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Abstract. We develop and analyze a new strategy for the spatial discontinuous Galerkin discretization of wave equations
in second order form. The method features a direct, mesh-independent approach to defining interelement fluxes. Both energy-
conserving and upwind discretizations can be devised. We derive a priori error estimates in the energy norm for certain fluxes and
present numerical experiments showing that optimal convergence in L2 is obtained.
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1. Introduction. In recent years, discontinuous Galerkin methods have proven to be an effective approach
to developing high-order, energy-stable discretizations of time-domain wave propagation problems in complex
geometry. These developments encompass both first order hyperbolic systems [10, 13, 6, 7, 11, 15, 12] and wave
equations in second order form [14, 9, 5]. Despite the fact that second order systems can often be rewritten
in first order form via the introduction of new variables, the formulations for second order equations appear
quite different. Energy-conserving methods include the symmetric interior penalty (SIPG) method of [9] and
the local discontinuous Galerkin (LDG) method of [5]. Stability, in the first case, relies on the proper choice
of internal penalty parameters (see also [1]). In the LDG method additional gradient variables are introduced
and combined with an alternating flux. The nonsymmetric interior penalty method of [14], on the other hand,
is dissipative with the dissipation again dependent on a proper choice of internal penalty parameters. Here
we introduce a new formulation, which seems more naturally related to the first-order formulations, which can
be either energy-conserving or energy-dissipating depending on a simple choice of the numerical flux. It bears
similarities to the LDG method of [5], but instead of spatial gradients we introduce the time derivatives as new
unknowns. Besides requiring fewer dependent variables than LDG, we believe the method has a number of other
attractive properties. First, it admits a wide variety of mesh-independent flux choices naturally associated with
the energy flux, including a simple upwinding strategy based on flux splitting. We are particularly interested in
upwind schemes, not only due to their optimal convergence, but for the robust stability properties they possess.
This seems particularly attractive for their use on hybrid grids, as carried out for first order systems in [4], and
for nonlinear problems. We also find that their convergence profiles are more regular than those observed for the
energy-conserving schemes. Second, we observe experimentally optimal convergence in both the L2 and energy
norms for a variety of flux choices, including both dissipative and nondissipative examples, without the need to
construct special projections of the initial data. The optimal convergence in the energy norm is proven in one
space dimension. Finally, we note that the proposed discretization arises naturally from a general formulation
based directly on the Lagrangian, which is central to the formulation of wave equations in most physical settings.

The outline of the paper is as follows. In Section 2 we explain the formulation for general linear wave
equations and prove the basic energy identity for a wide choice of fluxes. In Section 3 we specialize to the
scalar wave equation. For that case we derive error estimates in the energy norm for all flux choices considered.
Optimal convergence is proven in one space dimension for flux parameters satisfying a certain algebraic relation,
which covers both the energy-conserving alternating flux and the dissipative upwind Sommerfeld flux. Simple
numerical experiments with the scalar wave equation in Section 4 lead to the observation that the convergence
in L2 is one order higher than in the energy norm, and that optimal convergence with the alternating or upwind
flux is maintained for a non-Cartesian grid of quadrilaterals. We also experiment with changing the relative
degrees of the approximation to the solution and the time derivative, with the conclusion that increasing the
order of approximation of the time derivative from the value needed for optimal convergence is generally not
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useful, and for some fluxes detrimental. An exception is the case of the central flux, where an improved order of
convergence for the solution, but not the time derivative, was observed. Lastly we mention our ongoing work to
extend the method to problems with discontinuous coefficients and nonlinearities.

2. General Formulation. We consider, in general, wave equations associated with a nonnegative energy
functional or Hamiltonian

(2.1) E(t) =

∫

Ω

1

2









∂u

∂t









2

+G(u,∇u,x).

Here Ω ⊂ Rd, u(x, t) ∈ Rm. The system of wave equations we aim to solve, which can be identified as the

Euler-Lagrange equations derived from the action principle associated with the Lagrangian 1
2





∂u
∂t





2 −G− u · f
[16], is given by

(2.2)
∂2ui
∂t2

=
∑

k

∂

∂xk

(

∂G

∂ui,k

)

− ∂G

∂ui
+ fi,

where we define ui,k = ∂ui

∂xk
. Then introducing as a new variable, vi =

∂ui

∂t , we find that the change of energy on
an element Ωj is given by the source term and a boundary contribution

(2.3)
d

dt

∫

Ωj

1

2
|v|2 +G =

∫

Ωj

v · f +
∫

∂Ωj

∑

i,k

vi
∂G

∂ui,k
nk, .

where n denotes the outward unit normal.
To discretize on a simplicial element we require that the components of (uh,vh) restricted to Ωj be polyno-

mials of degree s and q respectively; that is elements of (Πs)m × (Πq)m. Typically, as discussed in Remark 1,
we choose s = q + 1 corresponding to the role of vhi as an approximate derivative of uhi , but the stability theory
allows independent choice of approximation spaces. On quadrilateral/hexahedral elements these spaces would
be replaced by the corresponding spaces of tensor product polynomials: (Qs)m × (Qq)m.

Now specialize to the linear case; that is, assume that G depends quadratically on u and ∇u:

(2.4) G =
∑

i,j,k,l

g
(2)
(i,k),(j,l)(x)ui,kuj,l +

∑

i,j,k

g
(1)
(i,k),j(x)ui,kuj +

∑

i,j

g
(0)
ij uiuj ≡ wT gw,

where w denotes an m(d+1)-dimensional vector containing the ui,k, ui and g is an m(d+1)×m(d+1) symmetric
positive semi-definite matrix containing the g(j). We seek approximations to the system

∂ui
∂t

− vi = 0,(2.5)

∂vi
∂t

−
∑

k

∂

∂xk

(

∂G

∂ui,k

)

+
∂G

∂ui
= fi,(2.6)

satisfying a discrete energy identity analogous to (2.3). To motivate our choice consider the discrete energy in
Ωj :

(2.7) Eh
j (t) =

∫

Ωj

1

2



vh




2
+G(uh,∇uh,x)

and its time derivative

(2.8)
dEh

j

dt
=
∑

i

∫

Ωj

vhi
∂vhi
∂t

+
∑

k

∂G

∂ui,k

∂2uhi
∂xk∂t

+
∂G

∂ui

∂uhi
∂t

.

To develop a weak form compatible with the discrete energy we test (2.5) with −∑k
∂

∂xk

∂G
∂ui,k

(φu,∇φu,x) +
∂G
∂ui

(φu,∇φu,x), φu ∈ (Πs)m and (2.6) by φv,i ∈ Πq. In addition, as in the construction of discontinuous
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Galerkin methods for first order symmetric hyperbolic systems, where the energy is simply the L2-norm, we
impose corrections based on boundary states to be specified later

(2.9) v∗i ≈ vi, w∗
i,k ≈ ∂G

∂ui,k
.

