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A B S T R A C T

The selection of a machining process involves the choice of machine tools, fixture elements, and fixture locator
layout, as well as the allocation of tolerance in each operation. In practice, manufacturers frequently choose
identical machine tools and fixture elements for each operation to reduce purchase cost. As such, fixture layout
and tolerance allocation are critical in selecting or designing appropriate manufacturing processes. Conventional
research deals with robust fixture layout design and simultaneous tolerance allocation for multiple types of error
source separately. However, fixture layout design could also affect tolerance stackup caused by multiple error
(not only the fixture error) sources. Therefore, considering the interaction between fixture layout and other types
of error source is critical in the process selection to improve the process selection strategy. In this paper, a two-
stage framework is proposed to optimize the process selection based on our previously developed error
equivalence model, which transforms multiple errors into equivalent errors that occur on a fixture. In the first
stage, a process is selected by determining the allowable tolerance for an aggregated base error given a fixture
layout. In the second stage, a computer experiment model is established to search for the globally optimal fixture
layout by exploring a large number of fixture layout alternatives. A real-world case study based on a two-
operation machining process demonstrated the effectiveness of the proposed strategy in controlling manu-
facturing cost while ensuring product quality via proper fixture layout design.

1. Introduction

Machining process selection involves choosing machine tools, fix-
ture elements, and fixture locator layout, as well as allocating tolerance
for multiple tools in each manufacturing operation. Given that manu-
facturers frequently select identical machine tools and fixture elements
to obtain increased discounts from vendors, the process selection can be
simplified into two problems, namely, fixture layout and process tol-
erance design.

Fixture layout design involves the automated generation of a robust
fixture layout that reduces the influence of fixture variation on product
quality. The early approaches to fixture layout design are deterministic
[1] because they do not consider fixture variations, such as those
caused by worn or loose locating pins. Recent research on fixture layout
design investigates the robustness of fixtures [2–4] with optimization
aiming to minimize the sensitivity of the fixture layout. The optimal

fixture layout design for multi-operation assembly processes was in-
vestigated by Kim et al. [5]. A fixture layout design for a machining
process was developed by Huang and Shi [6] by using a 2D case study.
Fixture layout optimization was also addressed by using metaheuristics,
such as evolutionary techniques [7] and augmented ant colony algo-
rithm [8]. These studies on fixture layout design mostly focused on
kinematic analysis to reduce potential quality problems induced by
fixture errors (e.g., clamping and locator inaccuracies).

Process tolerance design involves estimating tolerance stackup and
allocating tolerances corresponding to multiple error sources to ensure
quality or robustness at reasonable manufacturing cost. In this line of
research, the focus is on the simultaneous optimization of assigning
candidate processes to operations or parts, allocating process or product
tolerances, and/or designing process parameters. Nagarwala et al. [9]
solved the tolerance design problem in process selection by using a
slope-based approach, which exhibits high computational efficiency.
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Qin et al. [10] proposed a unified point-by-point planning algorithm for
machining fixture layout by considering practical degrees of freedom
and determining the location of the locating pins. A tolerance design
approach based on the Shapley value method was developed by con-
sidering the demands of manufacturing cost and product quality [11].
Other approaches developed for process selection considering tolerance
design include functional group approach [12], exhaustive search
methods [13,14], simulated annealing [15], genetic algorithms [16],
and artificial intelligence techniques [17]. Optimization problems in
previous studies target a certain manufacturing cost as their sole ob-
jective function. Wang and Liang [18] developed a dual-objective op-
timization approach to simultaneously assigning processes to opera-
tions, determining machining parameters, and designing product
dimensional tolerances. Andolfatto et al. [19] proposed to allocate
geometrical tolerances by solving a multi-objective optimization pro-
blem, aiming to minimize the cost and the nonconformity of the as-
sembly plan. Comprehensive reviews of the tolerancing strategy for
process selection were also conducted [20,21].

Most studies on process selection separately investigate the pro-
blems of fixture layout optimization and process tolerance design, and
do not directly consider the influence of the fixture layout on the al-
location of tolerance for multiple error sources. For example, tolerance
allocation is optimized in a fixed fixture layout only. Such studies are
only reasonable when multiple error sources are independent of each
other.

This study provides additional insights into process selection by
considering the interactions between the fixture layout and the toler-
ance allocation for non-fixture errors. The significance of such inter-
actions is illustrated in Fig. 1, in which a 2D prismatic part is installed
on a fixture and milled on the top surface. For simplicity of illustration,
we assume that the machine tool error occurs rotating around the z
direction (denoted by angle γ). In fixture layout 1 (Layout 1 in
Fig. 1[a]), in which two locating pins are close to each other, the var-
iation in the top surface is more sensitive to the fixture error. Thus, a
tight tolerance (σγ1) for the machine tool error is required to ensure
product tolerance (i.e., thickness). By contrast, only a loose tolerance
(σγ2) is necessary for the machine tool error in fixture layout 2 (Layout2
in Fig. 1[b]) because the influence of the fixture error on the surface
variation is small. Process selection can be improved by considering the
mechanism by which the fixture layout affects the tolerance allocation
for multiple error sources. Therefore, properly identifying the link be-
tween fixture errors and other types of error sources is important for
tolerance stackup modeling.

Only limited research has been conducted on the joint optimization
of fixture layout and tolerance design. For instance, Li [22]

implemented a dual-objective optimization problem to obtain a robust
fixture layout while minimizing the cost associated with the tolerances
caused by fixture errors. A study on tolerance synthesis showed that
fixture layout might have a significant influence on tolerance stackup
because of the fixture, machine tool, and datum errors [6]. In the said
study [6], a two-step optimization procedure was proposed, and a
sensitivity analysis was conducted by using a 2D example; however, the
fixture layout was not optimized.

