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A model for the thermal conductivity of bulk solids is proposed in the limit of diffusive transport
mediated by diffusons as opposed to phonons. This diffusive thermal conductivity, xqis, is determined by
the average energy of the vibrational density of states, fiw,,g and the number density of atoms, n.

Furthermore, iqits is suggested as an appropriate estimate of the minimum thermal conductivity for
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complex materials, such that (at high temperatures): i :Twavg A Kmin- A heuristic finding of this

study is that the experimental w,yq is highly correlated with the Debye temperature, allowing kg to be
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estimated from the longitudinal and transverse speeds of sound: kg &~ 0.76;13kB§(2vT +vp). Using this

equation to estimate kmin gives values 37% lower than the widely-used Cahill result and 18% lower than

the Clarke model for kmin, ON average. This model of diffuson-mediated thermal conductivity may thus

rsc.li/ees

Broader context

help explain experimental results of ultralow thermal conductivity.

Thermal conductivity of materials is of practical engineering importance. Estimating how low the thermal conductivity can be engineered can set practical
limits for a variety of applications. Heat that is transported by the vibrational energy of atoms in a solid can be defined from different perspectives. We typically

think of atomic vibrations travelling in waves that we call phonons, the strict definition of which requires the translational symmetry of perfect crystals.

However, low thermal conductivity materials are typically full of many types of disorder and defects: from impurity atoms and solid solutions to dislocations,
grain boundaries and other interfaces. Alternatively, we may consider the transport of heat by diffusons, which are atomic vibrations that carry heat by
diffusion. Diffusons are present in all materials, without the structural conditions required by phonons. It follows that diffusons may better describe the
physics of heat transfer in low thermal conductivity materials, particularly at high temperature. The model described herein is formulated in a way that is both

physically insightful and experimentally accessible, grounded in random walk theory. As the understanding of heat transport is central to progress in energy
science, this work guides engineering design principles in low thermal conductivity materials.

|. Introduction

The concept of a minimum thermal conductivity, xn,;n, carried
by the atomic vibrations of any solid material (crystalline or
amorphous), is of practical technological importance. For
example, materials screening and design for thermoelectric,
thermal barrier and other thermal management applications
often rely on models of ., to benchmark experimental
observations or predict optimal material performance.'™® Due
to the complexity of thermal conductivity there is not a unique
definition of ., and one practical option is to take relevant
models of thermal conductivity and assume some limiting
condition(s) that results in a reasonable estimate of what ki,
could be. It may also be argued that amorphous materials are
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systems where the experimentally measured x would be closest
to a predicted Kpmin.

Most previous models of xn,;, have largely relied on the
phonon description of thermal conductivity (Fig. 1). The form
of phonon mediated thermal conductivity (analogous to a kinetic
gas) is

1
K= gcvf, (1)
where ¢ is the heat capacity per unit volume, v is the average
speed of a collective lattice vibration (phonon) and /7 is the
average phonon mean free path. The length scale of atomic
disorder can be used to phenomenologically describe #.”® In the
Kittel® and Clarke® models, the minimum thermal conductivity
can be thought of as the limit / — a (a is the interatomic
spacing). The Cahill®'® and Slack'" models instead use a wave-
length dependent mean free path to incorporate wave mechanics
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Fig. 1 Visual representation of the fundamental differences between phonon and diffuson models of thermal transport. The defining characteristics of
phonon-based models include the speed of sound (v) and mean free path (/). Diffuson-based models of Einstein,2® formally defined by Allen and

Feldman,*>~1°

and that described here rely on a thermal diffusivity coming from random walk considerations, which leads to the jump attempt frequency

(2w/2m) and the probability of a successful jump (P) being the operative theoretical inputs. Kittel (# = a),% Clarke (/ = a),* Cahill (/ = 2/2),*° and Slack (# = )

made estimations of km, from a phonon perspective.

in the description of /. Cahill uses / = 1/2, whereas Slack uses
¢ = . These models work well for many materials and give an
intuitive description of the phonon limit (at high temperature)
of thermal conductivity (Fig. 1). However, as experimental
thermal conductivities have been found below the Cahill and
Clarke models, a different model/philosophy may provide insight
into the limitations of phonon-based models and provide improved
predictive power for experimentalists.