This results in the equations for i = 1, . . . ,m:

∫

Ωj

(

−
∑

k

∂

∂xk

∂G

∂ui,k
(φu,∇φu,x) +

∂G

∂ui
(φu,∇φu,x)

)

(

∂uhi
∂t

− vhi

)

=(2.10)

∫

∂Ωj

∑

k

nk
∂G

∂ui,k
(φu,∇φu,x)

(

v∗i − ∂uhi
∂t

)

,

∫

Ωj

φv,i
∂vhi
∂t

+ φv,i

(

−
∑

k

∂

∂xk

∂G

∂ui,k
(uh,∇uh,x) +

∂G

∂ui
(uh,∇uh,x)

)

− φv,ifi(x, t) =(2.11)

∫

∂Ωj

φv,i
∑

k

nk

(

w∗
i,k − ∂G

∂ui,k
(uh,∇uh,x)

)

.

In what follows it is useful to note that an integration by parts in (2.10)-(2.11) yields the alternative form

∫

Ωj

(

∑

k

∂G

∂ui,k
(φu,∇φu,x)

∂

∂xk
+
∂G

∂ui
(φu,∇φu,x)

)

(

∂uhi
∂t

− vhi

)

=(2.12)

∫

∂Ωj

∑

k

nk
∂G

∂ui,k
(φu,∇φu,x)

(

v∗i − vhi
)

,

∫

Ωj

φv,i
∂vhi
∂t

+
∑

k

∂φv,i
∂xk

∂G

∂ui,k
(uh,∇uh,x) + φv,i

∂G

∂ui
(uh,∇uh,x)− φv,ifi(x, t) =(2.13)

∫

∂Ωj

∑

k

nkφv,iw
∗
i,k.

Although, by construction, solutions of (2.10)-(2.11) or (2.12)-(2.13) will satisfy an energy identity made
precise in Theorem 1 below, these equations are often insufficient to uniquely determine the time derivatives
within an element. In particular, in many cases G is invariant with respect to certain transformations of u.
Assume that these transformations are independent of x. In the linear case the transformations are generated

by null vectors, ui,k =
∂φ̃u,i

∂xk
, ui = φ̃u,i of the matrix, g, introduced in (2.4). We assume these null vectors are

elements of (Πs)m. Then equation (2.10) or (2.12) does not determine the projection of ∂uh

∂t onto this null space,
so we supplement it by

(2.14)
∑

i

∫

Ωj

φ̃u,i

(

∂uhi
∂t

− vhi

)

= 0,

for all null vectors, φ̃u, of g. In what follows we denote by N the null space of g.
In summary, define Ps,q,m to be the set of all functions Uh = (uh, vh) whose restriction to an element Ωj is

an element of (Πs)m × (Πq)m. Then for Φ = (φu, φv, φ̃u) ∈ Ps,q,m ×N define:

B(Φ, Uh) ≡
∑

i,j

∫

Ωj

(

∑

k

∂G

∂ui,k
(φu,∇φu,x)

∂

∂xk
+
∂G

∂ui
(φu,∇φu,x) + φ̃u,i

)

(

∂uhi
∂t

− vhi

)

+
∑

i,j

∫

Ωj

φv,i
∂vhi
∂t

+
∑

k

∂φv,i
∂xk

∂G

∂ui,k
(uh,∇uh,x) + φv,i

∂G

∂ui
(uh,∇uh,x)(2.15)

−
∑

i,j

∫

∂Ωj

∑

k

nk

(

∂G

∂ui,k
(φu,∇φu,x)

(

v∗i − vhi
)

+ φv,iw
∗
i,k

)

.
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Introducing 〈·, ·〉 to denote the standard L2 inner product of vector-valued functions, we have the following
succinct description of the semidiscrete problem.

Problem 1. Find Uh ∈ Ps,q,m such that for all Φ ∈ Ps,q,m ×N

B(Φ, Uh) = 〈φv, f〉.

We then have the following basic result.
Theorem 1. Suppose Uh(t) and the fluxes v∗, w∗ are given. Suppose further that (2.2) is linear. Then

dUh

dt satisfying Problem 1 is uniquely determined and the energy identity for Eh(t) =
∑

j E
h
j (t)

(2.16)
dEh

dt
=
∑

i,j

∫

Ωj

vhi fi(x, t) +
∑

i,j

∫

∂Ωj

(

∑

k

nk

(

v∗i − vhi
) ∂G

∂ui,k
(uh,∇uh,x) + vhi w

∗
i,k

)

,

is satisfied.

Proof: The system on the element Ωj is linear in the time derivatives, and the mass matrix determining
∂vh

i

∂t is

obviously nonsingular. To show that ∂uh

∂t is uniquely determined we first note that the number of linear equations
matches the dimensionality of (Πs)m; that is the dimension equals number of independent equations represented

by (2.12) plus those represented by (2.14). Then if the data vhi , v
∗
i vanishes in (2.12) we must have that ∂uh

∂t ∈ N
and by (2.14) is in fact 0. Setting Φ = (Uh,0) in Problem 1, equation (2.16) directly follows.

2.1. Fluxes. To complete the problem specification we must prescribe the states w∗, v∗ both at interele-
ment and physical boundaries. Following the standard convention (e.g. [11]) let the superscripts “±” refer to
traces of data from outside and inside the element respectively. Moreover we introduce the notation

(2.17) {{vi}} =
1

2

(

v+i + v−i
)

, [[vi]] = v+i n
+ + v−i n−,

(2.18) {{ ∂G

∂ui,k
}} =

1

2

(

∂G

∂ui,k
(u+,∇u+,x) +

∂G

∂ui,k
(u−,∇u−,x)

)

,

(2.19) [[D∇ui
G]] =

∑

k

(

∂G

∂ui,k
(u+,∇u+,x)n+

k +
∂G

∂ui,k
(u−,∇u−,x)n−

k

)

.

Focus first on the interelement boundaries. For definiteness label two elements sharing a boundary by 1 and
2. Then their net contribution to the energy derivative is the integral of

(2.20) Jh =
∑

i,k

(

v∗i − vhi,1
) ∂G

∂ui,k
(uh

1 ,∇uh
1 ,x)n

(1)
k +

(

v∗i − vhi,2
) ∂G

∂ui,k
(uh

2 ,∇uh
2 ,x)n

(2)
k +

(

vhi,1n
(1)
k + vhi,2n

(2)
k

)

w∗
i,k.

Energy conserving methods follow from choices which enforce Jh = 0. Simple examples are the central flux

(2.21) v∗i = {{vhi }}, w∗
i,k = {{ ∂G

h

∂ui,k
}},

or the alternating flux

(2.22) v∗i = vhi,1, w∗
i,k =

∂G

∂ui,k
(uh

2 ,∇uh
2 ,x).