Through a review of the literature, the following research gaps are
identified:

• Studies on the relationship between the problems of fixture layout
and process tolerance allocation are few. As mentioned, the fixture
layout significantly affects the process tolerance allocation.
However, prior research studied the two problems separately. For
example, tolerance allocation was optimized in a fixed fixture layout
only. Thus, the potential to improve the optimization process further
is missing.

• A comprehensive understanding of how different types of process
error interact to affect the process tolerance allocation problem is
lacking. Prior research deals with the tolerance allocation for mul-
tiple types of process errors, such as machine tool, fixture, and
datum errors, independently without considering their interaction
effects on the process selection problem.

This paper is the first to provide insights into the relationship be-
tween the two problems based on an error equivalence model and
present a method for jointly optimizing process tolerance and fixture
layout design for process selection. Considering an error equivalence
mechanism by which multiple types of error source result in identical

Nomenclature

σγ Standard deviation of cutter path orientation
σθ Standard deviation of part orientation due to fixture error
xi Error source i
si The ith candidate layout in the explored design space for

LH sampling in computer experiments
w The fixture layout in the unexplored design space
w* The globally optimal fixture layout
Ki Transformation matrix in EFE.
Γj Mapping matrix that reflects the impact of process errors

on the jth quality feature (also called a sensitivity matrix)
yj The jth quality feature deviation
u(k) The aggregated process error at the kth operation
ε(k) Noise term at the kth operation
I Identity diagonal matrix
Σ ku( ) Covariance matrix for the process error u(k)
Σ ky ( )j Covariance matrix for the deviation of feature j

Θ A vector of the process errors for tolerance allocation
σΘ The standard deviations of process errors Θ (process tol-

erance)
CT The coefficient matrix
c A row vector in matrix C with the highest dimension to

compute overall cost
b1 The upper bound of the variation components of surfaces

or dimensions
b2 The upper bound of tooling variations
Fc The reaction force between the workpiece and the fixture

locator
fi The positions of the fixture locators
Y(w) The response given the input w
Z(·) Zero-mean Gaussian
R(·, ·) Correlation function between the responses
D The number of the design variables
Yj The quality features j

Fig. 1. Impact of fixture layout on tolerance allocation for a machine tool.
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part variations and can be transformed into a fixture error [23,24], this
study proposes using the fixture as a design parameter to control the
tolerance stackup caused by multiple types of error source. In this
manner, the tolerances for multiple error sources are aggregated into
those for fixture errors to reduce the design space for optimization. A
two-stage process selection problem for joint fixture layout design and
tolerance allocation is formulated. In the first stage, the tolerance al-
location is determined given a fixture layout. In the second stage, the
optimal fixture layout is identified. A sequential computer experiment
model is developed to solve this NP optimization problem without re-
lying on exhaustive solution search. Unlike the traditional process tol-
erance allocation, which depends on a fixed fixture layout only, the
proposed method explores the candidate fixture layouts in the design
space thoroughly.

Following this introduction, Section 2 develops an error equiva-
lence-based simultaneous tolerance synthesis and optimal fixture layout
design. Section 3 demonstrates the proposed method by using a multi-
operation machining process. A sensitivity analysis is also conducted to
evaluate the robustness of the process tolerance design. Section 4 pro-
vides the conclusions of this study.

2. Error equivalence-based process selection method

Given the tolerance for certain product features, the process selec-
tion in this study involves determining the fixture layout for six locating
pins (under the 3-2-1 locating scheme) and the manufacturing toler-
ances for the pins x1 (fixture error), datum surface x2 (datum error),
and machine tool path x3 (machine tool error) by considering the in-
teractions among these variation sources.

The two-stage process selection is developed to solve the problem,
as shown in Fig. 2. First, a set of fixture layouts or design variables si are
generated as the starting points in the space-filling method. The total
quantity of the candidate layouts is denoted by n. In stage 1 selection,
for a given fixture layout si, the multiple types of error source are
transformed into equivalent amounts of fixture errors Yi [23], and the
optimal tolerance allocation procedure for fixture error is implemented
(Section 2.1). The tolerance that yields the lowest cost is allocated to
the aggregated fixture errors at each manufacturing operation. Error
equivalence modeling and tolerance allocation are implemented for all
design variables si. In stage 2 selection, the cost associated with the
process tolerance, along with the corresponding design variables, is
used to train a computer experiment model to determine the globally
optimal fixture layout w* (Section 2.2). This method allows for the
investigation of how different fixture layouts (generated in stage 2 se-
lection) impact the performance of the tolerance allocation (determined
in stage 1 selection) by deriving a metamodel or surrogate model
(Kriging model) based on the results of the first-stage (input) versus the
second-stage (output) designs. Stage 1 selection plays the role of a si-
mulation model (although it is not the traditional simulation).

2.1. Modeling and tolerance allocation of the equivalent error source given
a fixture layout

This section discusses the tolerance allocation strategy, which con-
siders the interactions between multiple types of error source (i.e., error
equivalence). An optimization algorithm is used to generate the re-
sponses to the corresponding design variables si.

(1) Error equivalence-based process modeling
Two types of error source are considered equivalent if they generate

similar dimensional deviation. Thus, equivalent error sources at each
manufacturing operation can be aggregated when feature deviations
are predicted. Specifically, multiple types of error xi can be transformed
into an equivalent amount of the same type of error source, called base
error, through a linear transformation: x*i = Kixi, i = 1, 2,…, m (the
transformation matrix Ki is shown in Appendix A). For a machining
process, the machine tool and datum errors can be transformed into a

fixture error. In this study, the fixture error is also named the “base
error” because it provides a reference to evaluate other types of error
source and can be conveniently monitored or controlled. Given that the
error from the fixture is convenient to control and monitor, the fixture
error is selected as the base error in this study, and the linear trans-
formation matrix Ki is used to transform different types of errors into
equivalent fixture errors (EFE). Thus, the dimensional deviation of the
product can be predicted by [23]

yj(k) = Гju(k) + ε(k), (1)

