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High-definition metrology (HDM) has gained significant attention for surface quality
inspection since it can reveal spatial surface variations in detail. Due to its cost and
durability, such HDM measurements are occasionally implemented. The limitation cre-
ates a new research opportunity to improve surface variation characterization by fusing
the insights gained from limited HDM data with widely available low-resolution surface
data during quality inspections. A useful insight from state-of-the-art research using
HDM is the revealed relationship and positive correlation between surface height and
certain measurable covariates, such as material removal rate (MRR). Such a relationship
was assumed spatially constant and integrated with surface measurements to improve
surface quality modeling. However, this method encounters challenges when the covari-
ates have nonstationary relationships with the surface height over different surface areas,
i.e., the covariate-surface height relationship is spatially varying. Additionally, the non-
stationary relationship can only be captured by HDM, adding to the challenge of surface
modeling when most training data are measured at low resolution. This paper proposes a
transfer learning (TL) framework to deal with these challenges by which the common
information from a spatial model of an HDM-measured surface is transferred to a new
surface where only low-resolution data are available. Under this framework, the paper
develops and compares three surface models to characterize the nonstationary relation-
ship including two varying coefficient-based spatial models and an inference rule-based
spatial model. Real-world case studies were conducted to demonstrate the proposed
methods for improving surface modeling. [DOI: 10.1115/1.4041425]

Keywords: surface variation modeling, data fusion, nonstationary process, transfer
learning, varying coefficient models, adaptive network-based fuzzy inference system
(ANFIS)

1 Introduction

Surface shape variations greatly affect the quality of the
products. For example, in powertrain manufacturing, significant
surface shape variations may lead to functional performance prob-
lems such as leakage or cam bore distortion, resulting in high
scrap rates and wastes [1–3]. To check the quality of surfaces, a
manufacturing plant usually employs a combination of several
metrology systems with different resolutions such as coordinate
measuring machine (CMM) for overall surface shape and a profi-
lometer for surface roughness inspection at several local areas
(Fig. 1). The surface inspection using these low-definition metrol-
ogy (LDM) systems may fail to detect abnormal regions in
unmeasured areas. As a result, the characterization of surface
shape spatial variations in high resolution is needed for high-
precision surface manufacturing. Utilizing high resolution (high
density) data, comprehensive analysis can be conducted for spatial
surface quality assessment, such as engineering surface classifica-
tion [4], defect detection [5], and leakage modeling [2,3]. To
obtain the high resolution data, common methods in prior research
utilized the interpolation/extrapolation of the surface measure-
ment, such as least squares [6], B-spline methods [7–9], grid fit
through triangulation [10], and spatial Gaussian process based

method [11–14] to model the surface variations in high resolution.
The modeling framework in prior research is shown in Fig. 2(a).
However, the modeling accuracy of these interpolation/extrapola-
tion methods is highly dependent on the density of measurement
data. Current surface measurement strategy (see Fig. 1) does not
provide sufficient density of local data for these methods to make
accurate surface estimations, potentially limiting the applications
of this line of approaches in high-precision manufacturing.

With the advancement of high-definition metrology (HDM)
systems in the recent years, new research opportunities emerge
for improving surface variation models and characterization. The

Fig. 1 Profilometer measurements on surface roughness and
CMMmeasurements on surface flatness
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HDM system, such as a laser holographic interferometer, can
reveal spatial surface variations in great detail over an area up to
300� 300mm2 within minutes. Nevertheless, the HDM system
has not frequently been employed in many plants to inspect surfa-
ces during routine quality check due to its high cost and durability
of its optical system. As such, the HDM surface data are available
for very limited parts, and a majority of surface data are still col-
lected by in-plant LDM systems. Very recent research has been
developed to fuse the in-plant LDM measurements with historical
HDM measurements by extracting surface variation patterns that
are correlated to certain measurable variables from historical
HDM data and using them as covariates to guide the model
improvement of LDM-measured surfaces. For example, prior
research [1,15] has reported a positive correlation between surface
height variation along the cutter’s feed direction and a covariate,
i.e., material removal rate (MRR, the material removal volume
per cutter revolution) in a surface milling process as shown in
Fig. 3(b). Additionally, the surface variation along the circumfer-
ential direction is correlated to the number of cutter insert engaged
in the cutting process (Fig. 3(c)). Such correlation is induced by
axial cutting force variation, which is reflected by the changes of
MRR and cutter insert engagement. Using these covariates, Sur-
iano et al. [16] proposed a regression-Kriging based spatial

