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Abstract: Cell signaling and gene transcription occur at faster time scales compared to cellular
death, division, and evolution. Bridging these multiscale events in a model is computationally
challenging. We introduce a framework for the systematic development of multiscale cell population
models. Using message passing interface (MPI) parallelism, the framework creates a population
model from a single-cell biochemical network model. It launches parallel simulations on a single-cell
model and treats each stand-alone parallel process as a cell object. MPI mediates cell-to-cell and
cell-to-environment communications in a server-client fashion. In the framework, model-specific
higher level rules link the intracellular molecular events to cellular functions, such as death, division,
or phenotype change. Cell death is implemented by terminating a parallel process, while cell division
is carried out by creating a new process (daughter cell) from an existing one (mother cell). We first
demonstrate these capabilities by creating two simple example models. In one model, we consider
a relatively simple scenario where cells can evolve independently. In the other model, we consider
interdependency among the cells, where cellular communication determines their collective behavior
and evolution under a temporally evolving growth condition. We then demonstrate the framework’s
capability by simulating a full-scale model of bacterial quorum sensing, where the dynamics of
a population of bacterial cells is dictated by the intercellular communications in a time-evolving
growth environment.

Keywords: multiscale modeling; message passing interface; Gillespie method; cell population
dynamics; quorum sensing

1. Introduction

Cell fate decisions and phenotypes are determined by the intracellular molecular events in
signaling and gene transcription [1-3]. The collective behavior and evolution of cells are linked to these
intracellular events. Nevertheless, most of the cell population models are decoupled from signaling
and gene transcription. A key challenge to modeling multicellular systems considering signaling and
gene transcription is the multiscale nature of the problem [4]. Cell death, division, and evolution take
place at a longer time scale compared to intracellular biochemical transformations in signaling and
gene transcription. Bridging these multiscale phenomena in a model is imperative to mechanistically
study cellular development and evolution [5].

In this work, we present a new framework for multiscale modeling and simulation of multicellular
systems. It provides a unique capability to systematically expand a single-cell biochemical network
model into a cell population model. Using a message passing interface (MPI) [6] parallel algorithm,
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the models can bridge cellular processes to the temporal molecular events in signaling and
gene transcription.

In an unconventional approach, the framework launches parallel simulations on a single-cell
biochemical network model and then treats each stand-alone parallel process as a cell object. Under the
MPI scheme, each parallel process behaves like an agent or software object of an agent-based model [7],
and, together, all parallel processes represent the cell population. Cellular heterogeneities can be
introduced in the population by creating the parallel processes with distinct parameter values or
initial conditions. The cell objects (parallel processes) are communicated, synchronized, and controlled
remotely using MPI communications. The cell objects evolve through death and division based on the
state variables representing intracellular network species. The death of a cell object is simulated by
terminating the process. The division of a cell is simulated by creating a new process (daughter cell)
from an existing process (mother cell). Cellular attributes and memory can be passed from one process
to another (mother to daughter) during the cell division process.

To implement the above scheme, we break down a model into two separate computer programs.
One program describes the cellular processes (cell death, division, or changes in the phenotypes)
and their dependencies on the intracellular network species. In the other program, we define
a complete biochemical network model describing the intracellular events. We then communicate these
two programs in a server-client fashion to connect the cellular processes and the intracellular network.

The separation of the cellular and intracellular molecular-scale processes into two programs
provides modularity and versatility in model development. It permits a signaling pathway
or gene transcription network model to be defined separately and then readily expanded into
a population model. This distributed framework can enable scalable model development considering
computationally expensive mechanistic details at the single-cell level.

We first use two simple example models to demonstrate the capabilities of the framework.
In one model, we treat cells as independent objects. In the other model, we consider cellular
dependency by incorporating cell-to-cell communications. Using the former model, we analyze
computational performance of the MPI formulation. This model is also used to demonstrate how
MPI could be used to model a temporally-changing growth environment and link it to a multicellular
system of evolving cell populations. We utilize the latter model to show how MPI could be used
to model cellular interdependencies arising from the cell-to-cell communication in an evolving cell
population. Finally, we demonstrate the framework by creating a full-scale model of bacterial quorum
sensing. We first create a single-cell biochemical network model by incorporating the intracellular
protein-protein interactions, as described in Boada et al. [8], and systematically expand this single-cell
model into a population model using the MPI framework. We present an analysis on the computational
performance and accuracy of the population model by validating against an accurate model based on
direct implementation of the Gillespie method [9]. Although in this work we have provided a specific
example of modeling bacterial quorum sensing, the approach is general and applicable to modeling
yeast or mammalian cell systems.

