Multiphase Distribution Locational Marginal Prices:
Approximation and Decomposition

Sarmad Hanif'*, Masoud Barati?f, Amin Kargarian?*, Hoay Beng Gooi 2§, Thomas Hamacher¥
!TUM CREATE Limited, Singapore 138602, 2Louisiana State University, USA, *Nanyang Technological University,
Singapore 639798, 4Technical University of Munich (TUM), Garching 85748, Germany.
*sarmad.hanif @tum-create.edu.sg, Tmbarati@lsu.edu, ikargarian@lsu.edu, §ehbg00i@ntu.edu.sg, Ythomas.hamacher@tum.de

Abstract—We propose a multiphase distribution locational
marginal price (DLMP) model. Compared to existing DLMP
models in the literature, the proposed model has three distinctive
features: i) It provides linear approximation of relevant DLMP
components which captures global behavior of nonlinear func-
tions; ii) it decomposes into most general components, i.e., energy,
loss, congestion, voltage violations; and iii) it incorporates both
wye and delta grid connections along with unbalanced loadings.
The developed model is tested on a benchmark IEEE 13-bus
unbalanced distribution system with the inclusion of distributed
generators (DGs).

Index Terms—Distribution Locational Marginal
Prices (DLMPs), Approximation, Distributed Generators (DGs)

I. INTRODUCTION

Locational marginal prices (LMPs) at the transmission grid
level provide the theoretical foundation to form deregulated
energy markets [|]. However, as power systems increasingly
face the integration of dispersed energy resources, such as
distributed generators (DGs), at the distribution grid level,
transmission level energy markets might not be solely suffi-
cient for achieving economic operation in power systems. To
this end, the idea of establishing distribution grid locational
marginal prices (DLMPs) has started to gain attention in the
power system community [2]. Essentially, DLMPs are the dis-
tribution grid variants of transmission grid (wholesale) LMPs,
aimed at generating economically efficient price signals and
facilitating the integration of contemporary active devices (e.g
DGs) in the distribution systems [2]-[4]. As in the past, efforts
to standardize LMP models proved instrumental in realizing
competitive wholesale markets, similar efforts are required
for standardizing DLMP models. However as compared to
transmission grids, distribution grids contain higher degree of
nonlinear power flows along with multiphase and unbalance
characteristics, preventing readily standardized LMP models
to be deployed for calculating DLMPs.

Recently, there have been few works on three-phase DLMP
models [5]-[&]. In [5], a full Alternating Current (AC) optimal
power flow model and in [6] SDP-based (relaxed AC) optimal
power flow were developed to calculate DLMPs. The works
in [7], [8] considered a linearized distribution grid model to
calculate DLMPs. All of the above-mentioned works have
still not addressed the decomposition of DLMPs into the non-
negligible components of 1) system active and reactive power
losses, 2) line flows and 3) voltage binding limits. In addition,
DLMP calculations under a mixture of wye and delta grid
connections have also not been addressed in the literature.
This paper addresses these issues by providing a DLMP model
which not only decomposes into the above-stated components
but also caters for multiphase nature of distribution grids.

In this paper, we present a multiphase DLMP model which
accounts for non-linear power flows along with a mixture of
delta and wye connections. To tackle multiphase nature of
distribution grids, we build upon the recent works on ap-
proximate multiphase distribution grid models [9] and extend
it to include key components, such as system losses and
congestion. Coherent to the main results of [9], our above
mentioned extensions also capture global behavior of their
actual non-linear counterparts. Moreover, these extensions
help in developing an approximate DLMP model, which is
decomposable to the extent that it shares similarities with the
existing standard LMP model. This feature might prove crucial
for practical realization of DLMPs in future power systems.

Notations: Bold upper-case (lower-case) letters are used for
matrices (column vectors) and non-bold lower-case for scalars,
(:)T for transposition. For complex variable ¢ € C, R(c), J(c),
and ¢ denote its real part, imaginary part and complex conju-
gate, respectively. For size n vector x € C", diag(x) returns
a n X n matrix with entries of x at its diagonal. Vector 1,, is
a size n vector of all ones and letter j := /—1.
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Fig. 1. Exemplary three-phase grounded wye-connected (left) and delta-
connected (right) sources with net current and complex power injections.
Similar connections can be made for loads. Procedure to translate mixture
of wye-connected and delta-connected sources/loads for both primary and
secondary distribution transformer is given in [9].

