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Minimum thermal conductivity in the context of
diffuson-mediated thermal transport

Matthias T. Agne, * Riley Hanus and G. Jeffrey Snyder *

A model for the thermal conductivity of bulk solids is proposed in the limit of diffusive transport

mediated by diffusons as opposed to phonons. This diffusive thermal conductivity, kdiff, is determined by

the average energy of the vibrational density of states, �hoavg, and the number density of atoms, n.

Furthermore, kdiff is suggested as an appropriate estimate of the minimum thermal conductivity for

complex materials, such that (at high temperatures): kdiff ¼
n
1
3kB

p

oavg � kmin. A heuristic finding of this

study is that the experimental oavg is highly correlated with the Debye temperature, allowing kdiff to be

estimated from the longitudinal and transverse speeds of sound: kdiff � 0:76n
2
3kB

1

3
2vT þ vLð Þ. Using this

equation to estimate kmin gives values 37% lower than the widely-used Cahill result and 18% lower than

the Clarke model for kmin, on average. This model of diffuson-mediated thermal conductivity may thus

help explain experimental results of ultralow thermal conductivity.

Broader context

Thermal conductivity of materials is of practical engineering importance. Estimating how low the thermal conductivity can be engineered can set practical

limits for a variety of applications. Heat that is transported by the vibrational energy of atoms in a solid can be defined from different perspectives. We typically

think of atomic vibrations travelling in waves that we call phonons, the strict definition of which requires the translational symmetry of perfect crystals.

However, low thermal conductivity materials are typically full of many types of disorder and defects: from impurity atoms and solid solutions to dislocations,

grain boundaries and other interfaces. Alternatively, we may consider the transport of heat by diffusons, which are atomic vibrations that carry heat by

diffusion. Diffusons are present in all materials, without the structural conditions required by phonons. It follows that diffusons may better describe the

physics of heat transfer in low thermal conductivity materials, particularly at high temperature. The model described herein is formulated in a way that is both

physically insightful and experimentally accessible, grounded in random walk theory. As the understanding of heat transport is central to progress in energy

science, this work guides engineering design principles in low thermal conductivity materials.

I. Introduction

The concept of a minimum thermal conductivity, kmin, carried

by the atomic vibrations of any solid material (crystalline or

amorphous), is of practical technological importance. For

example, materials screening and design for thermoelectric,

thermal barrier and other thermal management applications

often rely on models of kmin to benchmark experimental

observations or predict optimal material performance.1–6 Due

to the complexity of thermal conductivity there is not a unique

definition of kmin, and one practical option is to take relevant

models of thermal conductivity and assume some limiting

condition(s) that results in a reasonable estimate of what kmin

could be. It may also be argued that amorphous materials are

systems where the experimentally measured k would be closest

to a predicted kmin.

Most previous models of kmin have largely relied on the

phonon description of thermal conductivity (Fig. 1). The form

of phononmediated thermal conductivity (analogous to a kinetic

gas) is

k ¼ 1

3
cv‘; (1)

where c is the heat capacity per unit volume, n is the average

speed of a collective lattice vibration (phonon) and c is the

average phonon mean free path. The length scale of atomic

disorder can be used to phenomenologically describe c.7,8 In the

Kittel8 and Clarke4 models, the minimum thermal conductivity

can be thought of as the limit c - a (a is the interatomic

spacing). The Cahill9,10 and Slack11 models instead use a wave-

length dependent mean free path to incorporate wavemechanics
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in the description of c. Cahill uses c = l/2, whereas Slack uses

c = l. These models work well for many materials and give an

intuitive description of the phonon limit (at high temperature)

of thermal conductivity (Fig. 1). However, as experimental

thermal conductivities have been found below the Cahill and

Clarke models, a different model/philosophy may provide insight

into the limitations of phonon-basedmodels and provide improved

predictive power for experimentalists.

The mathematical description of lattice vibrations as

phonons requires periodicity, which is not the case in amor-

phous materials or even nanomaterials and quasicrystals.

Consequently, in the phonon picture of kmin (c - a, the so-

called Ioffe–Regel limit12 of phonons) the lattice vibration does

not sample enough periodicity of the lattice to be a well-defined

phonon or have the properties of such. Consequently, in this

limit, it is technically more correct to define a diffusivity term,

D, which has the units of nc (m2 s�1) but v and c are not

independently defined, such that there is no need for a well-

defined wavevector.13 In the mechanism of diffusive thermal

transport, heat is quantized by diffusons, characterized by a

diffusivity. Diffusons can be present in any material, but may

better describe atomic vibrations in materials with more atomic

disorder (including crystals with large complex unit cells14).

