxyl groups are deprotonated and each peptide carries a (-4) charge that prohibits
large-scale assembly by Coulombic repulsion; these groups protonate at low pH (pH < 1)
to produce neutral oligopeptides and trigger supramolecular assembly by hydrophobicity,

24,35,41,53

m-stacking, and hydrogen bonding . The morphology and optoelectronic function-

ality of the terminal supramolecular aggregates can be controlled by the chemistry of the

24415470 © Prior computa-

m-conjugated core and amino acid sequence of the peptide wings
tional studies have employed all-atom and united atom (i.e., bead-level) molecular models
to study the morphology, thermodynamics, and kinetics of assembly24:3%4142:35:56 ht the
computational expense associated with these calculations limited study to a restricted num-
ber of chemistries in simulations comprising a few hundred monomers over time scales of
100 ns and length scales of 10 nm. In contrast, our patchy particle model is capable of
reaching time scales of 100 us and length scales of 100 nm in simulations comprising 10,000
monomers. The model is also sufficiently computationally inexpensive to efficiently scan
over a broad parameter range and screen the diversity of molecular chemistries within the
DXXX-II-XXXD family. The patchy particle model therefore exists at a resolution that is
inexpensive enough to efficiently scan through chemical space and probe mesoscopic length
and time scales, while retaining sufficient molecular detail to allow us to resolve the micro-
scopic physicochemical determinants of assembly behavior. We exploit these properties of
the model to pursue the main goals of this work: (i) to identify parameter regimes of our

patchy particle model that promote favorable self-assembly, and (ii) to translate these results

into new molecular understanding of assembly and design precepts for rational engineering



of novel oligopeptides.

The outline of this paper is as follows. In Section 2, we describe the construction of
the patchy particle model, detail our molecular simulation methods, and provide structural
definitions for the aggregation hierarchy. In Section 3, we present the results of our virtual
high-throughput screen through the model parameter space to identify parameter regimes
that lead to rapid assembly of linear 3-sheet-like aggregates, and discuss the mapping of these
parameters to particular oligopeptide chemistries. In Section 4, we present our conclusions
and directions for future work.
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Figure 1: Chemical structure and patchy particle model of the DXXX-II-XXXD 7-conjugated
oligopeptides. (a) Chemical structure of a generic DXXX-TI-XXXD oligopeptide. The pep-
tide wings are mirror symmetric in that the N-to-C directionality progresses away from the
m-conjugated core and the tetrapeptide sequences are identical. The side chains {Rq, R, R3}
may be tuned to any of the 20 naturally occurring amino acids and II is a 7w-conjugated core
such as oligophenylenevinylene (OPV), perylenediimide (PDI), or quaterthiophene (OT4).
The four terminal carboxyl groups belonging to the two C-termini and distal Asp residue
side chains deprotonate at high pH (pH = 7) and protonate at low pH (pH < 1) en-
abling pH-triggerable assembly. Image produced using Marvin 18.10.0 (ChemAxon, 2018)
(http://www.chemaxon.com). (b) Patchy particle model of a generic DXXX-II-XXXD
oligopeptide. The small green A beads located on the upper and lower face of the model
model cofacial aromatic interactions, the large red SC' beads model interactions of the pep-
tide wings, and the large blue BB beads model non-cofacial aromatic core interactions. The
diameter of the SC' beads is a parameter of the model. The length of the core is twice the
diameter of a single BB bead defined as the minimum of the Lennard-Jones BB interaction
potential. Image produced using VMD 14,



2. METHODS

2.1 Patchy particle model of DXXX-II-XXXD oligopeptides

We formulated our patchy particle model with three major design principles in mind. First,
so as to enable inexpensive large-scale molecular simulation and limit the extent of parameter
screening required for model parameterization, we assert that the model contain a relatively
small number of parameters controlling the salient features of DXXX-II-XXXD oligopeptide
assembly: the linear geometry of the molecule, the directional character of cofacial core—core
interactions, and the variability of peptide side chain chemistries. Second, the model should
reproduce the gross structural features of aggregation observed in prior all-atom and coarse-

35,5556 Tn particular, the observation of branched fibrillar structures

grained simulations
with a fractal dimension of D ~1.5 on length scales of ~10 nm and a hierarchy of the
growth of different cluster types. Third, while the model may not maintain amino acid-level
resolution, it should admit an approximate mapping from our previously-established Martini
model for DXXX-II-XXXD peptides that does maintain distinct amino acid identities®®. The
difference in resolution between the two models means that the mapping from the higher-
resolution Martini model to the lower-resolution patchy particle model may be non-injective
(i.e., not one-to-one, with the result that multiple Martini peptides correspond to the same
patchy particle model) and non-surjective (i.e., particular parameterizations of the patchy
particle model may not correspond to the Martini model of any realizable oligopeptide).
Nevertheless, the existence of an approximate mapping is vital in both defining the physically
realizable parameter range in the patchy particle model (i.e., forward mapping), and in

identifying realizable oligopeptide chemistries corresponding to promising parameter regimes

of the patchy particle model (i.e., reverse mapping).



2.1.1. Model construction

Building upon previous patchy particle models of self-assembling peptides established by
Vécha, Sari¢, and Frenkel®"83115 and of self-assembling colloids established by Zhang and
Glotzer®, we construct a patchy particle model of a DXXX-II-XXXD oligopeptide as illus-
trated in Fig. 1b. Three overlapping spherical backbone (BB) beads represent the three
(poly)aromatic rings comprising a m-conjugated core. Six sticky patches represented by
rigidly attached aromatic (A) beads are placed on the top and bottom of the long axis of
the three BB beads to represent the directionally-specific cofacial -7 interactions of the
aromatic rings. In principle, the arrangements of the spheres comprising the sticky patches
could be modified to probe the effects of aromatic core geometry, similar to Sarié¢ et al.®°, but
we do not study this effect here. A single large side chain (SC') bead affixed rigidly on either
end of the three core beads represents the peptide wings. Since charges on the symmetric
peptide wings are known to prevent large-scale assembly due to unfavorable Coulombic inter-
actions?**2 for the purposes of this work we consider only uncharged SC beads and model
interactions between the three bead types using 12-6 Lennard-Jones (LJ) potentials!!S.

It is clear that the highly coarse-grained nature of this model integrates out many of
the atomistic level details of the peptides. Most egregiously, the patchy particle model is
fully rigid and the peptide wings represented by a single sphere. Nevertheless, the model
is designed to retain the essential molecular geometry — an elongated monomer comprising
peptidic and aromatic subunits — and interactions — peptide wings capable of mutual stack-
ing and a m-conjugated core with preferred parallel stacking orientations. We demonstrate
in Section 3.2.3 that despite its simplicity, this relatively simplistic model is capable of re-
producing the salient features of peptide aggregation. The trade-off for this simplicity is
access to vastly longer length and time scales than would be possible with higher resolution
descriptions. In particular, our patchy particle model permitted simulation of about ten
thousand monomers on length scales of hundreds of nanometers and time scales of hundreds

of microseconds. This represents approximately 250 x longer length scales and 2000x longer



355556 " enabling access to long-time and

time scales than were accessible in previous studies
many-body behaviors out of reach to finer resolution models. Furthermore, the simplicity
of the model is a virtue in interpretably illuminating the effect of different model parame-
ters on self-assembled morphologies and growth kinetics. Finally, the inexpensive model can
be used to rapidly and efficiently explore different parameter regimes to search for combi-
nations producing desirable assembly behaviors, and then the parameters mapped back to
physically realizable peptide chemistries for investigation by higher resolution calculations
and ultimately experimentation (see Section 3.3).

