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Abstract. An explicit spectrally accurate order-adaptive Hermite-Taylor method for
the Schrodinger equation is developed. Numerical experiments illustrating the prop-
erties of the method are presented. The method, which is able to use very coarse grids
while still retaining high accuracy, compares favorably to an existing exponential inte-
grator - high order summation-by-parts finite difference method.

1 Introduction

The quantum state of a physical system is described by the time dependent Schrodinger
equation, which can only be solved exactly in very simplified settings. For many realis-
tic problems the only alternative is to find approximate solutions by numerical methods.
Challenges in designing numerical methods for the Schrodinger equation include: the
exponential growth of the computational work with dimensionality, accurate propaga-
tion of dispersive waves and the parabolic-type time step constraint resulting form the
second derivative.

For high-dimensional problems the computational cost associated with the high di-
mensionality can be reduced by the use of adaptive methods, especially if the solution
is localized in space. To capture the dispersive properties of the solution high order ac-
curate methods are preferred, in particular the Fourier pseudospectral method has been
commonly used for the spatial discretization of the Schrodinger equation. Fourier based
methods are spectrally accurate and capture the dispersion relation correctly, but the
approximation is global making adaptive implementations all but impossible. Alterna-
tively, high order finite difference methods, [13], which has the advantage of locality can
be used. Even though high order of accuracy is easily attained in the interior of the com-
putational domain, near the boundaries lower order accurate stencils are typically used to
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maintain stability. Other “method-of-lines” methods used to discretize the Schrodinger
equation in space include the finite element method [9] and the Galerkin radial basis
function method [10].

For most method-of-lines discretizations the parabolic time step restriction rules out
the use of traditional explicit single-step and multi-step methods. Implicit single-step
and multi-step methods can overcome the parabolic time step restriction but at the (often
prohibitive) cost of having to solve linear systems of equations. As the equations are
linear the semi-discretization takes the form of a system of first order linear ODE, u;=Au,
and the solution can be evolved exactly by exponentiating the matrix A. This approach
is attractive as it is explicit but, being exact, does not suffer from the time step constraint.
The cost of computing the matrix exponential is however large and often such this type of
exponential integrator method is combined with Krylov subspace methods to accelerate
the computation of matrix exponential-vector products.

Aside from the absence of having to solve a large system of linear equations, required
by most implicit methods, a main advantage of an explicit method is the ease of paral-
lelization. However as previously eluded to, in order for an explicit method to be com-
petitive it must be able to use very large cells or elements so that the parabolic time step
constraint At<Ch?, with I being a typical element size, is not overly restrictive. Local and
spectrally accurate polynomial based methods such as spectral elements, discontinuous
Galerkin or Hermite-Taylor methods, which are able to increase the size of the elements
while increasing the polynomial degree to keep the accuracy constant, have the potential
to operate in this regime. Here we develop an explicit method based on Hermite inter-
polation in space and evolution in time via Taylor series. This Hermite-Taylor method
is spectrally accurate in space and time and, as we will show, is highly accurate on very
coarse grids and with large time steps.

Hermite-Taylor methods were introduced by Hagstrom and coauthors in [5] and has
since been used to solve different hyperbolic problems, see for example [1,4] for some
applications and [6] for a recent review. One of the most important features of Hermite-
Taylor methods for hyperbolic problems is the ability to march the solution with a time
step as large as allowed by the domain of dependence of the continuous problem. This
is in stark contrast to most other polynomial based methods for hyperbolic problems,
like spectral elements or discontinuous Galerkin methods. For these latter methods the
time step has to be reduced by a factor of n? (n being the degree of the approximating
polynomial) when a time- stepper with fixed order is used, and with a factor n when the
order of the time-stepper is matched with the degree of the polynomials. This remarkable
property of Hermite methods is rooted in the fact that Hermite methods only sample the
derivatives of the polynomials at the cell center where the derivative scales linearly with
the degree n of the polynomial while it scales as n? at the edges of the cell.

The situation is even worse for higher derivatives, for example the rth derivative of a



Chebyshev polynomial evaluated at the endpoints is

ar _ n+ry_1 nz _k2
fe = T

For r =2, relevant in the present context, we get ]dd—;Tn(i)] ~n*, to be compared to

]dd—;Tn (0)| ~n?, at the cell center. Thus, our method has the potential to take n? times
larger time steps than explicitly time-stepped spectral elements or discontinuous Galerkin
methods. Below we will use polynomials of degree as high as 33 where the gain in effi-
ciency could be as large as three orders of magnitude.

The rest of the paper is organized as follows. In Section 2 we describe the spatial
discretization by Hermite interpolation and the time evolution of the approximation via
Taylor time series. We also discuss how to handle boundary conditions and variable
coefficients, and how to incorporate order adaptivity. In Section 3 we present numer-
ical experiments. We begin by illustrating the time-stepping properties of the method
and demonstrate its accuracy, especially on coarse grids. We then compare the methods
efficiency with a high order summation-by-parts discretization evolved using an expo-
nential integrator relying on a Lanczos procedure. We also demonstrate the performance
of our order-adaptive method and present experiments in two dimensions. Section 4
summarizes the paper and presents possible extensions of the method.

