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MTB-Fetch: Multithreading Aware Hardware
Prefetching for Chip Multiprocessors
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Abstract—To fully exploit the scaling performance in Chip Multiprocessors,
applications must be divided into semi-independent processes that can run
concurrently on multiple cores within a system. One major class of such
applications, shared-memory, multi-threaded applications, requires programmers
insert thread synchronization primitives (i.e., locks, barriers, and condition
variables) in their critical sections to synchronize data access between processes.
For this class of applications, scaling performance requires balanced per-thread
workloads with little time spent in critical sections. In practice, however, threads
often waste significant time waiting to acquire locks/barriers in their critical
sections, leading to thread imbalance and poor performance scaling. Moreover,
critical sections often stall data prefetchers that mitigate the effects of long critical
section stalls by ensuring data is preloaded in the core caches when the critical
section is complete. In this paper we examine a pure hardware technique to enable
safe data prefetching beyond synchronization points in CMPs. We show that
successful prefetching beyond synchronization points requires overcoming two
significant challenges in existing prefetching techniques. First, we find that typical
data prefetchers are designed to trigger prefetches based on current misses. This
approach this works well for traditional, continuously executing, single-threaded
applications. However, when a thread stalls on a synchronization point, it typically
does not produce any new memory references to trigger a prefetcher. Second,
even in the event that a prefetch were to be correctly directed to read beyond a
synchronization point, it will likely prefetch shared data from another core before
this data has been written. While this prefetch would be considered “accurate” it is
highly undesirable, because such a prefetch would lead to three extra “ping-pong”
movements back and forth between private caches in the producing and
consuming cores, incurring more latency and energy overhead than without
prefetching. We develop a new data prefetcher, Multi-Thread B-Fetch (MTB-
Fetch), built as an extension to a previous single-threaded data prefetcher. MTB-
Fetch addresses both issues in prefetching for shared memory multi-threaded
workloads. MTB-Fetch achieves a speedup of 9.3 percent for multi-threaded
applications with little additional hardware.

Index Terms—Chip multiprocessor,
shared memory

hardware prefetching, multi-threading,
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1 INTRODUCTION

DESPITE increasing transistor density, the performance and power
gains that traditionally accompanied process scaling have largely
ceased. This trend has manifested in the current proliferation of
chip-multiprocessors (CMPs) replacing single core processors as
the dominant processor design, due to their lower power con-
sumption for similar performance, however, blithely scaling core
counts with future process technologies will quickly lead to
diminishing returns, particularly for shared-memory, multi-
threaded applications. In these applications, core and thread-
count scaling often leads to performance destroying workload
imbalances [1], [2]. One of the major causes of these thread-level
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workload imbalances, as well as degrading performance in gen-
eral, is memory latency.

Prefetching is a well-studied technique to reduce the impact of
memory latency. Prior work has shown that prefetching produces
substantial performance gains on typical single-threaded and
multi-application workloads [3], [5], [6]. Unfortunately, multi-
threaded applications typically see little to no performance benefit
from existing prefetching schemes. Fig. 1 shows the speedup of
multi-threaded applications under three previous prefetching
schemes as well as our proposed Multi-Thread B-Fetch (MTB-
Fetch) scheme. The figure shows that, at best, the performance
increase of the previous schemes is marginally positive, and at
worst performance is somewhat degraded despite evidence that
several are memory bound [2], [7]. There are two primary reasons
for the poor performance of traditional prefetching techniques on
these workloads: First, most prefetchers only issue a prefetch when
cache miss occurs in that core. For multi-threaded applications,
where an ideal time to pre-load the cache is while a given thread is
spin-lock waiting, this represents a significant wasted opportunity
because spin-lock loops contain no (relevant) cache misses. Second,
for those few prefetchers that issue prefetches without a triggering
miss (e.g., B-Fetch [4], [5]), prefetching shared data, even with per-
fect accuracy, might incur excess invalidations in the event that the
prefetched data is read before it is written in the producing core.
This is the primary cause of B-Fetch’s performance loss in the
figure. No prior work we are aware of has identified and addressed
these two issues in prefetching for multi-threaded applications.

We present MTB-Fetch, a data prefetching scheme designed for
multi-threaded workloads. The primary contribution is in address-
ing the issues of prefetching beyond synchronization constructs
without prematurely fetching data not yet written in the producing
core. We show that the overheads of MTB-Fetch are low and have
no impact on the performance of prefetching for traditional single-
threaded workloads. MTB-Fetch provides a speedup of 9.3 percent
for PARSEC workloads, more than doubling the speedup of the
best prior technique, SMS [3].