surface model that greatly improved surface shape variation mod-
eling. Shao et al. [17] developed a multitask learning based algo-
rithm to train the regression-Kriging based spatial model for
improving the modeling accuracy of data-lacking processes. Du
and Fei [18] proposed a co-Kriging based multivariate spatial
model, which considered the correlation between surface height
and vibration.

In summary, the research problem for HDM-based surface
modeling is to improve the estimation and characterization of sur-
face variations in high resolution by fusing the information
obtained from historical HDM data, which have limited the avail-
ability for quality checks, with in-plant LDM measurements,
which are implemented for all inspection parts. As shown in
Fig. 2(b), historical HDM measurements reveal the correlation
between surface height and certain variables (covariates) denoted
by U, such as MRR. Such a relationship can be modeled by a
function gðUÞ, which is usually assumed a linear form. LDM data
contain surface measurements Z at locations S. The locations
where surface heights are to be estimated are denoted by S�. The
surface estimations on S�, i.e., ZðS�Þ, are made via an additive
model that consists of two components. The first component gðUÞ
characterizes the covariates U induced surface variations. The sec-
ond one f ðZðSÞÞ is an interpolation/extrapolation method, such as

Fig. 2 An outline of the research problem formulation for HDM-based surface variation modeling

Fig. 3 Correlation between process variables and surface height: (a) two directions while cutting; (b) normalized MRR and its
relation with surface variation; and (c) cutter insert engagement with surface and its impact on surface height
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a zero-mean Gaussian process model, aiming to characterize the
surface variations that are not considered in gðUÞ. The develop-
ment of the appropriate form of gðUÞ and how the coefficients of
gðUÞ are estimated play critical roles in this line of research.

The fusion method as mentioned earlier using covariates has
achieved great success; however, these methods have a limitation
that is the relationship between covariates and surface height is
assumed to be constant (stationary) over the entire surface areas,
i.e., the coefficients of gðUÞ are spatially constant. In many sce-
narios, this assumption does not hold. Figure 4 shows an example
of comparing the surface height-covariate relationship for two
automotive engine head deck faces, which were measured by
HDM. The result shows that such a relationship for each surface
is spatially varying (spatial nonstationary), i.e., the coefficient c1
of the linear model, Z¼ c0þ c1MRRþ error, is spatially varying.
The estimated coefficient c1 of the two surfaces is displayed as
a color map in Fig. 4, which exhibits similar spatially varying
patterns. The statistical summaries of the estimated coefficients
are shown in Table 1. The results show that a global linear regres-
sion assumes spatially constant coefficients and leads to a poor
estimation, i.e., R2¼ 0.13 and 0.16, respectively. By contrast, a
local linear regression with spatially varying coefficients yields
significantly improved results, i.e., R2¼ 0.82 and 0.74, respec-
tively. The analysis of real-world engine head data demonstrates
that it is necessary to consider a nonstationary relationship
between covariates and surface height for surface variation
modeling. According to Cheng et al.’s review of nonstationary
processes [19], the nonstationarity in this paper can be treated as
“arbitrary variation with either gradual or abrupt change” type of
nonstationarity.

In summary, the research gaps for the surface variation model-
ing are as follows:

� There is a lack of surface modeling methods that consider
the nonstationary relationship between the covariate and the
surface height as revealed in Fig. 4. Current methods fusing
the multiresolution measurements rely on the assumption of
a static relationship, which averages out the spatial variations
even when the relationship is nonstationary, thus affecting
the accurate characterization of surface variations.