The mathematical description of lattice vibrations as
phonons requires periodicity, which is not the case in amor-
phous materials or even nanomaterials and quasicrystals.
Consequently, in the phonon picture of ki, (/ — a, the so-
called Ioffe-Regel limit"* of phonons) the lattice vibration does
not sample enough periodicity of the lattice to be a well-defined
phonon or have the properties of such. Consequently, in this
limit, it is technically more correct to define a diffusivity term,
D, which has the units of v/ (m®> s™') but v and / are not
independently defined, such that there is no need for a well-
defined wavevector."® In the mechanism of diffusive thermal
transport, heat is quantized by diffusons, characterized by a
diffusivity. Diffusons can be present in any material, but may
better describe atomic vibrations in materials with more atomic
disorder (including crystals with large complex unit cells'?).

Here we will use the diffuson theory of Allen and Feldman,
thoroughly developed in ref. 15-19, to derive a phenomeno-
logical diffusive thermal conductivity, xg4;¢, from the vibrational
density of states. kg is defined as the limit of entirely diffusive
(diffuson mediated) thermal transport (Fig. 1). Even though the
group velocity of phonons (measured by the speed of sound) is
no longer the operative theoretical parameter, it can be incor-
porated post hoc by its correlation with the average frequency
of the vibrational density of states. Lastly, by comparison
of xqigre with previous models of ki, we suggest that kgi may
be an appropriate estimation for x,;, in some cases. Whereby,
Kaire may help to explain materials with ultralow thermal
conductivity.

610 | Energy Environ. Sci., 2018, 11, 609-616

II. Diffusive thermal conductivity

Any model for the thermal conductivity carried by the atomic
vibrations of a solid must consider three components:

(i) the number of vibrations of a particular energy that are
available to carry heat, i.e. the vibrational density of states, g(w),

(ii) the quantity of heat that can be carried by each vibration,
i.e. the heat capacity per mode, C(w), and,

(iii) the propagation behavior of these vibrations through the
material, i.e. the thermal diffusivity for each vibration, D(w).

Therefore, the total thermal conductivity can be written as
the frequency-dependent integral

K= I:Og(w)C(w)D(w)dw. 2

The heat capacity, C(w), for lattice vibrations follows from
Bose-Einstein statistics:

1o} fiw
Clw) = 8_T<ef1:}4_1>7 3)

and saturates to C(w) = kg in the T — oo limit. Consequently,
the primary difference between thermal conductivity models is
in the choice of physics used to characterize the propagation
behavior, D(w).

The diffuson theory of Allen and Feldman explains diffusive
thermal transport as the harmonic coupling between non-
propagating (i.e., not phonons or propagons), non-localized
(ie., able to transfer energy, not locons) atomic vibrations. It is
in the spirit of diffuson theory that we construct this phenom-
enological model. The propagation behavior of diffusons is
derived assuming each diffuson travels according to the path
of a random walk. In random walk theory, the net distance, x,

traveled by a quantum after N discrete steps of size o is x = ay/N.
This is related to the random walk diffusivity, Drw, and the
elapsed time, ¢, through the parabolic relation

DRW:XZ/IZ(XzN/l. (4)
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Here, N/t (number of steps per unit time) may be interpreted as
the frequency of energy transfer attempts multiplied by the
probability of a successful transfer, P. Einstein,* in his model
for thermal conductivity (see also ref. 10), inferred that each
oscillator made 2 attempts to transfer energy in one period of
oscillation, N/t = (2w/2n)P. From eqn (4) we arrive at an
isotropic approximation for the diffuson diffusivity,

2
1n 3w

Digr(w) = b (5)

by taking o = n_% as the approximate jump distance between oscil-
lators, where n is the number density of atoms. The factor of 1/3
comes from assuming a three dimensional system. Anisotropy may
inhibit diffusion in certain directions and has ramifications discussed
below. We also note that P=1 is a theoretical maximum diffusivity for

47 2
diffusons and is comparable to Dy (w) = %nﬁw found by fitting

N/t to MD results of the diffuson contribution to thermal transport in
amorphous Si."* The other limit, P= 0, phenomenologically describes
the condition for locons (ie., zero energy transfer). In the random
walk diffuson picture, each oscillator acts completely independent
from one another, resulting in a form of transport fundamentally
different than that of phonons, where the phonon propagation is

defined by a group velocity and relaxation time (D = %v ’1).