2 Description of the method

In this paper we are concerned with finding approximate solutions to the Schrodinger
equation, which in one dimension and for a single particle of mass M in a potential V(x)
can be written as
Z.hau(x,t) _ _h_282u(x,t)
ot 2M  0x?
u(x,0) =up(x).

Here the constant 1 is the reduced Planck’s constant. After standard non-dimensionalization
we can reformulate (2.1) into

ou(x,t) 0%u(x,t)
I = tV(u(xt), t>0, xsx<x. (2.2)

To discretize equation (2.2) we introduce two Cartesian grids, a primal grid

+V(X>M(x/t); t>0, x;<x<x, 2.1)

xj=x;+jhy, j=0,...,Ny, (2.3)

and a dual grid

—_

) o1
x]-:x1+]hx, ]:E""'NX_E' (2.4)



where

We begin by approximating the solution u(x,t) around each primal grid point, (x,t)=
(xj,tx), by a degree m polynomial

pi(x,ta) =Y ciolxj] (x—x;)". (2.5)
1=0

The degrees of freedom in the method are thus the (m+1) x (Ny+1) coefficients
clo[x]-], 1=0,...,m, j=0,...,Ny. (2.6)

However, as the approximation is a truncated Taylor series expansion we also have the
following relation between the coefficients cjo[x;] and the solution u and its spatial deriva-
tives at x;

olu(x; t
clo[xj]%%%, 1=0,...,m. (2.7)
Thus, the degrees of freedom in a Hermite method can also be thought of as the solution
and its m first (scaled) derivatives at a grid point.

At the start of the computation we find the coefficients (2.6) from the initial data,
either by symbolically computing the derivatives of the initial data or by some sufficiently
accurate approximation (for example by standard interpolation).

At a first glance it may appear cumbersome to compute higher order derivatives of
the initial data, however for most known functions? it is possible to find stable and con-
cise recursion relations for the derivatives. For example the Gaussian f(x) =exp(—cx?)
has the recursion

f(x)=f(x), dj;(;) = —20xf(x), 2.8)
+1 iy
%:—2‘7<x%+@—0%>, p=12,... (2.9)

2.1 Hermite interpolation

With the coefficients (2.7) known we use the approximate solutions from two adjacent
grid points x; and x;j41 to construct the unique Hermite interpolating polynomial cen-
tered at the dual node x;, 1 /5. Precisely, we find the degree 2m+1 polynomial

2m+1

pis2(Xtn) =Y colxjia] (x—xj5172)", (2.10)
1=0

TThe fact is that most known functions were actually introduced as solutions to special ODE. Trigonometric
functions, Bessel functions and exponentials are some examples.



which satisfies the 2m+-2 interpolation conditions

dlijrl/Z(xVItﬂ) _ dlpr(xr/tn)

dx! dx!
Forming (2.10) is equivalent to the one-to-one mapping of the coefficients from the
polynomials at x; and x;,1 into the 2m+2 coefficients in (2.10). Algorithmically this is
done either by assembling the coefficients on the primal grid points into a column vector

, r={j,j+1}, 1=0,...,m. (2.11)

Coo [x]‘]
c10[x;],

c=| cmolxj] |,
coo [xj+1]

| Cm0 [xj—i-l] i

which is multiplied with a pre-computed (2m+2) x (2m+2) matrix, yielding the coeffi-
cients of (2.10). Alternatively, we first form a generalized Newton table where the co-
efficients of the Newton form of the Hermite interpolating polynomial can be obtained
from the diagonal of the table. Then we use a fast dual-Vandermonde solve to find the
coefficients for the Taylor form used above (see [6] for details).

2.2 Time evolution

The polynomial (2.10) is the spatial approximation which will be evolved in time using
the governing PDE. We start by expanding p;;1/2(x,t,) in time by a Taylor series (the
upper limit g(m,l) in the second sum is dictated by accuracy requirements discussed
below)

2m+14(m,l)

Piiay2(xt)= Yo ) aslxjiag) (X—xj+1/2)l(t—tn)s- (2.12)
=0 s=0

The approximation on the dual grid at the next half time step will simply be (2.12)
evaluated at (xj41/2,t,41/2). That is:

q-! At 1 0'u(x; t
= o) 2.13)

cis[xXjr12] (=)~
S;) St 2 ox!

Note that we only keep the m+-1 first coefficients as the next half time step will proceed
analogously to the first half step and we thus only need m derivatives (or equivalently
m+1 coefficients).

However, before (2.12) can be evaluated the coefficients in the expansion (we cur-
rently only know the s =0 terms from the initial data) must be found. To find these we
will use the governing PDE.