Here we will use the diffuson theory of Allen and Feldman,

thoroughly developed in ref. 15–19, to derive a phenomeno-

logical diffusive thermal conductivity, kdiff, from the vibrational

density of states. kdiff is defined as the limit of entirely diffusive

(diffuson mediated) thermal transport (Fig. 1). Even though the

group velocity of phonons (measured by the speed of sound) is

no longer the operative theoretical parameter, it can be incor-

porated post hoc by its correlation with the average frequency

of the vibrational density of states. Lastly, by comparison

of kdiff with previous models of kmin we suggest that kdiff may

be an appropriate estimation for kmin in some cases. Whereby,

kdiff may help to explain materials with ultralow thermal

conductivity.

II. Diffusive thermal conductivity

Any model for the thermal conductivity carried by the atomic

vibrations of a solid must consider three components:

(i) the number of vibrations of a particular energy that are

available to carry heat, i.e. the vibrational density of states, g(o),

(ii) the quantity of heat that can be carried by each vibration,

i.e. the heat capacity per mode, C(o), and,

(iii) the propagation behavior of these vibrations through the

material, i.e. the thermal diffusivity for each vibration, D oð Þ.
Therefore, the total thermal conductivity can be written as

the frequency-dependent integral

k ¼
ð1

0

gðoÞCðoÞDðoÞdo: (2)

The heat capacity, C(o), for lattice vibrations follows from

Bose–Einstein statistics:

CðoÞ ¼ @

@T

�ho

e
�ho
kBT � 1

 !

; (3)

and saturates to C(o) = kB in the T -N limit. Consequently,

the primary difference between thermal conductivity models is

in the choice of physics used to characterize the propagation

behavior, D oð Þ.
The diffuson theory of Allen and Feldman explains diffusive

thermal transport as the harmonic coupling between non-

propagating (i.e., not phonons or propagons), non-localized

(i.e., able to transfer energy, not locons) atomic vibrations. It is

in the spirit of diffuson theory that we construct this phenom-

enological model. The propagation behavior of diffusons is

derived assuming each diffuson travels according to the path

of a random walk. In random walk theory, the net distance, x,

traveled by a quantum after N discrete steps of size a is x ¼ a
ffiffiffiffi

N
p

.

This is related to the random walk diffusivity, DRW, and the

elapsed time, t, through the parabolic relation

DRW ¼ x2
�

t ¼ a2N
�

t: (4)

Fig. 1 Visual representation of the fundamental differences between phonon and diffuson models of thermal transport. The defining characteristics of

phonon-based models include the speed of sound (v) and mean free path (c). Diffuson-based models of Einstein,20 formally defined by Allen and

Feldman,15–19 and that described here rely on a thermal diffusivity coming from random walk considerations, which leads to the jump attempt frequency

(2o/2p) and the probability of a successful jump (P) being the operative theoretical inputs. Kittel (c = a),8 Clarke (c = a),4 Cahill (c = l/2),10 and Slack (c = l)11

made estimations of kmin from a phonon perspective.
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Here, N/t (number of steps per unit time) may be interpreted as

the frequency of energy transfer attempts multiplied by the

probability of a successful transfer, P. Einstein,20 in his model

for thermal conductivity (see also ref. 10), inferred that each

oscillator made 2 attempts to transfer energy in one period of

oscillation, N/t = (2o/2p)P. From eqn (4) we arrive at an

isotropic approximation for the diffuson diffusivity,

DdiffðoÞ ¼
1

3

n
�2
3o

p

P; (5)

by taking a ¼ n�
1
3 as the approximate jump distance between oscil-

lators, where n is the number density of atoms. The factor of 1/3

comes from assuming a three dimensional system. Anisotropy may

inhibitdiffusion incertaindirectionsandhas ramificationsdiscussed

below.Wealsonote thatP = 1 is a theoreticalmaximumdiffusivity for

diffusons and is comparable toDdiffðoÞ ¼
0:47

3
n�

2
3o found by fitting

N/t toMD results of the diffuson contribution to thermal transport in

amorphous Si.15The other limit, P = 0, phenomenologically describes

the condition for locons (i.e., zero energy transfer). In the random

walk diffuson picture, each oscillator acts completely independent

from one another, resulting in a form of transport fundamentally

different than that of phonons, where the phonon propagation is

defined by a group velocity and relaxation time (D ¼ 1

3
vg

2t).