2 BACKGROUND

Shared Memory Model. With growing core counts, fully exploiting
the underlying microarchitecture and achieving scaling perfor-
mance of single applications requires dividing that application into
independent threads that can run simultaneously across the cores
within a system and take advantage of thread-level parallelism
(TLP). The dominant programming model for this form of TLP is
shared memory multi-threading. In this programming model, an
application is broken into independent threads which share a sin-
gle, coherent view of memory. Typically, these independent
threads share some data to complete the task. In this model, pro-
grammers insert explicit thread synchronization primitives (i.e.,
locks, barriers, and condition variables) to coordinate data sharing
between threads, ensuring that data produced by one thread is not
read by a consuming thread before it is written and so forth.

To facilitate the construction of synchronization primitives,
most architectures provide some form of read-modify-write
instructions that are capable of updating (i.e., reading and writing)
a memory location as an atomic operation. For example, RISC style
ISAs, such as ARM and ALPHA, support Load Linked (LL) and
Store Conditional (SC) instructions to implement synchronization
primitives [8]. In this scheme, the LL instruction loads a block of
data into the cache and marks this cache line for tracking. The fol-
lowing SC instruction attempts to write a new value to the same
block. This write succeeds only if the block has not been referenced
since the preceding LL. Any memory reference to the block from
another processor between the LL and SC pair causes the SC to fail.
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Fig. 1. Speedup of PARSEC workloads with SMS[3], and B-Fetch [4], [5], normal-
ized against a no-prefetching baseline.

Upon failure, the locking thread will typically retry the full LL/SC
pair until atomic read /modify/write success is achieved.!

Data Prefetching. Data prefetching is a well known technique in
which the cache is pre-filled with useful data ahead of an actual
demand load request coming from the processor. Typically, the
prefetching opportunity is limited to waiting until a cache miss
occurs, and then reading either a set of lines sequentially following
the current miss [9], a set of lines following a strided pattern with
respect to the current miss [10], or a set of blocks spatially around
the miss [3]. More recent prefetchers attempt to predict complex,
irregular access patterns [3], [6], [11], [12], [13], [14]. While these
methods show significant benefit, they are inherently reactive,
waiting until a cache miss occurs before they initiate prefetches
down the speculated path.

Some prefetchers, such as B-Fetch [4], [5], are triggered by the
fetch of a branch instruction by the processor, making them more
suitable for prefetching beyond synchronization points. B-Fetch is
a data cache prefetcher that employs two speculative components.
It speculates on the expected path through future basic blocks,
using a lookahead mechanism that relies on branch prediction to
predict that execution path, and a scheme to predict the effective
addresses of load instructions along that path based on the register
file transformations per-basic block. B-Fetch records the variation
of register contents at earlier branch instructions and uses this
knowledge to predict the effective address.

Fig. 2 illustrates the overall system architecture of a system incor-
porating B-Fetch together with the additional components needed to
implement MTB-Fetch. The figure shows the main CPU execution
pipeline and the additional hardware for the B-Fetch prefetcher.
B-Fetch forms a separate, 3-stage prefetch pipeline parallel to the
main pipeline. The B-Fetch pipeline consists of the following stages:

1) Branch Lookahead: Responsible for generating the predicted
path of program execution starting from the currently
decoded branch.

2)  Register Lookup: Responsible for capturing and providing
information about the registers used to generate effective
addresses within a given block.

3)  Prefetch Calculate: Generates the prefetch addresses that are
issued to the prefetch queue, after filtering by a per-load
confidence estimator.

Multithreaded applications are just as likely to experience lost
performance due to long-latency memory accesses as traditional,
single threaded applications. Thus, prefetching should be a good
way to improve performance. As discussed in the previous section,
prefetching for multi-threaded applications produces unique chal-
lenges, in that threads waiting on synchronization typically do not
induce prefetches for data beyond those synchronization points.
Moreover, reckless prefetching of data beyond synchronization
points could hurt performance due to premature prefetching of

1. CISC ISAs typically employ single read /modify/write atomic instructions
which produce similar behavior in implementing shared memory synchroniza-
tion semantics. For the purpose of discussion we focus on the LL/SC but every-
thing discussed can apply to CISC instructions as well.
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Fig. 2. MTB-Fetch/B-Fetch [4], [5] microarchitecture. MTB-Fetch additional com-
ponents highlighted in blue.

shared data before it has been written. MTB-Fetch is designed to
address these issues.

3 PROPOSED DESIGN

MTB-Fetch addresses the two issues with prefetching for multi-
threaded workloads. It must continue prefetching beyond the syn-
chronization semantic while the thread itself is busy waiting. It
must also avoid issuing prefetches for shared data before it has
been written.