To see how the coefficients cj;, with s >0 can be related to ¢y by using the PDE we
first consider the special case V(x) =0. For this case the PDE is reduced to

ou(x,t) _iE)Zu(x,t)
o ox
Now, assuming that the solution is smooth enough, we take time and space derivatives
of the equation and replace u(x,t) by Pl /2(x,t), obtaining

(2.14)

ar+1+k ar+k+2

mpﬁl/z(xft) =is Pi2(xt). (2.15)
Evaluating this equation at (x;;1/2,,) We obtain (suppressing [x;1,2])
(s+ 1)1ty g =is! (I42)c1p05- (2.16)

After some rearrangements and shifting of the s index, the recursion takes the simple

form

14+2)(1+1
clls:i%clﬂls_l, 1=0,...2m+1, s=1,...,q(m,I). (2.17)

When V(x) #0 the recursion becomes slightly more involved. Here we assume that
the potential has been expanded as a local degree 2m+1 polynomial around each grid
point. Then the equation contains a product of two polynomials and the recursion be-
comes

(1+2)(1+1 S
Cls:zmsﬁclﬂs_l—zw—b%s1, [=0,....2m+1, s=1,...,q(m1).  (2.18)
i=0

Here the notation "
1 9FQ
(k1] =27 =
Q)= i ka1
is used for scaled derivatives.
To understand how the product, V(x)u(x,t), is computed in our implementation it is
useful to recall that V(x) and u(x,t) are approximated by two polynomials, say

2m+1

qv(x)= Y di(x—xj112)’
=0
and
2m+1 :
p(xt)=Y alt)(x—xj41/2)"
=0

Here we keep the approximation semi-discrete for brevity. We momentarily ignore the
Uy term, so the equation becomes

up=—iV(x)u(x,t). (2.19)



Replacing u and V by their approximations and taking spatial derivatives of the equation
yields

ak 2m+1 ak 2m+1 2m+1

pys ) cf(t)(x—xjﬂ/z)l:—iw ) dl(x—x]-H/Z)Z ) cl(t)(x—x]-H/Z)l . (220)
1=0 1=0 1=0

Now, if we denote by gy, the degree 2m+-1 truncated polynomial

2m+1

qva(x:t) =T*"(qv (x)p(x)) = l;) bi(t) (x=j41/2)'s

and evaluate (2.20) at x=x;,1/2 we find
e (£)=be(t), k=0,...,2m+1.

Thus, with the V(x)u(x) term we may first find all I coefficients for s=1 by performing a
truncated multiplication of two polynomials. Then for higher s we may differentiate the
above equation and repeat the procedure.

2.2.1 Truncation of the time-Taylor series

Having discussed the recursion relations for the coefficients in the space-time polynomial
(2.12) we now consider the truncation g(m,1) of its temporal expansion.

The truncation error of the approximation (2.12) in (x,t) € [x},Xj41] X [tn,tn41/2] will be
bounded by

1 (2,8) = Py 2 (3,8) [|loo < C (h&z’”“)“mﬂmimﬂﬂl+...+hAtq<mr0>+l) : (2.21)

Anticipating a parabolic stability restriction At < C(m)h2 we thus choose
gim,l)=m—|[1/2], (2.22)

resulting in a local truncation error of order h2"+2. As we are time-stepping the solution
in an explicit fashion we will need to take N; ~ hl—z time steps resulting in a global error of

order h2™. We note that in the absence of a potential the temporal Taylor series truncates
with the choice g(m,l)=m—[1/2].

2.2.2 Completion of a full time step

As mentioned above, once the coefficients have been computed the solution at the dual
grid point x =x;,1,> can be obtained at t =t,,1/, from (2.13). With m+1 coefficients
known on the dual grid, the same procedure is carried out for the solution at all dual
grid points to produce the solution at the primal grid points at the next half time step
t=t,11. This concludes a full time step.



Remark 1. Note that the evolution process is purely local on each element and thus al-
lows for straightforward implementation on a parallel computer. Also, the storage re-
quirements are optimal as only a single local copy of the (2m+2) xq doubles ¢y is re-
quired. Comparing with a g-stage Runge-Kutta - “method of lines” method, the memory
savings is at least a factor of g.

2.3 Boundary conditions

As half of the degrees of freedom on the cell next to the boundary located on the bound-
ary we must provide m+1 boundary conditions to fully specify the Hermite interpolant
in that cell. The “extra” m boundary conditions are typically derived by using the PDE
and tangential derivatives of the PDE together with the boundary condition. However
if the boundary is curved or if the boundary conditions are complex this may be rather
involved and the use of a hybrid discontinuous Galerkin-Hermite approach, as described
for Maxwell’s equations in [4], can be used.

In this work we limit ourselves to periodic and homogenous Dirichlet boundary con-
ditions. The latter is often used in situations where the solution is guided by a poten-
tial, resulting in the solution being very small at the edge of the computational domain.
In such situations we can simply set the solution and all the derivatives to zero at the
boundary. For situations when the solution is not small but the boundary is planar we
may simply use an image principle to construct the interpolant satisfying the boundary
conditions and the PDE at the boundary, see also [6].

24 Adaptive implementation

As was shown for hyperbolic problems by Chen and Hagstrom, [3], Hermite methods are
well suited for order or p-adaptive implementations. In this section we describe how the
p-adaptive method by Chen and Hagstrom can be applied to the Schrodinger equation.

The modification to the basic Hermite-Taylor method is minimal due to the locality of
the method. As before we consider the approximation of the solution u around some grid
point x; to be a polynomial of degree m;, but we now allow for the degree to change be-
tween grid points. The time-evolution starts by forming the interpolant centered around
a dual grid point x;,1/2. Now, the highest possible degree this interpolant can have is
mj+mj,1+1 but as in [3] we find that the method is more robust if we use the degree
i =min(m;,m;1) polynomials at x; and x;;1 to construct the interpolant at x; 1.