where Γj is the sensitivity matrix, which aggregates the coefficients of
the quality prediction model given certain process errors and is de-
termined based on the process and product design. yj(k) denotes the jth
quality feature deviation caused by the base error = ∑k ku( ) x*( )i i and
process noise ε(k) at the kth operation; it is also called a sensitivity
matrix because it reflects how the jth quality feature change is sensitive
to any unit change in fixture errors (e.g., worn locator). A high sensi-
tivity indicates that the process quality is prone to be affected by small
process variations. Notably, in the traditional prediction model of
process errors, the right side of Eq. (1) contains not only an aggregated
error equivalence vector in each operation but also a vector that con-
sists of different individual error sources, for example, yj(k) =
Гj[x1(k)|x2(k)|x3(k)]T + ε(k), where [x1(k)|x2(k)|x3(k)] represent the
machine tool, datum, and fixture errors, respectively. Through the ag-
gregation of the errors from different sources, we can focus on the
machining process with the base error only, thereby significantly re-
ducing the design variables in the process selection. Multivariate
normal distributions can be assumed to characterize the base error u(k)
and noise ε(k).

The model dimensions may also be reduced by studying the linear
dependency of the columns in matrix Γj through, for example, diag-
nosability analysis [25]. The error equivalence method is adopted for
the following reasons: (1) the machining process generally has multiple
types of error, and (2) the machining process modeling directly cap-
tures the kinematic relationship between multiple types of error. The
method is useful for process control, such as the equivalent error
compensation (Wang et al. [24]).

For feature j, the variance-covariance matrix is estimated by using
Eq. (1) as follows:

= + σ( Σ ) Γ ( Σ )Γ Ik j k j
T

εy ( ) u( )
2

j (2)

where Σ ku( ) and Σ ky ( )j are the variance-covariance matrices of the pro-
cess errors and deviations of feature j, respectively. Since Σdiag( )ky ( )j
reflects the tolerance, the tolerance stackup can be found from the di-
agonal term Σdiag( )ky ( )j .

(2) Error equivalence-based simultaneous optimal tolerance allo-
cation

The tolerance allocation aims to assign tolerances to process errors
to meet certain specification at the lowest manufacturing cost. Here, Θ
represents a vector of process errors (u(1)T,. . ., u(k)T)T, and their
standard deviations are denoted by σΘ = (σu(1),. . ., σu(k))T. Given that a

Fig. 2. Two-stage process selection using the error equivalence concept.
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large process tolerance can reduce the manufacturing cost, maxσΘ can
be used as the objective [6]. The variance of the surfaces to be ma-
chined at each operation can be represented by a set of linear combi-
nations of σΘ2 , denoted by C σT Θ

2 . It can be derived by extracting the
diagonal terms in the variance-covariance matrix Σyj [6], which is es-
timated by Eq. (2). The objective function, that is, the cost of achieving
the specified process tolerance, can be used to maximize the process
tolerance estimated as a linear combination of σΘ, denoted by c σT Θ

2 .
Here, c is the row vector with the maximum dimension in matrix C, that
is, c=max[Dim(ci)], where i=1, 2, 3,. . ., m (where m is the number of
rows in C) and Dim() stands for dimensionality [6]. Therefore, the error
equivalence-based simultaneous tolerance allocation is formulated as
follows:

≤
< ≤
>

c σ
C σ b

σ b

s t

0
F

. Max ,
,constraints from the specification,
,the tooling constraints,

0, the load equilibrium condition,

T
Θ

T
Θ

Θ
c

2

2

1

2

(3)

where b1 denotes the upper bound of the variation components of the
surfaces or dimensions. The values of b2 constrain the tool variations. Fc

is the reaction force from the workpiece against the locator at the
contact point between the workpiece and the fixture locator, and it is
related to the clamping forces and the workpiece shape at that contact
point [2]. The equilibrium condition ensures that the workpiece con-
tacts with the locating pins [2]. The tolerances can be first assigned to
the aggregated base errors and then further distributed to other types of
errors by using the error equivalence relationship. The rationale of the
formulation in Eq. (3) can be explained as follows: the maximization of
process tolerance is equivalent to the minimization of manufacturing
cost due to the process tolerance design. A tight tolerance designed for
process errors can result in a significantly high investment cost for
manufacturing processes (e.g., an expensive high-precision machine
tool may be selected to achieve the target quality feature). However, if
the final manufactured quality is not sensitive to certain process errors
in certain directions, then the assignment of a tight tolerance is a waste
of resources. Manufacturers always prefer to loosen the process toler-
ance as much as possible to reduce the potential cost while still ensuring
that the output quality remains within the product tolerance.

The parameters c, C, b1, and b2 are assumed to be known in the
objectives and constraints. The simultaneous change of these para-
meters is not within the original scope of this study. However, we can
envision a solution by treating these parameters as decision variables in
addition to the fixture layout in stage 1 selection and then conduct
computer experiments to explore different fixture layouts and para-
meters (c, C, b1, and b2) to find the optimal fixture layout.

2.2. Error equivalence-based optimal fixture layout design

This section discusses the influence of the fixture layout on the
optimal tolerance allocation (discussed in Section 2.1) for multiple
types of error source and the identification of the globally optimal
layout to minimize the manufacturing cost associated with process
tolerance. We let the process tolerance design variables be the positions
of the fixture locators (i.e., fi). The two-stage algorithm improves the
fixture layout design by exploring the values of the parameters men-
tioned in Section 2.1 given different candidate fixture layouts and
identifying the optimal fixture layout that leads to the minimal toler-
ance cost (response). Computer experiments are conducted to examine
the response surface of max c σT Θ

2 for different fixture layout alter-
natives. The computer experiment is chosen because tolerance synthesis
involves extensive symbolic computation when examining all possible
fixture layouts and an exhaustive search method is usually infeasible. In
addition, the lack of random errors in the computational tolerance
synthesis renders the computer experiment method preferable to the
traditional regression analysis. The computer experiment method can

approximate the optimal global solution by preventing the solution
from being trapped in the local optima. Nevertheless, this method is not
the only approach to solving the given two-stage decision problem.
Various metaheuristic methods, such as evolutionary algorithms, may
also be applicable. The computer experiment method is chosen for this
particular problem because it can explicitly reveal the impact of the
equivalent fixture on the cost of process tolerance allocation (response),
thus providing in-depth insights into the proposed equivalent fixture
concept. This method also allows for a sequential search strategy by
refining more design points than other methods can to ensure the ef-
ficient exploration of the search space where the root-mean-square
error (RMSE) of the response is large.

