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Abstract— Newly, there has been significant research interest in
the exact solution of the AC optimal power flow (AC-OPF)
problem. A semidefinite relaxation solves many OPF problems
globally. However, the real problem exists in which the
semidefinite relaxation fails to yield the global solution. The
appropriation of relaxation for AC-OPF depends on the success
or unfulfillment of the SDP relaxation. This paper demonstrates
a quadratic AC- OPF problem with a single negative eigenvalue
in objective function subject to linear and conic constraints. The
proposed solution method for AC-OPF model covers the classical
AC economic dispatch problem that is known to be NP-hard. In
this paper, by combining successive linear conic optimization
(SLCO), convex relaxation and line search technique, we present
a global algorithm for AC-OPF which can locate a globally
optimal solution to the underlying AC-OPF within given
tolerance of global optimum solution via solving linear conic
optimization problems. The proposed algorithm is examined on
modified IEEE 6-bus test system. The promising numerical
results are described.

Index Terms—AC optimal power flow, successive linear conic
optimization, convex relaxation, line search technique.

[. INTRODUCTION

HE AC optimal power (AC OPF) problem is to determine

the most efficient, least-cost operation of a power system

by dispatching the available electricity generation
resources to supply the system load while satisfying the
operational constraints of available generation resources.
Typical objectives are the minimization of losses or
generation costs. The AC-OPF problem is generally non-
convex due to the non-linear power flow equations [1] and
may have local solutions [2], [3], which made different
solution techniques an ongoing research topic. Recently, there
has been substantial attention in a Semidefinite Program
(SDP) relaxation of the AC-OPF problem [4]. The AC-OPF
problem is reformulated as a convex semidefinite program by
rank minimization or rank relaxation techniques. In a sense
that, if the convex relaxed problem satisfies a rank condition
(in general rank one) the relaxation is exact, and then the
global solution to the original AC-OPF problem can be
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determined in polynomial solution time. Not only the most
AC-OPF solution methods do not guarantee to find a global
solution in polynomial time, but also the rank condition is not
satisfied for all practical AC-OPF problems [2], [S]-[7]. There
is substantial interest in developing new algorithmic solution
methodology of the SDP relaxation by using the successive
linear programming and convex relations methods.

The main motivation of this work comes from a
perspective of algorithm design. Mathematically speaking,
AC-OPF belongs to the class of non-convex quadratic
optimization problems that has been a major concern in the
optimization community for long.

The first contribution of this work is to develop a new
global algorithm for AC-OPF based on several simple
optimization techniques such as successive linear optimization
for conic constraints and line search. To the best of our
knowledge, this is the first time in the literature showing that
such a hard non-convex AC-OPF can be solved effectively by
using simple optimization techniques. We show that the new

algorithm enjoys a complexity bound O([g/ Je ]log[g/\/; D,
that the g is the solution upper and lower bounds of the
algorithm of the negative eigenvalues terms in the objective
function. It should be pointed out that the complexity bound
O(") in most of the applications in literature are the best-case

estimate due to the usage of the discretization scheme, while
the complexity bound in this work, 0([g/x/;]1og[g/\/2]) is

the worst-case estimate.

The second contribution of this paper is to propose a new
successive linear optimization for conic constraints approach
that includes several attractive properties that are not shared
by the classical successive linear optimization approach.

This paper is organized as follows. Section II introduces
the AC-OPF problem. Section III gives the solution
methodology. Section IV presents the example AC-OPF
problem. Section V concludes the paper.

II. AC-OPF PROBLEM FORMULATION

Let us present a formulation of the OPF problem in terms of
rectangular voltage coordinates and active and reactive power
generation. Consider an n-bus power system, where
N ={1,2,...,n} the set of all buses and G is the set of generator

buses. Let Pp; + jOpy represent the active and reactive load
demand at each busk € N. Let V} =V + jV, represent the



voltage phasors in rectangular coordinates at each busk e N .
Superscripts “max” and “min” denote specified upper and
lower limits. Buses without generators have the maximum and
minimum generation set to Zero (ie.,

PGk,maX = PGk,min = QGk,max = QGk,min =0 VkeN\G). Let
Y =G + /B, which denotes the network admittance matrix.