We now describe the fixed parameters of the model, which are set by appealing to simple
geometric considerations and by analogy with the DFAG-OPV3-GAFD system studied pre-

35:55,56 " wwhich consists of mirror symmetric peptide wings comprising Ala, Gly, and

viously
Phe residues flanking an oligo(p-phenylenevinylene)3 (OPV3) aromatic core. The mass of
a single BB bead is set to m* = 108 amu, close to one-third the mass of an OPV3 core
(~ 112 amu), while the mass of a single SC' bead is set to 3.75m* = 405 amu, close to the
mass of a DFAG tetrapeptide (~ 407 amu). The A beads carry no mass and are virtual

1/6

attractive particles. The LJ diameter of the BB beads is set to ogg = 27/° nm, such that

the length of the aromatic core d,_, = 2dL] = 2 (2V/60})) =2 x (216 x 27V/6 nm) = 2 nm
is approximately that of an OPV3 core (~ 1.88 nm)®®. The LJ diameter of the A beads is
set to o4 = 2°/%/8 nm and are centered at a radial distance of 0.475 nm from the center of
the BB beads in order to mitigate their protusion above the surface of the BB beads and
therefore any spurious geometric effects associated with corrugations of the BB bead surface

and interlocking of the patchy particles!'”. The cutoff radius for LJ interactions is set to 2.0

nm. The beads constituting the peptide define a rigid body.

2.1.2. Model parameterization

The remaining free parameters in the model are the LJ diameter of the side chain beads,

osc, the LJ well depth of the beads representing the side chains, eg¢, the LJ well depth of

10



the beads representing non-cofacial aromatic core interactions, egg, and the LJ well depth
of beads representing cofacial aromatic core interactions, €4 (Fig. 1b). We describe in this
section how we defined the range of appropriate values for these parameters in order to span

the chemical space of realizable m-conjugated cores and peptide wings.

Side chain diameter, ogc.

This parameter represents the van der Waals volume occupied by the tetrapeptide wing,
encapsulated as the size of the SC sphere. We determine an appropriate range of values
for this parameter by estimating the solvent-accessible surface area (SASA) for amino acid
residues modeled by the coarse-grained Martini force field (Section 2.2). We specify os¢ as
the diameter of a sphere possessing the same surface area as that computed for the Martini
model of the tetrapeptide. We verified in the case of DFAG that for such short peptides the
measured SASA of the complete tetrapeptide chain is equal within error bars to the sum of
the SASAs computed for the individual amino acid residues. Employing this procedure, we
identified opaaa = 1.25 nm for the smallest A residue in the Martini model, and opwww
= 1.63 nm for the largest W residue. Accordingly, we identify ogsc = 1.0-1.75 nm as an
appropriate physically meaningful range over which to to study the excluded volume of the

peptide wings.

Side chain well depth, €sc.

This parameter characterizes the interaction strength between peptide wings. An appropriate
range for this parameter may be estimated by constructing predictions for the dimerization
potential of mean force (PMF) of isolated DXXX tetrapeptides. These calculations also
provide a mapping from a sequence-defined chemistry to a patchy particle model, and can
be used to perform the reverse mapping to identify candidate chemistries corresponding to
particularly promising patchy particle parameterizations (see Section 3.3). We define an

appropriate range of esc by appealing to our prior work in which we trained a quantita-

11



tive structure property relationship (QSPR) model to accurately predict the dimerization
free energies for nonpolar DXXX-NDI-XXXD and DXXX-PDI-XXXD oligopeptides*?. The
model was trained over dimerization PMFs computed for a subset of peptide sequences using
molecular dynamics simulations of all-atom oligopeptide representations in implicit solvent.
To extract from the QSPR model an estimate of the dimerization free energy of the pep-
tide wings alone AFy;,s, we compute dimerization PMFs for isolated NDI and PDI cores
using the simulation protocol detailed in Ref.#? and subtract these values of AF,,. from the
QSPR model predictions. For a particular tetrapeptide sequence, we take the average of the
predictions from the NDI and PDI QSPR models and divide the result in half to provide
an estimate of ego for a single DXXX peptide wing. The dimerization PMF is found to
span a range of AFy,, = (-60)-5 kT at T" = 298 K over all nonpolar peptide sequences
considered. Since repulsive interactions and overly attractive interactions are both known to
lead to poorly aligned oligopeptide aggregates??°®, this motivates us to consider a parameter

range of esc = 0.2-10 kgT at T = 298 K.

Non-cofacial aromatic interaction well depth, egp.

This parameter controls the non-cofacial (i.e., non-parallel stacked) interaction strength be-
tween the backbone particles constituting the m-conjugated aromatic core. Umbrella sam-
pling calculations conducted using a Martini model of an OPV3 core reveal a AF™L —
(-9)-(-3) kpT free energy well for non-cofacial dimerization at 7" = 298 K (see Section 2.2).
Since our patchy particle model comprises three BB beads, this suggests that we employ
egp = 1-3 kgT. This is in line with the Lennard-Jones energy parameter of ¢ = 1 kT
corresponding to the Martini SC5 bead used to represent the two C atoms comprising one
edge of an aromatic ring %9  Although an attractive egp is found to be essential in pro-
moting the formation of well-aligned aggregates, computational exploration also reveals the

dependence of cluster growth rates and morphologies to be quite insensitive to its value — a

6000% change in egp over the range 0.01-0.6 kT produced only a ~16% change in cluster

12



growth rates — motivating us to fix it at egp = 1 kgT at T = 298 K.

Cofacial aromatic interaction well depth, €4.

This parameter controls the cofacial (i.e., parallel stacked) interaction strength between
the backbone particles constituting the m-conjugated aromatic core. Umbrella sampling
calculations conducted using a Martini model of an OPV3 core reveal a AFS . = (-18)
kT free energy well for cofacial dimerization at T = 298 K (Section 2.2). Eliminating
the (-3) kT attributable to the non-cofacial aromatic interactions, this suggests a cofacial
interaction free energy of ~2.5 kgT for each of the two A beads decorating each side of each
of the three BB particles. The strength of this interaction can be modulated by changing
the chemistry or number of fused aromatic rings in each subunit of the core. Accordingly,
we elect to consider a 300% change in this parameter to scan over e4 = 2.5-7.5 kgT at T

= 298 K in order to study the influence of the strength of 7w stacking interactions upon

assembly:.

2.2 Martini model simulations in Gromacs

Coarse-grained simulations of the oligopeptides were conducted using the Martini model in
which approximately four atoms are lumped to each coarse-grained bead!?’. This model
resolution presents a judicious balance between molecular realism and efficient simulation.
We have previously constructed a model of the DFAG-OPV3-GAFD chemistry based on
the Martini model that we explicitly reparameterized against all-atom simulations to better
reproduce the molecular level thermodynamics®®. We also conducted simulations of single
amino acids represented in the original Martini model version 2.2 to help inform param-

eter selection. Calculations were performed in the Gromacs 4.6 suite!?!

, employing Martini
polarizable water!'?2. Simulations were conducted in an NPT ensemble at 298 K and 1 atm,
employing a velocity rescaling thermostat 23 and a Parrinello-Rahman barostat 24, Three di-

mensional periodic boundary conditions were employed. Electrostatics were treated with the
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reaction field method with €, = 2.5 and €, = 00122, Lennard-Jones interactions were shifted
smoothly to zero at rypy = 1.1 nm. The classical equations of motion were integrated using
the leap-frog algorithm!?® with a time step of 5 fs.