Remark 1: In addition to the tolerance cost, the fixture layout has
one more objective to satisfy, namely, the sensitivity index, which is the
ratio between the sum of the squares of the product deviations and that
of the aggregated fixture errors, that is, u u

u u
(Γ ) (Γ )T

T . A similar dual-objec-
tive optimization problem was solved by Li (2006) for fixture layout
and fixture tolerance design. The solution is beyond the scope of this
study and is not discussed in detail.

The optimal fixture layout can be obtained through the computer
experiment model or Kriging model [26–28], which generally depicts
the relationship between the fixture layout variables and max c σT Θ

2 . The
model consists of a trend gT(w)β and a stochastic process Z(w) and is
expressed as follows:

Y(w) = gT(w)β + Z(w), (4)

where Y(w) is the response (which, represents max c σT Θ
2 in this study)

given the input w = (w1,. . ., wd), where d is the quantity of the design
variables. The input w is for the fixture layout in the unexplored design
space, which contains the coordinates of all the fixture locators as si.
The responses in layouts si are all tested or explored by the following
computer experiments, whereas the response in layout w should be
predicted by the established computer experiment model. The sto-
chastic term Z(·) is a zero-mean Gaussian variable with a covariance Cov
(w1, w2) = σ2R(w1, w2), where R(w1, w2) is a correlation function
between the responses in the two inputs w1 and w2, and σ2 is the
standard error, which can be estimated using Eq. (B3) in Appendix B.
Appendix B also presents the details of the computer experiment model.

Before the optimal fixture layout can be obtained, we need to first
estimate the structure of gT(w)β and the stochastic process Z(w). From
[27], highly elaborated polynomial functions exhibit few advantages in
modeling. Thus, a constant β was first selected for gT(w)β. In addition,
a power exponential correlation function, which is well known in the
literature on computer experiments, is chosen. The correlation function
is determined by the multiplication of correlations as R(w1, w2) =
∏ =j

d
1 exp(−θj|w1j − w2j|p), where 0 ≤ pj ≤ 2 and θj ≥ 0. Here, pj=2

is selected because the correlation therewith leads to smooth stochastic
processes [28]. For instance, a two-operation machining process has a
total of d=12 design variables. In summary, the unknown model
parameters include the constant β, the stochastic process variance σ2,
and θ = (θ1,. . ., θ12).

The design of experiments should be representative, that is, cov-
ering the entire design space, and can provide precise responses at the
inputs of interest (fixture layout that can effectively reduce tolerance
stackup) to construct an appropriate computer experiment model. A
sequential procedure [29,30] is adopted to search such a design space.
The procedure is explained as follows:

2.2.1. Initial design
The initial designs are obtained by using a Latin hypercube (LH)

sampling method to ensure that the initial design spreads over the
entire design space. Introduced by McKay et al. [31], LH sampling is
one of the most prevalently used space-filling methods. It is the gen-
eralization of a Latin square to an arbitrary number of dimensions. In
this method, each sample is the only one in each axis-aligned
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hyperplane that contains it. The procedure of LH includes the following
steps: (1) the range of each decision variable is divided into multiple
equal intervals, and (2) candidate fixture layouts (samples) that can
meet the requirement of the LH are selected. For each component of the
input site wj, a uniform distribution can be assumed. In practice, the
initial design can sometimes be obtained by experienced practitioners,
whose expertise may further reduce the effort in searching the design
space.

The guidelines for choosing the initial layout are to (1) utilize prior
engineering knowledge to refine the selection of initial solutions and/or
(2) generate the initial solutions that can representatively fill the design
space by using the LH sampling method if prior knowledge is lacking.

2.2.2. Design and model refinement
The initial design can be used as input to the tolerance allocation

strategy to obtain the optimal tolerance setup with the lowest tolerance
cost in that fixture layout. For a high-dimensional case, the initial
model may be unable to predict the true tolerance responses well at the
unexplored input sites and must be improved. Given the predictor ŷ (w)
expressed in Eq. (B4) in Appendix B, the predictor RMSE RMSE y( ˆ (w)),
which is the square root of Eq. (B5), is first calculated at several tested
input sites. If the RMSE is large, then these sites should be included in
the design space. The untested sites can be selected using the LH
method following a maximin criterion. The maximin criterion ensures
that no testing inputs are very close, such that all the experiment points
to be tested can representatively cover the design space. Notably, Gupta
et al. [32] developed a zoom-in criterion to refine the computer ex-
periment model by employing a contour plot to estimate the distribu-
tion of the MSE over the entire design space. More design points will be
added to the areas on the contour plot with considerably large MSEs. In
this study, the RMSE is estimated based on a set of LH design sites at
each iteration, without using a contour plot, for the following reasons:
(1) the contour plot cannot efficiently cover the design space with high
dimensions, and (2) the maximin-LH design-based test point selection
can efficiently cover the entire design space. The iterative model re-
finement steps are summarized as follows:

Step 1: Estimate the parameters of the computer experiment model.
At the ith iteration, the model is constructed based on the ni designs S=
{s1,…, sni} with response data ys = {y1,…, yni}, that is,

= + ×y βw r wˆ ( ) ˆ ( )T
n ni i ×

−Rn n
1
i i (ys − eni β̂), where eni is the all-in-one

vector of length ni, i=0, 1, 2,. . . .
Step 2: Improve the modeling with more inputs. The RMSEs at the

test points generated using the maximin–LH design are calculated. The
points that yield large RMSEs are added to the experimental design S.