The power flow equations of the power grid are given by the
following the constraints:

n n
For =Vak Zl(Gik Vai = BiVyi) + Vi _ZI(Bik Vai +GVyi) + Ppi
1= 1=

VkeN (la)
n n
Ocr =V gk Zl(Gik Vai = BiVyi) —Var Zl(Bikai +GyVyi) + Opie
1= 1=
VkeN (1b)
The OPF problem considered in this paper is:
min > cqiFor (2a)
Vq ’Vd keG
S.t. PGk,min < PGk < PGk,max Vke N (2b)
QGk,min < Qg < QGk,max VkeN (2¢0)

| Ly, |< PLmn,max V(m,n)e L (2d)

2 2 2 2
(Vk,min) <Vir + qu = (Vk,max) VkeN (2e)

Ve =0 2/)

Where, V;, =V + j Vi 1s the complex voltage of the bus

k expressed in Cartesian form. The cg;, is the marginal cost

of the generation unit k£ € G. The constraint (2f) shows the
phase angle zero of the slack bus in the AC-OPF model

(Vi =V +j0=V420). Let e, denote the k™ standard

basis vector. Define Y :ekeiY. Matrices employed in the

bus power injection, voltage magnitude, and angle reference
constraints are

v, -1 Re(Y, +¥) Im(¥] -%,) 2
2|m@ -v,) R ! e
f 2 C(Yk + Yk )
v - 1 Im(Y; +¥) Re(¥; —Y/) 2h
- A . (2h)
2|Re(Y; %) Im(Y, +Y;)
:l Re(Y,, + Yrgn) Im(Y"Z;” = Yon) (2)
"2 m(Y), ~ V) Re(Y, + Y0
T
e e 0 i
- { el T} 2))
0 epep
N 0 0 (2k)
=10 ekeg
M = |:(em —e,)(e, _en)T ’ :|
mn — T
0 (e, —ep)(e), —¢€,)
(20
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The transmission line-flow constraint is modeled in (2d). It
should be noted that different line-flow limit formulations
determine success or failure of the semidefinite relaxation [7].

In this paper, we consider the following quadratic AC-OPF
problem with few negative eigenvalues and linear conic
constraints defined as

min  f(xX)= Yo (x YV (3a)
kelG)
s.t. (X,x)eC
Where,
tr(N;X) =0 (30)
X-x"xe$ (3¢)
Pkmin_PkD Str(YkX)SPkmax _PkD (3d)
Ce Ok min — Gkp < (Y X) < O max — Okp (3e)
- PLmn,max < tr(YmnX) < PLmn,max (3f)
szmin <tr(MX) < szmax (Bg)
tr(N;X) =0 (3h)
Vke N,Y(m,n)e L

Here, S denotes the cone of positive semidefinite matrices
and x is the vector of the voltage components, and X is the

rank-one matrix X = xx’ .

x=[Vy VanrlVgt Voo (3i)

The active and reactive power injections at bus & are then
xTka = tr(Y;X) xTka = tr(Y;X),
respectively, where tr indicates the matrix trace operator (i.e.,
sum of the diagonal elements). The square of the voltage
magnitude at bus £ and transmission line flow at line (m,n)

T
Vd 2 an ]

given by and

are replaced by tr(M;X) and tr(Y,,,X) respectively.

III. THE PROPOSED SOLUTION METHODOLOGY

The solution methodology is based on the recasting the
objective function. By using the singular value decomposition
(SVD) on the admittance matrix of the power grid, the
positive and negative eigenvalues Y, can be splitted out to
two terms including the positive and negative quadratic
functions. Indeed, the problem (3) can be recast to a particular
difference convex quadratic problem as the following
problem.

f(6X)= Ttr(GX) (e x)
ke{G}

s.t. (X,x)eC

min

4

The matrixes Gj =c¢;Y; and ¢, are two semidefinite
matrixes, where the first term in (4) indicates the positive
eigenvalues of the matrix Y; and the second term c,

specifies the negative eigenvalues of Y}, .



Generation Cost Function ($/MWh)
-~
— | -

|
/’7\\
|

SIS
K OSKRS:
EEKI

(b)

©
Fig. 1 Generation cost function (a) and its positive and negative quadratic
terms (b) and (c)

The singular value decomposition of the Y, is independed
of the symmetric or asymmetric properties of the Y,

therefore the proposed methodology can be applied for any
power grids even equipped with phase shifter transformers.
Figure 1 shows the concave (non-convex) objective cost
function of a simple generation unit in a two bus test system
Fig. 1(a), and two decomposed positive and negative quadratic

terms XTka ,and (ch)2 in Fig. 1(b), and (c).