To define upwind fluxes, which will lead to Jh < 0 in the presence of jumps, we introduce a flux splitting
determined by a parameter ζi > 0:

(2.23)
∑

k

vi
∂G

∂ui,k
nk =

1

4ζi

(

vi + ζi
∑

k

∂G

∂ui,k
nk

)2

− 1

4ζi

(

vi − ζi
∑

k

∂G

∂ui,k
nk

)2

≡ F+
i − F−

i ,
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and choose the boundary states so that F+
i is computed using values from outside the element and F−

i using
the values from inside. That is we enforce the equations for ℓ = 1, 2:

(2.24) v∗i − ζi
∑

k

w∗
i,kn

(ℓ)
k = vhi,ℓ − ζi

∑

k

∂G

∂ui,k
(uh

ℓ ,∇uh
ℓ ,x)n

(ℓ)
k .

This leads to what we call the Sommerfeld flux

v∗i = {{vhi }} −
ζi
2
[[D∇ui

Gh]],(2.25)

w∗
i,k = − 1

2ζi
[[vhi ]]k + {{ ∂G

h

∂ui,k
}}.(2.26)

For the Sommerfeld flux we find

(2.27) Jh = −1

2

∑

i

[

1

ζi



[[vhi ]]




2
+ ζi[[D∇ui

Gh]]2
]

.

Lastly we note that we can use various combinations of the fluxes described above. One general parametrization
is given by

v∗i =
(

αiv
h
i,1 + (1− αi)v

h
i,2

)

− τi[[D∇ui
Gh]],(2.28)

w∗
i,k = −βi[[vhi ]]k +

(

(1− αi)
∂G

∂ui,k
(uh

1 ,∇uh
1 ,x) + αi

∂G

∂ui,k
(uh

2 ,∇uh
2 ,x)

)

.(2.29)

For the general case we find

(2.30) Jh = −
∑

i

[

βi


[[vhi ]]




2
+ τi[[D∇ui

Gh]]2
]

.

The previous cases correspond to:
Central flux : αi = 1/2, βi = τi = 0.
Alternating flux : αi = 0, 1, βi = τi = 0.
Sommerfeld flux : αi = 1/2, βi =

1
2ζi

, τi =
ζi
2 .

2.2. Boundary conditions. Lastly we consider the approximation of boundary conditions. Precisely, for
x ∈ ∂Ω we suppose the boundary condition takes the form

(2.31) ai(x)
∂ui
∂t

+ bi(x)
∑

k

nk
∂G

∂ui,k
(u,∇u,x) = 0,

where a2i + b2i = 1, ai, bi ≥ 0. Note that Dirichlet conditions correspond to ai = 1, bi = 0, and Neumann
conditions to ai = 0, bi = 1. More general boundary conditions are possible, but their treatment would be more
complex.

With these boundary conditions a complete energy identity can be obtained. In particular the energy flux
through the boundary is nonpositive

S =

∫

∂Ω

∑

i

(

∂ui
∂t

·
∑

k

nk
∂G

∂ui,k

)

(2.32)

= −
∫

∂Ω

∑

i

aibi





(

∂ui
∂t

)2

+

(

∑

k

nk
∂G

∂ui,k

)2


 ≤ 0.

To approximate the boundary condition we choose v∗i , w
∗
i,k to be consistent with (2.31):

(2.33) aiv
∗
i + bi

∑

k

nkw
∗
i,k = 0,

5



and insist that the starred states match the interior states if the interior states satisfy the boundary condition.
That is, all jumps must be proportional to

(2.34) ρi = ai(x)v
h
i + bi(x)

∑

k

nk
∂G

∂ui,k
(uh,∇uhx).

Taking into account (2.33) we find a one parameter family of consistent choices:

v∗i = vi − (ai − ηibi)ρi(2.35)

w∗
i,k =

∂G

∂ui,k
− nk(bi + ηiai)ρi.(2.36)

Then the discrete energy flux is given by

(2.37) Sh = −
∫

∂Ω

∑

i



aibi



(v∗i )
2
+

(

∑

k

nkw
∗
i,k

)2


+ ρ2i
(

(1− η2i )aibi + ηi(a
2
i − b2i )

)



 .

which will lead to a discrete energy estimate so long as

(2.38) γi ≡ (1− η2i )aibi + ηi(a
2
i − b2i ) ≥ 0.

It is of interest to consider various special cases related to the choices of interior fluxes. A Sommerfeld flux
follows from enforcing v∗i − ζi

∑

k nkw
∗
i,k = vi − ζi

∑

k nk
∂G

∂ui,k
which implies

(2.39) ηi =
ai − ζibi
ζiai + bi

, γi =
ζi

(ζiai + bi)2
> 0.

In the case of Dirichlet or Neumann boundary conditions, which are energy-conserving for the continuous problem,
we can enforce zero energy flux by choosing ηi = 0, a choice which satisfies (2.38) in all cases.

Finally combining (2.16), (2.30), and (2.37) we have the following discrete energy equality. Note that by
Fj we denote interelement boundaries and by Bj element boundaries on ∂Ωj. Note that the identities do not
require that the mesh is geometrically conformal.

Theorem 2. The discrete energy Eh(t) =
∑

j E
h
j (t) with Eh

j (t) defined in (2.7) satisfies

dEh

dt
=
∑

i,j

∫

Ωj

vhi fi(x, t)(2.40)

−
∑

i,j

∫

Fj

[

βi|[[vhi ]]|2 + τi[[D∇ui
Gh]]2

]

−
∑

i,j

∫

Bj



aibi



(v∗i )
2
+

(

∑

k

nkw
∗
i,k

)2


+ γiρ
2
i



 .

Obviuously, if the flux parameters τi, βi, γi are nonnegative and f = 0 then dEh

dt ≤ 0, and if any are positive
energy is dissipated even for energy-conserving boundary conditions.

3. Specialization to the scalar wave equation. To illustrate the general formulation and prepare for
the detailed analysis that follows we specialize to the scalar wave equation with a smooth velocity. Now m = 1
and

(3.1) G =
c2(x)

2
|∇u|2.
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Here G is unchanged by the addition of a constant to u and therefore N consists of the piecewise constant
functions φ̃u. Thus (2.14) becomes

(3.2)

∫

Ωj

∂uh

∂t
− vh = 0.

The form B is then given by

B(Φ, Uh) ≡
∑

j

∫

Ωj

(

c2∇φu · ∇+ φ̃u

)

(

∂uh

∂t
− vh

)

+ φv
∂vh

∂t
+ c2∇φv · ∇uh

−
∑

j

∫

∂Ωj

c2
∂φu
∂n

(

v∗ − vh
)

+ φvw
∗ · n.(3.3)

3.1. Error estimates in the energy norm. To derive error estimates we impose restrictions on the
degrees, (s, q), namely s− 2 ≤ q ≤ s. Define the errors by

(3.4) eu = u− uh, ev = v − vh,

and let

(3.5) Dh = (eu, ev).