2. Results

2.1. The Population Modeling Framework

The framework is illustrated in Figure 1. To create a cell population model, the framework requires
a single-cell biochemical network model implementing a stochastic method, such as the Gillespie
algorithm [9].
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Figure 1. Schematic diagram of the population modeling framework. The framework uses MPI
parallelism to create a multiscale population model from a single-cell biochemical reaction network
model. Each single cell is represented by a stand-alone parallel process. Intercellular communication
is mediated in a server-client fashion. On the far right of the figure, an example set of biochemical
network reactions associated with each cell is shown. The network consists of two intracellular species
S and P and their synthesis, degradation, and inter-conversion in response to an extracellular cue
I. The master process creates a population of cells, where each cell has this same set of biochemical
reactions. However, the master process incorporates heterogeneity among the cells by sampling the
protein copy number or parameter values from defined distributions (Input 1). In addition, the master
process implements rules for cellular decision-making based on the intracellular species concentrations
(Input 2). The master process also determines how the extracellular input I may change over time (f) or
position (x, y, z) based on some defined rules (Input 3).

The biochemical network model could be a signaling pathway or gene transcription network
model describing the intracellular protein-protein interaction and their biochemical transformations.
The framework also requires three additional inputs, as shown. The Type 1 inputs are cellular
distributions of the model parameter values and protein copy numbers. Distribution functions can
be defined for the parameters and initial concentrations to incorporate cell-to-cell variability in the
population model. The Type 2 inputs are model-specific rules that link the temporal intracellular events
(time evolution of a network species, for example) to cellular functions (death, division, or phenotypes).
The Type 3 inputs define the cell environment (growth condition).

Given the inputs, the framework launches parallel simulations on the single cell biochemical
network model. Each of the simulation processes is then treated as a cell object, as in an agent-based
model. Based on the parameter distribution functions, each cell object may acquire properties that are
distinct from the other cell objects in the population.

The framework works as a server (a master process), while each of the parallel simulations
on the biochemical network model serves as a client (a slave process). MPI is used to mediate
the server-client communications. A detailed algorithm of this server-client scheme is provided in
Supplementary Materials (S1_File.pdf). This sever-client scheme is illustrated in Figure 2. Each cell
object (slave process) is allowed to propagate simulation (Gillespie algorithm on the intracellular
network) for a prescribed time interval At. At the end of each At, the master process and the slave
processes communicate. The master process collects simulation data from each slave process (cell
object) and analyzes the data against the rules (Type 2 and Type 3 inputs). Based on the analysis,
it sends cell-specific instructions to each slave process using MPL. In addition, it takes actions to execute
death, division, or other functions for a cell object if corresponding conditions specified in the rules
are met.
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Figure 2. The skeleton algorithm of MPI communications. The master program and the slave program
are shown in the left and right box, respectively. The master program defines parameters and rules
associated with the cellular-scale processes and extracellular environment. The slave program defines
the molecular-scale processes in the form of a stand-alone biochemical network model. The master and
slave programs contain complementary MPI calls in a loop to mediate communications in a server-client
fashion.

If the internal state of any cell object meets the conditions for cell death (specified in the Type 2
rules), the master process terminates the parallel process. Similarly, if the internal state of a cell
object meets the conditions for cell division, the master launches a new parallel process to create
a daughter cell object. It then sends an MPI message to the newly created process to specify its initial
condition, as defined in the rules (Type 2 inputs). Following cell division, the framework partitions the
contents (network species) of the mother cell between the mother and the daughter based on binomial
distribution [10].

Based on the Type 3 inputs, the master process evaluates the extracellular environment in
each At. It sends MPI messages to the cell objects about the updated environment variables.
Such variables may include the concentration of an extracellular signal (the concentration of a drug,
ligand, or other biomolecules, for example) that may affect the intracellular reactions. Based on
the updated environment, the cell objects propagate simulation for another At, and the process can
be repeated.