The insight behind MTB-Fetch is to use the decode stage in the
actual processor pipeline to dynamically track the synchronization
primitives and identify when a thread is spinning on a lock. For a
thread to acquire a lock, it must load the lock and check that no
other thread is currently holding the lock. Then it must own the
lock. If the thread fails to acquire the lock, it will stay in a spin loop
until it successfully acquires it. Once a thread acquires the lock it is
safe to execute the critical section. The thread needs to release the
lock to allow other threads to execute the critical section as well.
Acquiring and releasing a lock involves executing the synchroniza-
tion primitive instructions LL and SC described in Section 1.

3.1 Overview

We implemented MTB-Fetch as an extension to the prior work B-
Fetch prefetcher described in Section 2. To solve the first issue, pre-
fetching beyond synchronization points, we must detect when a
thread is trying to acquire and release a lock in the instruction
stream, then feed the first branch instruction after releasing the
lock to the B-Fetch engine to start prefetching. To this end, MTB-
Fetch leverages the synchronization primitive instructions, LL/SC,
in the dynamic instruction stream. The prefetcher identifies when a
thread is spin waiting by the decoding of LL instructions. It then
learns the backward branches following the LL instruction which
are part of the spin once the LL/SC pair are successful and records
these. Later when this synchronization point is encountered again,
the prefetcher will ignore the “correct” backward branch predic-
tion to skip ahead of the synchronization point, allowing prefetch
to continue in the region beyond the critical section.

To solve the second issue, prefetch invalidation due to prema-
ture prefetching. MTB-Fetch keeps track of prefetches which are
invalidated via the cache coherence mechanism prior to their use.
This information is used to filter these “unsafe” prefetches, prohib-
iting them from being prefetched in the future.

3.2 System Components

Fig. 2 shows the MTB-Fetch microarchitecture. In particular two
components, the Synchronization Primitives Trace Cache (SPTC)
and Invalidation Filter are added to the original B-Fetch microarch-
itecture. Here we describe each.



IEEE COMPUTER ARCHITECTURE LETTERS, VOL.17, NO.2,
TABLE 1
Hardware Storage Overhead in KB
Prefetcher Component # Entries Size (KB)
Branch Trace Cache 256 2.06
Memory History Table 128 4.5
Alternate Register File 32 0.156
Per-Load Prefetch Filter 2048 2.25
Additional Cache bits - 1.37
MTB-Fetch Prefetch Queue 32 0.156
Path Confidence Estimator 32 0.156
Primitives Trace Cache 256 2.06
Invalidation Filter 2048 2.25
TOTAL SIZE :17.15
Branch Trace Cache 256 2.06
Memory History Table 128 4.5
Alternate Register File 32 0.156
B-Fetch Per-Load Prefetch Filter 2048 2.25
Additional Cache bits - 1.37
Prefetch Queue 32 0.156
Path Confidence Estimator 32 0.156
TOTAL SIZE : 12.84
Active Generation Table 64 0.57
SMS Pattern History Table 16k 36

TOTAL SIZE : 36.57

Synchronization Primitives Trace Cache (SPTC). The SPTC dynam-
ically captures the atomic primitives that were used to implement
synchronization semantics. Each entry acts as a state machine to
indicate where the beginning and the end is of critical section.
Here, an LL instruction followed by a SC to the same effective
address, indicates the beginning of a critical section. Once a second
SC is detected, it indicates the end of a critical section. Then the first
branch address after the critical section will be passed to branch
lookahead in B-Fetch pipeline, so B-Fetch can predict the execution
path starting from the current branch in order to prefetch data in
the next basic block after the end of the synchronization semantic.

Invalidation Filter. To prevent useless prefetches wasting time,
bandwidth and energy, it is crucial to reduce the number of inva-
lidations of data prefetched but never used in the local core. The
Invalidation Filter tracks data recently prefetched from another
core’s private caches. In the event that a cache line prefetched from
another core is invalidated prior to its use by the local core, the fil-
ter notes the associated load that caused the prefetch. Future pre-
fetches associated with that load in that basic block will be
dropped before issuing under the assumption that this load is
likely to lead to a premature prefetch.

3.3 Harware Cost

The additional hardware storage requirements for MTB-Fetch,
B-Fetch and SMS are summarized in Table 1. Two additional com-
ponents have been added to B-Fetch. In term of hardware budget
Synchronization Primitives Trace Cache (SPTC) is 2.06 KB and the
Invalidation Filter is 2.25 KB. To optimize the performance of SMS,
we used the configuration used by Somogyi, et al. [15] and 2 KB
spatial regions, a 64-entry accumulation table, and a 16K-entry
pattern history table. Thus, MTB-Fetch incurs a small, 4.31 KB

TABLE 2
Target Microarchitecture Parameters

Simulator Gemb5 Simulator, ALPHA ISA, Full System Simulation
Architecture O3 processor, 4-wide, 192-entry ROB

ICache / DCache 32 KB, 8-way set-associative

L2Cache 256 KB, 8-way set-associative

Shared L3Cache 1024 KB per core, 16-way set-associative
Replacement Policy LRU
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Fig. 3. Multi-threaded workload speedups.

overhead over B-Fetch, which is still significantly less hardware
state than SMS requires.