Step 3: Set i⟵ i + 1, and return to steps (1) and (2).
Step 4: Stop the refinement when the maximum of ŷ does not ex-

hibit significant changes between consecutive iterations and the RMSE
is sufficiently small.

3. Case study

This section demonstrates the proposed error equivalence-based
process selection by using a two-operation machining process. The two-
operation example can be conveniently generalized to a multi-opera-
tion case. The generalization is enabled by the multi-operation mod-
eling of variation propagation, which was developed in our prior study
[23]. Given that the EFE can estimate the datum error, which can be
transmitted from one operation to another, we can estimate the influ-
ence of the EFE in the upstream operations on the variation generated
in the downstream operations.

The examples in our prior publications [23,33] are adopted in this
case study. As shown in Fig. 3, the part to be machined is an engine
head that includes seven quality features Y1–Y7. Two planar surfaces
are represented by Y1 and Y4, and cylindrical holes are denoted by Y2,
Y3, Y5, Y6, and Y7. A global coordinate system is established to re-
present the dimensions. The origin of the system is set as the center of
hole Y6. Thus, the quality feature Y1 can be denoted by Y1 = (0, 1, 0, 0,
131, 0)T, following a vectorial surface model [35]. This model re-
presents any feature with a vector consisting of the orientation, posi-
tion, and size of the feature under a specified coordinate system. The
value for nominal feature Y1 can be determined in Fig. 3 as follows: the
origin of the coordinate system is on the center axis of the cylindrical
hole Y5, and (0 1 0) represents the normal vector for top surface Y1,
which is offset 131mm above the horizontal axis (aligned with the
Y5–Y6 direction).

Fig. 4 shows that the part with the seven features undergoes the
following two operations: (1) milling of plane Y1 and drilling of two
holes Y2 and Y3 using Y4, Y5, and Y6 as datum surfaces and (2) drilling
of hole Y7 using plane Y1 and the two holes from Operation 1 as datum
surfaces. The locating positions on the datum surfaces in each operation
are denoted by f1–f6 (Fig. 3.) For example, the coordinates of fixture
locator 1 in Operation 1 is f(1)1 = (f(1)1x, f(1)1y and f(1)1z)T = (−7,
109, 0)T, where f(k)j, k denotes Operation k, and the subscript j denotes
the jth locator. The machine tool, datum, and fixture errors are denoted
by x1(k), x2(k), and x3(k), respectively. The fixture error is chosen to be
the base error to which other error sources are equivalently trans-
formed. For Operation 1, the fixture error is characterized by the fixture
locator deviations, (Δf(1)1z, Δf(1)2z, Δf(1)3z, Δf(1)4y, Δf(1)5y, Δf(1)6x)T.
The procedure consists of two steps, which are summarized as follows:

3.1. Tolerance synthesis in a specific fixture locator layout

Tolerance stackup modeling is first conducted by considering the
fixture and machine tool errors in Operation 1. The machined surface
errors generated a datum error in the next operation. The EFE caused by
the machine tool and datum errors in Operation k are denoted by x*1 (k)
and x*2 (k), respectively. Accordingly, u(2) = x*1 (2) + x*2 (2) + x3(2),
where x*2 (2) is generated by u(1) (Eq. (A4)). The final product feature
deviation y is expressed as follows:

= ⎡
⎣⎢

⎤
⎦⎥
+y Γ

u(1)
u(2)

ε,
(5)

where = ⎡
⎣⎢

⎤
⎦⎥

×

× ×
Γ

Γ 0
0 Γ

1 6 6

6 6 7 12 12
and =y y y[ ]T T T

1 7 . The matrices Γ1 and Γ7 are

Fig. 3. Workpiece and locating scheme [23]. Fig. 4. Machining and fixturing schemes for two operations (Side view) [23].
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expressed as follows:
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.7

The variance-covariance matrix Σy can be obtained by using Eq. (2).
The covariance structure is influenced by the final product tolerance.
The deviation of feature j consists of the orientation deviations αj, βj,
and γj, as well as position deviations xj, yj, and zj in three orthogonal
directions. The quality of feature j can be represented by yj (k) = (αj, βj,
γj, xj, yj, zj)T. The diagonal terms in Σy characterize the variances of
features Y1 and Y7 as
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The hole feature Y7 is a key in the future assembly operations. The

tolerances in the x and y positions of Y7 are set as the final product
tolerances, which are related to σ x27 and σ y

2
7 , respectively. The objective

is to maximize the following expression:

+0.5(σ σ ),x y
2 2
7 7 (7.1)

where equal importance of the tolerances in two directions is as-
sumed. Eq. (7.1) contains the variation components of the dimensions
with the maximum number of σΘ (Eq. [3]). This objective function is
subject to the following constraints:

≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤

σ σ σ

σ σ σ σ

σ σ

b , b , b for Y, and

b , b , b , b ,

b , b for Y ,

α α γ γ y y

α α β β γ γ x x

y y z z

2 2 2
1

2 2 2 2

2 2
7

1 1 1 1 1 1

7 7 7 7 7 7 7 7

7 7 7 7 (7.2)

where bβ1, bx1, and bz1 need not be considered because the plane is free
to move in the x and z directions, and the orientation of plane Y1 can be
set free in the y direction.

To illustrate, we assume that 0.1 rad2 can be assigned to bα1, bγ1, bα7,
bβ7, and bγ7, and 5mm2 can be assigned to by1, bx7, by7, and bz7. A value of
1.732mm is set for all the elements of b2 in Eq. (3). The allowable
standard deviations (or tolerances) for the EFE are σΘ = (0.01, 0.01,
0.01, 0.01, 1.415, 1.732, 1.732, 0.01, 1.135, 0.01, 0.01, 1.327) and
c σΘT 2 = 4.99mm2.