Once the coefficients in the Taylor series has been computed using one of the recur-
sions (2.17), (2.18) the order adaptive step amounts to deciding a suitable value for the
degree of the new data at (xjH /2,tn41/2). Assuming a tolerance TOL is required we then
truncate at the smallest 1, 1 /> that satisfies

1
max —'
l>mj+1/2 l .

o't (xj11/2,tus1/2)
ox!

<TOL, (2.23)




and is less than or equal to some upper a-priori bound on the maximal degree.

2.5 Multiple dimensions

The extension to multiple dimensions is straightforward. In two dimensions, we again
introduce a primal

xj:x1+jhx, jZO,...,Nx, yj:yl+jhy/ jZO,...,Ny, (2.24)
and a dual grid
. o1 1 . o1 1
xj:xl+]hx, ]:EIMINX_E' y,:yzﬂhy, ]:E;---;Ny—iz (2.25)
where

Xr— X Yr—yi
h —= P h = .
N YN,

The approximation on each primal node now consists of a tensor product polynomial

m m
P]‘,k(x/y;tn) = Z Z Clx,ly,O [xj/yk] (x - xj)lx (y_yk)ly/
1,=01,=0
which together with the data at the other three corners of a cell can be combined into a
Hermite interpolant centered at the dual grid point
2m~+12m+1
Pitlp+l (XY, tn) = IZO IZO Cly 1,0 [xj+%/yk+%] (x—x]ur%)lx (y_ykJr% )ly-
x=0 ly=
Algorithmically, forming the above Hermite interpolant is done by repeated use of the
one-dimensional mapping, say in the y-direction, for the function and all the x-derivatives
at two grid points (x;,yx) and (x;,yx+1) and (separately) at the two grid points (x;;1,Yx)
and (x;11,Yx+1). The result is two polynomials of degree 2m+1 in y and m in x centered at
(X, Yy %) and (Xj11,Y, 1 ). These are again mapped with the one-dimensional procedure
into the the above Hermite interpolant.

As in the one dimensional case the time evolution is performed by Taylor series ap-
proximation where the higher order time derivatives are found from differentiation of
the PDE. For example the PDE

U= Z.(Mxx +uyy)/
would yield the following recursion for the coefficients

L (L42) (41 L42)(1,+1)
Clyl,s =1 <wclﬁ-2,lws—l+(y+clx,ly+2,s—l : (2.26)

Generalizations to higher dimensions would be analogous.

The adaptive method is also easily extended. Denote the number of derivatives in the
x and y direction at a point (x;,yx) by m, j; and m, ;. The mappings in the y-direction is
then performed using 7, = min(m,jx,m, ;41) and 1, =min(m, ;1 kM, ;11 k+1) and the
final mapping in the x-direction is performed using 17 =min (771,17, ), for details see [3].
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3 Experiments

This section presents experiments illustrating the properties of the method. We begin
by considering how the maximum allowable time step depends on the degree of the
polynomials used in the approximations.

3.1 Time step restrictions

To determine how the order of accuracy of the method impacts the time step we consider

Ur=ilyy, £>0, —10<x<10, (3.1)

with periodic boundary conditions.

10° :
——N:=20
-0 N, =40

107

©
10—10
10—15
0 5 10 15 20 25

Figure 1: To the left: Distance between the unit circle and the eigenvalue with largest magnitude as a function
of m. The label indicates the method and the number of grid-points used, e.g. M10 refers to direct mapping

with Ny =10. To the right: The largest value of mAt/h%, resulting in a stable method, as a function of m.

Let U(t) be a vector containing all the degrees of freedom in the Hermite-Taylor
method for the above equation. Then the solution after a full time step is U(f+At) =
AU(t) where A is a square matrix} with the number of rows and columns equaling the
number of degrees of freedom. In order for the method to be stable we require that the
time step is small enough so that all the eigenvalues of A lie inside the unit disc. With
the right hand side being a second derivative and with an explicit time integrator it is
reasonable to assume a time step restriction on the form

At<C(m)h2.

Before investigating how C(m) depends on m we first consider the influence of the
numerical conditioning of the interpolation process itself and how it depends on m. To

$The matrix is easily constructed one column at a time by taking one time step with unit vectors correspond-
ing to the degrees of freedom as initial data.
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do this we pick a very small C =107 and compute the eigenvalues of A. With such a
small C the method will be stable in exact arithmetic but due to finite precision effects
the matrix A may still have a spectral radius, p(A), larger than one. We thus discretize
(3.1) using m=1,...,25 and set g =m. For each discretization we compute the quantity
k=|1—p(A)|. Figure 1 displays the results for the two different interpolation approaches
and for two different number of grid points, N, =20,40.

As can be seen in the figure, the direct mapping approach is slightly better than the
Newton approach but the conditioning for both approaches is independent of the num-
ber of grid points used. The independence of the discretization size is not unexpected as
the interpolation is purely local on one cell at a time and is performed on a scaled interval
z=(x—Xjy1/2)/hx €[~1/2,1/2].

Next we find C(m) by performing a bisection search using the criterion x < 1+108
to distinguish between a stable and unstable time step. Based on the conditioning of the
interpolation we only consider m=1,...,16. In Figure 1 we display mAt/h2 for three dif-
ferent grid spacings, Ny =20,40,60. As can be seen the choice C(m)=0.1/m will give a
stable method for this problem. This scaling is in line with the discussion in the introduc-
tion.