Solvent accessible surface area calculations used to estimate ogc were conducted in 5.7 x
5.7 x 5.7 nm?® boxes using the Gromacs gmx SASA tool 26127 with the radii of the beads set
to one half of their Martini LJ o parameters. Estimates for egp and €4 were generated from
umbrella sampling calculations in 10 x 10 x 16 nm? boxes to compute the dimerization PMF
well depth for cofacial (i.e., parallel stacked) and non-cofacial (i.e., edge stacked) dimerization
of the OPV3 cores. Umbrella sampling along the dimerization pathway was conducted in
windows at 0.1 nm increments in the center of mass separation between the peptides along
the z-direction, employing harmonic restraints of kyy, = 10° kJ/mol.nm? parallel to the
pulling direction and kyesr = 10* kJ/mol.nm? perpendicular to the pulling direction in order
to maintain in-register stacking. A 1 ns equilibration run was conducted in each umbrella
window followed by a 14 ns production run. The PMF was estimated to within a tolerance
of 107% by combining the umbrella sampling data using the Weighted Histogram Analysis
Method (WHAM)!2®, Uncertainties were estimated by block averaging. Simulations were
conducted on a single Intel Xeon E5-2660 2.2 GHz core achieving execution rates of 17.5

ns/day.

2.3 Patchy particle simulations in HOOMD

Simulations of peptides modeled by the patchy particle model were conducted in HOOMD
2.1.7129130  We employ reduced units where the unit of distance is d* = 1 nm, the unit of
mass is m* = 108 amu, and the unit of energy is such that ¢*/kgT = 1.0 at 298 K, from which

m*(d*)?

we compute a reduced unit of time 7* = ;

= 6.6 ps. The coarse-grained nature of the
patchy particle model integrates out configurational degrees of freedom and also smooths the
underlying potential energy landscape, leading to artificial acceleration of the system dynam-

ics 120:13L,132 " We have previously shown in simulations of DFAG-OPV3-GAFD peptides that

14



there is no significant speedup in moving from an all-atom to a Martini model description®.

We use a similar approach here to ascertain the speedup in moving from the Martini model
to a patchy particle description. Specifically, we conduct simulations of isolated peptides at
298 K and 1 bar under each model, track the mean squared displacement, and employ the
Einstein relation!!6 to estimate translational diffusion coefficients of Dyjartini = (742) x 1076
cm?/s and Dpageny = (3.4 £ 0.9) x 1072 cm?/s. Matching the diffusivities implies a ~5000x
speedup of the patchy particle model relative to Martini, and therefore all-atom, time scales.
The translational self-diffusion is likely to be the most salient quality determining speedup
since it governs the mean free path between the collisions necessary for aggregation. Ac-

cordingly, each HOOMD time step of 7% = 6.6 ps corresponds to 7, ~ 33 ns. In the

atchy
remainder of this article, we correct for this speedup when reporting time in real units. We
note that this speedup was a primary motivating factor for the development of the patchy
particle model, as it enables access to orders of magnitude longer time and length scales than
those attainable by higher resolution models.

It is a primary goal of this study to explore how values of €4, €5¢, and og¢, correspond-
ing to different oligopeptide chemistries, influence the morphology and kinetics of peptide
aggregation. To this end, we sweep over the physically motivated ranges of each of these by
conducting five independent simulations at each of the 5 x4 x3 = 60 parameter combinations
listed in Table 1. Simulations are initialized by arranging 10,648 patchy particles over a uni-
form cubic lattice within a 158 x 158 x 158 nm?® cubic box, corresponding to a concentration
of 4.4 mM. Experimental studies of oligopeptide assembly have been conducted up to 0.86
mM?®*. We study five-fold higher concentrations in order to accelerate and better observe
large-scale assembly within our simulation cell. Further, we have previously demonstrated
that the aggregation mechanism of DFAG-OPV3-GAFD peptides is independent of concen-
tration over the range 5-44 mM?®°. Langevin dynamics simulations are conducted from the
initial monodisperse state at a reduced temperature of 7% = 1, with diameter-scaled damping

coefficients of v; = Ad;, where A = 1 m*/d*7*, and d; is the LJ minimum of the ith particle.
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A total of 2 x 107 Langevin steps of dt* = 1073 are performed, corresponding to 660 ss of
simulation. After the first 6 x 10° time steps (19.8 us) are discarded for equilibration, after
which time the temperature and pressure attain stable values and the remaining 1.94 x 107
time steps (640.2 us) are allocated to production runs. Simulations were conducted on 4 x
NVIDIA GK110 (K20X) “Kepler” GPUs on the Blue Waters supercomputer at the Univer-
sity of Illinois at Urbana-Champaign achieving execution rates of 240 time steps per second
(~680 us/day).
Table 1: Table of Patchy Parameters!

’ €sC (I{ZBT) ‘ osc (nm) ‘ €A (]CBT) ‘

0.2 1.00 2.5
0.9 1.25 5.0
2.0 1.50 7.5
6.0 1.75

10.0

2.4 Cluster types

We have previously defined hierarchical criteria by which to judge whether pairs of patchy
particles should be judged to be associated into a single aggregate. In particular, we defined
three different classes of cluster: (i) aligned clusters, which are made up of molecules with
well-aligned aromatic cores, (ii) optical clusters, which are made of molecules with proximate
but not necessarily well-stacked aromatic cores, and (iii) contact clusters, which are made
up of molecules with any proximate beads in the aromatic core or peptide wings®>%6. Given
the coarse resolution of our patchy particle model, we focus in this work on two cluster
definitions: contact clusters and optical clusters.

Contact clusters. Two peptides are defined to belong to the same contact cluster if the

intermolecular distance between any pair of beads is below a cutoff distance threshold. This

!Parameter values employed in the patchy particle model parameter sweep. A total of 5 x 4 x 3 =
60 different parameter sets were considered corresponding to all €4, €sc, and ogc combinations. Five
independent simulations were performed at each parameter set.
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presents a relatively loose definition of association, since the peptides cores are not necessarily
mutually well aligned and therefore may lack the 7-7 stacking and electronic delocalization
necessary to endow the aggregate with optoelectronic functionality. Mathematically, a pair

of peptides a and b reside in a contact cluster if Rg%' < RgY, where,

Ccon : :
= min min r;; 1
ab ica jeb U’ (1)

wherein 7;; is the distance between beads i and j. We specify R} = max(2Y/%0zp + 0.1
nm, 2'/55c + 0.1 nm) such that two monomers are considered to be in a cluster if two of
their beads are within 0.1 nm of the L.J minima of the larger of the SC' and BB beads.