Note the fundamental Galerkin orthogonality relation

(3.6) B(Φ, Dh) = 0, ∀Φ ∈ Ps,q ×N .

To proceed we follow the standard approach of comparing (uh, vh) to an arbitrary function (ũh, ṽh) ∈ Ps,q.
Given (ũh, ṽh) we define the differences

(3.7) ẽu = ũh − uh, ẽv = ṽh − vh, δu = ũh − u, δv = ṽh − v,

and let

(3.8) D̃h = (ẽu, ẽv) ∈ Ps,q, D̃h
0 = (ẽu, ẽv, 0) ∈ Ps,q ×N , ∆h = (δu, δv).

Then since Dh = D̃h −∆h we have the error equation

(3.9) B(D̃h
0 , D̃

h) = B(D̃h
0 ,∆

h).

Lastly define the energy of D̃h by

(3.10) Eh =
1

2

∑

j

∫

Ωj

ẽ2v + c2|∇ẽu|2.

Then repeating the arguments which led to Theorem 2 we derive in analogy to (2.40)

dEh

dt
= B(D̃h

0 ,∆
h)−

∑

j

∫

Fj

[

β |[[ẽv]]|2 + τc2[[∇ẽu]]2
]

(3.11)

−
∑

j

∫

Bj

[

ab
(

(ẽ∗v)
2
+ (ẽ∗

w
· n)2

)

+ γ (aẽv + bc∇ẽu · n)2
]

.

We must now choose (ũh, ṽh) to achieve an acceptable error estimate. Note that in what follows we will
assume for simplicity that (uh, vh) = (ũh, ṽh) at t = 0, though we do not satisfy this condition in the numerical
experiments. We begin with a general analysis applicable for all our flux choices and for unstructured grids. The
results are suboptimal for the Sommerfeld and alternating flux, and we will follow up with a sharper estimate
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for those choices restricted to one space dimension. In particular, on Ωj we impose for all times t and all
(φu, φv) ∈ Ps,q:

(3.12)

∫

Ωj

c2∇φu · ∇δu =

∫

Ωj

c2φvδv =

∫

Ωj

δu = 0.

Again the solvability of the gradient projection equation for ũh follows from a counting and uniqueness argument;
thus (ũh, ṽh) are uniquely defined. We then have, after an integration by parts:

B(D̃h
0 ,∆

h) =
∑

j

∫

Ωj

c2∇ẽu · ∇∂δu
∂t

+ c2∇2ẽuδv +∇c2 · ∇ẽuδv + ẽv
∂δv
∂t

+ c2∇ẽv · ∇δu

−
∑

j

∫

∂Ωj

c2 (∇ẽu · n) δ∗v − ẽvδ
∗
w
· n.(3.13)

Since s−2 ≤ q ≤ s volume integral terms involving ∇2ẽu and ∇ẽv vanish by (3.12). Combining the contributions
from neighboring elements we then have

B(D̃h
0 ,∆

h) =
∑

j

∫

Ωj

∇c2 · ∇ẽuδv + ẽv
∂δv
∂t

(3.14)

−c2
∑

k

∫

Fk

[[∇ẽu]]δ∗v + [[ẽv]] · δ∗w − c2
∑

k

∫

Bk

(∇ẽu · n) δ∗v + ẽvδ
∗
w
· n.

Here we have introduced the fluxes δ∗v , δ
∗
w

built from δu, δv according to the flux specification being analyzed.
Using (3.11) and (3.13) we can prove basic error estimates in the energy norm. Note that in what follows C will
be a number independent of the functions involved and independent of the element diameter h for a shape-regular
mesh sequence; ‖ · ‖ is used to denote a Sobolev norm and | · | denotes the associated seminorm.

Theorem 3. Suppose s− 2 ≤ q ≤ s and let q̄ = min(s− 1, q). Then there exist numbers C0, C1 depending
only on s, q and the shape-regularity of the mesh such that for a smooth solution u and time T

‖ev(·, T )‖2L2(Ω) + ‖∇eu(·, T )‖2L2(Ω) ≤ (C0 + C1T )max
t≤T

[

h2σ
(

|u(·, t)|2Hq̄+2(Ω) + |v(·, t)|2Hq̄+1(Ω)

)

(3.15)

+h2q+2









∂v

∂t
(·, t)









2

Hq+1(Ω)

]

,

where

(3.16) σ =

{

q̄, β, τ, γ ≥ 0,
q̄ + 1

2 , β, τ, γ > 0.

Proof: Noting the equivalence between the standard Sobolev norms and those defined by the weight c2, we
recall the basic results following from the Bramble-Hilbert lemma (e.g. [8, Thm. 4.1.3]) and inverse inequalities
(e.g. [8, Thm. 3.2.6]):

(3.17) ‖δv‖2L2(Ω) + ‖∇δu‖2L2(Ω) ≤ Ch2q̄+2
(

|u(·, t)|2Hq̄+2(Ω) + |v(·, t)|2Hq̄+1(Ω)

)

,

(3.18) ‖∂δv
∂t

‖2L2(Ω) ≤ Ch2q+2









∂v(·, t)
∂t









2

Hq+1(Ω)

,

(3.19) ‖δ∗v‖2L2(∂Ωj)
+ ‖δ∗

w
· n‖2L2(∂Ωj)

≤ Ch2q̄+1
(

|u(·, t)|2Hq̄+2(Ωj)
+ |v(·, t)|2Hq̄+1(Ωj)

)

,
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(3.20) ‖ẽv‖2L2(∂Ωj)
+ ‖∇ẽu · n‖2L2(∂Ωj)

≤ Ch−1
(

‖ẽv‖2L2(Ωj)
+ ‖∇ẽu‖2L2(Ωj)

)

.

First consider the case where τ = 0 or β = 0. Then we simply estimate using the non-positivity of the

contributions to dEh

dt from the physical boundaries, Bk, and apply the Cauchy-Schwarz inequality in tandem
with (3.18), (3.19) and (3.20) to estimate the remaining contributions

dEh

dt
≤ C

∑

j

‖∇ẽu‖L2(Ωj)‖δv‖L2(Ωj) + ‖ẽv‖L2(Ωj)‖
∂δv
∂t

‖L2(Ωj)

+C
∑

j

‖∇ẽu‖L2(∂Ωj)‖δ∗v‖L2(∂Ωj) + ‖ẽv‖L2(∂Ωj)‖δ∗w · n‖L2(∂Ωj)

≤ C
√
Eh

(

hq̄
(

|u(·, t)|Hq̄+2(Ω) + |v(·, t)|Hq̄+1(Ω)

)

+ hq+1









∂v

∂t
(·, t)









Hq+1(Ω)

)

.