Thus, eqn (2) can be composed from eqn (3) and (5) as the
maximum (P = 1) diffusive thermal conductivity,

2
oo 2

Kdiff:3nkBJ (g(w)) LIS P (6)
0

3n 3 ’

t
Table 1 Experimental number density of atoms (n = 7# atoms

- X
unitecell Vi
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which simplifies to

1 1
nikg [ glw)odo  niky
fgog(w) do T

Kdiff = Wavg- (7)
Thus, it is the average oscillator frequency, @ayg, which becomes
the defining metric for the high temperature limit of diffuson-
mediated thermal conductivity. In many cases w,, can be
determined straightforwardly from inelastic neutron scattering
experiments or computational methods. Furthermore, we will show
that w,,, may be approximated from speed of sound measurements
and x4 may be appropriately used in the explanation of ultralow
thermal conductivity materials.

By comparing eqn (5) and (6), it is possible to define the
average diffuson diffusivity, Diaisr, that is the weighted average
of diffusivities, Ddiff(w):

00 _2
~ o &(@)Daifr () de>  n 3wy,
Digr = = = , (8)
o g(w)dw 3n

when P = 1.

Feldman, et al."® utilized molecular dynamics (MD) simula-
tions to ascertain the spectral function D(w) for amorphous
silicon. Thus, it is possible to compare the Dy;r calculated from
eqn (8) with the average diffusivity value calculated from the
MD results. Using the MD data shown in Fig. 2 of ref. 19, the
average diffusivity of amorphous silicon was determined to be
Dup = M =49x%x 103 cm?s . The

Jg(w)dw
using the average oscillator frequency (/iwayg = 44 meV'®) and
the number density of atoms for Si (Table 1) in eqn (8) gives

estimation

! ) calculated from ICSD reported unit cell volumes (V,,c), and the longitudinal (v,) and

transverse (v1) speeds of sound used to calculate the Debye temperature (0p) from the arithmetic average speed of sound, as well as the experimental

average energy (fiw,,g) determined from the vibrational density of states

Element/compound n/10%% (# m™) v (ms™) vr(ms™) Debye model kgfp, (meV) Experimental /i,y (meV)
RbI 2.03 24117 1236% 11.39 7.69%
PbTe 2.67 31027 16627 16.42 7.85%°
RbBr 2.46 25802 15082 13.92 9.16%*
KI 2.30 25342 1501% 13.47 9.71%
Nal 2.78 2716% 1688% 15.79 11.23**
KBr 2.69 30532 1843% 17.26 11.52%*
RbCl 2.81 30782 25182 21.09 11.99%*
NaBr 3.70 3392% 2112% 21.71 13.70**
KCl 3.22 38962 23662 23.48 14.92%*
Cu,_sSe 6.02 3086%° 1381%° 19.60 16.20%7
RbF 4.46 3946>* 2333% 26.12 16.46>*
NaCl 4.93 4470%® 257028 30.14 18.24%*
KF 6.98 4608% 28427 36.24 20.35%
NaF 8.03 56642 3673% 48.00 27.89%*
FeO 10.06 6630%° 3230%° 52.07 35.31%
CaO 7.17 8120°° 4880°° 63.51 37.78%*
SITiO; 8.40 7860°! 1680°! 64.48 38.85%*
Si 5.00 8480°2 586072 63.62 39.55%
ZnoO 8.40 6000** 28317 43.68 40.33%
MgO 10.69 9576%% 6038%% 87.88 49.75*
TiC 9.87 942934 58564 83.55 55.55%*
SiC 9.64 11730%8 743028 104.27 74.00%3
¢-BN 16.92 16117°° 10653°° 177.01 104.40%3
Diamond 17.63 181207 12 323% 205.05 121.43%

“ Measured by present authors (5 MHz pulse echo at 300 K)

This journal is © The Royal Society of Chemistry 2018
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Dgisr = 5.2 x 1073 ecm? s~!. The agreement between the MD
result and eqn (8) is quite good and provides some validation
for the use of eqn (5). In fact, Allen and Feldman" use an
equation with the same form as eqn (5) to fit their MD results in
the context of diffuson-mediated thermal transport. They sug-
gest that the agreement between the phenomenological model
and the MD result supports the idea of a microscopic definition
of minimum thermal conductivity."” Here, the random walk
derivation of kg allows for inferences about the physics of
ultralow thermal conductivity, whereas ref. 14 and 15 are limited
to dimensional analysis arguments.