4 EVALUATION

4.1 Methodology

We used gem5 [16], a cycle accurate simulator, to evaluate MTB-
Fetch. The baseline configuration is summarized in Table 2. We
used a set of nine multi-threaded programs from PARSEC bench-
mark suite [17]. The benchmark applications represent widely used
shared memory applications, which use the P-threads library to
handle synchronization. The benchmark applications are cross-
compiled for the ALPHA ISA and run on gemb configured with the
O3CPU CPU model (Out-of-Order) and the detailed (classic) mem-
ory model. The benchmarks were run in Full System (FS) mode.

The baseline hardware is a 4-core CMP machine with three level
cache hierarchy as specified in Table 2. Each core’s private cache is
split into I-cache (32 KB) and D-cache(32 KB), 256 KB second level
cache and 1024 KB per core third level shared cache.

MTB-Fetch results are compared against two light-weight pre-
fetcher designs, the Stride prefetcher, SMS prefetcher, configured
as described in Section 4.1 and the original B-Fetch. The Stride pre-
fetcher was configured as in prior work [5].

4.2 Results

Fig. 3 shows the performance of each of the four prefetcher designs
as the speedup compared to the baseline no-prefetching configura-
tion. For all results, the execution time is the time spent in the
region of interest (ROI). In the figure we see that MTB-Fetch pro-
vides a significant performance increase of 9.3 percent versus the
baseline, more than double the performance of the closest competi-
tor, SMS. Moreover, where the original B-Fetch showed perfor-
mance regressions versus a non-prefetching baseline, MTB-Fetch
improves performance for every benchmark. Interestingly, MTB-
Fetch sees some of its biggest performance gains for applications
where the original B-Fetch saw significant performance losses.

Fig. 4 shows the number of useful versus useless prefetches for
each prefetcher. Each bar is the arithmetic average across all bench-
marks. The figure illustrates several points about the behavior seen
in the performance results (Fig. 3). First we see that, for the Stride
prefetcher where very small performance gains are seen, generally
few prefetches are issued, thus the performance gains are minimal.
Interestingly for SMS, which sees some gains, there are actually
fewer useful prefetches and more useless than even Stride. In this
case, the useless prefetches were not enough to pollute the caches
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Fig. 4. Useful and useless prefetches issued, averaged across all benchmarks for
each prefetcher.
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significantly, while there were more useful prefetches issued on the
critical thread, thus more performance gains. The original B-Fetch,
while issuing slightly more useful prefetches than SMS, also issues
more than twice as many useless prefetches. The original B-Fetch,
often will get stuck in spin-lock loops, prefetching the lock cache line
itself, which is not only useless but can cause worse performance
because the lock cache line will have to be invalidated back to
the core currently holding the lock. Further, for the occasions when
B-Fetch does prefetch beyond the critical section (when it predicts
the lock will not spin), B-Fetch often prefetches cache lines from
other core’s private caches before the writing core has written the
data, causing performance loss as the cache line ping pong’s back
and forth between the private caches. In the figure, we see that MTB-
Fetch, by contrast, successfully converts the majority of B-Fetch’s
useless prefetches into useful prefetches, this is the dominant reason
why MTB-Fetch outperforms the competition on these workloads.

5 CONCLUSION

With increasing core-counts, shared memory multi-threading is
becoming an ever more critical programming paradigm. Shared
memory multi-threaded applications are similarly impacted by
latency in the memory system as single-threaded applications,
however, current memory prefetchers are unable to produce much
performance benefit in these workloads. In this paper we identify
two primary causes for poor performance in existing prefetchers
for multi-threaded workloads: the inability to prefetch beyond syn-
chronization semantics and the premature prefetching of data
before it has been written in the producing core when the pre-
fetcher is able to prefetch beyond those semantics. We then show a
low overhead technique which allows prefetching beyond synchro-
nization semantics while avoiding prefetching of data which has
not yet been written by its producing thread. This scheme, MTB-
Fetch, achieves a geometric mean speedup of 9.3 percent over base-
line, more than twice the gains of the nearest competitor light-
weight prefetcher on these workloads. As a final note, none of the
additions to proposed negatively impact the single thread perfor-
mance gains seen in the proposed prefetcher.
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