Of course, if the governing equation contains a potential it may be that the scaling
constant needs to be adjusted somewhat, but as we will see below the adjustments appear
to be small for the problems we have considered.

3.2 Evolution of a free particle
In this section we consider the evolution of a free particle and solve

Ur=TUyy, >0, x<x<x, (3.2)

with initial data ,

u(x,0) = (cos(kox)+isin(kox))e " . (3.3)

i —ix? —kox+ k3t
uxt) =y i—4teXp< TR >

which we use to impose boundary conditions and to compute errors.

The exact solution is

3.2.1 Observed order of accuracy

We begin by experimentally determining the observed order of accuracy by evolving the
initial data (3.3) on a domain with x; = —10 and x, =10. We choose kg =7 and solve the
equations up to time 0.4. The initial data and final solution are displayed in Figure 2.

To check the order of accuracy we vary hy, and measure the l-error at the final time.
The errors as a function of hy are plotted in Figure 3. Linear least squares fits for the
model

& (hy) = Const x hf,
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0
X

Figure 2: Initial (left) and final (right) solution.

to the error corresponding to the three smallest /i, have been performed. The estimated
order of accuracy p, reported in Table 1, agree reasonably well with the expected p=2m.

Table 1: Order of accuracy estimated from three smallest . The results agree reasonably well with the
expected relation p=2m.

15

p|20|37|55|78|105|14.0| 142|152 | 19.1 |19.8 | 219 | 23.7 | 28.1 | 28.5

28.9

3.2.2 Resolution on very coarse grids

As the suggested method is explicit we must demonstrate its resolving power for chal-
lenging problems on very coarse grids where we can take very large time steps. To do
so we solve the same problem as above and discretize the domain with a large step size,
hy=1, corresponding to about one grid point per wavelength. With this extremely coarse
resolution we evolve the equation until the final time, 0.4, when we record the maximum
error in the solution at the primal nodes (the initial and final solution are displayed in
Figure 2.)

Due to the large h, the number of time steps to reach the end time range from a
handful for m=1 to about 50 for m=16. The results for different m are displayed in Table
2. As can be seen the highest order methods are capable of evolving the solution very
accurately. It can also be noted that the error appears to be at its minima for m =15, for
larger m finite precision effects will come into play.

To illustrate how coarse the grid is, Figure 4 displays the piecewise linear interpolant
of the solution obtained with m =15 along with the full piecewise interpolant evaluated
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10° 10°
M M* —— 9
—— 10
—— 1 —=— 11
—— 2 — 12
5 -5 —— 13
10 —- 3 B d R 107 F
S —— 4 8 —— 14
g - 5 g — 15
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¢ 6 N
—~ —_— 7 —-—
10 —-— 8 107"
15 _15
10 . 10 : .
107" 10° 107" 10°
hy hy

Figure 3: Errors in the Iy-norm as a function of hy for methods with m=1,...,15. The limits of the axis are the
same in both figures so that they can be compared.

Table 2: Maximum error at time 0.4 as a function of number of derivatives for the experiment with a free
particle.

m 1 2 3 1 5 6 7 8
error | 1.2(0) | 6.9¢-1) | 7.0(1) | 3.1(-1) | 1.2(-1) | 2.7(-2) | 3.9(-3) | 2.2(-4)
m 9 10 11 12 13 14 15 16
error | 1.0(-5) | 9.8(-7) | 2.7(-7) | 5.0(-9) | 4.6(-10) | 2.4(-12) | 4.1(-13) | 1.1(-12)

on a much finer grid.

3.2.3 Efficiency

In order to demonstrate the efficiency of the method we have compared the Hermite-
Taylor method with a summation-by-parts (SBP) [11] finite difference discretization cou-
pled with the exponential integrator time-stepping method [8].

In this example we choose x; = —10, x, =20 and simulate up to time t = 0.4. For this
domain the solution is negligible at both boundaries and we may impose that the solution
and its derivatives are zero at the boundaries. On the primal grid (2.3), we introduce
a grid function vj(t) ~ u(x;,t) and set v = [vg,v1,...,0n,]" to be the vector valued grid
function. We also define an inner product and a norm for the complex vectors a,b € CNx 1
as (a,b)y=a*Hb and ||a||3; =a* Ha, respectively, where * denotes the conjugate transpose
and H is a positive definite matrix.

As mentioned above the spatial discretization is performed by using finite difference
operators that satisfy the summation by parts property. These operators mimic the inte-
gration by parts formula from the continuous setting via the associated norms. Precisely,

let D be the discrete operator approximating the second derivative, i.e. D~ %, thenitisa
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—real
—imag

-0.8f

0 5 10 10 -5 0 5 10
X X

Figure 4: Numerical solution at the final time (using m=15). To the left is the piecewise linear solution obtained
from the function values at the primal grid points (indicated by the circles). To the right the same numerical
solution is interpolated (using all data) on a fine grid.

diagonal norm SBP operator if it can be written as D=H~!(— A+ BS), where H is diago-
nal and positive definite, A is symmetric positive semidefinite and B=diag(—1,0,...,0,1).
Here, S is a one sided approximation of the first derivative at the boundaries and H is the
norm associated with D.