To design the solution methodology of the proposed
algorithm, we first observe that a globally optimal solution to
a problem (4) can be located at a point tz = c%x* , where x” is

the x-—part optimal solution of the problem (4).
Consequently, we can interpret problem (4) into the following
lifted optimization problem (5),
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min  f(xX)= Xtr(G;X)-t} (5)

X,x,t ke{G}

s.t. X,x,t) e C,

where G, = {(X.x,)|(X.x) € CUt; e[ty .te, ]ty =cix}

with the following lower bound and upper bound linear
optimization problems:

ty; =1y = min c%x c,{x (6)

(X,x)eC - (X,x)eC

Since —t% is the only quadratic term in the lifted problem

then, the problems (1) and (5) are equivalent. We can use a
linearized objective function to approximate the original
quadratic function for a givent; e[ty ;,t;,]. This result is

given in the following linear approximation.

min S(x,X)= >tu(GX)-2t, T, (7)
X,x,t ke{G}
S.I. Ty = CZX

(X,x) e Coty ety .ty ]

The linearized negative quadratic term of the generation
cost function, with its upper and lower bound in Fig. 1 is
shown in Fig. 2.

According to the solution to the problem (7), a successive
linear optimization for conic constraints (SLCO) is developed
to the problem (5) that updates (X, x) and t;, alternatively. It

should be emphasized that just only the negative quadratic
term in the objective function is replaced by a linearized term
in the proposed SLCO.

Our proposed method is very different from the classical
SLO where all the quadratic terms are approximated by
linearized functions [8].

Linear Upper and Lower bounds

Fig.2 linear approximation of negative quadratic term, with its upper and
lower bounds.

As we discuss in next section, such a change gives rise to
several appealing properties liked by the sequence generated
from the new SLCO. One of the main contributions of this



paper is that the sequence generated by the new SLCO
converges in a monotonic manner to a so-called approximate
local optimal solution of problem (2), while the classical SLO
can only provide a sequence converging to a stationary point
the underlying problem [8].

To establish the global convergence of the new algorithm,
we further rewrite problem (5) as the following global
optimization problem with a single variable

min
tpelti, .tk

X g(t)= X f(x(t),X(t;) (8)
ke{G} ke{G}

Where (x(t;),X(t;))1is an optimal solution to the problem

(7). The properties of the problem (8) show that the generated
t; —sequence converges in a monotonic manner to a so-

called semi-local minimum of > g(t,), a notion to be
ke{G}

introduced later. Such a property allows us to run the new

SLCO algorithm from t; ;and t; , separately. Lettz’, and

tz,u indicate the resultant accumulation points of the two
sequences from these two runs, it is shown that there exists at

least one global optimal solutiont; to problem (8) in the

interval [t’};,,tz’u]. This denotes that we can use these two
runs of the new SLCO algorithm to diminish the search space
of t} significantly.

To cope with the scenario tz,l < tz,u, a new line search
procedure based on convex relaxation for the problem (2) that

has a complexity bound O(log(t, —t;/ \/Z)) . One of the big

advantages of the linear approximation in (7) is the
polynomial linear search procedure of the SLO technique
based on convex relaxation that can further cut the interval

[tz, l,tz,u] without missing a potential global optimal solution.

By combining the new SLCO and the new line search
technique, a new global algorithm is developed for AC-OPF,
establish its convergence and estimate its complexity. This
technique and required algorithm are presented in the
subsection A and B.

A. A New Line Search Algorithm

A new line search procedure to find the global optimum
solution is introduced in this part. To start, we consider a
restricted version of the lifted problem (2) where the variable

t, is in a sub interval [l ,u;]. Let sk:ti and

t% <1y +upt, -1 uy, the following convex relation could
be derived,
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min
X,x,t,s

J(x,X)= 2tr(GpX)—-sy )

ke(G}

s.t. t; :ch

t7 <s;,s; <y +upt, —lu,
(X,x)eC, t;, €[l;,u;].

B. A new SLCO Method and Solution Algorithm

This section, a new successive linear optimization
approach for conic constraints (SLCO) is proposed for the
problem (8). The input of this procedure is the parameter

t;{o) and stopping criterion & >0, and the output of this

procedure at each iteration is the value of (x(”),X(”),tgcn)).

The procedure catches the following steps:

Step 01) set n=0;

Step 02) Solve the problem (6) to find the upper and lower
bounds: 1, anduy .

Step 03) Solve the problem (9), with t; = tEC”) for optimal
(x(6{), X(") .
X(n+1) =X(t§(")) and t§(n+1) :ch(nﬂ)

solution  results Set x"*D — x(tin)) )

Step 04) if|t§{”+1) —tg{”) I>+e, then setn=n+1 and go

back to step 02, otherwise stop, and output(x(”),X("),tgf"))

would be the final solution result.