It should be noted that the algorithm above is based on an approximation, rather than the accurate
implementation of the Gillespie method. The approximation involves discretizing time in small
intervals (At) within which the cells are assumed independent (simulated in parallel). An accurate
implementation of the Gillespie algorithm over a multicellular system could be impractical if the
detailed molecular interactions are considered at the single-cell level.

We discretize the simulation time with At = 1 s. The assumption here is that the change in the
extracellular environment in this period is small. In addition, this period is also small compared to
the time scale of the cellular processes (death and division), which typically take several minutes to
hours. This approximation may potentially improve computation, as we demonstrate in the result
section. In our algorithm, the time step At can be chosen arbitrarily small. However, a smaller At could
increase the frequency and overhead of the MPI communication.
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Considering two simple intracellular networks, we demonstrate how the MPI framework builds
population models by expanding a single-cell biochemical network model. These simple models are

illustrated in Figure 3.
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Figure 3. The two example (mock) models. The gray circle represents a cell, and the white space
around the circle represents the extracellular space. The intracellular network consists of two species S
and P. S is synthesized and degraded at a certain rate. In addition, it is converted into P in the presence
of an extracellular species I. (A) Model I: cells are independent; (B) Model II: cells communicate by

modifying the extracellular environment (concentration

2.2.1. Model I

of I).

In this model, we consider cells as independent objects. Therefore, the death, division, or intracellular
reactions of any cell is not affected by other cells in the population.

In a C++ program, we define a biochemical network model describing the intracellular events
at the molecule scale. As illustrated in Figure 3A, we consider four elementary reactions in the
network. These reactions and corresponding rate constants are listed in Table 1. The reactions describe
a signaling pathway, which is activated in response to an extracellular signal I. A receptor protein
S is synthesized and degraded in a zeroth and first-order reaction, respectively. In the presence of
extracellular I, S is activated to produce P and deactivated in a reverse reaction. In the model, P serves
as a pro-death signal for a cell. Intracellular accumulation of P elicits cell death by inducing the mean

rate of cell death k.-

Table 1. Signaling pathway model parameters (slave program).

Parameter Value Description
S 10,000 molecule/cell Initial concentration of S.
P 0 molecule/cell Initial concentration of P.
I (Varied) molecule/cell Extracellular signal.
ksyn 10 molecules s—1 Rate constant for ¢ — S.
Kieq 0.001s~! Rate constant for S — ¢
k 5 10~7 (molecule/cell)"1s~1  Rate constant for S — P.
ky 0.1s1 Rate constant for P — S.

In a separate C++ program, we introduce the cellular processes and associated parameters
(Table 2). We ignore cellular heterogeneity (Type 1 input). A rule (Type 2 input) is included to
define the dependency of cell death on intracellular P. This rule simply states a linear relationship:
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Kaeatn = Kaeatno + aP (Table 2). Here, kjou10 is the mean rate of cell death in the absence of P or
extracellular I. The proportionality constant a (Table 2) measures the sensitivity of a cell to intracellular
P. A second rule is included to binomially distribute the contents (network species) of a cell when it is
divided to create a new cell. We assume that the extracellular environment (I) remains unchanged
throughout the simulation.

Table 2. Cellular model parameters (master program).

Parameter Value Description
Kgeatno 1073571 Mean rate of cell death in the basal state.
Kgivision 1073571 Mean rate of cell division.
o 10~ (molecule) 1s1 Cell death sensitivity to intracellular P.
Kieatn (Keatno + aP) s~1 Mean rate of cell death (function of intracellular P).
k. 10-9 (molecule)~'s~! Model II only: rate of cellular production

and release I per of molecule of intracellular P.