Thus, eqn (2) can be composed from eqn (3) and (5) as the

maximum (P = 1) diffusive thermal conductivity,

kdiff ¼ 3nkB

ð1

0

gðoÞ
3n

� �

1

3

n�
2
3o

p

0

@

1

Ado; (6)

which simplifies to

kdiff ¼
n
1
3kB

p

Ð1
0
gðoÞo do

Ð1
0
gðoÞdo ¼ n

1
3kB

p

oavg: (7)

Thus, it is the average oscillator frequency, oavg, which becomes

the defining metric for the high temperature limit of diffuson-

mediated thermal conductivity. In many cases oavg can be

determined straightforwardly from inelastic neutron scattering

experiments or computational methods. Furthermore, we will show

thatoavgmay be approximated from speed of soundmeasurements

and kdiff may be appropriately used in the explanation of ultralow

thermal conductivity materials.

By comparing eqn (5) and (6), it is possible to define the

average diffuson diffusivity, �Ddiff , that is the weighted average

of diffusivities, DdiffðoÞ:

�Ddiff ¼
Ð1
0
gðoÞDdiffðoÞdo
Ð1
0
gðoÞdo ¼ n�

2
3oavg

3p
; (8)

when P = 1.

Feldman, et al.19 utilized molecular dynamics (MD) simula-

tions to ascertain the spectral function DðoÞ for amorphous

silicon. Thus, it is possible to compare the �Ddiff calculated from

eqn (8) with the average diffusivity value calculated from the

MD results. Using the MD data shown in Fig. 2 of ref. 19, the

average diffusivity of amorphous silicon was determined to be

�DMD ¼
Ð

gðoÞDðoÞdo
Ð

g oð Þdo ¼ 4:9� 10�3 cm2 s�1. The estimation

using the average oscillator frequency (�hoavg = 44 meV19) and

the number density of atoms for Si (Table 1) in eqn (8) gives

Table 1 Experimental number density of atoms (n ¼ # atoms

unit cell
� 1

Vuc

) calculated from ICSD reported unit cell volumes (Vuc), and the longitudinal (vL) and

transverse (vT) speeds of sound used to calculate the Debye temperature (yD) from the arithmetic average speed of sound, as well as the experimental

average energy (�hoavg) determined from the vibrational density of states

Element/compound n/1028 (# m�3) vL (m s�1) vT (m s�1) Debye model kByD (meV) Experimental �hoavg (meV)

RbI 2.03 241123 123623 11.39 7.6924

PbTe 2.67 3102a 1662a 16.42 7.8525

RbBr 2.46 258023 150823 13.92 9.1624

KI 2.30 253423 150123 13.47 9.7124

NaI 2.78 271623 168823 15.79 11.2324

KBr 2.69 305323 184323 17.26 11.5224

RbCl 2.81 307823 251823 21.09 11.9924

NaBr 3.70 339223 211223 21.71 13.7024

KCl 3.22 389623 236623 23.48 14.9224

Cu2�dSe 6.02 308626 138126 19.60 16.2027

RbF 4.46 394623 233323 26.12 16.4624

NaCl 4.93 447028 257028 30.14 18.2424

KF 6.98 460823 284223 36.24 20.3524

NaF 8.03 566423 367323 48.00 27.8924

FeO 10.06 663029 323029 52.07 35.3124

CaO 7.17 812030 488030 63.51 37.7824

SrTiO3 8.40 786031 468031 64.48 38.8524

Si 5.00 848032 586032 63.62 39.5524

ZnO 8.40 600023 283123 43.68 40.3333

MgO 10.69 957628 603828 87.88 49.7524

TiC 9.87 942934 585634 83.55 55.5524

SiC 9.64 11 73028 743028 104.27 74.0033

c-BN 16.92 16 11735 10 65335 177.01 104.4033

Diamond 17.63 18 12023 12 32323 205.05 121.4333

a Measured by present authors (5 MHz pulse echo at 300 K)
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�Ddiff ¼ 5:2� 10�3 cm2 s�1. The agreement between the MD

result and eqn (8) is quite good and provides some validation

for the use of eqn (5). In fact, Allen and Feldman15 use an

equation with the same form as eqn (5) to fit their MD results in

the context of diffuson-mediated thermal transport. They sug-

gest that the agreement between the phenomenological model

and the MD result supports the idea of a microscopic definition

of minimum thermal conductivity.15 Here, the random walk

derivation of kdiff allows for inferences about the physics of

ultralow thermal conductivity, whereas ref. 14 and 15 are limited

to dimensional analysis arguments.