Optical clusters. Two peptides are defined to belong to the same optical cluster if the
distance between any pair of A beads is below a cutoff distance threshold. This metric assures
that the peptide cores are in close proximity and interacting approximately cofacially and
may therefore exhibit optoelectronic functionality, although they do not necessarily display
perfect in-register stacking. Specifically, a pair of peptides a and b are in an optical cluster
if R < Rehi, where,

t . .
RY =  min min 7y, (2)
’ 1€(A beads€a) je(A beadseb)

and R = 0.35 nm. This somewhat restrictive cutoff is chosen because the A beads are
centered at 0.475 nm from the center of the BB beads, so two monomers reside within the
same optical cluster if the BB bead centers lie within (0.35 + 2x0.475) = 1.3 nm. This
metric therefore embodies both core proximity and cofacial interaction. By construction,
the metric defining an optical cluster nests it within a contact cluster: peptides in an optical

cluster are also in a contact cluster, but the inverse is not true. Accordingly, optical clusters

are constrained to be equal or smaller in size to the contact cluster within which they reside.
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3. RESULTS AND DISCUSSION

The primary goals of this work are to (i) discern what parameter regimes of our patchy
particle model promote favorable self-assembly rates and morphologies, and (ii) translate
these findings into new understanding of large-scale and long-time assembly and design
precepts for rational design of candidate oligopeptide chemistries. We engage these goals
by determining how the side chain well depth eg¢, side chain diameter ogc, and cofacial
aromatic well depth €4 affect the mechanisms, kinetics, and morphology of self-assembly in
our patchy particle model of DXXX-II-XXXD oligopeptides. We focus on the growth rate
of optical and contact clusters and the fractal nature of the aggregates formed. We use
these findings to draw conclusions about the physical principles governing aggregation and
how to modify the interactions through judicious selection of peptide chemistry to promote
desirable assembly behaviors.

We focus on the kinetics and morphology of assembly rather than the thermodynamics be-
cause the emergent large-scale aggregates are expected to be out-of-equilibrium, kinetically-
trapped states rather than globally-stable thermodynamic minima. For the majority of
supramolecular self-assembled aggregates formed from small molecule building blocks, the
thermodynamic minima is expected to be a crystal whereas the commonly observed self-
assembled aggregates are frequently metastable, kinetically-trapped gel-like or fibrillar states 337135,
The latter morphologies are often of engineering interest since the pathway dependence
of their formation can be exploited to produce tunable and responsive aggregates!36:137,
and their formation is consistent with a model in which assembly is under kinetic con-

156:70,134135 ~ The pathway dependence of assembly has been previously exploited in the

tro
case of the DXXX-II-XXXD family wherein the final aggregate morphology has been tuned
by the presence or absence of an external flow field to modulates the extent of branched

versus linear aggregates®. We have previously conducted thermodynamic stability analyses

of small oligomers of up to five peptides whose structure does approximate equilibrated as-
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3542 Although interesting in quantifying (meta)stability, a similar analysis of the

semblies
large scale kinetically-trapped aggregates is less illuminating than a kinetic approach that
seeks to quantify the rate and morphology of assembly without appealing to thermodynamic

stability concerns.

3.1 Absolute and relative growth rate of optical clusters

The supramolecular aggregates formed by peptide self-assembly are endowed with opto-
electronic functionality by electronic delocalization over the parallel stacked m-conjugated
cores'® 22, Our definition of optical clusters identifies such well-stacked configurations, dis-
tinct from the less well-aligned aggregates identified merely as contact clusters (Section 2.4).
In order to promote the rapid formation of well-aligned supramolecular aggregates, we adopt
as our dual objective functions (i) the absolute growth rate of optical clusters, and (ii) the
growth rate of optical clusters relative to contact clusters. Quantification and maximization
of these two measures with respect to the patchy particle model parameters egc, osc, and €4
allows us to identify parameter regimes in which we observe rapid formation of well-aligned
optical clusters, but not at the expense of poorly aligned aggregation into disordered contact
clusters. It is desirable that the growth rate of optical clusters be both fast and as close as
possible to that of contact clusters since this corresponds to rapid growth of aggregates with
well-aligned interacting aromatic cores. We recall that the two cluster measures are hierar-
chical: optical clusters are also contact clusters, but the inverse is not true. Accordingly,

optical cluster size and growth rate is constrained to be smaller than or equal to contact

cluster size and growth rate.
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3.1.1. Modeling growth kinetics by Smoluchowski coagulation theory

We quantify the formation rates of optical and contact clusters by tracking the mass-averaged

cluster size®®138:139,

RIS > RELTUNS > ON0)
b = S ) X (D) )

where m; = Myent is the mass of a cluster containing ¢ monomers of mass Mmyon, N;(t) is
the number of clusters of size ¢ in the simulation at time ¢, and cluster size is reported in
terms of the number of monomers. The mass-averaged cluster size is an experimentally-
accessible observable that is often preferred over the number-average p; as it is less sensitive

to fluctuations in the numbers of light clusters!4.

For each of our 60 parameter settings
(Table 1), we track the time evolution of u5*'(t) and u$°™(t). Fig. 2 presents illustrative
examples of the optical and contact cluster time evolution for four selected parameter sets..

We have previously employed the Smoluchowski coagulation theory of irreversible ag-

138,1417148 i1y gmaller systems comprising hundreds of

gregation to model cluster formation
monomers over hundreds of nanoseconds®>°. We note that the good description afforded
by a model that does not include fragmentation supports a model of kinetically controlled
aggregation leading to the formation of kinetically-trapped aggregates. The continuous time
Smoluchowski coagulation equation for irreversible aggregation and discrete aggregate sizes

i555,56,1417

dn?“ = _ZKzr znz nr z ZK znr nz ) (4)

where t is time, K ; is a second order rate constant kernel for the association of two aggregates
of size i and j, and n,.(t) is the number concentration of aggregates of size r at time ¢. The
observed trends in uo indicate that the Smoluchowski model also presents an appropriate
description for the formation rate of optical — after a ~250 us transient — and contact clusters

in these much larger systems of nearly 11,000 monomers over hundreds of microseconds. In
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Figure 2: Time evolution of the mass-averaged cluster size py for (a)-(d) optical clusters
and (e)-(h) contact clusters at parameters €4 = 2.5 kg7, 0s¢ = 1.5 nm and four different
possible values of e noted above each panel. Each of the five independent runs under each
condition is shown in a different color. Black dashed lines correspond to the separate fits
to the independent runs, of the form ps(t) = pa(to) + kopt(t — to). Thick red dashed lines
correspond to the average fit. ¢y is specified as 264 us for optical clusters and 0 us for contact
clusters.
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particular, the linear growth kinetics are consistent with a size-independent kernel K; ; = K,
for which the analytical prediction of the Smoluchowski model for the mass-averaged cluster

size under arbitrary initial conditions is!38141,143

pa(t) = pa(to) + k(t —to), (5)

where p5(to) is the mass-averaged cluster size at ty, k = KM; = 2/t. is the lumped charac-
teristic coagulation rate constant incorporating the effect of concentration'#, M, is the total
concentration of monomers in the system, and t. is the characteristic coagulation time®38.
We superpose the best least squares fit of Eqn. 5 to the recorded mass averaged optical
and contact cluster size for the four selected parameter sets presented in Fig. 2 to illustrate
empirical estimation of k£ and ¢y from our data.