� There is a lack of methods that can effectively capture the
nonstationary relationship based on the surface data meas-
ured by LDM. In prior research, capturing the nonstationarity
as described earlier is achieved by HDM data. Methods are
needed to transfer the knowledge of nonstationarity from his-
torical HDM data with limited availability to the machined
surfaces mostly measured by LDM.

This paper tackles the research gaps above for improving sur-
face variation estimations. To address the first research gap, this
paper proposes and compares three different models that are
able to characterize either gradual or abrupt nonstationarity. To
address the second research gap, this paper employs transfer
learning (TL) approach. Transfer learning is to improve the
modeling of a data-lacking process with the assistance of other
similar-but-not-identical processes (a survey of transfer learning
can be found in Ref. [20]). As can be seen from Fig. 4, the two
surfaces exhibit similar-but-not-identical spatial patterns of vary-
ing coefficients, which motivates us to employ transfer learning
technique for transferring useful common nonstationarity infor-
mation from historical HDM measured surfaces to LDM meas-
ured surfaces. To achieve the transfer, this paper proposes
regularization (penalty) based transfer learning methods for the
three models to account for the similarity in the model coeffi-
cients of different surfaces.

Fig. 4 Varying model coefficients of two engine head surfaces: (a) coefficient c1 of surface I and (b) coefficient c1 of
surface II

Table 1 Regression results for validating the spatially varying coefficients (nonstationarity)

Local regression Parameter Minimum First quartile Second quartile Third quartile Maximum

Surface I c1 �5.65 6.77 10.28 15.05 33.85
Adjusted R2 0.82

Surface II c1 �10.21 7.46 9.71 13.13 33.72
Adjusted R2 0.74

Global regression Parameter Estimated value Standard error p value

Surface I c1 8.54 0.016 0
Adjusted R2 0.13

Surface II c1 9.91 0.017 0
Adjusted R2 0.16
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The remainder of the paper is organized as follows. Section 2
presents three transfer learning enabled surface variation models.
Section 3 presents two real-world case studies to demonstrate the
advantages of transfer learning enabled methods over the selected
prior commonly used methods. Conclusions are summarized in
Sec. 4.

2 Transfer Learning Enabled Surface Variation

Model

In this section, we proposed three different methods to enable
the characterization of the nonstationary relationship between the
covariate and the surface height and proposed penalized methods
to facilitate the knowledge transfer from historical HDM data to
the modeling of LDM measured surfaces. The three surface varia-
tion models in this paper share the same way decomposing the
surface variations, i.e., the surface variations are decomposed into
two main parts, including (1) covariates (e.g., MRR and the num-
ber of cutter insert engagement) induced surface variations that
are characterized by the nonstationary relationship between the
covariate and the surface height; and (2) spatially correlated sur-
face variations characterized by a Gaussian process model. The
model can be represented by the following equation:

ZðsÞ ¼ gðUðsÞÞ þ GPðsÞ þ eðsÞ (1)

where Z(s) is the surface height at location s; UðsÞ is a vector repre-
senting the values of covariates at location s; g represents the model
characterizing the nonstationary relationship of covariates (U)-sur-
face height (Z); GP represents a zero mean Gaussian process, char-
acterizing the autocorrelated residual variations of the surface; and
e(s) is noise with i.i.d. N� (0, s2), where s2 determines the noise
variance, i.i.d. means independent and identically distributed.

The proposed three models differ in the gðUðsÞÞ part of Eq. (1),
which are (a) point-wise local model via geographically weighted
regression (GWR) (Sec. 2.1), (b) region-wise model via spatial
partition (Sec. 2.2), and (c) inference rule based model with fuzzy
region boundaries (Sec. 2.3). The three models can capture the
nonstationary patterns with abrupt or gradual changes in the
covariate-surface height relationship.