As explained earlier, we have two programs: one program (acting as slave) defining the
biochemical network model, and the other program (acting as master) defining the cellular processes.
These two programs contain complementary MPI calls to communicate in a server-client fashion.
The master program launches a number of parallel simulations on the slave program to create the
initial population of cell objects. For an interval, At = 1 s, all the simulation processes (cell objects)
propagate simulations (Gillespie algorithm) on the biochemical network system. At the end of At,
the master process collects simulation data from the cell objects. Based on the analysis of the simulation
data against the rules, the master process performs few checks and takes actions accordingly. First,
it evaluates each cell object for death or division. A cell is selected for death if U(0,1) < 1 — e~ Kaean®t),
where U(0,1) is a uniform random number between 0 and 1. Similarly, a cell is selected for division if
U(0,1) < 1 — elKawisiont) Cell death is executed by terminating the corresponding parallel process,
while cell division is executed by creating a new process (daughter cell) from the existing process
(mother cell). The master process then analyzes the level of pro-death signal P in each (living)
cell and updates the cell’s kj.,, according to the rule. Note that cell death could be linked to
a variety of pro-death (apoptotic) signals, such as an external cue [11-13] or intracellular expression
of a death-inducing protein [14,15]. In this example model, P represents such an intracellular signal.
The framework allows arbitrary functions (rules) linking such signals to cell death. The function,
which is a modeler’s choice, could be defined based on an educated guess and existing knowledge.

While the master process performs the checks mentioned above, the slave processes (cell objects)
remain in a blocking mode. This blocking mode is released upon receiving a message from the master
program. The slave processes then propagate simulation for another At, and the process is repeated
until the simulation end time is reached.

2.2.2. Model II

This model is shown in Figure 3B. The model has the same set of intracellular reactions as
Model I. However, in this model, cells are interdependent due to cell-to-cell communication. We
consider a reaction whereby cells can secrete I in proportion to their intracellular P. Thus, each cell
contributes to the global pool of I in the environment, which is shared by all cells. An increase in I in
the environment further stimulates the intracellular production P in the cells, thus inducing cell death.

The slave program of Model II defining the biochemical network model remains essentially the
same as in Model I, with the exception of the master program, where an additional rule (Type 3 input) is
included. According to this rule, a cell i secretes Al () amount of I in time At: AI() = k.P () At, where ke
is a constant (Table 2) and PU) is the intracellular P at time ¢. The total change of the environment
is computed by summing up the contributions from all cells: Z?:(tl) AT, where n(t) is the number of
cells at time .
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As in Model I, the master process communicates with the slave processes after each interval,
At = 1s, and evaluates cell death, division, and k,,;, for each of the cell objects. In addition, it also
evaluates the change in [ in the environment. It then updates the slave processes (cell objects) about
the change in the environment by sending MPI messages. Upon receiving the MPI message, the cell
object replaces the old I with a new I. Each cell object then propagates simulation for At based on the
new extracellular environment. The process is repeated until the simulation end time is reached.

2.2.3. Scalability and Performance Analysis

We first test our Model I for its computational performance. The test is performed against an
equivalent model (referred to as sequential model), which is developed based on the traditional
(non-parallel) formulation. In this sequential model, the intracellular reactions in all cells are gathered
into a single reaction list. In addition, this list also contains the division and death of individual cells
as reactions. The reactions in this list is then probabilistically sampled and executed by the exact
Gillespie method.

Figure 4 compares these two models in terms of their scalability and speed of computation.
We vary the scale of the model by changing the cell population size. For consistency, all simulations
are performed in the absence of stimulation (I = 0). This is to ensure that the mean cell population
size remains constant during the simulations. For each population size, we simulate the two models
for 1000 s and note the simulation completion time (wall clock seconds) (Figure 4). The simulations are
carried out on a dedicated 20-core machine.

As seen in Figure 4, computation is orders of magnitude faster in the parallel formulation
compared to its sequential counterpart. The difference becomes more significant when the models
are made more computationally expensive by increasing the concentration of molecule S (Figure 4).
Figure 4B represents a 10-fold higher S in the models compared to Figure 4A. Simulation using the
Gillespie method at the cellular level becomes more expensive when S is increased. This makes
computation prohibitively slow in the sequential model.

The faster computation in the parallel formulation is due to the MPI parallelism as well as the
numerical approximation in the algorithm. As explained in the method section, we discretize the
simulation time in At = 1 s. In each At, the cell objects are simulated independently and in parallel.
At the end of each At, the cell objects are synchronized and updated. On the contrary, in the sequential
model, the Gillespie algorithm is accurately implemented over a single reaction list that represents
the entire multicellular system. The sequential model is not scalable as the number of reactions in
the list is determined by the number of cells in the system. In the parallel formulation, the time
discretization (At = 1 s) is small because the mean waiting time for cell death and division is much
longer (1/kgearn = 1/kaivision = 1000 s). We expect some loss of accuracy from this approximation,
which, however, significantly improves computation.