However, it is important to note that the more-extensive MD

study19 indicates that there are both propagating (low energy,

see arrow in Fig. 2 of ref. 19) and completely localized (high

energy, see mobility edge line in Fig. 2 of ref. 19) vibrations

in their model of amorphous Si, accounting for about 7% of

the vibrational density of states.17 Diffusons are proposed as

the non-propagating, non-localized heat-carrying vibrations at

intermediate energies. In the derivation of kdiff (eqn (7)) from

Ddiff ðoÞ (eqn (5)), all vibrations contained within the density of

states contribute to diffusive thermal transport, i.e. there are no

propagating vibrations with larger contributions to thermal

conductivity, and there are no localized vibrations that do not

contribute to thermal conductivity. Consequently, kdiff is the

diffuson-mediated thermal conductivity. In using kdiff as a type

of kmin, it should be recognized that experimental thermal

conductivities found below kdiff would tend to indicate that

the material may have a significant number of localized vibra-

tions (locons) that do not conduct heat; or, other exceptional

physics may be at play, such as phonon focusing.21

III. Estimation of xavg

Although the derivation shows that it is possible to estimate

kdiff directly from g(o), it is recognized that g(o) is not always

easily accessible experimentally or computationally, especially

if the material system is complex (multi-phase, large unit cell,

etc.). During the course of this study, it was found heuristically

that the Debye temperature, yD, defined here by

kByD = �hoD = �h(6p2n)1/3ns, (9)

can be used as a metric to estimate the experimentally deter-

mined oavg. It is important to recognize that, in the context of

diffuson theory, yD may be regarded as a proxy for the influence

of bond strength, atomic mass, and average atomic separation

on the spectral distribution of the density of states. Specifically,

by compiling g(o), the arithmetic average speed of sound,

ns ¼
1

3
2nT þ nLð Þ, and number density of atoms, n, for 24 com-

pounds reported in the literature with speeds of sound spanning

an order of magnitude (Table 1), we found the linear correlation

(R2 = 0.98) (Fig. 2)

�hoavg E 0.61kByD, (10)

having a normalized root-mean-square error of 3.6% (RMSE E

4 meV). It should be noted that the harmonic average speed of

sound is another option for calculating the scalar yD,
22 which

was found to give a slightly worse correlation (R2 = 0.97,

RMSE E 5 meV), but would still lead to the same conclusions

drawn below. Other methods of estimating yD (e.g., from low

temperature heat capacity or inelastic neutron/X-ray scattering

methods) are also expected to correlate with oavg.

IV. Comparison of jdiff with jmin

models

Next, we compare our diffuson thermal conductivity, kdiff,

to previous models of kmin based on the maximum phonon

scattering approach. This comparison gives good justification

to use kdiff as a new formulation of kmin. Consequently, kdiff
may thus be used to explain the experimental results of ultra-

low thermal conductivity materials. First, we point out that

eqn (10) can be used to further simplify eqn (7) to depend solely

on n and vs:

kdiff � 0:76n
2
3kB

1

3
2vT þ vLð Þ; (11)

which makes this formulation of kdiff directly comparable to

the Cahill result,

kglass ¼ 1:21n
2
3kB

1

3
2vT þ vLð Þ: (12)

Here it is easily seen that kdiff is approximately 37% lower than

kglass on average. In fact, kglass is better used as a predictor for

Fig. 2 A log–log plot demonstrating the linear correlation (eqn (10)) of

the experimentally determined �hoavg (found from the vibrational density of

states) with the Debye temperature (kByD = �h(6p2n)1/3�hvs) calculated from

the arithmetic average sound velocity (ns ¼
1

3
2nT þ nLð Þ) using the values

found in Table 1. A linear slope of 1 is shown for reference (thin dotted line).

Note that the Debye model would predict a linear slope of 0.75, which is

substantially higher than this heuristic finding.
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the experimental thermal conductivity of amorphous and dis-

ordered materials.36 This is to say that, as a decent approxi-

mation, kglass E kmeasured (within a factor of 2) and kdiff may be

a better estimation of kmin (Fig. 3). The ideal kmin would always

predict a thermal conductivity that is lower than the measured

value, and all of the data points in Fig. 3 would be to the left of

that predicted line. Using kdiff as kmin very nearly satisfies this

requirement, and only a few points remain to the right of the

kdiff line (shaded region in Fig. 3).