When additional information about the process tolerance design is
available, such as the weights between the process tolerances of the
fixture and machine tool errors considering manufacturing cost, the
tolerances can be further distributed to the EFEs induced by different
types of error source. We can allocate 80% of the tolerance for EFE to
the machine tool error to reduce equipment cost. Thus, in Operation 1
(when no datum error is present), 80% of σu(1) is allocated to σx*(1)1 , that
is, σx*(1)1 =0.8σu(1), where σx*(1)1 denotes the standard deviation forf the
fixture error and the EFE caused by the machine tool error in Operation
1. The variance-covariance matrix of the machine tool error at the first
operation is expressed as follows:

= K KΣ (1) Σ ( (1) )Tx (1) 2
-1

x*(1) 2
-1

1 1 (8)

where Σx*(1)1 = diag(0.82 σu(1)2 ). The matrices K1 and K2 are given in
Appendix A. Solving Eq. (8) and extracting the terms in diag(Σ )x (1)1 yield
σx (1)1 = (1.386mm, 0.008mm, 0.009mm, 2.733×10−5 rad,
8.165×10−5 rad, 0.003 rad), where the first three values represent the
translational error of the machine tool, and the last three values cor-
respond to the rotational error (around x, y, and z directions). On the
premise that the cutting path of the tool head varies considerably when
machining multiple features, the tightest tolerance can be equally set
for the machine tool error in all directions, that is, σx (1)1 = (8 μm, 8 μm,
8 μm, 2.733×10−5 rad, 2.733×10−5 rad, 2.733× 10−5 rad).

The datum error in Operation 2 is introduced from Operation 1. The
variance in EFE caused by the datum error is diag (KΣu(1)KT) =
diag(Σ )x*(2)2 = σx*(2)2

2
= (0.069mm2, 1.129mm2, 0.599mm2, 0.003mm2,

0.009mm2, 1.793mm2) in Eq. (A4). Tolerance allocation for the datum
error can be expressed as follows:

=Σ ΣdiagK(2) (K(2) ) diag( )T
1 x (2) 1 x*(2)2 2 (9)

The following issue is encountered in solving the tolerance alloca-
tion problem: given that K1 is a 6×18 matrix (Eq. [A3]), diag(Σ )x (2)2
cannot be obtained by solving Eq. (9). In consideration of the char-
acteristics of K1, the information about the tolerance for the second
datum surface and the tertiary datum surface should be specified. Let x2
= (vI, pI, vII, pII, vIII, pIII), where v and p represent the rotational and
translational errors of the datum surfaces, respectively, in three direc-
tions. The indices I, II, and III, represent the three datum surfaces, re-
spectively. For example, v(2)Ix represents the rotational variation of the
primary datum in the x direction in Operation 2. We assign
1×10−9 rad2 to σv (2)2

IIy , 1× 10−7 rad2 to σv (2)2
IIIy , and 1×10−6 mm2 to

σp (2)2
IIIx . By solving Eq. (9), we obtain σx (2)2 = (σv (2)Ix, σv (2)Iz, σp (2)Iy, σv (2)IIx,
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σv (2)IIy, σp (2)IIz, σv (2)IIIy, σv (2)IIIz, σp (2)IIIx) = (0.004 rad, 1.400×10−4 rad,
7.5 μm, 2.473× 10−5 rad, 3.162×10−5 rad, 3.2 μm, 3.162× 10−4

rad, 0.022 rad, 1 μm).
We utilize σx*(2)1 =0.8(σu(2) − σx*(2)2 ) = (1.191mm, 0.0002mm,

0.480mm, 0.041mm, 0.0004mm, 0.437mm) to distribute the toler-
ances for the fixture and machine tool errors in Operation 2. We can
estimate the tolerance for the machine tool error in Operation 2 as
follows:

= K KΣ (2) Σ ( (2) )Tx (2) 2
-1

x*(2) 2
-1

1 1 (10)

Thus, σx (2)2
1 = (0.462mm2, 0.636mm2, 4.021mm2, 0.0002 rad2,

1.894× 10−8 rad2, 0.000016 rad2). Assigning equal tolerances for the
translational and rotational errors, we obtain σx (2)1 = (0.679mm,
0.679mm, 0.679mm, 0.00014 rad, 0.00014 rad, 0.00014 rad).

4. Optimal fixture layout design within the allowable design
range

Given that all the error sources are transformed into fixture errors,
the input site w reflects the layout of the fixture locating pins and can
be estimated under the 3–2–1 locating scheme. In this case study, only
locators 1, 2, and 3 are movable over the allowable design space be-
cause locators 4–6 are fixed with cylindrical holes. In addition, each of
locators 1–3 can be freely placed in the primary datum plane.
Therefore, a total of 12 design variables are involved in the two-op-
eration machining process, that is, Ω = (f(1)1x, f(1)1y, f(1)2x, f(1)2y, f
(1)3x, f(1)3y, f(2)1x, f(2)1z, f(2)2x, f(2)2z, f(2)3x, f(2)3z). The design space
for each design variable is summarized in Table 1 and illustrated in
Fig. 5. The input sites w for Ω are normalized to [0,1]d, where d=12,
≤ ≤w0 1i , i=1, 2,. . ., 12.
Three locators have identical design ranges, which may lead to the

colocation of the locating pins. Such a problem can be prevented by
inspecting a locating condition, which requires the Jacobian matrix
given a fixture layout that is in full rank [2]. In addition, the reaction
force from fixture Fc should be nonnegative (i.e., in this study,
Fc>0.5 kN) at each locating position so that the locators maintain
close contact with the part. We apply the clamping load as follows: for
Operation 1, FA = (−52, −28, −25)kN, TA = (−10,136, 18,300,
−4489)Nm; for Operation 2, FA = (−45, 294, 158)kN, TA = (−149,
302, −51)Nm.