Then a direct integration in time combined with the assumption that (ẽu, ẽv) = 0 at t = 0 yields

(3.21) Eh(T ) ≤ CT max
t≤T

(

h2q̄
(

|u(·, t)|2Hq̄+2(Ω) + |v(·, t)|2Hq̄+1(Ω)

)

+ h2q+2









∂v

∂t
(·, t)









2

Hq+1(Ω)

)

.

Since ev = ẽv − δv, eu = ẽu − δu, (3.15) follows from the triangle inequality and an invocation of (3.17).
For dissipative fluxes, τ, β, γ > 0, we can improve the estimate. For internal boundaries we have using (3.11)

and the last line in (3.13) that the contribution is

−c2
∑

k

∫

Fk

[[∇ẽu]]δ∗v + [[ẽv]] · δ∗w −
∑

k

∫

Fk

τ |[[ẽv]]|2 + τc2[[∇ẽu]]2 ≤ C
∑

k

(

‖δ∗v‖2L2(Fk)
+ ‖δ∗

w
‖2L2(Fk)

)

≤ Ch2q̄+1
(

|u(·, t)|2Hq̄+2(Ω) + |v(·, t)|2Hq̄+1(Ω)

)

.(3.22)

On the physical boundary we obtain:

(3.23) −c2
∑

k

∫

Bk

(∇ẽu · n) δ∗v + ẽvδ
∗
w
· n− γ (aẽv + bc∇ẽu · n)2 − ab

(

ẽ2v + c2 (∇ẽu · n)2
)

.

In the case where both a > 0, b > 0 we can proceed as in the derivation of (3.22) to obtain a contribution
bounded by

(3.24) C
∑

k

(

‖δ∗v‖2L2(Bk)
+ ‖δ∗

w
‖2L2(Bk)

)

≤ Ch2q̄+1
(

|u(·, t)|2Hq̄+2(Ω) + |v(·, t)|2Hq̄+1(Ω)

)

.

Suppose a = 1, b = 0. Then by (2.25), (2.33) δ∗v = 0 so that the boundary contribution satisfies

(3.25) −
∑

k

∫

Bk

c2ẽvδ
∗
w
· n+ γ (ẽv)

2 ≤ C
∑

k

‖δ∗
w
‖2L2(Bk)

≤ Ch2q̄+1
(

|u(·, t)|2Hq̄+2(Ω) + |v(·, t)|2Hq̄+1(Ω)

)

.

Similarly if a = 0, b = 1 then δ∗
w
· n = 0 and we obtain

(3.26) −c2
∑

k

∫

Bk

(∇ẽu · n) δ∗v + γ (∇ẽu · n)2 ≤ C
∑

k

‖δ∗v‖2L2(Bk)
≤ Ch2q̄+1

(

|u(·, t)|2Hq̄+2(Ω) + |v(·, t)|2Hq̄+1(Ω)

)

.

Combining (3.22) with any of (3.24)-(3.26) yields

(3.27)
dEh

dt
≤ C

√
Eh

(

hq̄+1/2
(

|u(·, t)|Hq̄+2(Ω) + |v(·, t)|Hq̄+1(Ω)

)

+ hq+1









∂v

∂t
(·, t)









Hq+1(Ω)

)

.
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Then again (3.15) with σ = 2q̄+1
2 follows by direct integration in time combined with (3.17). This completes the

proof.⋄
Remark 1. We note that the formula for q̄ indicates that a given accuracy can be achieved using the fewest

degrees of freedom if s = q+ 1, which we typically use in the experiments. The requirements for proving optimal
error estimates stated below are more restrictive as the proof only works when s = q+1. Some experiments with
s = q are presented. For the central flux increasing q sometimes led to an improvement in the convergence rate
for u, but in general the approximation to v was not improved, and in the case of the alternating flux it was
degraded.

3.2. Improved estimates for d = 1. We now assume that s = q + 1, as discussed in Remark 1. As
required in the analysis of upwind DG methods for first order systems (e.g. [12]), we now seek to define (ũh, ṽh)
so that the boundary terms in B(D̃h

0 ,∆
h) vanish; that is

δ∗v = δ∗
w
· n = 0.

For our general flux form, an analysis of the underlying algebraic system shows that this can be accomplished
under the condition

(3.28) α(1− α) = βτ,

assuming a consistent choice of α; for example the element labelled 1 always lying to the left of the element
labelled 2, which will now be our convention. Clearly (3.28) is satisfied for the alternating and Sommerfeld
fluxes but not for the central flux. Precisely, imposing (3.28) we can transform (3.2) into independent equations
involving only variables from one element. Then we can satisfy (3.2) by imposing the boundary conditions on
the endpoints of the element Ωj = (xj−1, xj):

(1 + β − α)δv + (τ + α)c
∂δu
δx

= 0, x = xj−1,(3.29)

(β + α)δv − (1 + τ − α)c
∂δu
δx

= 0, x = xj .(3.30)

We then construct δv and δu by requiring the following:
i For all φ ∈ Πq−1

(3.31)

∫ xj

xj−1

c2φ
dδu
dx

=

∫ xj

xj−1

c2φδv = 0,

ii Zero average error of u

(3.32)

∫ xj

xj−1

δu = 0,

iii Equations (3.29)-(3.30) hold.
We then have:
Lemma 3.1. The function (ũh, ṽh) is uniquely defined by (3.29)-(3.32) for (u, v) ∈ Hq+3(Ω)×Hq+2(Ω) and

there exists a constant C such that for h = max |xj − xj−1|

(3.33) ‖∂δu
∂t

‖H1(Ω) + ‖∂δv
∂t

‖L2(Ω) ≤ Chq+1

(

|v|Hq+2(Ω) +









∂v

∂t









Hq+1(Ω)

)

.

Proof: The dimensionality of the local polynomial space Πq+1×Πq is 2q+3 which matches the number of linear

equations. Suppose u = v = 0. Then on Ωj conditions (3.31) imply that ṽh and dũh

dx are degree-q polynomials
orthogonal in the c2-weighted inner product to all polynomials of lower degree. As such any nonzero linear
combination must have all q zeros in the interior of the interval. Hence using the boundary conditions it is

obvious that ṽh = dũh

dx = 0 on Ωj . A subsequent use of condition (3.32) implies ũh = 0. Thus (ũh, ṽh) is
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uniquely defined and preserves the space Πq+1 ×Πq. To derive the error estimates we note that the polynomial
approximation system commutes with time differentiation. Using the Bramble-Hilbert lemma and replacing ∂u

∂t
by v the result follows.⋄

We can now prove an optimal error estimate for the energy:

Theorem 4. Suppose d = 1, s = q + 1, and the solution satisfies U(·, t) ∈ Hq+2(Ω) ×Hq+1(Ω). Suppose
further that the initial condition for the DG solution satisfies error estimates commensurate with Lemma 3.1.
Then there exists C independent of U and h such that for any T > 0

(3.34) ‖ev(·, T )‖2L2(Ω) + ‖∇eu(·, T )‖2L2(Ω) ≤ C(1 + T )h2q+2 max
t≤T

(

|v|2Hq+2(Ω) +









∂v

∂t









2

Hq+1(Ω)

)

.