Note that the concentrations S = 10,000 and 100,000 in the example above are arbitrarily
chosen for the demonstration purpose. These numbers represent a typical expression level of many
cellular signal transduction proteins [16]. However, the framework permits a model to incorporate
a much larger protein copy number in the range of a few hundred thousands [17]. Its computation
for a multicellular system remains feasible as long as the Gillespie algorithm at the single-cell
remains tractable.
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Figure 4. Computational performance of Model I. Model I (circles) and its equivalent sequential model
(squares) are simulated for 1000 s. The two panels correspond to different initial concentration of
molecule S in the model, as shown. The x-axis represents the average cell population size in a simulation.

The y-axis represents corresponding simulation completion time (clock seconds). Simulations are
performed in a dedicated 20-core machine.

2.2.4. MPI to Link Intracellular Dynamics to Population Response

The rate of cell death in Model I is linked to the intracellular concentration of P (activated S)
by a linear function, as discussed in the Method section. Figure 5 shows intracellular S and P of
individual cells in an evolving cell population. We launch an initial population of 100 cells (parallel
processes) at time zero. At t = 1000 s, the population is stimulated with k¢ = 0.01 s~! (Figure 5A,B)
and k¢I = 0.1s™! (Figure 5C,D).

In Figure 5, each curve for S or P represents an individual cell. The start and end of a curve
correspond to the birth and death time of a cell, respectively. The sharp fall of any curve marks
a cell division. The fall is due to the decrease in the cellular content of a mother cell because of its
division. When a cell divides, the contents (network species) are divided between the two cells based
on binomial distribution.

Figure 6 shows the cell population size at different doses of I. The curve showing a constant
mean population size represents the basal condition (k¢I = 0). The intermediate curve indicates a slow
decline in the population size represents stimulation at kI = 0.01 s~1. The curve indicating a sharp
decline represents stimulation at k¢I = 0.1 s—L.
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Figure 5. Temporal evolution of S and P in individual cells. (A,B) the population is stimulated at
t =1000 s with kI = 0.01; (C,D) the population is stimulated at t = 1000 s with k(I = 0.1.
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Figure 6. Cell population dynamics at different doses of stimulation, indicated by black (ksI =0 s,
blue (ksI = 0.01 s~ 1), and red (keI =01 s, respectively.

2.2.5. MPI to Link the Intracellular Reactions and Cell Environment

Figure 7 demonstrates cell population response in Model I under a temporally-evolving
extracellular environment. To model the cell environment, we simply include an additional rule
(Type 3 input) in the master program of Model I. This rule introduces a periodic pulse in I, as shown
in Figure 7A.

At the end of each At, the master program sends a message to each cell object. The message
contains a new value of I for the global environment, which is shared by all cells. Upon receiving the
message, the new value of I replaces the old one, in each cell object. The cell objects then propagate
the reactions (Gillespie algorithm) based on this new value of I. Figure 7B,C show the intracellular S
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and P in each cell in the changing environment. Figure 7D shows corresponding changes in the cell
population size as a function of time.
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Figure 7. Modeling cell environment using MPL (A) the cell environment with pulse variation
in extracellular I; (B) intracellular S of individual cells; (C) intracellular P of individual cells;
(D) time evolution of the cell population size.

2.2.6. MPI to Model Cellular Communications

Our Model Il is inspired by multicellular systems where cell-to-cell communications determine
the collective behavior of cells [18]. In many physiologically-relevant systems, cells respond in
an interdependent manner. Such dependencies may arise from the direct or indirect communications
among the cells. Cells may directly communicate via physical interactions [19]. On the other hand,
indirect communications may arise when cells modify a shared growth environment. Cells can release
proteins or metabolites into the environment, which may affect other cells. An example of such indirect
communication is called quorum sensing [20].