II. MULTIPHASE GRID & DLMP MODEL

For exposition simplicity, we present (in both Sec. IT and III)
the three-phase grid model. However, we show its extension to
a generic multiphase system in Sec. I[I-E and demonstrate its
deployment in Sec. IV. Also, we deploy constant PQ injection
models, used both in the classic analysis of distribution sys-
tems [10] as well as in the recent voltage control problems [9].
However, the results can be naturally extended to a more
general load model, as shown in [9].

A. Preliminaries

For bus j in Fig. 1 with three-phases {a,b,c}, we have:
complex net current injections for each phase-ground i; :=
. . T A . . cca\ T
(i§,43,i5)" and phase-phase i} := (i}°,i},i5*) " connec-
tions along with net complex power injections from wye-

connected sY := (s%,55,55)7 and delta-connected s :=
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(s9b, 5% 5¢2)T sources. Now for each phase-to-ground volt-

J o3 0°7
age represented as v, := (v%,v%,v$) T, we have,

VRRF AR
A _ 7 A
s; = diag(T'v;)i},

s = diag(v,)i; — diag(v,)l" i}, M

1 -1 0
lO 1 —1].
-1 0 1

B. Grid Model

For a grid with one slack bus and n PQ buses, the rela-
tionship of (1) are easily extended to the whole grid except
slack-bus as: v := (v],..., v} )T N i)T, 1% =

V) Lii=(,.0,) 0,
(D). (D) DT sY = (1) (51T, s =
((S?)Tm-.,(SQ)T}

where, I :=

n 4 S
)T all having size C3". The load-flow
problem is then to satisfy the following set of equations [9]:

diag(HTiA)v + ¥ = diag(v)i, (2a)
2 = diag(Hv)i, (2b)
i=Yrovo+Yrrv, (2¢)

where vy = (vg,v5,v5)" is the voltage at the slack bus.
Matrix H is a 3n x 3n block diagonal version of I'. Ma-
trix Yo := [Y01703X(n_3)]T S C?’nX?’, where Y, € C3x3
is the m-model admittance matrix of the slack bus connection
to its neighboring buses. Matrix Y ;, € C3*3" is the grid
admittance matrix.

To solve (2), in [9], it was shown that for given (s®,sY, v*)
for each iteration ¢, the following fixed point equation exists:

vt = w4+ Y71 (diag(¥") 'Y + H' diag(Hv') " 's%)
3)

where w := Y ;Y ov? is the no-load voltage.

C. Grid Model Extension

Let ¥ be the solution upon convergence of (3). Now relevant
for DLMP calculation, we extend the above grid model to
account for line flows and system losses. Consider bus j and k
connected by a three-phase distribution line element (j, k),
then the complex line flows “from” s;.ck = (s;.c,;“,s;,’cb,s;,’f)T

» ta _tb .t . :
and “to” s := (s}, sjk,sj,f)T directions of line are:

. N <sh= <Ph = =
Sjk = diag(v;) (ijvj + Y?k (v — Vk)), “4)
. A~ sh= <Ph = =
s§k = diag(Vg) (ijvk + Y?k (v — vk)>, 5)
where sz € C**3 and Y’.’Z € C3*3 are given by the standard
distribution grid line’s m-model shunt admittance and phase
admittance matrices [10]. Similarly, complex losses sék for
line (4, k) can be written as,

A~ A~ sh= ~<Ph = =
sé-k = (v, — vk)T(ijvj —|—Y§,C (V; — vk)) (6)
For extending these relationship to the whole grid, now

consider [ lines containing all three-phase connected (j, k)
bus pairs, then the “from”/“to” line flows vector sf/t =

((s{/t)T,... (slf/t)T)T € C* and complex total grid
T

losses s' := 1, s; 1, are expressed as:
s/t = diag(AT/19)Y' AT, )
s' = (AT)TY AT, (8)

where matrix A/ is a 31x 3n incidence matrix, containing 1’s
at buses connected at the “from”/“to” ends of lines, zero
elsewhere (e.g. as (4)—(5) is constructed for one line element
between two buses). Matrix A is a 3/ x 3n containing 1 and
—1 at appropriate buses connected to lines, zero elsewhere.
Matrix Y' € €33! contains standard 7 models of all grid-
connected devices (e.g. see (4)—(5) for one line element) [10].
Note that due to standard m-model deployment, the following
relationship also exists: Yz := ATY'A.