In [12], Zpth (p=1,2,3,4) order accurate diagonal norm SBP operators are constructed
by using standard central finite differences in the interior and special one sided stencils
near the boundaries. Though termed 2p"" order accurate, the approximation error of the
second derivative is of order 2p in the interior and of order p near the boundaries, and the
approximation error of the first derivative at the boundaries by the one sided operator S
is of order p+1. When applied to the Schrodinger equation, these schemes typically are
of order min(2p,p+2) [13].

An SBP operator itself does not impose any boundary condition. To guarantee strict
stability, a common approach is to impose the boundary conditions weakly by the si-
multaneous approximation term (SAT) method [2]. The SAT acts as a penalty term that
drags the numerical solution at the boundaries towards the boundary conditions. The
semi-discrete approximation of Eq. (3.2) is

vt:iDzH—TlH_lsTeoegv—FT,H_lsTeNxeK,xv, (3.4)

where ey = [1,0,...,0]" and ey, =10,...,0,1]7. 7 and T, are penalty parameters to be de-
termined so that (3.4) is stable. Multiplying (3.4) with v*H and adding the conjugate
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transpose of the same equation we obtain

L ol =(000)8-+ (210)
=v"Hv;+v;Ho
= (17 +i)v en,en, Sv+ (T —1)v* STen el v+
(1 —i)v*eoed So+ (1 +i)v* STegel v.
By choosing 7; = —i and 7, =i we get the energy estimate Z|v||?, =0, which means

that the discrete energy ||v||? is conserved and (3.4) is stable. Let Q=D —H!STepel +
H7!S TeNerT\,x, then (3.4) can be written as

v =iQu. (3.5)

The time-stepping of (3.5) with a standard explicit ODE solver requires that the time step
scales as At ~ h2. This will typically lead to a prohibitively small time step as the order
of the SBP discretization is limited to eight, effectively forcing &, to be small when small
errors are desired. Therefore, a common approach to circumvent the small time step
restriction is to use an exponential integrator method [8]. It is straightforward to verify
from (3.5) that the matrix exponential ¢/?*! takes the numerical solution from t, to t,,1
in the closed form

0(t1) =ePo(t,), (3.6)

When the dimension of Q is large (as is often the case) it becomes infeasible to compute
the matrix exponential directly. Instead, a Krylov subspace method is used to approxi-
mate the right hand side of (3.6) as

ey (t,) = Ve ey ||o(t) |2, (3.7)

where V,eC(1+N:) %7 ig the orthonormal basis of the 7 order Krylov subspace K, (Q,v(ty))
for Q and v(t,), T, € C"*" is an upper Hessenberg matrix and e; is the first unit vector in
R’. In practice r < Ny, which makes it inexpensive to compute ¢/T"*!. For a general
matrix Q, the orthonormal basis of K, (Q,v(t,)) is constructed by the Arnoldi method. If
the matrix Q is Hermitian, the Arnoldi method is simplified to the much more efficient
Lanczos method, with T, being a tridiagonal matrix.

A direct discretization of (3.2) by the SBP-SAT method leads to a non-Hermitian ma-

trix but by the coordinate transformation w=H 20, the corresponding spatial discretiza-
tion matrix is imaginary and symmetric, and the Lanczos method is applicable.

A larger order of the Krylov subspace allows for a longer time step but may induce a
loss of orthogonality in the orthonormal basis. To maximize the computational efficiency,
we choose the time step adaptively as follows.

In each time step, the size of the Krylov subspace r starts from 1 and increases by 1 in
each iteration. When r > 3, the residual [7]

Rr = ’At[EiTrAt]yll (Tr+1)y+1,y’ < tOl, (38)
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Figure 5: Efficiency comparison between Hermite-Taylor method and SBP-SAT-Lanczos finite difference method

is computed and compared with the tolerance tol. Here [-], ; denotes the (7,1) entry of the
matrix and (Ty41),41, is the (r+1,7) entry of T, 1. If R, < tol, then we stop the iteration
and compute the result by (3.7); otherwise we continue the next iteration with r:=r4-1.
If the residual is still larger than the tolerance when r reaches the predetermined upper
limit (here chosen as 25), a smaller time step is used and the iteration is restarted. In this
experiment, where the exact solution is known, we also choose the tolerance fol adap-
tively to match the error in the numerical solution. This maximizes the computational
efficiency of the simulation.

To compare the Hermite method and the SBP-SAT-Lanczos method we have imple-
mented both methods in MATLAB R2012b. The evolution of the free particle is simu-
lated on a MacBook Pro with 2.9 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3
SDRAM. The timing of the run time is performed over the time-loop in the two different
codes and the results are displayed in Figure 5. Although results may differ slightly for
another implementation and different hardware, it appears clearly that the high order
Hermite-Taylor method is more efficient than the SBP-SAT-Lanczos method. For exam-
ple, to achieve the maximum error 1078, Hermite-Taylor method with m =15 uses about
51—0 CPU time as the 8" order SBP-SAT-Lanczos scheme does.