Recent studies have identified a family of quorum-sensing peptides, called Extracellular Death
Factors (EDFs), that induces programmed cell death in E. coli [21] and several other bacteria [22].
Reportedly, secretion of these peptides by bacteria may elicit collective cell death in a population.
In Model II, we consider a similar scenario where cells can produce and secrete I in proportion to their
intracellular P. We implement this by simply adding a rule (a Type 3 input) in the master program of
Model I. In each At = 1 s, the master program evaluates the intracellular P in each cell object and the
secretion of I by the cell object. The global environment is changed based on the contributions from
all cells in the population. The change in the environment is implemented by sending MPI messages,
as explained in the previous section.

Figure 8 shows the population response in Model II. In the top panels (Figure 8A-D), an initial
population of 10 cells are launched at time zero, and stimulated at t = 500 s with a small dose of the
extracellular signal, k¢l = 10~* s~ 1. The population remains non-responsive to this signal. The average
population size is not affected, as seen in Figure 8D. In the bottom panels (Figure 8E-H), an initial
population of 100 cells are launched and subjected to the same level of stimulation, k¢l = 1074s71,
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att = 500 s. Except for the population size, all other conditions are identical to those in the top panels.
Nevertheless, contrary to the smaller population, this larger population displays a dramatic response
(Figure 8E,F). The quorum-sensing positive feedback is triggered because of the collective contribution
of the population. This leads to a rapid buildup of intracellular P (Figure 8F) and extracellular I
(Figure 8G). As a result, the population shows a rapid post-stimulation decay (Figure 8H).
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Figure 8. Population response under cellular communications in Model II. In the top panels (A-D),
an initial population of 10 cells was subject to kI = 10~*s~!att = 500 s. In the bottom panels (E,F),
an initial population of 100 cells is subject to k(I = 10~* s~ at t = 500 s; (AE) intracellular S in
individual cells; (B,F) intracellular P in individual cells; (C,G) temporal evolution of extracellular I in
the environment; (D,H) cell population size as function of time.

It should be noted that the selection of the population sizes in this example (100 or 10 cells) is
completely arbitrary. In reality, millions of cells may participate in such a process. Nevertheless,
the same qualitative differences could be reproduced at different relative scales of the model.
An increase in the model scale (population size) would simply require an adjustment in the parameter
k. (Table 2), which denotes the rate of secretion of I by each cell per molecule of its intracellular P.

3. A Full-Scale Model: Bacterial Quorum Sensing

Our previous examples involved two mock models with very simple sets of intracellular reactions.
Here, we consider a full-scale model of bacterial quorum sensing with a more complex intracellular
biochemical network. The model is based on an earlier model by Boada et al. [8]. The intracellular
biochemical network reactions associated of this model are illustrated in Figure 9. The MPI expansion
of this reaction network system into a population model is also illustrated in Figure 9.

In the master-slave scheme of our framework (Figure 9), the biochemical reactions in each cell
is independently simulated using the Gillespie algorithm for a short interval At. Each cell object
simulates the Gillespie algorithm based on the reactions shown in Figure 9. The updated intracellular
species concentrations from each cell object (slave process) are sent back to the master process using
MPI. The master process then updates the common (well-mixed) extracellular environment based on
the rules specified as an input to the master process (Figure 9). Here, the master takes two types of
inputs. Type 1 input describes the distribution of parameters to incorporate cellular heterogeneity
and type 2 input is the relationship between cell and environment defined as the net change between
external autoinducer concentration (AHL.y;) and internal autoinducer concentration (AHL) over each
time interval At. The parameters values associated with this model are taken from [8].

In the model, cell division is simulated by splitting the molecular concentration of the mother cell
based on binomial distribution into two daughter cells. The cell population size is kept constant by
killing (removing) a randomly selected cell (parallel thread) every time a cell division occurs.
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In Figure 10, we validate the above model against a corresponding accurate (sequential) model.
In the sequential model, the intracellular reactions, cell death, and divisions associated with all cells in
the population are grouped into one single list. The reactions from this list are sampled and executed
following the Gillespie algorithm. As seen in the figure, despite the independent simulation of cells for
discrete interval At, the parallel model is in perfect agreement with the sequential model. The yellow
region is the standard deviation, representing cell-to-cell variability arising from distribution of rate
constant parameters. The change of molecular concentration under cellular birth and death are shown
in Supplementary Materials (S2_File.pdf).
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Figure 9. Schematic diagram of the multicellular quorum sensing model. The master process expands
the single-cell biochemical network (set of reactions shown) into a multicellular model. Type 1 input
defines the distributions of the model /network parameters values to incorporate cellular heterogeneity.
Type 2 input defines relationship between a cell and the extracellular environment defined as the net
change between external autoinducer concentration (AHL,y¢) and internal autoinducer concentration
(AHL) over each time interval At.