The number of design sites for the initial design should be de-
termined. The number of input points n0 for the initial design should be
carefully selected to balance the computational complexity and fidelity
of the computer experiment model. Bernardo et al. [29] and Gupta et al.
[32] suggested as a rule of thumb that the number of design points
should be thrice the parameter numbers in the computer experiment
model. In this study, 14 parameters should be determined, including 12
design variables, 1 constant, and 1 process variance. Thus, n0 should be
between 12 and 42.

In this study, knowledge on the design space is lacking; therefore,
LH sampling is employed. A total of sixteen points are selected. As a
result, a 16×12 LH design is generated. The unknown parameters in
the computer experiment model can be estimated by using the max-
imum likelihood estimation criterion, that is, by optimizing the objec-
tive function Eq. (B1) in Appendix B. The Torczon pattern search ap-
proach [34] is selected in solving the optimization problem because of
its capacity to converge at stationary points. The method can be con-
veniently generalized to optimization with constraints. The initial de-
sign yielded 52 maximin–LH design sites, which are selected to refine
the model. The additional design sites are those whose RMSEs are
greater than 85% of the largest RMSE of all the tested sites. The largest
value of RMSE of the tested sites is approximately 0.224. The RMSE test
results lead to seven other points (by checking if RMSE > 0.19
(0.224×85%)) that should be added to the design.

The refinement steps should be terminated when the maximum
responses do not significantly change between consecutive iterations

and the RMSE in the explored design space is not excessively large. For
this problem, the increase at the last iteration in ŷmax is less than 1% of
the increase in ŷmax at the previous iteration. In addition, the RMSE is
less than 85% of the largest RMSE of the total tested sites. Thus, both
conditions are satisfied. The coefficients of the final refined model are
4.6957 and (0.1, 0.85, 0.1, 0.1, 0.725, 0.1, 1.6, 0.6, 0.1, 0.1, 0.6, 0.6).
Through a simplex search, the optimal solution w* in the computer
experiment model is w* = (0.438, 0.469, 0.188, 0.102, 0.734, 0.344, 0,
0.422, 0.781, 0.734, 0.453, 0.547). The layout of the fixture locating
pins are Ω* = (175, 55.625, 75, 4.219, 293.750, 38.125, 0, 33.750,
281.250, 58.750, 163.125, 43.750) mm, with ŷ (w*) = 5.029mm and
RMSE( ŷ (w*))= 0.087mm. The reaction forces caused by the six loca-
tors are Fc = (18.263, 21.342, 12.754, 22.003, 5.611, 25.335) kN for
Operation 1 and Fc = (0.567, 0.683, 0.825, 0.677, 0.753, 0.663) kN for
Operation 2. The optimal tolerance allocation can then be obtained as
described in Section 2.

Remark 2: A Discussion on the validation strategies
The proposed method can be validated in two ways.

1 The theory of error equivalence has been validated in our prior
studies [23,24], which showed that the EFE could successfully
predict the quality problems induced by machine tool and datum
errors. Thus, we can rely on the equivalence transformation to de-
rive an equivalent fixture for the tolerance allocation for the fixture,
machine tool, and datum errors.

2 We adopt a sequential search strategy to refine the fixture layouts
based on the output response from the second-stage design. This
strategy examines the RMSEs of the response and will add more
design points to those areas with large RMSEs.

3 The proposed approach adopts the error equivalence concept to
reduce the design space in the two-stage process selection. If the
error equivalence concept is not employed, then the number of
design variables (or process errors) for optimization (3) are [6
(fixture errors) + 6 (machine tool errors) + 18 (datum errors)] ×
2=60. A large number of design variables increase the computa-
tional load and lead to nonunique solutions. After introducing the
error equivalence, the design variables are reduced to 12. The major
advantage of this method is the reduction of the computational load
involved in the simultaneous optimization of the fixture layout and
tolerance allocation. Particularly, 68 points, including 16 initial and
52 refinement test points, are involved in the computer experiment.
Moreover, tolerance allocation optimization (Eq. [3]) should be
performed at every test point. As such, the error equivalence con-
cept can remarkably reduce the unknown design variables by 68 ×
(60− 12)= 3264 during optimization.

Table 1
Ranges of design variables under a global coordinate system (unit: mm).

Stage 1 f(1)1x f(1)1y f(1)1z f(1)2y f(1)3x f(1)3y

Range 0–400 −10–130 0–400 −10–130 0–400 −10–130
Stage 2 f(2)1x f(2)1z f(2)1x f(2)2z f(2)3x f(2)3z
Range 0–360 0–80 0–360 0–80 0–360 0–804

Fig. 5. Allowable ranges of the design variables.
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4 The proposed method is compared with the traditional tolerance
allocation method. The proposed two-stage the process selection
minimizes the process tolerance cost by exploring all candidate
fixture layouts; thus, it outperforms the traditional tolerance allo-
cation method, which relies on an empirically selected fixture layout
only.

Remark 3: Generalization of the EFE approach in additive manu-
facturing

The concept of error equivalence can be extended to process toler-
ance design in additive manufacturing processes, such as fused de-
position modeling, where the positional error of the extruder Δt, the
thermal shrinkage error Δs, and the geometric error of the CAD design
of a part Δr can generate equivalent shape variations of a final product.
Given that the CAD design can be conveniently adjusted, Δt and Δs can
be transformed to Δr via identity mapping. The process tolerance design
can be simplified to tolerance allocation initially for an equivalent
amount of Δr and then the further allocation for other process errors.

5. Conclusions

This study provides further insights into the machining process se-
lection by investigating the influence of fixture layout on the tolerance
allocation for multiple types of error source, particularly non-fixture
error sources. The interaction between the problems of fixture layout
and process tolerance design has rarely been investigated in previous
studies on process selection to obtain engineering insights.