D. DLMP model
Let wye-/delta-connected active and reactive power injec-

tions as p¥/2 = R(s¥/A) and q¥/2 = J(s'/2), where
in particular, p¥/& = ((p;(ﬁA — p21(7/1A)—'—,...,(pz,(,/nA —
e D A (CHE e VO RPN C
?;,/HA)T)T where pg/A, pZ/A, qg/A and qZ/A of size R3"

are active power generation, active power demand, reactive
power generation and reactive power demand, respectively.
We make pl/q' := R(s!)/S(s!) as active/reactive power grid
losses and p°/q° := R(s?)/F(s”) € R? as active/reactive
power injected from transmission grid to the slack bus. For
dispatchable active and reactive power generation, (9) presents
a multiphase variant of the classic global energy balance
formulation for calculating DLMPs [1], [2].

: T.Y T A T_Y T A T .0 T .0
min cpgpg —|—cpgApg +cq§qg +cquqg —i—cpop +cqoq

(9a)
s.t.
15p° +15,(p) +p5 —py —p5) =0 1 ), (9b)
13q°+15,(af +a5 —ay —a7) =d" 1 ) (9)
87" < (s7)? ¥ (9d)
s < ()2 T %)
vo< vl <vTt Moty ©f)
Py <Py <p;" gy by 9)
q” <q <qt gy iy Oh)
Py~ <Py <p;” Hpasbgs O
qy” <ap <ag’ g ks O

The vector Cp /q);m/c(p /q)© Trepresents the marginal cost of

providing energy from DGs/slack-bus, i.e. (p/ q)g/ &y (p/q)°.
Problem (9) minimizes the overall cost for dispatching gener-
ation resources, with respect to the following constraints: 1)
constraints (9b) and (9c) balance grid’s active and reactive
powers; 2) constraint (9d)/(9¢) considers the square of the
apparent power flow line limits in from/to directions; 3) the
voltage magnitude |v| is constrained in (9f), whereas active
and reactive power of each wye-connected and delta-connected
generators are constrained through (9g) — (9j). The variables
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listed to the right of the colon are the Lagrange multipliers
and variables with superscript +/— representing the respective
maximum/minimum limits.

E. Generic Multiphase Grid & DLMP Model

Equations in (2) can be easily modified to represent generic
number of phases in the grid. For buses, the only required
modification would be to appropriately collect vectors s2, s
and v along with the reconstruction of matrix H as a n® x n?
matrix, where n? is the available nodal connection and n? is
the available phase-phase connections. For lines, reconstruc-
tion of matrices A and Af as I x n® can be performed,
where [ is the total number of lines inclusive of available
phases per line. Similarly, (9) is generalized by modifying
power generation/load vectors to size n,/n;, where ng/n; are
the total number of generation/loads inclusive of their phases.

<

III. APPROXIMATE MULTIPHASE DLMP MODEL

From (2), it can be seen that v (also |v|) is nonconvex in
terms of injections. This renders the problem (9) highly nonlin-
ear and nonconvex, making it difficult to be solved using off-
the-shelf optimization solvers [2]. To this end, we present an
approximate multiphase grid model (Sec. III-A), easily trans-
latable to obtain an approximate DLMP model (Sec. III-B).

A. Approximate Grid Model

Let
(pY/A)T
is to obtain the following linearized relationship in x

augmented injection vector be xY/& =

,(qY/2)T)T, then as required in (9), our goal
Y/A"

\\;| = MK,‘XY-I-M‘%'XA + a, (10a)
5 = MY x¥ + MSx2 + b, (10b)
|~t| =M!x¥ + M2x2 +c, (10c)
P = 1\/[ XY+ MALXA +d, (10d)
q:Mq Y+Mlx + e. (10e)

1) Voltage Magnitude: The explicit relationship for a lin-
earized voltage expression v is obtained by considering the
first iteration of (3), initialized at ¥ as:

v=M"x" + M*x2 +w (11)

where,
MY = (Y7} diag(®) "', —j Y} diag(¥) ")
M2 = (Y7 H diag(H?) ™!, Y7 H' diag(H¥) )

The approximation ‘\~/'| in (10a) then follows [9]:

V] _ iag (o))~ R(ding(F)M),

My =55 (12a)
dlv :

My = TLA‘ = diag(|9]) "' R(diag(¥)M?), (12b)

a:= 7] - MR - MRS (120

Note that the above approximation is different than a lo-
cal (tangent) approximation, and gives a more global behavior.
In principle, the approximation in (12) gives an interpolation
between a specified loading (¥, §) and at no load (w, 0) [9].
For more information on approximation error bounds and
computational efficiency, refer to [9].