Figure 11 shows comparison of the computational performance between the parallel model and
the sequential model, carried out on dedicated 50 cores of a high performance computing cluster.
Using the two models, different cell population sizes were simulated for 100 min and corresponding
simulation completion times (clock time) were recorded for each model. The result indicates the parallel
algorithm is at least two orders of magnitude faster than the corresponding sequential algorithm for
a population of 25 cells. Moreover, this gap between the parallel and the sequential algorithms widens
with the increase in population size. Note that existing literature on quorum sensing [23,24] shows
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modeling of up to 240 cells using sequential approaches. Figure 11 shows that simulation of 500 and
1000 cells using the sequential approach remain unfinished after 168 h and are denoted by cc. On the
contrary, the proposed parallel framework exhibits scalability by simulating up to 1000 cells in less
than 18 h.

A a0

o
(S,
(=]
o

%‘35 —_
_%30 3400
= o
825 bt - 3300
© 20 Q°
£ o)
=15 E200 |
T 10 Sequential x Sequential
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00 100 200 300 400 500 00 100 200 300 400 500
Time (minutes) Time (minutes)

Figure 10. Prediction accuracy of the framework-created quorum sensing model is validated against
an equivalent sequential model. Temporal evolution of (A) AHL and (B) LuxR. The blue and red
curves represent the parallel model and the sequential model, respectively. The yellow region is the
standard deviation, representing cell-to-cell variability arising from distribution of parameters. The
temporal profiles of these concentrations are similar to those shown in [8]. Note that the sequential
model was run only up to 200 s due to the prohibitively slow computation.
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Figure 11. Semi-log plot for computational performance of the parallel quorum sensing model
compared against a corresponding accurate (sequential) model. The black and grey bars represent the
parallel and the sequential model, respectively. The infinite signs represent the cases where simulation
of the sequential model remained unfinished after 168 h of simulation.

4. Discussion

The goal of this work is to introduce a systematic method for developing mechanistic but
computationally efficient cell population models. The question that we raise here is whether it
is possible to systematically expand a biochemical network model into a cell population model.
The commonly employed techniques to model multicellular systems include the continuum
(equation-based) approach, cellular potts modeling (CPM) [25], and discrete agent-based modeling [26].
The equation-based approach and CPM are useful for modeling long-time behavior and evolution
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of cells. However, these methods have limited ability to capture the intracellular protein-protein
interactions in a population model.

Arguably, agent-based modeling (ABM) is the most versatile framework for mechanistic modeling
of multicellular systems [27-30]. In an agent-based model, individual cell agents could be assigned
with cellular attributes at various time and spatial scales. However, mechanistic agent-based models
could be computationally expensive and demand significant programming efforts.

Unlike the agent-based approach, we represent cells by stand-alone parallel simulation processes
on a biochemical network model. We have shown that MPI-based remote communications can be
used to treat such parallel processes as software objects like an agent-based model. In an agent-based
approach, parallelism could also address the scalability issues and speed up computation. However,
such implementation could be model-specific and require expertise in parallel logic implementation.
We aim at providing a modular framework that would require minimal programming efforts.
We separate a model into two different programs. We show that cellular-scale processes described in
one program can be linked to the molecular-scale processes described in another program remotely
to create a unified model. This allows a cellular and a biochemical network model to be defined
separately and then combined to create a mechanistic population model.

Our framework is currently developed in an ad hoc approach that can only support biochemical
network models written in C++ in a prescribed format. Nevertheless, the framework can be extended
to make it compatible with other modeling languages and software platforms. It can be extended to
create cell population models from the biochemical network models developed using other tools.