It should be noted that the GP part of Eq. (1) is not the only
choice for characterizing the autocorrelated residual variations.
Other types of the Gaussian process model, e.g., additive Gaussian
process model [21] or Gaussian Markov random field model [22],
can also be employed. These Gaussian process models differ in
the structure of covariance function and might be suitable for
different situations. For the rest of the papers, we stay with the
regular GP model.

2.1 Varying Coefficient Local Regression Based Spatial
Model. This section presents a point-wise local regression model
with spatially varying coefficients to characterize the covariates
induced surface variations. The local regression model refers to
GWR [23], which fits a regression model at each location, thus
capturing the spatial nonstationarity. In this case, the surface
variations can be modeled as follows:

ZðsÞ ¼ UðsÞCðsÞ þ GPðsÞ þ eðsÞ (2)

where UðsÞCðsÞ is the GWR model with location-dependent coef-
ficient CðsÞ.

In Sec. 2.1.1, we first review the GWR model and further pro-
pose transfer learning based geographically weighted regression
(tl-GWR). Parameter estimation for the surface variation model,
Eq. (2), is also discussed.

2.1.1 Review of the Geographically Weighted Regression.
Geographically weighted regression allows the coefficients of the

model to vary locally (point-wise), thereby characterizing a spa-
tially nonstationary relationship. As an illustration, we assume
that a dependent variable O and m independent variables V at the
same N locations (the dimension of O and V is N� 1 and N�m,
respectively) can be modeled via a GWR model as follows:

OðsÞ ¼ VðsÞHðsÞ þ gðsÞ (3)

where HðsÞ indicates that the coefficients H are to be estimated at
a location s; and g stands for normally distributed white noise.
The dimensions of O(s), VðsÞ, and HðsÞ are 1� 1, 1�m, and
m� 1, respectively.

To allow the coefficients H to be spatially varying, the estima-
tion of H at location s can be solved via a weighting scheme as
follows:

HðsÞ ¼ ðVTWgðsÞVÞ�1VTWgðsÞO (4)

where WgðsÞ is a diagonal weight matrix for location s with
dimension of N�N. The weights are chosen in a way such that
those observations near s have more influence on the result. A
Gaussian weight function is commonly used as follows:

wg
i ¼ e

�d2
i

h2 (5)

where wg
i is the weight for observation at location i; di is the dis-

tance between location i and s; and h is the bandwidth that deter-
mines the degree of weight decline when distance increases. The
value of h is usually determined by grid searching the optimal
bandwidth with the best cross-validation value (see Ref. [23]).
The coefficients H are to be estimated for every locations of inter-
est, thus exhibiting the spatial variability due to the weighting
scheme.

2.1.2 Development of Transfer-Learning-Based Geographi-
cally Weighted Regression. For surfaces with only LDM measure-
ments, conducting GWR for every locations of interest (to be
estimated locations) cannot be accurate because the measurements
are sparse and might be far away from the locations of interest.
Considering the similar spatial nonstationarity of two surfaces
shown in Fig. 4, this section proposes a regularized transfer learn-
ing enabled GWR model to estimate the spatially varying coeffi-
cients for the target surface measured only by LDM. The
regularized transfer learning algorithm is proposed as follows:

Ĥ sð Þ ¼ argmin
1

2
O� VH sð Þð ÞTWg sð Þ O� VH sð Þð Þ

þ 1

2
kgkH sð Þ �H0 sð Þk22 (6)

where kHðsÞ �H0ðsÞk22 ¼ ðHðsÞ �H0ðsÞÞTðHðsÞ �H0ðsÞÞ (L2
regularization, see Ref. [24]); H0(s) is the parameter estimated by
Eq. (4) for the HDM measured surface at location s; kg is a tuning
parameter for the L2 regularization; and W(s) is a weight matrix
calculated via LDM data using the same weight function with
HDM measured surface. The solution to Eq. (6) is given by

ĤðsÞ ¼ ðVTWgðsÞV þ kgIÞ�1ðVTWgðsÞOþ kgH0ðsÞÞ (7)

where I is the identity matrix.
An important issue is tuning the value of kg as it controls the