2) Approximate Flows: From the solution ¥, let squared
line flow be obtained as: |s/|° := diag(s')s/, then its

sensitivity with respect to xY is:

P N -

Y diag(s )a? + diag(s )8? (13)
. , OR(s) 8“ s)

= diag (éR(sf) - ]S(sf))( a(Y )
. . OR(s’) a\s sf

+ diag (%(sf) + j%(sf)) ( 8>(<Y - axY )

| oR(s') s/)
_ f
= o diag(n(s) 2o + ding(3(s7) )

= 2( diag(R(s")). diag(3(s”)) ) (X3 + Y )@Myﬂ

M;;
where XY, = <diag(?lA5)Af ) and Y)Y =
(diag(A7 0)?ZA>N1 are  constructed by  combin-
: — |L3ix3n Osix3n N RGO =S(0)
ing Ny = 031x3n 13l><3n:| and () = [3() R(-)

with (7). Now g replacing x¥ with x? in (13), we
simply obtain M_;. Finally, at (w, 0) no line flows exist,
making b := 0 to complete the approximation in (10b).
Exactly similar procedure exists for obtaining (10c).

3) Approximate Losses: Similarly, for calculating (10d)
and (10e), we first present sensitivity of complex power loss
of (8) at ¥, with respect to x¥ as:

- [ e t) o

M, ag)((syl) 3(MY)
where XY, = ((?lAg)TA>N2 and Y =
=TV . |1ix3an  Oixsn .
((Av) 'Y A)Ny. Here Ny := [01X3n 11><3nj and (-)

are used with £8). Now by replacing x¥ with x2 in (14),

. l .
we obtain A | . Finally, as zero losses occur at (w, 0), we
1

q
set (d,e) = (0,0) and recover upper and lower half of (14)
to complete approximations (10d) and (10e), respectively.

B. Approximate DLMP Model

Finally, the approximate DLMP model is constructed by
replacing the non-convex constraints (9b)—(9f) in (9) with
their approximate counterparts in (10). Note that as the cost
functions (9a) are linear, the resultant approximate DLMP
problem is a linear program (LP). This property is highly
favorable in terms of solution robustness and computational
efficiency, as numerous off-the-shelf solvers can readily solve
large-scale LPs. With the above-mentioned modification, the
Lagrangian of the approximate DLMP model follows:

¢ = CpyPy + CpaPy + Cqudy + Cqady + cpop’ + cqoq’
—Ap (1:—;1)0
(17 + 1, (a} + a2 —a) —a3) - ¢?)
~i) T (B = 7)) = )T (B - (5)?)
~uH) T (91 =) + ()T (191 = v7)

+14,(pY +P5 — Py — PY) —ﬁd)
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()T (0}~ Y )+ ()" (p) )
—(ug)" (q;( - q}”) +(pg) " (ay - q}‘)
—(nfa)" (pgA - pg“) + (mpa)” (pgA — pﬁf)
~(u) T (ah — b ) + (nga) (a5 —a57). (19)

DLMPs are defined is the marginal value of providing incre-
mental demand at a specified bus. Using this definition, we
can obtain for wye connections, active power DLMPs HZ as:

e I,
op  ~— = Y(
Y . _ p) Y(a)
mp = 2 =S g o

Y(c) Y(v)
1L, I,

FMEPH Tt + (VP Ty + (MY T (i + ),

st vl

and reactive power DLMPs Hz as:

N MO) o™
q
0o Y Y
In) = e AgLan A, MY P — 2 MY (17)
d
m© ()
MY Ty + (ML) Ty + )T (i — ),

with the above deployed sub-matrices obtained from matrices
in (10) as follows:

M|Y| = (MY(P) MY(Q)) ,

[v] [v]
MY = (M MY MY = (M), M)
My = (MY M) My = (M), M) (18)
For delta connections DLMPs, similar e)garessions exist after

simply evaluating for active power: II and for

_ 0¢
= o

p - op3

reactive power: I'IqA :

C. DLMP Features

Note that in (16)/(17), the final DLMP HE/H; decomposes
nicely into its respective 1) energy Hg(e)/l'[é(e), 2) system
losses Hg(l)/ﬂé(l), 3) line congestion Hg(c)/ﬂé(c) and 4)
voltage violation H;(”)/HZ(”) components. This decomposi-
tion not only represents various important grid conditions into
DLMP modeling but may also help in standardizing DLMP
models for their future practical realization. As an example,
one can observe that matrices M;){l and M); are nothing
else but multiphase variants of famous Loss Factor (LF) and
Power Transfer Distribution Factor (PTDF) matrices, deployed
heavily in developing LMP models [I].