We present in Figs. 3 and 4 the best fit values of ko and keon at each of the 60 parameter
settings, and in Fig. 5 the ratio of these rates. We recall that our dual objectives are
maximization of kep (Fig. 3) and kopt/keon (Fig. 5). In performing the fits, we adopt t{™ = 0
us and tgpt = 264 us to reflect the presence of the initial transient in optical cluster formation.
The origin of this transient is the different length scales of aggregation (see also Section 3.2)
and the different ways in which optical clusters can form, either by initial collision of two
clusters in a manner that allows the A beads to immediately interact, or by rearrangement
of monomers within contact clusters to accommodate these cofacial interactions. There
is an initially rapid increase in optical cluster size due to rapid agglomeration of peptide
monomers from the monodisperse state into small contact clusters in which mutual core
alignment of monomers among small aggregates is relatively fast, and formation of optical
clusters proceeds by both collision and monomer rearrangement. This is succeeded by a
slower growth phase in which aggregation proceeds by the collision of larger aggregates. The
morphology of the small-scale aggregates controls the likelihood that there will be exposed

A beads, which in turns controls the likelihood that two colliding aggregates will interact via
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cofacial core—core interactions and form an optical cluster. Time scales for rearrangement of
monomers in these larger clusters is much longer than that for rearrangement in the smaller
clusters, so the slowdown in the growth rate occurs due to the fact that after a certain size,
optical clusters tend to form primarily through collision. This effect is responsible for the
slowdown at longer times of the initially rapid optical cluster formation rate. We previously
noted a similar effect that we ascribed to the decrease in optical cluster mobility and available
surface area with increasing size and charge, and which we modeled using a size-dependent

95,56 We were unable to reach long enough time and length

optical cluster growth rate
scales in our prior work to be able to decisively distinguish between a discrete change in
growth mechanism and a continuous one; here on time scales of hundreds of microseconds
we definitively show a clear convergence to linear growth after an initial transient. Contact
cluster formation, on the other hand, exhibits no initial transient since aggregation is largely

independent of the microscopic details of the cluster morphology, with cluster formation

simply requiring that any two beads in the clusters lie within the cutoff distance threshold.

3.1.2. Small esc promotes rapid optical cluster growth.

Inspection of Fig. 3 illustrates that the side chain interaction strength egc has the strongest
influence on the optical cluster growth rate. At fixed ogc and €4, reducing esc to make
the side chains less strongly interacting results in an increase of ko, and faster formation
of optical clusters. The increase in growth rate goes up significantly once eg¢ is lowered
beneath egp = 1 kgT. The most pronounced increase in assembly rate occurs upon lowering
esc from 0.9 kgT to 0.2 kgT', which results in an average 30-fold increase of kope per kgT',
compared to an average 5-fold increase per kgT for lowering egc from 2 kgT to 0.9 kgT and
from 6 kg7 to 2 kgT, and only an average 1.2-fold increase per kg1 for lowering esc from
10 kT to 6 kgT. Recalling that the interaction strength of the core (BB) beads is egp = 1
kT, this observation is consistent with a mechanism in which reducing the “stickiness” of the

side chains below that of the cores begins to promote well-aligned cluster assembly through
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Figure 3: Best fit rate constants ko for the formation of optical clusters as a function of
patchy particle model parameters esc and ogc at (a) €4 = 2.5 kgT, (b) €4 = 5.0 kgT,
and (c) €4 = 7.5 kgT. Mean values of k,p are calculated over five independent simulations
at each parameter setting and plotted on logarithmic axes to better illuminate the trends.
Relative standard errors in kop over the five runs are estimated as 6-133%.
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aggregation driven largely by core—core rather than core—side chain or side chain—side chain
interactions, such that further decreases in eg¢ are significantly more effective in increasing
optical cluster rate than those when esc > epp.

The influence of side chain diameter ogc on the growth rate is less pronounced. In a gross
sense, larger values of ogc tend to elevate ko, for esc < 0.9 kT but depress it for egc > 0.9
kgT. However, there is marked non-monotonicity in these trends, and there is evidence for
a weak maxima and minima of k.p as a function of og¢ for particular choices of {esc, €a}
pairs. This non-monotonic behavior may be understood as the competition of (at least)
two effects of increasing side chain diameter: (i) it increases the growth rate by increasing
monomer cross-section for productive associative collisions, but (ii) it reduces the range of
possible configurations accessible to optical clusters and hampers mutual rearrangements to
favor well-aligned core stacking through steric hindrances.

The effect of the cofacial interaction strength €4 is also relatively weak, having relatively
minor impact on the shape and vertical shift of the esc — og¢ surfaces presented in Fig.
3. The only exception to this trend occurs at egc = 0.2 kg1 and osc = 1.75 nm, where
dropping €4 from 7.5 kT to 2.5 kT induces a 5000% increase in ko from (2.0£0.5) x 1074
ns~! to (1.0£0.2) x 1072 ns~!. This indicates that in a regime where side chains are weakly
interacting and bulky, weaker cofacial interactions are important in promoting good core

alignment, likely due to allowing for easier configurational rearrangement.

3.1.3. Small esc and osc promote similar optical and contact cluster growth

rates.

Considering Fig. 5, similar trends emerge in the dependence of the optical to contact cluster
growth rate upon the model parameters. This parity can be understood because the param-
eters have a far stronger influence on the growth kinetics for optical clusters than contact
clusters, inducing kop to span a range of five orders of magnitude compared to only one for

keon (cf. Figs. 3 and 4). Once again, the side chain interaction strength has the strongest
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influence, with small values of e5c promoting commensurate growth rates of optical and con-
tact clusters such that kopt/kcon approaches unity. Smaller values of the side chain diameter
osc tend to promote similar optical and contact cluster growth rates, although this trend is
muted for egc = 0.2 kgT. The influence of the cofacial interaction strength e, is relatively
weak, except for — as was observed for the absolute optical cluster growth rate — egc = 0.2
kT and ogc = 1.75 nm, where dropping €4 from 7.5 kgT to 2.5 kgT induces a 5000%
increase in kopt/kcon from (1.6 £ 0.5) x 1072 to (8 £2) x 1071

3.2 Fractal dimension, linearity, and length scales of self-assembled

aggregates and networks

In addition to promoting rapid absolute and relative optical cluster growth, it is also desir-
able to increase the linearity of the self-assembled aggregates. Experimental measurements
demonstrate that increased fibril linearity can be correlated with improved optoelectronic

53,54

properties , so it is an additional objective for the assembly process that it result in close

to 1D supramolecular assemblies over large length scales.

3.2.1. Quantification of fractal dimensionality

We characterize the degree and length scales over which the peptides self-assemble into ap-
proximately linear aggregates as a function of the model parameters by calculating the fractal
dimension of the system 49159 We estimate the fractal dimension through a numerical ap-
proximation to the correlation integral,

. 9
Co) = Jim . ©)

where ¢ is the number of points separated by a distance less than 2 The correlation integral
grows with the fractal dimension D of a system as C(2) ~ ¢, providing a measure of how

the system fills space. We make a discrete approximation to the correlation integral of our
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system by using a Heaviside function H ®5150:151

N
1
Clo) " ——— H(2—rS°M), 7
i,j=1,i#]
where TZCjOM is the distance between the centers of mass of monomers ¢ and j. By computing

C'(2) at a number of time points over the final 600 us of each simulation trajectory, we verify
that the correlation integral is converged, and that the estimate from the terminal frame is

representative of the late-stage self-assembled morphology of the system.

3.2.2. Fractal dimension varies with length scale and model parameters

We present in Fig. 6 the correlation integrals computed from the terminal frame of the five
independent simulations conducted at each of 60 different parameter settings. Plotted on
log-log axes, the slope of a tangent line to the curve provides an estimate of the fractal
dimensionality D as a function of observation length scale 2. Collating the data from all
calculations makes it challenging to pick out any particular parameter set, but the intention
of this plot is to show the relative similarity of the trends in fractal dimension over the
wide range of parameters considered. Moreover, the data suggest a natural partitioning
of the correlation integral into four distinct regimes. Regimes I and IV have very simple
interpretations. Regime I (2 < 2.5 nm) is defined by half the linear extent of a single
peptide monomer, and the correlation integral, initially zero due to the excluded volume of
the peptides, exhibits a sharp jump. Regime IV (2 > 121.5 nm) exhibits a plateau in the
correlation integral due to the finite size of the simulation box.