However, it is important to note that the more-extensive MD
study'® indicates that there are both propagating (low energy,
see arrow in Fig. 2 of ref. 19) and completely localized (high
energy, see mobility edge line in Fig. 2 of ref. 19) vibrations
in their model of amorphous Si, accounting for about 7% of
the vibrational density of states.'” Diffusons are proposed as
the non-propagating, non-localized heat-carrying vibrations at
intermediate energies. In the derivation of rgie (eqn (7)) from
Daitr(w) (eqn (5)), all vibrations contained within the density of
states contribute to diffusive thermal transport, i.e. there are no
propagating vibrations with larger contributions to thermal
conductivity, and there are no localized vibrations that do not
contribute to thermal conductivity. Consequently, kg is the
diffuson-mediated thermal conductivity. In using xq;¢ as a type
of Kmin, it should be recognized that experimental thermal
conductivities found below xg;¢ would tend to indicate that
the material may have a significant number of localized vibra-
tions (locons) that do not conduct heat; or, other exceptional
physics may be at play, such as phonon focusing.>'

lll. Estimation of wg,yqg

Although the derivation shows that it is possible to estimate
Kaige directly from g(w), it is recognized that g(w) is not always
easily accessible experimentally or computationally, especially
if the material system is complex (multi-phase, large unit cell,
etc.). During the course of this study, it was found heuristically
that the Debye temperature, 0p, defined here by

ksOp = fiop = h(6n*n) v, (9)

can be used as a metric to estimate the experimentally deter-
mined w,y,. It is important to recognize that, in the context of
diffuson theory, 6, may be regarded as a proxy for the influence
of bond strength, atomic mass, and average atomic separation
on the spectral distribution of the density of states. Specifically,
by compiling g(w), the arithmetic average speed of sound,

1 .
Vs = 5(21@ + v1), and number density of atoms, n, for 24 com-

pounds reported in the literature with speeds of sound spanning
an order of magnitude (Table 1), we found the linear correlation
(R* = 0.98) (Fig. 2)

fiavg  0.61kp0p, (10)

having a normalized root-mean-square error of 3.6% (RMSE =
4 meV). It should be noted that the harmonic average speed of

612 | Energy Environ. Sci.,, 2018, 11, 609-616
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Fig. 2 A log-log plot demonstrating the linear correlation (egn (10)) of

the experimentally determined /iw,,q (found from the vibrational density of
states) with the Debye temperature (kg0p = /(612n)3hv,) calculated from

1
the arithmetic average sound velocity (vs = g(ZZ/T + v1)) using the values

found in Table 1. A linear slope of 1 is shown for reference (thin dotted line).
Note that the Debye model would predict a linear slope of 0.75, which is
substantially higher than this heuristic finding.

sound is another option for calculating the scalar 0,>* which
was found to give a slightly worse correlation (R* = 0.97,
RMSE =~ 5 meV), but would still lead to the same conclusions
drawn below. Other methods of estimating 0, (e.g., from low
temperature heat capacity or inelastic neutron/X-ray scattering
methods) are also expected to correlate with wqy,.

IV. Comparison of kgt With Kmin
models

Next, we compare our diffuson thermal conductivity, xgis,
to previous models of x,;, based on the maximum phonon
scattering approach. This comparison gives good justification
to use Kqier as @ new formulation of xy,;,. Consequently, Kqis
may thus be used to explain the experimental results of ultra-
low thermal conductivity materials. First, we point out that
eqn (10) can be used to further simplify eqn (7) to depend solely
on n and vg:

Kgirr =~ 0. 76n3kB (2VT + VL), (11)

which makes this formulation of xgi directly comparable to
the Cahill result,

21
Keglass = 1.21n3k3§(2VT + ). (12)

Here it is easily seen that kg is approximately 37% lower than
Kglass ON average. In fact, ig,45 is better used as a predictor for

This journal is © The Royal Society of Chemistry 2018
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Fig. 3 A comparison of ki with the Cahill model, Kgiass, Shows that kgiass
is a good estimate for the measured thermal conductivity (within a factor
of 2), whereas kg may be a better metric for estimating the minimum
thermal conductivity. Plotted points are the same that appear in Fig. 7 of
ref. 36.

the experimental thermal conductivity of amorphous and dis-
ordered materials.>® This is to say that, as a decent approxi-
mation, Kglass X Kmeasured (Within a factor of 2) and kg may be
a better estimation of «;, (Fig. 3). The ideal ,;, would always
predict a thermal conductivity that is lower than the measured
value, and all of the data points in Fig. 3 would be to the left of
that predicted line. Using kqifr @S Kmin Very nearly satisfies this
requirement, and only a few points remain to the right of the
Kqiee line (shaded region in Fig. 3).