IV. SIMULATION SETUP & RESULTS

The proposed method is tested on the multiphase and un-
balanced IEEE 13-bus radial grid [1 1], with addition of DGs,
as shown in Fig. 2. The DGs are operated as follows: 1) all
DGs can control their active and reactive power independently;
2) per-phase maximum and minimum active and reactive

power dispatch for all DGs is constrained within [0, 0.5] MW
and [—0.25, 0.25] MVar and; 3) marginal cost of active and
reactive power for all DGs as well as at the slack-bus is set at
100 $/MWh and 50 $/MVarh. Relevant grid approximation is
given in Sec. IV-A, whereas DLMPs for selected grid points
are presented in Sec. [V-B.

652
Phase:2B'¢  onnection: [YIA]
DG:—
646 645 632 633 634

7N

N
14

684 75
6110 [ v
e T
hi‘671
652

Fig. 2. The modified IEEE 13-bus radial distribution grid, with total rated
load of 3.577 MW and 1.78 MVar [11]. For phase a, b and c, the total
active (MW)/reactive (MVar) loading is 1.26/0.68, 0.97/0.37 and 1.35/0.67,
respectively. For this case, the delta connected DGs (bus 646 and 684) are
simply phase-phase connections. The grounded wye connected DGs (bus 675
and 634) have adjustable per-phase dispatch.

A. Multiphase Approximation Model

We analyze the presented approximation procedure of
Sec. III-A by varying grid loading as: xs™, with x €
[~0.5,1.5] and s as the rated loading level of the grid [11].
We set DG outputs to zero in this analysis. Voltage magnitude
approximations follow exactly similar results as given in [9],
and hence are not presented here. In Fig. 3, approximation
of system active p' and reactive ¢' power losses along with
squared “from” line flow for the heaviest loaded phases of

line | € {632,671} i.e., |§f’{“7c}\l2, are shown. Fig. 3 verifies
that the approximation model captures global behavior, i.e., it
makes an interpolation between the no-load (w,0) and load-
flow solution (¥,s™f). Load-flow solutions are obtained from
fixed-point method (2), which has been validated in [9].

B. Multiphase DLMP Model

We obtain DLMPs using the approximated DLMP model
developed in Sec. III-B. To demonstrate the full capability of
the developed model, we enforce the grid voltage limit of 1.06
p.u. and squared “from”/“to” line flow limit of 0.4 MVAZ2,
The active and reactive power outputs of DGs are presented
in Table. I. Note that DGs are not dispatched equally, even
though they share the exact same marginal cost. The most
interesting case is for DG located at 675b, having zero
output for both active and reactive power injections. This is
because bus 675b has very small active power demand and a
large reactive injection (capacitor-bank). Hence, any marginal
injection at bus 675b is going to increase the overall grid
dispatch cost. This makes DG at bus 675b to dispatch zero
active and reactive power.

For selected buses with wye and delta connection, Ta-
ble II and IIT respectively present active and reactive power
DLMPs (in bold) along with their breakdown in terms of their
energy, congestion, losses, and voltage components. Moreover,
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Table III. Reactive Power DLMPs ($/MVarh) for wye- and delta-connection.
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634b 0345 0014 0037 50.184 0.184
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Fig. 3. Approximation of active and reactive power losses of the grid (top)
and squared “from” line flow (bottom).

the respective DG’s marginal supply, i.e. 88% = cya +
Py 9

M+Y/A — "y, » for active power and % =C v/a +H+Y/A —
Py Py 8QQ g dg

1y, for reactive power is also shown in Table II and III
qg

Table I. Active (MW) and Reactive Power (MVar) Dispatch from DGs.

675a

pl/p® 0500 0

q) /qgZ 0250 0

675b 675c 634a 634b 634c 646bc 684ca

0.500 0.500 0.500 0.500 0.465 0.500
0.250 0.205 0.250 0.123 0.870 0.237

Table II. Active Power DLMPs ($/MWh) for wye- and delta-connection.

cost. This also explains the reason for DGs at location 634a,
634c, 646bc, 684c to dispatch reactive power below their
maximum limits.

V. CONCLUSION & FUTURE WORKS

This paper proposed a multiphase DLMP model, which
utilized approximated losses, line flows and voltages, for fully
decomposing into its respective components. Moreover, the
developed model provided both active and reactive power
DLMPs, along with the consideration of wye/delta connections
and unbalanced loadings. With these features, we believe that
the developed model is able to comprehensively represent
distribution grid conditions in DLMPs.

In future, the developed model can be effectively deployed
in designing local distribution grid markets, aimed for han-
dling both instantaneous (real-time) and planned scheduling
horizon (day-ahead) along with energy storage systems.
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