For demonstration purposes, the cellular protein-protein interactions in our example model is
defined by a network of four elementary reactions. However, the network could be made as detailed
as intended. Many advanced tools can develop highly mechanistic biochemical network models.
For example, the rule-based modeling tools [31-33] can model biochemical network systems where
cellular protein molecules can be defined with their site-specific details, such as binding domains and
phosphorylation motifs [34-36]. Our framework can be integrated with such tools. This can be easily
accomplished by embedding necessary MPI calls between a master program and the program running
the simulation on a rule-based model. Such integration may provide the ability to study cellular
evolution arising from the site-specific (point) mutations in the cellular protein domains and motifs.

This framework can only extend biochemical network models formulated in a stochastic approach,
such as the Gillespie method [9]. In a stochastic model, it is possible to introduce a run-time change in
the model parameter values and simulation conditions. In a deterministic model, such changes would
lead to discontinuities. Therefore, it is not extensible for the deterministic models.

An important limitation of our approach is that it must synchronize the parallel simulation
processes (cell objects) at discrete intervals. The synchronization limits the computation speed by
the slowest process in a population. In a large number of parallel processes implementing stochastic
simulations, the cost of computation could be considerably different from the processes. This issue
could be partially addressed by developing a dynamic load-balancing and resource allocation scheme.

A second limitation is an overhead associated with MPI communications. For a large number
of cells in a model, such communication overhead could be significant. Overhead can be the
limiting factor if the simulation of the biochemical network is not computation intensive. This issue
could be partly addressed through serialization of the MPI messages. In the current framework,
the messages are passed as C data structures without serialization. The cost of overhead could also be
addressed by developing a more distributed system having multiple servers and clients. Our current
framework is based on a centralized system, where communications occur between a single server
and multiple clients.

We have applied our framework to model quorum sensing in bacteria, where we consider
a homogeneous distribution of environment across all cells and their interaction with the environment
through diffusion. As part of future work, we shall extend it to accommodate spatial position of
cells and the environmental molecules as discussed in [37,38] to incorporate the cellular heterogeneity.
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There would be a minor variation in our framework once the spatial model is incorporated. At present,
our framework constitutes a master module which controls the activities of the cells in the system.
In the spatial model, our master node will re-determine the coordinates of the cells and environmental
molecules after fixed intervals of time.

This framework can be extended to model other bacteria, yeast [39], fungus and higher organisms
(eukaryotic cells) [40,41]. For example, different proteins that copy number of yeast and Hela cells
are listed in Kulak et al. [16]. These modelings will follow a similar approach as quorum sensing,
where bacteria synchronize themselves based on feedback response from their environment.

Our framework presents a general approach to connect the molecular scale to the cell population
scale. It is noteworthy that cancer cells have similar multi scale features in low scale (production of
molecules from genes), intermediate scale (interaction of gene with its cellular environment) and high
scale (collective behavior of cells) [42—45]. Our framework can incorporate these hallmarks to study
the nature and phenotype of cancer cells. Furthermore, we intuit that our proposed framework can
also be applied to any drug delivery system, where the concentration of optimum drug dosage can be
quantitatively estimated [11-13,46]. The different dosages (e.g., constant dose, periodic dose) of drugs
can be modeled as environmental variables as described in Figures 6 and 7.

Finally, our approach could also find applications in modeling biological systems that are of
scientific, pathological, and clinical interests. Examples include the evolutionary mechanisms of
stem cells [47], clonal expansion of B and T lymphocytes [48,49], autocrine, paracrine, and endocrine
signaling [50,51], and chemotactic cell migration [52].

5. Conclusions

In this work, we demonstrate a new framework for systematic development of multiscale
cell population models. The framework takes a biochemical network model as an input and
expands it into a population model by linking intracellular network dynamics to cellular functions,
fate decisions, and evolution. This capability is provided by a unique message passing interface (MPI)
scheme. The MPI scheme also enables modeling cell-to-cell and cell-environment communications.
The framework is further extensible to modeling multicellular systems evolving under both spatially-
and temporally-resolved growth environments.

Supplementary Materials: The following files are available online at http:/ /www.mdpi.com/2227-9717/6/11/
217/s1, File S1_File.pdf describes the simulation algorithm of the MPI framework. File S2_File.pdf describes
molecular concretration over time under cellular birth and death in Quorum Sensing.
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