3.3 Adaptive evolution of a free particle

To demonstrate the adaptive implementation we again simulate the evolution of the solu-
tion to (2.1) without a potential and with initial condition (3.3). Here we choose the kg =1,
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Figure 6: Adaptive simulation of a free particle. To the left, the real part of the approximate solution is
plotted as a time trace. The initial data splits into two waves, the right-going moving fastest, and spreads over
the computational domain as time passes. To the right the time traces of the change in the number, m, of

derivatives kept at each node is plotted. From top left to bottom right the TOL=10"",r=2,...,7. The color
scale goes from blue, m=2 to dark red m=16.

corresponding to a wave that splits into a faster right-going wave and a slower left-going
wave, see Figure 6 where a time trace of the real part of the wave is plotted. We set
x;=—20 and x, =20 so that there is no influence from the boundary conditions (which we
take to be periodic for this computation). We set the 1 =2/3 and impose the upper limit
on m to be 16. We also choose the time-step according to (3.1) with C(m)=0.1/m and sim-
ulate up to time t=1. We perform the simulation for the tolerances, TOL=10"",r=2,...,7.

To the right in Figure 6 the number of derivatives kept at each node, m, has been
plotted as a function of space and time. As can be seen the order adapts itself according
to the evolution of the solution. For the tolerances used the the potential savings can be
gauged by the amount of blue in the time traces to the right in Figure 6. A conservative
estimate is that the savings for this example could be a reduction of computational time
to 1/3 to 1/2 of the computational time for a high order computation on a uniform grid.

To test if the criterion (2.23), used by the adaptive method, yields the requested toler-
ance we measure the error at t =1 and plot it for the different tolerances. The results can
be found to the left in Figure 7 and it can be seen that the error is of the same order of
magnitude as the tolerance. The results are consistent for all the tolerances.

We also consider the conservation of the quantity |1—p(f)/p(0)|, where

Xr
p(t):/ u* (x,t)u(x,t)dx.
X1

The results are plotted in the right part of Figure 7 and show that the conservation prop-
erties appears to be very good but also that the conservation accuracy saturates as the
tolerance is decreased.
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Figure 7: Errors for the adaptive method for the free particle problem. To the left we display the magnitude of
the error as a function of x. To the right the quantity |1—p(t)/p(0)|, measuring the loss of conservation, is
plotted as a function of time.

Table 3: Maximum error in the real part of the solution at time {=>57t for various number of derivatives.

m 2 3 1 5 6 7 8
error 6.2(-2) | T.I(-1) | 49(-2) | 9.8(-3) | 2.4(-3) | 2.0(-4) | 1.9(-5)
m 9 10 11 12 13 14 15 16
error | 3.3(-6) | 4.1(-7) | 3.0(-8) | 1.2(-9) | 9.6(-12) | 3.1(-12) | 2.5(-12) | 2.8(-12)

3.4 A Harmonic oscillator

We now proceed to solve a classic problem which includes a potential corresponding to
a Harmonic oscillator. Here we choose the mass in such a way that the non dimensional-
ized equation takes the form

i .

utziuxx—zV(x)u, t>0, x;<x<x,, (3.9)
with the potential
1
V(x)= sz
For the initial data ,
—X
u(x,0)= ¢

2

the real part of the exact solution is

Ru(x,t) :u(x,O)cos%.
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Figure 8: Errors for the non-adaptive method for the one dimensional harmonic oscillator problem. To the left
we display the error in the real part of the solution. To the right the quantity |[1—p(t)/p(0)|, measuring the
loss of conservation, is plotted as a function of time.

We set x; = —8,x, =8 and impose homogenous boundary conditions for the solution and
the spatial derivatives. We discretize using h =16/8 (i.e we use nine points) and solve
until time t =57t. With the potential present we found that the time step has to be taken
a bit smaller for the method to remain stable, here we use C(m)=0.05/m to choose the
time step.

For this computation we monitor the error in the real part of the solution. We also
monitor the conservation of the quantity |1—p(t)/p(0)| over time. The results for com-
putations using m =2,...,16 can be found in Figure 8 and in Table 3. As expected the
higher order methods completely outperform the lower order methods. It is also worth
noting that the level of conservation is commensurate with the level of the error.

3.4.1 Simulation of a harmonic oscillator by the adaptive method

Our final example in one dimension uses the adaptive method to simulate (3.9) on x € [—20,20]

with initial conditions consisting of the shifted Gaussian
ef(xfl)2

VT

u(x,0)=
Here the real part of the solution satisfies
t
Ru(x,t)=u(x,0)cos 5

at times t =1,27,37,..., see Figure 9.

For this example we set the maximum m to be 16, set h, =2/3 and set the time step to
be a third of the value used for the uniform method with m=16, At=0.1/ 48h§. Here we
solve the equation until time ¢ =377 and record the error at that time.
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Figure 9: Adaptive simulation of a wave in a harmonic potential. To the left, the real part of the approximate
solution is plotted as a time trace. The initial data oscillates back and forth inside the well as time passes. To
the right the time traces of the change in the number, m, of derivatives kept at each node is plotted. From top

left to bottom right the TOL=10"",r=2,...,7. The color scale goes from blue, m =2 to dark red m=16.