Regime III (30.1 nm < 2 < 121.5 nm) corresponds to observations on the scale of tens
of peptide lengths, wherein data from all 60 different parameter sets collapse onto a single
curve with slope (2.15 £ 0.06). This observation reveals that the fractal dimension of the
self-assembled system at large length scales is insensitive to the particulars of the molecular

level chemistry, and the system forms a fractal network with dimensionality D;;; = (2.15 4+
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Figure 6: Log of the correlation integral C'(2) versus the log of the distance 2, which is de-
dimensionalized by an arbitrary factor z = 1 nm. Data are plotted for the terminal frame of
the five independent simulations conducted at each of the 60 parameter settings. The data
corresponding to each parameter setting are differentiated by color and all plotted together
to evince general trends. The dashed black vertical lines demarcate the four different regimes
[-IV of the correlation integral described in the text. The shaded red area delimits the range
of values over which Regime II is subdivided into Regimes II-A and II-B at each parameter
setting.
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0.06). Representative snapshots of this network are presented for selected parameter settings
in Fig. 7, revealing the hierarchical aggregation of elongated micelles and ribbons into a
branched porous network, the nodes of which are formed by the intersection of pseudo-
linear supramolecular aggregates. This network is consistent with experimental “matted
hair” morphologies of oligopeptide aggregates assembled under quiescent conditions in the
absence of aligning hydrodynamic flows that are observed on length scales of ~1 pm5%7.
The observation of this large-scale network under all parameter settings suggests that its
highly conserved formation arises from the intrinsic geometry of the peptide monomers. The
structure formed is not space filling due to an entropic and energetic preference for parallel
stacking: entropically, elongated rods tend to align to preserve translational entropy at the
cost of rotational ?""1%2153 and energetically there is a larger number of favorable interactions
available along their long axis. Assembly is anticipated to proceed under kinetic control
(Section 3.1), so it is expected that these aggregates are not thermodynamic minima but
rather morphological states that serve as dynamical attractors for the assembly kinetics of the
peptide family under conditions of rapid acidification, and which do not depend sensitively
on the chemical details of the oligopeptide monomers. The true thermodynamic minimum

is anticipated to be a crystal!33-13

, but more sophisticated free energy calculations would
be required to resolve this question and quantify the metastability of the observed fractal
aggregates %4,

Regime II (2.5 nm < 2< 30.1 nm) is defined on length scales of about one to ten of peptide
diameters and corresponds to the rough length scale of fibril width observed experimentally
(~10 nm)*537 The spread in the correlation integral curves within this region indicates
that the dimensionality of the self-assembled aggregates on these length scales is influenced
by the parameters esc, 0sc, and €. Further analysis shows that all curves within Regime II
are better modeled by a two-piece linear fit as opposed to a single linear regression as judged

by the Akaike Information Criterion!®®. This analysis reveals that Regime II may actually

be divided further into two sub-regions Regime II-A and II-B. We perform the two-piece
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Figure 7: Snapshots of the late-stage self-assembled morphologies for selected {esc, osc, €4}
parameter settings. Side chain (SC') beads are transparent and colored blue, non-cofacial
aromatic core (BB) beads are colored red, and cofacial aromatic core (A) beads are colored
green. At all parameter settings we observe the formation of a porous fractal network at
length scales exceeding ~30 nm. Each panel is labeled at the top with its {esc, 0sc,€a}
values. To provide a sense of scale, the red BB beads are shown with diameters of 1 nm
corresponding to the minimum of their LJ potential. Snapshots were rendered in VMD 4,
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fit and identify the optimal location for the crossover point using the L-method of Salvador
and Chan'®. The precise location of the crossover depends on the parameter set under
consideration, but falls within the range 5.0-12.3 nm as indicated by the red shading in Fig.
6.

Regime II-A (2.5 nm < 2 < 5.0-12.3 nm) spans length scales between about two and
ten core—core stacked peptides. Fig. 8 shows how D;;_4 varies as a function of the model
parameters, spanning a range of 1.4-1.9. As was the case for cluster growth rates, €4 has very
little influence upon the fractal dimensionality. This parameter governs the strength of the
cofacial interactions that, by construction, mediate parallel stacked linear aggregates, and so
this weak dependence is unsurprising. Conversely, the side chain parameters have a relatively
large influence upon dimensionality. Large esc promotes fractal dimensions approaching 2,
corresponding to micellar porous networks on a small scale (Fig. 7d,h), whereas small values
favor more linear aggregates with dimensionality closer to 1.5 (Fig. 7a-c), corresponding to
more core-interacting assemblages. For egc < 2 kgT', both sufficiently small and sufficiently
large values of g favor more linear aggregates, but small values of og¢ favor isolated
ribbon-like stacks (Fig. 7c), medium values of oge favor ribbon-like assemblies that stack
side to side (Fig. 7a), and large values of og¢ favor twisted one-dimensional fibrils (Fig. 7b).
Notably, there is a moderate anticorrelation between the fractal dimension in Regime II-A
and the optical cluster growth rate (ppearson = —0.47, p < 107°).

These observations may be understood as a transition between core-mediated (ribbon-
like) and side chain-mediated (porous micellar) interactions. When the side chains are suf-
ficiently sticky (that is when egc is large enough), core—core interactions are disfavored in
comparison to side chain interactions, leading to small core-stacked aggregates of approx-
imately two-three monomers interacting more promiscuously and forming porous micellar
structures, similar to the micelles identified by Vacha and Frenkel as one phase of a system

5

of spherocylindrical monomers with attractive end caps!!®. For side chains that are less

sticky, a sufficiently small og¢ lessens the likelihood of any side chain interactions, leading to
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lower-dimensional ribbon-like structures, similar to the parallel stacking identified by Vacha
and Frenkel as one phase of a system of spherocylindrical monomers without attractive end
caps''®. As ogc approaches opp, side chain interactions can lead to more interactions be-
tween ribbons, but a sufficiently large og¢ forces the formation of a twisting one-dimensional
structure instead of a flat ribbon, which does not interact easily in a flat stack-to-stack man-
ner (compare Fig. 7b with Fig. 7c¢), leading to a lowered dimensionality. The observed
anticorrelation of the growth rate of optical clusters with the dimension of the resulting ag-
gregates demonstrates that the final details of the aggregate structure are at least partially
mediated by the kinetics of aggregation, as has also been observed experimentally®*7,

Regime II-B (5.0-12.3 nm < 2 < 30.1 nm) spans length scales between about ten and
thirty core—core stacked monomers. These length scales are larger than the scale of local
packing but smaller than the scale of onset of the parameter-independent porous fractal net-
work. The dependence of D;;_p on the model parameters is illustrated in Fig. 9, spanning
a range of 0.9-1.8. The primary discriminant of the dimensionality of the supramolecular
aggregates over these length scales is the side chain diameter ogo, with small side chains
promoting lower-dimensional aggregates (Fig. 7a,c,f;h), and larger side chains favoring as-
semblies with D;;_p — 2 (Fig. 7b,e,g). There is a weak minimum observed for esc = 2 kT,
which becomes mildly less pronounced as €4 increases. Notably, there is a relatively strong
correlation between the fractal dimension in Regime II-B and the contact cluster growth rate
(Pearson correlation coefficient ppearson = 0.82, p < 10_6).