Proof: Repeating the proof of Theorem 3 using (ũh, ṽh) defined by (3.31)-(3.30) we obtain in place of (3.13)

B(D̃h
0 ,∆

h) =
∑

j

∫ xj

xj−1

c2
∂ẽu
∂x

· ∂
∂x

(

∂δu
∂t

− δv

)

+ ẽv
∂δv
∂t

+ c2
∂ẽv
∂x

· ∂δu
∂x

+
∑

j

c2
∂ẽu
∂x

(δv − δ∗v)− ẽvδ
∗
w
|xj

xj−1

=
∑

j

∫

x
xj

j−1

c2
∂2ẽu
∂x2

δv + 2cc′
∂ẽu
∂x

· ∂δu
∂t

+ ẽv
∂δv
∂t

=
∑

j

∫

x
xj

j−1

2cc′
∂ẽu
∂x

· ∂δu
∂t

+ ẽv
∂δv
∂t

.(3.35)

Combining (3.35), the estimates of Lemma 3.1, and the non-positivity of the boundary contributions we obtain

(3.36)
dEh

dt
≤ Chq+1

√
Eh
(

|u(·, t)|2Hq+3(Ω) + |v(·, t)|2Hq+2(Ω)

)1/2

.

Integrating yields the final result.⋄
Remark 2. Estimates for d = 1 as proven above can typically be generalized to Cartesian grids (e.g.

[12]), but we will not pursue this generalization here. In the numerical experiments below we observe optimal
convergence in the energy norm for both the upwind and alternating flux even for non-Cartesian grids built from
quadrilateral elements. For the central flux, on the other hand, convergence is suboptimal even on Cartesian
grids for odd q and, for even q, is degraded in the non-Cartesian case.

Remark 3. The numerical experiments also show L2-convergence at one order higher than convergence
for the energy. However, the typical method to prove this in the Galerkin setting, apparently originating in the
work of Baker [3], does not seem to be directly applicable to our formulation. Establishing this superconvergence
rigorously is a topic for future study.

4. Discretization and Numerical Examples. In this section we describe the implementation of our
method and present experiments to determine the convergence rate in both the energy and L2 norms, as well as
study the effect of the flux choice on the spectral radius of the spatial operators.

As the order of the approximation is one degree higher for the displacement than for the velocity in most
of our experiments, it is slightly more convenient to work with a modal formulation than a nodal formulation,
although a nodal formulation is certainly possible too. For simplicity we take f = 0 and, except when considering
variable coefficients, set c = 1. We have carried out additional experiments with f 6= 0 and verified that the
same convergence behavior holds.

4.1. Modal formulation. Starting with d = 1, assume that the computational domain has been discretized
by a uniform grid x0, . . . , xj , xj+1, . . . xn with spacing h. Let xj+ 1

2
= (xj + xj+1)/2 then the mapping z =

2
h (x − xj+ 1

2
) takes element Ωj to the reference element ΩR = [−1, 1] where we expand the displacement and
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velocity in test functions:

uhj (x, t) =

q+1
∑

l=0

ûhl,j(t)φl(z),(4.1)

vhj (x, t) =

q
∑

l=0

v̂hl,j(t)ψl(z).(4.2)

It is convenient to arrange the expansion coefficients into û = [ûh0,j , û
h
1,j, . . . , û

h
q+1,j]

T and v̂ = [v̂h0,j , v̂
h
1,j , . . . , v̂

h
q,j ]

T .
The discrete version of (2.11) on an element can then be written

(4.3) Mvv̂′(t) + Suû(t) = Fv.

The extra equation (2.14) and the variational equation (2.10) can also be assembled into the system

(4.4) Muû′(t) + Svv̂(t) = Fu,

where the exact expressions for the mass and stiffness matrices and the flux terms can be found in Appendix A.
Here we use Chebyshev polynomials as the test and trial functions:

(4.5) ψl(z) = φl(z) = Tl(z) = cos(lt), t = arccos(z).

To compute integrals required for the least squares expansion of the initial data and the matrix coefficients in
the variable coefficient case, we use sufficiently high order Chebyshev quadrature.

Remark 4. We have also carried out experiments with the Chebyshev basis replaced by the Legendre basis
and the monomial basis. Results with the Legendre basis were essentially the same as those reported here, while
not unexpectedly considering the loss of conditioning with increasing degree, some degradation of convergence
was observed for high-order methods constructed with the monomial basis.

Our two dimensional solver is formulated on quadrilaterals and the expansions of the displacement and
velocity are performed on the reference element using tensor product Chebyshev polynomials. The classic fourth
order accurate Runge-Kutta method (RK4) is used to discretize in time.

4.2. Verification of order of accuracy for d = 1. To investigate the order of accuracy of the methods
we solve utt = uxx on −1 ≤ x ≤ 1, t > 0 with periodic boundary conditions and with initial data chosen
such that the solution is the traveling wave sin(π(x − t)). The discretization is performed on a uniform grid
xi = ih, i = 0, n, h = 2/n. The time step is chosen as ∆t = h2/20 so that the error is dominated by the spatial
error. We report the l2-error in the displacement uh and in the velocity vh.

Four different fluxes are considered, the Sommerfeld flux with ζ = 1 (denoted S.-flux), the alternating
flux (denoted A.-flux), the centered flux (denoted C.-flux) and finally the alternating flux with the same jump
penalization (same τ and β) as for the Sommerfeld flux (denoted A.+U.-flux.) We also consider two choices for
the degrees of the approximation spaces; either we take the degree of vh to be one less than uh or we take them
to be the same.

The errors for uh plotted against the grid-spacing for the different fluxes and different orders of approximation
are displayed in Figure 4.1. The results for vh are displayed in 4.2. Linear least squares estimates of the rates of
convergence from the error curves in the figures can be found in Table 4.1 and 4.2 for different and same order
of approximation.

The convergence rates for uh behave much as expected. When uh is approximated by a degree 3 or higher
polynomial we see optimal convergence for the A., S. and A.+S.-fluxes independent of the degree of vh. For
the central flux with uh and vh having different degree we see suboptimal convergence in uh for the central flux
while for uh and vh being the same degree the convergence rate for uh appears to be close to optimal. For very
very low orders (uh being degree 1 and 2) we see slightly suboptimal convergence rates for all fluxes and for both
combinations of approximation spaces. Generally the error levels and convergence rates for the alternating and
dissipative fluxes are comparable, but the behavior of the dissipative methods is more predictable.