Further comparison shows that kg is &~ 18% lower than the
Kmin €quation presented by Clarke,*

2 2 1
Kmin,Clarke = 0.87m3kg~/Y /p ~ 0.93n3k35(2vT + L), (13)

1
who also suggested that v, = g(ZVT +uvL)=094y/Y/p is a

reasonable approximation (within 20%) for the speed of sound
from Young’s modulus, ¥ (N m™2), and density, p (kg m?). As
eqn (13) is effectively a restatement of the Kittel kpn, these
comparisons suggest that the diffuson mechanism of thermal
transport conducts heat more slowly than the maximum
phonon scattering limit predicts. This leads to the implication
that materials with thermal conductivities near to gy are
transporting heat at a rate analogous to the maximum rate
if all of the atomic vibrations were diffusons. Experimental
thermal conductivities that fall below k4 would tend to indicate
that there is some interesting/exceptional mechanism that is
influencing thermal conductivity. Thus, kg provides a reference
value for the upper limit of diffusive thermal conductivity and

This journal is © The Royal Society of Chemistry 2018
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may give some physical insight to conduction mechanisms in
ultralow thermal conductivity materials.

V. Temperature dependent xg;¢

Although most thermoelectric generators, thermal barrier
coatings and thermal management devices are concerned with
temperatures at or above room temperature, making the high
temperature limit of kg4 the primary focus, it is important to
make some remarks about the temperature dependence of the
model presented above. The sole temperature dependence is
incorporated through the heat capacity term, which accounts
for the thermal activation of higher energy atomic vibrations as
the temperature is raised from 0 K. Explicitly, eqn (3) can be
rewritten as

5 )/10)
hw eksT

ﬁ) o 2
B (ekBT — 1)

which, in turn, can be used to incorporate a temperature
dependence into eqn (6):

C(w) = kg ( (14)

1 fiw
n3kg [* (g(w o\ eksT
kaier (T) = - BJO (ggn )) (m) (hm wdw. (15)

2
e/(BT _ 1)

Here it is assumed that g(w) and the diffusive mechanism
of thermal transport are both reasonably independent of tem-
perature. In effect, the integral in eqn (15) is a temperature
dependent average frequency, way(T), of the vibrational
spectrum,

1

i (T) =28 (1), (16)
and w,y(T) converges, of course, to a constant value (@, in
eqn (7)) when the entire vibrational spectrum is thermally
activated in the T — oo limit. However, it may be necessary
to use kgig(7T) in the temperature range of interest if T < 6p.
This is to say that high energy vibrations that are not yet
thermally activated should not be included in the calculation
of xgir. Considering PbTe as an example, g(w) is fairly inde-
pendent of temperature up to 500 K.*> The INS data at 100 K
(Fig. 4A) was used for all calculations, and numerical integration
of eqn (15) for temperatures up to 500 K reveals that rqe(7) is
converged to the high T value by 500 K (Fig. 4B). As the full
vibrational spectrum (up to 16 meV in Fig. 4A) is excited by
~190 K (kgT =~ 16 meV), the high temperature approximation is
quite good for PbTe above room temperature.

The Einstein model of thermal conductivity, ki (see, e.g.,
ref. 9), may be the most rudimentary equation for diffusive
thermal transport, having a characteristic frequency, wg, that
is constant with temperature and a density of states given by
g(w) = 3nd(w — wg). Nevertheless, using mg = way, (gray lines in
Fig. 5) results in an Einstein model that converges to the value