IV. SIMULATION RESULTS

The three-bus test system depicted in Fig. 3, is applied to
show the efficiency of the proposed algorithm. The based
value of the complex power is 100 MVA. For the sake of
simplicity, we supposed that the generation unit at bus 3 is a
synchronous condenser and generates the reactive power at
bus 3. The active and reactive power outputs of generators 1,
2 and reactive power generation limits of the bus 3 have large
with infinite limits. The generator real power cost coefficients
for generators 1 and 2 are ¢ =$5/MWh and

¢y =$1.2/MWh . The line and branch data are given in Table

I. The voltage magnitudes at all buses are restricted to the

range 0.9 (pu) to 1.1 (pu). First consider a line-flow limit of

60 MVA enforced on both ends of the line between bus 2 and

bus 3. The other two lines 1-2 and 1-3 have no flow limits.
The following is a list of notations used in the tables:

stand for the number of

® n,. , N, n and n,

qc
quadratic, linear constraints, the variables, and the
negative eigenvalue, respectively;

e “iter” indicates the average number of iterations of
SLCO;

e "focal" symbolizes the average optimal value obtained
by SLCO;



® fmin > tmax and ¢, stand for the minimum, maximum

and average CPU time of SLCO in
respectively;

We present computational results of the SLCO algorithm
and SDP model for the AC-OPF problem. The algorithm is
coded in Matlab R2015b and run on a PC (3.33GHz, 8GB
RAM). All the convex quadratic subproblems in SLCO are
solved by the QP solver in CPLEX 12.3 with Matlab interface.
The SLCO algorithm yields a physically meaningful result, as
evidenced by the final solution result of SDP methods in
MATPOWER 5.1 [9] that matches the solution of the SDP
formulation. The SDP model is adopted form reference [7].
The detail solution results and its comparisons are shown in
Tables II and TABLE IV. The optimal objective values for
both the proposed SLCO algorithm and SDP formulation in
[7] are $5871.45 and $5707.07 per hour, respectively.

From Table 1V, one can see that for three bus test system
problem, both SLCO and SDP can find the global optimal
solution. However, SLCO usually takes much longer time
than the SDP. The maximum solution CPU time is 40.56 (s)
and compare to the solution time of SDP; it is increased 10%.
We also observed that the CPU time of SDP increases very
fast as the size of the test problem grows, in compare to the
solution time of SLCO.

Pe1 +1Qc1

seconds,

Pez2 Qa2
110 MW
+j40 MWAR

110 MW
+j40 MWAR

2

95 MW+j50
MWAR

0 +jQqs
Fig. 3 Three bus test system

TABLE I
Three-bus Test System Raw Data

Frombus Tobus R(pu) X(pu) B(pu) PLmax(MW)
1 3 0.065 0.62 0.45 inf
3 2 0.025 075 0.7 60
1 2 0.042 0.9 0.3 inf
TABLE I
Final Numerical Results: Comparison of SLCO and [7]
Bus 1 Bus 2 Bus 3
SLCO SDP [7] SLCO SDP [7] SLCO SDP [7]
[V] (pu) 1.072  1.069 1.019 1.028 1.008  1.001
Angle (Degrees) 0 0 9.92 9916 -13.57 -13.561
PG (MW) 131.1 1319 185.85 185.93 0 0
QG (MVAR) 20.32 17.02 -85 -3.5 0.15 0.06
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TABLE III
Final Numerical Results of Line Flow:
Comparison of SLCO and [7]

From MVA To MVA
From To SLCO SDP [7] SLCO SDP [7]
1 3 44.8 439 50.1 47.47
3 2 60 60 60 60
1 2 23.52 2272 30.92 28.69

TABLE IV
Average Numerical Results of SLCO
tmax tave
40.56 10.35

fval tmin
5871.45 533

nqe nlc n
14 13 19

V. CONCLUSION

In this paper, we considered the AC-OPF problem that
arises from various disciplines and known to be NP-hard. By
combining the classical linear approximation, modern convex
relaxation, and new line search technique, we developed a
global algorithm to find the global optimal solution of the AC-
OPF problem. We established the global convergence of the
proposed algorithm and estimated its complexity. Preliminary
experiments illustrated that the new SLCO algorithm can
effectively find the global optimal solution for test case
problem described in this paper.
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