The empirically determined convergence for vh differs between the cases when uh and vh are of the same
and different degree. When the degree is different we observe convergence rates coinciding with the degree of vh
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Table 4.1

Estimated rates of convergence for d = 1 and one degree lower approximation for v.

Degree of approx. of u 1 2 3 4 5 6 7
Rate from LS fit S.-flux u 1.5127 2.2520 4.1333 4.9752 6.0953 6.8919 7.9622
Rate from LS fit S.-flux v 0.9922 1.9338 3.0027 3.9742 5.0066 6.0325 7.0034
Rate from LS fit A.-flux u 1.5257 2.3265 4.2062 4.8286 6.1042 6.9366 8.0046
Rate from LS fit A.-flux v 0.9828 2.1072 3.1364 4.0891 5.0667 6.0471 7.0053
Rate from LS fit C.-flux u 2.0737 1.9893 4.2856 4.0941 6.1006 5.9141 8.0911
Rate from LS fit C.-flux v 1.0067 1.0158 3.1772 2.8793 5.0999 4.9418 7.1152
Rate from LS fit A+U-flux u 1.9284 2.2083 4.3960 4.8773 6.1752 6.8458 8.0492
Rate from LS fit A+U-flux v 1.0052 2.0152 2.9577 4.0728 4.9849 6.0793 6.9356

Table 4.2

Estimated rates of convergence for d = 1. Here u and v are in the same space.

Degree of approx. of u 1 2 3 4 5 6 7
Rate from LS fit S.-flux u 1.9812 2.8098 4.2334 5.2025 6.1273 6.9178 7.9241
Rate from LS fit S.-flux v 1.6067 1.8788 3.0452 3.9528 5.0137 6.0516 7.0117
Rate from LS fit A.-flux u 1.1203 2.5590 4.1036 5.2299 6.1033 6.9413 7.9277
Rate from LS fit A.-flux v -0.0654 1.0148 2.0081 3.0165 3.9943 4.9842 5.9861
Rate from LS fit C.-flux u 1.9859 2.2203 4.5079 5.3373 6.2078 6.9131 8.1310
Rate from LS fit C.-flux v 0.9184 1.0019 2.9883 2.9650 4.9424 4.9536 7.0190
Rate from LS fit A+U-flux u 1.8540 2.8402 4.3109 5.2262 6.1809 6.9379 7.9564
Rate from LS fit A+U-flux v 0.8102 1.7296 2.7742 3.9422 4.9024 6.0287 6.9332

for all fluxes, but when the degree is the same we observe degradation of two orders in the rate of convergence
(compared to the rate for uh) when the alternating flux is used. In the most severe case, when uh and vh are
linear, this results in loss of convergence for vh. We note that this result is in agreement with the sharp (in the
worst sense) application of Theorem 3.

Looking at the actual error curves in Figures 4.1 and 4.2 we find that the errors in uh are for the most
part comparable for the two choices of approximation spaces and fluxes. For the errors in vh we see that using
different degree approximation spaces give similar or better results for all fluxes except for the Sommerfeld flux
where the results are slightly better for the same degree.

4.3. A Variable Coefficient Example. As an example with a variable coefficient we solve utt = (c2(x)ux)x
with c2(x) = 1 + sin(πx)/10 on −1 ≤ x ≤ 1, t > 0 with periodic boundary conditions and with initial data
u = sin(πx), v = −π cos(πx). The discretization is performed on a uniform grid xi = −1 + ih, i = 0, n, h = 2/n
and with s = q + 1. The time step is chosen as ∆t = 0.05h/(q + 1)2 and we solve until time 0.1. In Table 4.3
we list the rates of convergence for the displacement uh for q + 1 = 3, . . . , 8. The error is computed against
a reference solution obtained with q + 1 = 10. The results are generally comparable to those obtained in the
constant coefficient case.

4.4. Spectrum and spectral radii. To predict the timestep restrictions we compute the eigenvalues, λ,
of the time stepping operator,

(4.6) λMvv̂ + Suû = 0, λMuû+ Svv̂ = 0,

for the three different fluxes on a sufficiently fine grid. We also empirically determine the largest possible stable
ratio ∆t/h and plot its scaled inverse (we scale by

√
8 as we use RK4). The empirically computed data agrees

well with the predictions based on the spectral radii.

As the alternating flux and the central flux are both energy conserving their spectra are confined to the
imaginary axis and we only report the spectral radii; see the left part of Figure 4.4. For the Sommerfeld flux we
also report the full spectrum, see the right part of Figure 4.4.
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Fig. 4.1. Plots of the error in u as a function of h in d = 1: on the top, from left to right, Sommerfeld and alternating, on
the bottom, from left to right, central and alternating with upwind dissipation. In the legend q is the degree of the approximation of
v. The solid lines are for results when u and v are in different spaces, the dotted are when they are in the same space.

Table 4.3

Rates of convergence obtained from a linear least squares fit to the data in Figure 4.3.

q + 1 3 4 5 6 7 8
Rate from LS fit S.-flux 4.43 5.66 6.20 6.82 7.93 9.00
Rate from LS fit C.-flux 4.62 4.18 6.28 5.78 8.68 8.06
Rate from LS fit A.-flux 4.57 5.41 6.18 7.07 7.85 9.00

4.5. Empirical order of accuracy for d = 2. In two dimensions we solve utt = uxx + uyy on (x, y) ∈
[−π, π]2 with periodic boundary conditions and initial data chosen so that u(x, y, t) = sin(x + y +

√
2t). We

consider regular Cartesian grids with elements whose sides are hx = hy = 2π/n, as well as unstructured grids.
The unstructured grids are obtained by perturbing the x and y coordinates of the interior nodes of the Cartesian
grid by a uniformly distributed random perturbation (∆x,∆y) taking values in [−hx/10, hx/10]×[−hy/10, hy/10].

We evolve the solution until T = 0.2 with CFL = (0.1, 0.05, 0.01, 0.005) for q = (0-1, 2-4, 5, 6). The l2 and
energy norms of the errors as a function of hx = hy for q = 0, . . . , 6 can be found in Figures 4.5 and 4.6 for the
regular and perturbed grid respectively. Least squares fits for the rates of convergence can be found in Tables
4.4 and 4.5.