—0s/T

of xqigr at high temperatures and goes as kg o« e at low

Energy Environ. Sci., 2018, 11, 609-616 | 613
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Fig. 4 The experimental vibrational density of states for PbTe at 100 K taken from ref. 25 (panel A) and the temperature dependent rgie(T)
calculated numerically using eqn (15), tending to kg = 0.157 W m™* K™ at high temperature when the entire density of states is thermally excited
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Fig. 5 The experimental vibrational density of states (red circles) for Si at 300 K taken from ref. 38, the Debye density of states (blue curve) having a
maximum energy kgbp determined by the speed of sound (Table 1), and the truncated Debye density of states (green curve) with a maximum energy
0.95kg0p (panel A). kqi¢(T) was calculated numerically (iqi¢r — experimental g(w), red curve, using egn (15)) and analytically (kqi¢r — truncated Debye, green
curve, using egn (18)), and compared with the Cahill (kgass, blue curve) and Einstein (g, gray curve) models, with experimental thermal conductivity

measurements of amorphous Si*>4°

ke oc e "7 respectively.

temperatures (0g = fiwg/ks). As wg is the only and ipso facto the
maximum frequency of the Einstein density of states, g con-
verges to the high temperature value of kg at a lower tem-
perature than if there were a distribution to the density of states
(Fig. 5B). In order to better approximate the temperature
dependence of kg found numerically, it is possible to utilize
the correlation between w,,, and 0p (eqn (10) and (11)), to
2
estimate rq4i(7) using the Debye model g(w) = %% (blue
curve in Fig. 5A). However, to converge at the high temperature
value given by eqn (11), the upper limit of integration has to be

614 | Energy Environ. Sci., 2018, 11, 609-616

shown for reference (panel B). The low temperature behavior for each model is kq oc T%, Kglass OC 72, and

changed to compensate for the fact that the average frequency
of the Debye model is higher than that found experimentally.
Explicitly,

1 2
n3kp oo /3 o2\ [ n3w
Kdiff =~ ﬁ(06lkB0D) = kBJO (ﬁrj) p dw (17)

and equivalence with eqn (11) is achieved when the upper limit
of integration is defined by f &~ 0.95 (truncated Debye model,
green curve in Fig. 5A). Switching to the reduced variable,

This journal is © The Royal Society of Chemistry 2018
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x = hwlkgT, then xqi(7) may be approximated as

2 0
1 3ks (kBT)4 JO‘%;) AN (18)

Kaier(T) = W h . m
which predicts xq;¢ goes as T* at low temperatures (Fig. 5B). This
temperature dependence is a direct result of using a parabolic
density of states (typical of propagating lattice waves) with a
diffusivity of diffusons that is linear in w. The Cahill model of
Kglass US€s a parabolic density of states, but assumes phonon
scattering is inversely proportional to w, giving a diffusivity that is
proportional to » . Thus, Kgass goes as T at low temperatures,
in better agreement with the thermal conductivity of amorphous
materials (Fig. 5B). Consequently, the thermal conductivity of real
materials is likely dominated by propagating (phonon-like) vibra-
tions at low temperatures, whereas ki, at high temperature may
be better described by diffuson-like vibrations. This conclusion is
well-supported by a recent computational study on vibrations in a
random In;_,Ga,As alloy.?’

VI. Conclusion

The Kittel, Slack, and Cahill (phonon-based) models, i.e. Kglass,
are good approximations for amorphous materials particularly
at low temperatures. However, at high temperature, thermal
conductivities are sometimes even lower, suggesting that xgjs
may be a better estimate for a minimum thermal conductivity,
Kmin. Here we define kg4 as the limit of thermal conductivity
when vibrations are not propagating (not phonon-like) but also
not localized (specifically, P = 1).

Additionally, by correlating w,,s with the Debye temperature
(hwavg ~ 0.61kg0p) it is possible to estimate rq¢ from simple
and accessible speed of sound measurements. From this corre-
lation, we find that xg;¢ is approximately 37% lower than the
Kglass €Stimate of Cahill using identical experimental inputs. In
many cases, this may reconcile experimental observations with
the concept of minimum thermal conductivity. However, obser-
vations of thermal conductivities below the rg;¢ value are not
unexpected, and would tend to indicate extraordinary physics
leading to ultralow thermal conductivity. For example, complex
materials may have a large number of localized (locon-like)
vibrations that do not contribute to thermal conductivity; or,
anisotropy may give rise to the exceptional mechanism of phonon
focusing.

Finally, in the context of our analysis of PbTe, using xgis as a
benchmark for minimum thermal conductivity leads to the
conclusion that further reductions in thermal conductivity may be
possible in many good thermoelectric materials.*"**> Engineering
the vibrational properties of these materials may lead to diffuson-
like thermal transport, resulting in significant improvements to
the thermoelectric figure of merit.
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