Regime II-B comprises the length scale of transition between the scale of lower-dimensional
packing and the scale of the two-dimensional porous network. Systems that grow more slowly
are somewhat disconnected on this length scale (cf. Fig. 7a,c) and their dimension is lower
because of the gaps in the self-assembled network. Increasing the side chain radius increases
the growth rate and D;;_p approaches 2 as it increases the size and collisional cross section
of the monomers. The mild decrease observed with decreasing egc corresponds to a mild

decrease in the probability of a productive collision for the more side chain-mediated growth
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Figure 8: Fractal dimension within Regime II-A as a function of model parameters egc and
osc for (a) ea = 2.5 kgT, (b) €4 = 5.0 kT, and (c) €4 = 7.5 kgT. Uncertainties in the
calculated dimensionality Dya are estimated over the terminal frames extracted from five
independent simulations.
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that occurs when egc > egg. The mild increase observed with decreasing egc further is

attributable to lowering side chain disruptions to primarily core-mediated growth.

3.2.3. The patchy particle model successfully recapitulates properties predicted

by the Martini model and measured by experiment

Our model successfully captures aspects of peptide self-assembly previously reported in both
experimental and computational studies. Experimentally, the DXXX-OPV3-XXXD and
similar systems have been shown to robustly form porous networks of fibrils with widths
on the order of tens of nanometers on scales of hundreds of nanometers?*34+%37  with the
precise morphology controlled by both peptide chemistry?* and assembly conditions®*™. In
good agreement with these experimental observations, we observe the robust formation of
porous, branched networks with fractal dimension D =~ 2 on the order of tens to hundreds
of nanometers, and fibril widths on the order of ten nanometers.

The fractal dimension and specific morphologies of these aggregates on shorter length
scales is controlled by the specific interactions of the cores and side chains. Prior compu-
tational work employing the Martini model that lumps approximately four atoms into each
coarse-grained bead showed that the DFAG-OPV3-GAFD system forms amorphous aggre-
gates with dimension ~1.5 on length scales of tens of nanometers and that there is a hierarchy
of optical and contact clusters®. The results from the present patchy particle model are in
good agreement with these observations, predicting the same hierarchy of optical and contact
clusters and the formation of aggregates with fractal dimensionality on these length scales of
0.9-1.9 depending on the precise choice of parameters. The patchy particle model was not

parameterized against these higher-resolution simulation results, and the good agreement

with the more detailed model provides a validation of its predictive power.
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Figure 9: Fractal dimension within Regime II-B as a function of model parameters egc and
osc for (a) ea = 2.5 kgT, (b) €4 = 5.0 kT, and (c) €4 = 7.5 kgT. Uncertainties in the
calculated dimensionality Dy are estimated over the terminal frames extracted from five
independent simulations.
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3.3 Pareto optimization of relative optical cluster growth rate and

supramolecular linearity

3.3.1. Identification of Pareto frontier

Having determined the kinetic and morphological properties of assembly under different
parameter choices, we now seek to identify the parameter set that (i) maximizes the relative
rate of optical to contact cluster growth kopt/keon to assure the formation of large optical
aggregates, and (ii) minimizes the fractal dimension in Regime II-A D;;_ 4 to produce linear
fibrils on ~10 nm length scales that are expected to exhibit good electronic and optical
properties due to core—core 7 stacking. We engage this multi-objective optimization problem
by identifying the Pareto frontier within the ensemble of 60 parameter settings explored
(Table 1). A point is defined to reside on the Pareto frontier if no other point in the ensemble
is superior in all components of the objective function!®”. In the present case, Pareto optimal
parameter sets {€sc, 0sc, €4} are those for which no other parameter set produces both larger
Kopt/kcon and smaller Dy 4. Pareto frontier points are optimal in the respect that improving
any one component of the objective function necessitates a degradation in another. The
relative importance of the various components of the objective function may be weighted to
ultimately prefer one Pareto optimal point over another.

We present in Fig. 10a a kopt/kcon—Dr1—a scatter plot for the 60 {esc, osc, €4} parameter
sets. The plot reveals relative growth rate and fibril fractal dimensionality are negatively
correlated, possessing a Pearson correlation coefficient of p(kopt/kcon, Dir—a) = —0.52 (p <
1075). This connection between kinetics and morphology can be understood as similar optical
and contact cluster growth rates producing aggregates with well-aligned aromatic cores that
promote linear growth. The Pareto frontier comprises only two points P, and P, but four
additional points £ P,—FE P, are Pareto proximate in that they have errorbars that overlap
with those of either P, or P,. We identify the particular parameter sets corresponding to

these six points in Fig. 10b. The Pareto optimal and Pareto proximate points all possess the
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smallest values of egc = 0.2 kT studied in this work, but a wide range of og¢ and €4 values.
The optimality of small side chain interaction strength g may have been anticipated from
Figs. 5 and 8 where small eg¢ led to elevated relative optical to contact growth rates and
more linear aggregates within Regime II-A. Coloring the scatter plot by egc in Fig. 10c
clearly illustrates this trend, with increasing egc away from the Pareto frontier. The side
chain size ogc has a non-monotonic influence on the relative optical cluster growth rate
(Fig. 5) and fractal dimension (Fig. 8) at es¢ = 0.2 kgT'. Coloring the scatter plot by og¢
in Fig. 10d fails to resolve any clear trends in this parameter with respect to proximity to
the Pareto frontier. As noted previously, €4 has a weak effect on both the relative growth
rate and fractal dimensionality, and the scatter plot colored by this model parameter in Fig.
10e fails to show any clear dependency in either component of the objective function.

In sum, the Pareto analysis reveals good regions of parameter space and also provides new
understanding of the important determinants of assembly: egc should be tuned to a small
value, the precise value of €4 is unimportant over the range considered, and the dependence
on ogc is relatively complex and non-monotonic. We also note that all Pareto optimal
candidates possess esc = 0.2 kgT' at the lowest end of the range considered in this work.
Although this range was defined by physically motivated concerns (Section 2.1.1), the results
of our analysis suggest that it would likely be worthwhile to extend our investigation to even

smaller values of the side chain well depth, and even explore weakly repulsive interactions.

3.3.2. Identification of optimal peptide chemistries

The Pareto analysis identified six patchy particle parameter combinations that produced
desirable assembly behaviors. To translate this analysis to peptide design, we now proceed
to identify particular oligopeptide chemistries consistent with these parameter sets. Our
results have shown €4 to have a rather weak influence on relative growth rate kopt/kcon (Fig.
5) and fractal dimension D;;_4 (Fig. 8), so we instead focus on tuning esc and ogc. Since

the patchy particle model was parameterized for an oligo(p-phenylenevinylene)3 (OPV3)
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aromatic core, we can consider the design procedure to be the identification of optimal
peptide wings for a DXXX-OPV3-XXXD molecule. We perform the reverse mapping of the
patchy particle parameters egc and ogc using the techniques detailed in Section 2.1.2: og¢
is estimated from the sums of the SASAs for individual amino acid residues, and eg¢ for a
particular peptide wing sequence is computed from our previously published QSPR model*2.