The developed method incorporates an error equivalence me-
chanism by which multiple error sources are transformed into the fix-
ture error. Thus, process selection is simplified as an optimization
problem that considers only the fixture layout. The simplified process
selection consists of the following subproblems: (1) determining the
optimal tolerance allocation for the given design specifications and
fixture locating pin layout and (2) deriving the optimal fixture layout by
examining all possible combinations of the process design variables.
The computer experiment method establishes a surrogate model for the
tolerance stackup prediction and optimization of the fixture locating
pin layout. Specifically, a space-filling method (i.e., LH sampling with
the maximin criterion) first generates random design points and esti-
mates the optimal tolerance stackup at each design point (i.e., fixture
locator layout). The computer experiment model is derived and refined
by sequentially exploring the design space with high uncertainty. When

additional process information is available, the tolerance assigned to
fixture errors can be further allocated to other error sources. The ap-
proach is demonstrated on a two-operation machining process. All the
errors are transformed into EFE. As such, the error equivalence me-
chanism can also significantly reduce the design space. The computa-
tional load of the tolerance optimization problem and computer ex-
periments can be reduced. The EFE-based process selection method can
be potentially extended to other manufacturing applications such as
additive manufacturing.

The proposed method is applicable to the process selection for
multi-stage machining, where different types of process error coexist,
and their equivalence relationships can be established. The equivalence
model has been developed and validated in our prior studies [23,24].
The method considers the interaction between fixture layout and pro-
cess tolerance allocation, thereby allowing for the joint optimization of
both problems. Unlike the traditional tolerance allocation method,
which relies on an empirically selected fixture layout, the joint opti-
mization in the proposed method can help identify the fixture layout
that achieves the lowest process tolerance cost. In addition, the error
equivalence model significantly reduces the number of design variables
in the two-stage optimization of the process selection, as well as the
computational complexity and search space. The potential limitations
of the proposed method include the following: (1) equivalent mapping
must be established and integrated for the process errors under con-
sideration; (2) the method cannot further improve the clamping and
locating accuracies compared with the traditional fixture layout design
methods. However, the proposed method does not aim to replace the
traditional fixture layout design for improving fixturing. Instead, it
provides an alternative to fixture layout design for tolerance cost re-
duction; and (3) allocation of equivalent fixture errors to other types of
process errors may not be unique. A certain degree of process knowl-
edge is required to guide the tolerance allocation. For example, the
angular machine tool errors are more difficult to control compared with
positional errors. Therefore, more tolerance should be allocated to the
angular errors than the positional errors.
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Appendix A. Review of EFE and derivation of EFE due to datum errors

In our prior work, Wang et al. [23], the derivation of EFE are presented as follows,

=x K v p v p v p* ( ) ,T2 1 I I II II III III (A1)

and

=x* K x ,1 2 1 (A2)

where
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For the representation of matrices K1 and K2 in multi-operation machining processes, please refer to Wang et al. (2005). For instance, for
Operation 1 in the case study, the matrices are:
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and for Operation 2, we have:
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To calculate x*(2)2 , we can apply the feature deviation from Operation 1 under the nominal location of six locators in Operation 2. The relation
between x*(2)2 and u(1) after linearization can be derived as

=x Ku*(2) (1),2 (A4)

where K is the coefficient matrix. Then the EFE due to datum errors can be added to Operation 2 in the stackup model. The EFE due to datum errors
calculated thus obtained are:

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

− − + + −
− − + + −
− − + + −

− − +
− − +
− − +

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Δf Δf Δf Δf Δf
Δf Δf Δf Δf Δf
Δf Δf Δf Δf Δf

Δf Δf Δf
Δf Δf Δf

Δf Δf Δf

x*(2)

0.952 (1) 0.048 (1) 0.255 (1) 0.255 (1) 0.510 (1)
0.202 (1) 0.798 (1) 0.255 (1) 0.255 (1) 0.510 (1)
0.577 (1) 0.423 (1) 0.047 (1) 0.047 (1) 0.094 (1)

1.075 (1) 0.109 (1) 0.183 (1)
1.075 (1) 0.109 (1) 0.183 (1)

(1) 0.328 (1) 0.328 (1)

.

y y z z z

y y z z z

y y z z z

z z z

z z z

x y y

2

4 5 1 2 3

4 5 1 2 3

4 5 1 2 3

1 2 3

1 2 3

6 4 5

Appendix B. Estimation based on the computer experiment model

Given an experimental design S = {s1, …, sn} with corresponding responses = y yy { , ..., }ns 1 , the undetermined parameters in the correlation
function can be estimated, using the maximum likelihood estimation (MLE) criteria to minimize

+n σ R1
2
( ln ˆ ln det ),2

where R is correlation coefficient matrix, and

=
⎛

⎝

⎜
⎜
⎜

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

⎞

⎠

⎟
⎟
⎟

R R R
R R R

R R R

R

(s , s ) (s , s ) (s , s )
(s , s ) (s , s ) (s , s )

(s , s ) (s , s ) (s , s )

.

n

n

n n n n

1 1 1 2 1

2 1 2 2 2

1 2

By applying generalized least square estimation, we estimate parameters β and σ2 as

=β H R H H R yˆ ( )T T-1 -1
s

and

= − −β βσ
n
y H R y Hˆ 1 ( ˆ) ( ˆ),T2
s

-1
s

where =H [f(s ), ..., f(s )]n
T

1 . The estimation can be obtained by

= + −−w β βw g r w R y Hŷ ( ) ( ) ˆ ( ) ( ˆ),T T 1
s

where = R Rr s w s w[ ( , ),..., ( , )]T
n

T
1 is a column matrix showing the correlation between the stochastic processes at given input sites and those at

untried input sites. Williams et al. [30] estimated the MSE as

= − ⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

−
y σ g w r w H

H R
g w
r w

MSE(ˆ (w)) ˆ {1 [ ( ) ( )] 0 ( )
( )

.T T T T

T
2

1
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