Further comparison shows that kdiff isE18% lower than the

kmin equation presented by Clarke,4

kmin;Clarke ¼ 0:87n
2
3kB

ffiffiffiffiffiffiffiffiffi

Y=r
p

� 0:93n
2
3kB

1

3
2vT þ vLð Þ; (13)

who also suggested that ns ¼
1

3
2nT þ nLð Þ � 0:94

ffiffiffiffiffiffiffiffiffi

Y=r
p

is a

reasonable approximation (within 20%) for the speed of sound

from Young’s modulus, Y (N m�2), and density, r (kg m�3). As

eqn (13) is effectively a restatement of the Kittel kmin, these

comparisons suggest that the diffuson mechanism of thermal

transport conducts heat more slowly than the maximum

phonon scattering limit predicts. This leads to the implication

that materials with thermal conductivities near to kdiff are

transporting heat at a rate analogous to the maximum rate

if all of the atomic vibrations were diffusons. Experimental

thermal conductivities that fall below kdiff would tend to indicate

that there is some interesting/exceptional mechanism that is

influencing thermal conductivity. Thus, kdiff provides a reference

value for the upper limit of diffusive thermal conductivity and

may give some physical insight to conduction mechanisms in

ultralow thermal conductivity materials.

V. Temperature dependent jdiff

Although most thermoelectric generators, thermal barrier

coatings and thermal management devices are concerned with

temperatures at or above room temperature, making the high

temperature limit of kdiff the primary focus, it is important to

make some remarks about the temperature dependence of the

model presented above. The sole temperature dependence is

incorporated through the heat capacity term, which accounts

for the thermal activation of higher energy atomic vibrations as

the temperature is raised from 0 K. Explicitly, eqn (3) can be

rewritten as

CðoÞ ¼ kB
�ho

kBT

� �2
e
�ho
kBT

e
�ho
kBT � 1

� �2
(14)

which, in turn, can be used to incorporate a temperature

dependence into eqn (6):

kdiff ðTÞ ¼ n
1
3kB

p

ð1

0

gðoÞ
3n

� �

�ho

kBT

� �2
e
�ho
kBT

e
�ho
kBT � 1

� �2
o do: (15)

Here it is assumed that g(o) and the diffusive mechanism

of thermal transport are both reasonably independent of tem-

perature. In effect, the integral in eqn (15) is a temperature

dependent average frequency, oavg(T), of the vibrational

spectrum,

kdiffðTÞ ¼ n
1
3kB

p

oavgðTÞ; (16)

and oavg(T) converges, of course, to a constant value (oavg in

eqn (7)) when the entire vibrational spectrum is thermally

activated in the T - N limit. However, it may be necessary

to use kdiff(T) in the temperature range of interest if T o yD.

This is to say that high energy vibrations that are not yet

thermally activated should not be included in the calculation

of kdiff. Considering PbTe as an example, g(o) is fairly inde-

pendent of temperature up to 500 K.25 The INS data at 100 K

(Fig. 4A) was used for all calculations, and numerical integration

of eqn (15) for temperatures up to 500 K reveals that kdiff(T) is

converged to the high T value by 500 K (Fig. 4B). As the full

vibrational spectrum (up to 16 meV in Fig. 4A) is excited by

E190 K (kBT E 16 meV), the high temperature approximation is

quite good for PbTe above room temperature.

The Einstein model of thermal conductivity, kE (see, e.g.,

ref. 9), may be the most rudimentary equation for diffusive

thermal transport, having a characteristic frequency, oE, that

is constant with temperature and a density of states given by

g(o) = 3nd(o � oE). Nevertheless, using oE = oavg (gray lines in

Fig. 5) results in an Einstein model that converges to the value

of kdiff at high temperatures and goes as kE p e�yE/T at low

Fig. 3 A comparison of kdiff with the Cahill model, kglass, shows that kglass
is a good estimate for the measured thermal conductivity (within a factor

of 2), whereas kdiff may be a better metric for estimating the minimum

thermal conductivity. Plotted points are the same that appear in Fig. 7 of

ref. 36.
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temperatures (yE = �hoE/kB). As oE is the only and ipso facto the

maximum frequency of the Einstein density of states, kE con-

verges to the high temperature value of kdiff at a lower tem-

perature than if there were a distribution to the density of states

(Fig. 5B). In order to better approximate the temperature

dependence of kdiff found numerically, it is possible to utilize

the correlation between oavg and yD (eqn (10) and (11)), to

estimate kdiff(T) using the Debye model gðoÞ ¼ 3

2p2
o2

vs3
(blue

curve in Fig. 5A). However, to converge at the high temperature

value given by eqn (11), the upper limit of integration has to be

changed to compensate for the fact that the average frequency

of the Debye model is higher than that found experimentally.