For the regular grid we observe the same results as in the one-dimensional case, the Sommerfeld and alter-
nating fluxes yield optimal convergence rates q + 2 (the exception is q = 1 where the convergence rate appears
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Fig. 4.2. Plots of the error in v as a function of h in d = 1: on the top, from left to right, Sommerfeld and alternating, on
the bottom, from left to right, central and alternating with upwind dissipation. In the legend q is the degree of the approximation of
v. The solid lines are for results when u and v are in different spaces, the dotted are when they are in the same space.
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Fig. 4.3. Errors for the variable coefficient example. From left to right Sommerfeld, alternating and central fluxes.

to be q possibly due to the error not being in the asymptotic regime) while for the central flux the convergence
rates are sub-optimal and increase in steps of two as above. For the randomly perturbed grid the rates remain
the same for the Sommerfeld and alternating fluxes but appear to deteriorate by roughly half an order for q + 1
odd when the central flux is employed.

4.6. Conservation of energy. Finally we perform an experiment to assess the energy conservation and
dissipation properties of our method when using the conservative and dissipative fluxes. We consider an example
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Table 4.4

Rates of convergence for regular Cartesian grids and d = 2.

Degree q + 1 for approx. of u 1 2 3 4 5 6 7
Rate for u from LS fit S.-flux 1.384 2.127 4.003 5.052 6.112 6.974 7.889
Rate for E from LS fit S.-flux 0.847 1.714 2.921 3.961 5.020 6.109 7.052
Rate for u from LS fit A.-flux 1.5727 2.003 3.525 4.740 5.772 6.787 7.839
Rate for E from LS fit A.-flux 0.8944 1.829 2.779 4.130 5.041 6.035 6.874
Rate for u from LS fit C.-flux 2.127 1.904 4.318 3.925 6.193 6.025 7.750
Rate for E from LS fit C.-flux 1.099 0.890 3.650 2.985 5.445 4.911 7.342

on the domain (x, y) ∈ [−6, 6]2 with periodic boundary conditions in the y-direction and homogeneous Dirichlet
and Neumann boundary conditions to the left and right respectively. The initial data is chosen to be

u(x, y, 0) = e−(x2+y2), v(x, y, 0) = 0,

and we evolve the data until time T = 25.
The size of the domain ensures that the initial data is close to zero at the boundary and the energy is thus

very close to the energy E(0) = E(t) ≡ π for the unbounded problem.
The computational domain is discretized by 10× 10 elements with the interior nodes perturbed as described

above. The CFL number is fixed at 0.005 for all orders. In Figure 4.7 results using q = 1, . . . , 6 and with central
or upwind flux are shown. To the left we compare the discrete energy to its initial value. We find that when a
central flux or alternating flux is used the decay is very small, on the order of 10−10. For the Sommerfeld flux
the decay is in general larger but becomes smaller as the order of approximation is increased. To the right in
Figure 4.7 we plot the error in the discrete energy measured against the exact energy. Here the error when using
the central flux or alternating flux are practically flat while the error obtained using the Sommerfeld flux shows
some variations with time. The level of the error appears to decrease in a similar fashion for both fluxes as the
order of approximation increases.

5. Extensions. This paper has focused on the construction of the method for linear problems and its ap-
plication to the scalar wave equation. However, our general formulation can be applied much more broadly. In
a forthcoming paper [2] we apply the general formulation to the elastic wave equation. If the elastic material
properties jump (this is the case for most problems in seismology) it can be somewhat involved to determine
numerical fluxes that satisfy the interface conditions (continuity of traction and displacement) at element inter-
faces, see e.g. [17]. In [2] we find that the general formulation presented here can be applied directly and without
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Fig. 4.5. Convergence in 2D for regular grids. From left to right Sommerfeld, alternating and central fluxes.

Table 4.5

Rates of convergence for the randomly perturbed grids in 2D.

Degree q + 1 for approx. of u 1 2 3 4 5 6 7
Rate for u from LS fit S.-flux 1.353 2.123 3.873 5.010 6.078 6.963 7.902
Rate for E from LS fit S.-flux 0.769 1.687 2.867 3.925 4.975 6.045 6.988
Rate for u from LS fit A.-flux 1.399 1.998 3.504 4.723 5.738 6.775 7.803
Rate for E from LS fit A.-flux 0.664 1.773 2.746 4.047 4.984 5.974 6.995
Rate for u from LS fit C.-flux 1.437 1.898 3.441 3.938 5.543 6.044 7.321
Rate for E from LS fit C.-flux 0.618 0.891 2.644 2.996 4.506 4.939 6.340

modification of the numerical flux specification to such problems. The resulting method automatically satisfies
the interface conditions.

For nonlinear problems we have carried out numerical experiments for the sine-Gordon equation as well
as for wave equations where the speed depends nonlinearly on the solution. In the first case the nonlinearity
can simply be treated as a forcing term whose contribution can be incorporated by evaluating the nonlinearity
in a pseudo-spectral manner at the quadrature points. For the second problem with a nonlinear wave speed
the mass and stiffness matrices depend on the solution and have to be recomputed (again in a pseudo-spectral
manner) at each timestep. In our simulations of these nonlinear systems we so far observe the same convergence
and conservation properties as in the linear case but we plan to carry out a more rigorous analysis and more
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Fig. 4.6. Convergence in 2D for randomly perturbed grids. From left to right Sommerfeld, alternating and central fluxes.
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extensive numerical experiments to confirm our preliminary, but promising, results.

Appendix A. Flux terms, mass and stiffness matrices . The mass and stiffness matrices are:

Mv
k,l =

h

2

∫ 1

−1

ψk(z)ψl(z)dz, k, l = 0, . . . , q,(A.1)

Mu
0,l =

h

2

∫ 1

−1

φl(z)dz, l = 0, . . . , s,(A.2)

Mu
k,l =

h

2

4

h2

∫ 1

−1

φ′′k(z)φl(z)dz −
[

2

h
φ′k(z)φl(z)

]1

−1

, k = 1, . . . , s, l = 0, . . . , s,(A.3)

Sv
0,l = −h

2

∫ 1

−1

ψl(z)dz, l = 0, . . . , q,(A.4)

Sv
k,l = −h

2

4

h2

∫ 1

−1

ψ′′
k (z)φl(z)dz, k = 1, . . . , s, l = 0, . . . , q,(A.5)

Su
k,l =

h

2

4

h2

∫ 1

−1

ψ′
k(z)φ

′
l(z)dz, k = 0, . . . , q, l = 0, . . . , s.(A.6)
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Here the factors h
2 ,

2
h appear from the integral and derivative due to the change of variables. The flux terms are

Fv
l =

[(

∂u

∂x

)∗

ψl(z(x))

]xj+1

xj

, l = 0, . . . , q,(A.7)

Fu
l = − 2

h
[v∗(∇zφl(z(x)) · n)]xj+1

xj
, l = 0, . . . , s.(A.8)

For the numerical experiments presented in this paper we compute the integrals exactly by using sufficiently
high order Gauss quadrature.
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