The QSPR model was developed for peptide wings containing the ten nonpolar amino
acid residues at the low pH (pH < 1) at which assembly proceeds: Ala, Gly, Glu, Ile,
Leu, Met, Phe, Trp, Tyr, and Val (Asp residues are excluded as these are reserved to
serve as the C-terminal triggers for pH-mediated assembly)4?. We present in Fig. 11 a egc-
osc scatter plot for the 10 = 1000 nonpolar oligopeptide side chain chemistries for which
estimates of dimerization free energies are available from the QSPR model (grey crosses).
Each point possesses an estimated uncertainty of 3 kg7 in egc arising from the QSPR

1#2 and uncertainties in ogc propagated from the SASA calculations. We superpose

mode
onto this plot the three egc-ogc values — (esc,05¢) = { (0.2 kgT, 1.25 nm), (0.2 kgT,
1.5 nm), (0.2 kg7, 1.75 nm)}— corresponding to the set of two Pareto optimal and four
Pareto proximate parameter sets identified from the patchy particle model parameter scan
(green crosses). Reverse mapping these optimal parameter sets to particular oligopeptide
chemistries is performed by identifying those chemistries for which a Pareto optimal point
lies within their error bars. This procedure identifies five particular DXXX-OPV3-XXXD
oligopeptide sequences with XXX = {GAG, GGA, GGG, FMI, MFI}. Three oligopeptide
chemistries with small amino acids in the peptide wings - GAG, GGA, and GGG — fall near
the (esc,05¢) = (0.2 kT, 1.25 nm) Pareto point at the lower edge of physically realizable
peptide wing volumes. Two chemistries with somewhat bulkier wings — FMI and MFI — lie
near the (esc,05¢) = (0.2 kgT', 1.5 nm) point. No chemistries lie near the (esc,05¢) = (0.2
kT, 1.75 nm) point due to the absence of physically realizable peptide sequences with such

large volumes.

This analysis has served to map the regions of optimal parameter space identified in the
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Figure 11: Scatter plot of egc-05¢ for 1000 nonpolar DXXX-OPV3-XXXD molecules (grey
crosses) superposed with the locations of the Pareto optimal and Pareto proximal points
defined by the patchy particle parameter sweep (green crosses). Error bars of +3 kgT in esc
result from estimated uncertainties in the QSPR model predictions*?, and error bars in og¢
are propagated from uncertainties in the SASA calculations. Five candidates are identified
for which a Pareto point lies within their error bars providing a reverse mapping from optimal
parameter sets identified in the patchy particle model to particular oligopeptide sequences
for future computational or experimental testing.

42



large-scale patchy particle simulations to particular oligopeptide chemistries that are pre-
dicted to possess favorable self-assembly behaviors. The value of the coarse-grained screen-
ing and reverse mapping procedure is in presenting an efficient means to direct the search
of chemical space towards promising oligopeptide chemistries. In particular, we have identi-
fied five candidates for future computational and experimental testing within the 203=8000
members of the DXXX-OPV3-XXXD family. Of these candidates, DGAG-OPV3-GAGD has
been previously studied and shown to possess desirable optoelectronic properties?*. The in-
corporation of Phe residues has been shown to improve aggregation!®®, and while many such

15,35,41,55,58  peither

chemistries have been studied both computationally and experimentally
DFMI nor DMFT has previously been considered. The computational screening and design
protocol based on our coarse-grained patchy particle model has therefore identified previ-
ously studied oligopeptide chemistries known to possess desirable optoelectronic properties

and which were designed based on chemist’s intuition, and has also predicted new, and

possibly unexpected, promising regions of oligopeptide sequence space.

4. CONCLUSIONS

Inspired by the work of Sari¢ et al.883 and Zhang et al.®6, we have developed a patchy
particle model of the DXXX-II-XXXD system of optoelectronic self-assembling peptides.
Through simplification of the atomistic details and the use of high-performance cyber in-
frastructure, we were able to directly simulate the self-assembly of ten thousand monomers
over hundreds of nanometers and hundreds of microseconds, while still preserving the salient
features of the DXXX-II-XXXD system. The morphological predictions of the patchy model
are consistent with experimental measurements and prior molecular simulations employing
a higher resolution model, but the model enables access to very long time and length scales
with near molecular-level resolution. Furthermore, the inexpensive computational cost of the
model enables us to screen over a large parameter space of intermolecular interactions to effi-

ciently identify the important physico-chemical determinants of good assembly behavior and
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promising parameter regimes for more detailed computational or experimental investigation.

Our model provides new molecular-level understanding of the key determinants of DXXX-
[I-XXXD self-assembly. Decreasing the peptide wing well depth egc below the well depth
of the non-cofacial interactions of aromatic cores egp leads to significant increase in both
absolute and relative contact cluster growth. The strongest determinant of contact cluster
growth rate is the excluded volume of the peptide wings, with increasing ogc corresponding
to an increase in the collisional cross section and hence an increase in the overall growth
rate. For sufficiently weakly interacting peptide wings, both increasing and decreasing the
excluded volume of the wing leads to the formation of linear aggregates with different mi-
croscopic morphologies (flat ribbon versus twisted fibril). The small-scale dimensions of
aggregates at all parameter sets are correlated with their respective optical cluster growth
rates, demonstrating the important connection between kinetics and morphology. On length
scales exceeding ~30 nm, we observe the the formation of an approximately two-dimensional
porous network, the dimensionality of which is insensitive to the particular choice of param-
eters. The assembly rates and resultant morphologies are very weakly dependent on the
interaction strength of the parallel stacked interactions €4 over the range of 2.5-7.5 kgT' at
T = 298 K.

We performed a Pareto optimization in the relative rate of optical to contact cluster
growth kopt/keon and fractal dimension D;;_4 of the aggregates over ~2.5-12 nm length
scales, in order to identify {esc, 050, €4} parameter sets that produced large, linear optical
clusters with good core—core alignment that are expected to possess desirable optical and
electronic properties. We identified six optimal candidates and interrogated these results to
derive insights into the important determinants of aggregation. We found that small eg¢
values favor good assembly behavior, suggesting that minimizing the interaction strength
of the peptide wings — or even exploring weakly repulsive peptide wings — may serve as a
precept for rational oligopeptide design. We also uncovered a complex and non-monotonic

dependence of assembly quality upon ogc that is worthy of further study, and an almost
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complete insensitivity to €4. By mapping the Pareto optimal patchy particle models to
sequence-defined oligopeptides, we identified five DXXX-OPV3-XXXD chemistries for future
computational and experimental study.

Our results also suggest a number of follow-up investigations. First, the Pareto frontier
defines a tighter region of esc — o05c — €4 parameter space for more detailed exploration by
our patchy particle model. Second, we propose using the five chemistries identified as lying
near the Pareto frontier as the starting points for an active learning procedure conducted
using higher resolution bead-level models to further refine a pool of candidates for all-atom
simulation or experimental testing*® 6. Third, we propose to perform simulations of aggre-
gation using our patchy particle model under non-equilibrium flow®#¢. These calculations
would allow us to access the length and time scales upon which flow is predicted to have an
important influence on aggregation, permit direct comparisons of the observed morphologies
with experiment, furnish molecular-level understanding of the coupling between flow and
chemistry upon assembly, and perhaps provide new precepts by which to design optimal
flow fields.

Overall, this work has explored the interactions of the DXXX-II-XXXD system at the
mesoscale to provide new fundamental understanding of the important molecular determi-
nants of assembly behavior, permit rapid screening over molecular parameter space, and
identify good parameter regimes favoring assembly of large, linear optical clusters with well-
aligned cores. It provides new rational design principles by which to rationally engineer
self-assembling oligopeptides to fabricate supramolecular assemblies for bioelectronic appli-
cations, and establishes a new coarse level within a hierarchy of molecular models of varying

resolution with which to characterize and engineer these molecules.
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