Explicitly,

kdiff �
n
1
3kB

p�h
0:61kByDð Þ ¼ kB

ðfoD

0

3

2p2
o2

vs3

� �

n�
2
3o

p

0

@

1

Ado (17)

and equivalence with eqn (11) is achieved when the upper limit

of integration is defined by f E 0.95 (truncated Debye model,

green curve in Fig. 5A). Switching to the reduced variable,

Fig. 5 The experimental vibrational density of states (red circles) for Si at 300 K taken from ref. 38, the Debye density of states (blue curve) having a

maximum energy kByD determined by the speed of sound (Table 1), and the truncated Debye density of states (green curve) with a maximum energy

0.95kByD (panel A). kdiff(T) was calculated numerically (kdiff – experimental g(o), red curve, using eqn (15)) and analytically (kdiff – truncated Debye, green

curve, using eqn (18)), and compared with the Cahill (kglass, blue curve) and Einstein (kE, gray curve) models, with experimental thermal conductivity

measurements of amorphous Si39,40 shown for reference (panel B). The low temperature behavior for each model is kdiff p T
4, kglass p T

2, and

kE p e�yE/T, respectively.

Fig. 4 The experimental vibrational density of states for PbTe at 100 K taken from ref. 25 (panel A) and the temperature dependent kdiff(T)

calculated numerically using eqn (15), tending to kdiff = 0.157 W m�1 K�1 at high temperature when the entire density of states is thermally excited

(panel B).
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x = �ho/kBT, then kdiff(T) may be approximated as

kdiff ðTÞ � n�
2
3kB

2p3vs3
kBT

�h

� �4ð0:95
yD
T

0

x5ex

ex � 1ð Þ2
dx; (18)

which predicts kdiff goes as T4 at low temperatures (Fig. 5B). This

temperature dependence is a direct result of using a parabolic

density of states (typical of propagating lattice waves) with a

diffusivity of diffusons that is linear in o. The Cahill model of

kglass uses a parabolic density of states, but assumes phonon

scattering is inversely proportional too, giving a diffusivity that is

proportional to o�1. Thus, kglass goes as T
2 at low temperatures,

in better agreement with the thermal conductivity of amorphous

materials (Fig. 5B). Consequently, the thermal conductivity of real

materials is likely dominated by propagating (phonon-like) vibra-

tions at low temperatures, whereas kmin at high temperature may

be better described by diffuson-like vibrations. This conclusion is

well-supported by a recent computational study on vibrations in a

random In1�xGaxAs alloy.
37

VI. Conclusion

The Kittel, Slack, and Cahill (phonon-based) models, i.e. kglass,

are good approximations for amorphous materials particularly

at low temperatures. However, at high temperature, thermal

conductivities are sometimes even lower, suggesting that kdiff
may be a better estimate for a minimum thermal conductivity,

kmin. Here we define kdiff as the limit of thermal conductivity

when vibrations are not propagating (not phonon-like) but also

not localized (specifically, P = 1).

Additionally, by correlating oavg with the Debye temperature

(�hoavg E 0.61kByD) it is possible to estimate kdiff from simple

and accessible speed of sound measurements. From this corre-

lation, we find that kdiff is approximately 37% lower than the

kglass estimate of Cahill using identical experimental inputs. In

many cases, this may reconcile experimental observations with

the concept of minimum thermal conductivity. However, obser-

vations of thermal conductivities below the kdiff value are not

unexpected, and would tend to indicate extraordinary physics

leading to ultralow thermal conductivity. For example, complex

materials may have a large number of localized (locon-like)

vibrations that do not contribute to thermal conductivity; or,

anisotropy may give rise to the exceptional mechanism of phonon

focusing.

Finally, in the context of our analysis of PbTe, using kdiff as a

benchmark for minimum thermal conductivity leads to the

conclusion that further reductions in thermal conductivity may be

possible in many good thermoelectric materials.41,42 Engineering

the vibrational properties of these materials may lead to diffuson-

like thermal transport, resulting in significant improvements to

the thermoelectric figure of merit.
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