As in the free particle example, we perform the simulation with tolerances TOL =
107", r=2,...,7. We record the order as a function of time and as can be seen in the right
part of Figure 9 the adaptive method appears to work quite well with the order adapting
itself according to the evolution of the solution. Also in this example the error levels
at the end time are of the same order of magnitude as the prescribed tolerance. The
conservation properties of the integral of the probability distribution is also similar as in
the free particle example and appears to saturate at about 1078,

3.5 A harmonic oscillator in two dimensions

As a final example we consider the Schrodinger equation for u=u(x,y,t)

ou K (Pu %

= =5 +=5 | +V t

ih=; M (axz + ax2> +V(x,y)u,t>0, (x,y)€ [x1,%] X [yp,y1], (3.10)
u(x,y,0) =uo(x,y).

Here we non-dimensionalize in a way equivalent to setting M =1, =1 in the above

equation. We choose the potential to be the harmonic potential

V(x,y)= % (+17).

With this potential it is easy to verify that equation (3.10) supports the solution

. (XZ 2)
u(x,y,t) = Ae e 2 (3.11)
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Figure 10: Errors for the adaptive method for the one dimensional harmonic oscillator problem. To the left we

display the error in the real part of the solution. To the right the quantity |1—p(#)/p(0)|, measuring the loss
of conservation, is plotted as a function of time.

Here we set A=1/+/+/7 and solve until t =27 on the domain (x,y) € [—8,8]?. To set the
time step we use C(m)=0.05/m.

Figure 3.11 reports the errors as a function of hy = hy form=2,...,13. As can be seen
in the figure the slopes for m =2,3,4,5,6 are well defined and a least squares fits using
the eight leftmost values yields the rates of convergence 3.9, 6.1, 8.1, 9.8 and 12.4, respec-
tively. For higher m and errors down to ~10~1° the methods become more accurate with
increasing m but as the errors become even smaller the rates of convergence deteriorates
and the error levels saturate at around ~ 10~ !4. This is likely due to round-off effects.

4 Summary

To summarize, we introduced an explicit and spectrally accurate (in time and space)
method for solving the Schrodinger equation. We showed that the method can be used
to accurately evolve solutions to Schrodinger equation on very coarse grids where the
time step can be large. Problems with and without potentials in one and two dimensions
were considered. We also introduced an order-adaptive method with a straightforward
tolerance criterion and illustrated its efficiency by numerical examples.

Future extensions of the proposed method could include adaptive implementations
in multiple dimensions and implementations with non-reflecting boundary conditions
e.g. perfectly matched layers. The extension of the method to the non-linear Schrodinger
equation with focusing and defocusing non-linearities could also be of interest.



22

max-error

10

10

10

-15

——m=2
—— m=3
—— m=4
—&— m=5
—=— m=6
—— =7
—%— 111 =8
= m=9
——m =10
——m=11
———m=12
———m=13

107"

Figure 11: Max-error as a function of hy =hy for m=2,...




23

Acknowledgments

Appelo was supported in part by NSF Grant DMS-1319054. Any conclusions or recom-
mendations expressed in this paper are those of the author and do not necessarily reflect
the views of the NSF.

References

[1] D. Appel6 and T. Hagstrom. On advection by Hermite methods. Paciffic Journal Of Applied
Mathematics, 4(2):125-139, 2011.

[2] Mark H. Carpenter, David Gottlieb, and Saul Abarbanel. Time-stable boundary conditions
for finite-difference schemes solving hyperbolic systems: Methodology and application to
high-order compact schemes. J. Comput. Phys., 111(2):220 — 236, 1994.

[3] R. Chen and T. Hagstrom. p-adaptive Hermite methods for initial value problems. ESAIM:
Mathematical Modelling and Numerical Analysis, 46:545-557,2012.

[4] X. Chen, D. Appels, and T. Hagstrom. A hybrid Hermite—discontinuous Galerkin method
for hyperbolic systems with application to Maxwell’s equations. Journal of Computational
Physics, 257, Part A:501 — 520, 2014.

[5] J. Goodrich, T. Hagstrom, and J. Lorenz. Hermite methods for hyperbolic initial-boundary
value problems. Math. Comp., 75:595-630, 2006.

[6] T. Hagstrom and D. Appeld. Solving PDEs with Hermite Interpolation. In Springer Lecture
Notes in Computational Science and Engineering, Springer Lecture Notes in Computational
Science and Engineering. Springer, 2015.

[7] M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large systems of
differential equations. SIAM J. Sci. Comput., 19:1552-1574,1998.

[8] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numerica, 19:209-286,2010.

[9] K. Kormann and M. Kronbichler. Parallel finite element operator application: graph parti-
tioning and coloring. 2011 Seventh IEEE International Conference on eScience, pages 332-339,
2011.

[10] K. Kormann and E. Larsson. A Galerkin radial basis function method for the Schrédinger
equation. SIAM J. Sci. Comput., 35:A2832-A2855,2013.

[11] H.-O. Kreiss and G. Scherer. Finite element and finite difference methods for hyperbolic
partial differential equations. In Mathematical Aspects of Finite Element in Partial Differential
Equations. Academic Press, Inc., 1974.

[12] K. Mattsson and J. Nordstrom. Summation by parts operators for finite difference approxi-
mations of second derivatives. J. Comput. Phys., 199:503-540, 2004.

[13] Anna Nissen, Gunilla Kreiss, and Margot Gerritsen. High order stable finite difference meth-
ods for the Schrodinger equation. J. Sci. Comput., 55:173-199, 2013.