“degrees of transfer” for coefficients (parameters). The common
way for tuning kg is grid search with cross-validation, which
selects the optimal value of kg that has the best modeling perform-
ance evaluated by cross-validation from a specified grid of candi-
date values of kg (details can refer to Refs. [25] and [26]).
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2.1.3 Estimate the Parameters of the Transfer-Learning-
Based Geographically Weighted Regression Spatial Model. To
estimate the coefficients of the GWR spatial model (see Eq. (2))
for the LDM measured surface, we first separate the coefficients
into two parts. The first part is the spatially varying coefficients C.
The second part is the coefficients of the Gaussian process model
and noise e, which are denoted by h. Then, after obtaining the
coefficients C0 of the benchmark model for all target locations S
using Eq. (4), a two-step algorithm can be employed to (1) esti-
mate C for all target locations S, then (2) estimate h. The proce-
dures are summarized in Algorithm 1.

Algorithm 1 Learning C and h

Input: LDM surface height measurements Z, covariates data U, measure-
ment locations S, and C0 estimated by the HDM measured surface.
Output: C and h.
Procedures:

1 Step (1): for every target location s, estimate CðsÞ based on Eqs. (6)
and (7):

ĈðsÞ ¼ ðUTWgðsÞU þ kgIÞ�1ðUTWgðsÞZþ kgC0ðsÞÞ ;

2 Use Ĉ and U to calculate the estimated surface mean Ẑmean and the
de-trended height data Ẑsp for every LDM measured locations using
the following equation:

ẐspðsÞ ¼ ZðsÞ � ẐmeanðsÞ ¼ ZðsÞ �UðsÞĈðsÞ ;

3. Step (2): estimate h using dataset fẐsp;Sg (estimation method refers
to Ref. [27]).

2.2 Region-Wise Regression Based Spatial Model. The
GWR method models the nonstationarity by fitting regression
models at every location, which result in high computational com-
plexity. To reduce the computational complexity, the regression
model can be fitted region-wise instead of point-wise, i.e., fit
models independently within each of the regions. As such, the
relationship between the covariate and the surface height is repre-
sented in piecewise nonstationary. Prior research has developed a
lot of region-wise models, such as Bayesian treed Gaussian
process model [28]. However, these models are not able to well
capture the nonstationarity given only LDM measurements. To
facilitate the use of transfer learning in building such a region-
wise regression based spatial model, this section proposes the
modeling of surface variations as follows:

ZðsÞ ¼ UðsÞWðRijs 2 RiÞ þ GPðsÞ þ eðsÞ (8)

where UðsÞWðRijs 2 RiÞ is the regression model for location s that
belongs to region Ri; the partitioned k number of regions is
denoted by R ¼ fR1;R2;…;Rkg.

An important step for region-wise regression is to find the opti-
mal spatial partitioning of R ¼ fR1;R2;…;Rkg. In Sec. 2.2.1, we
first present a spatial partitioning algorithm. Then, we propose a
transfer learning method to train the model (Eq. (8)) for LDM
measured surfaces.

2.2.1 Algorithm of Spatial Partitioning for Region-Wise
Regression. Prior research has developed various partitioning
algorithms, such as decision/regression tree [29], dynamic pro-
gramming based algorithms, and greedy searching method [30].
This section develops a fast algorithm for spatial partitioning
based on the greedy merging algorithm for segmented regression
in Ref. [30]. See Algorithm 2.

For the nonstationary relationship with gradual change, there
are no clear region boundaries, and the partitioning algorithm is
likely to result in no partitioning. This is a major limitation of the
proposed algorithm and the region-wise regression method.

Algorithm 2 Region-wise linear regression by greedy merging

Input: Dependent variable O, independent variables V, and variable loca-
tions S.
Output: Partitioned regions R ¼ fR1;R2;…;Rkg.
Procedures:

1. Make initial segmentations R0 on S, e.g., uniformly partition the spa-
tial area to k0 rectangles, R0 ¼ fR1;R2;…;Rk0g. Fit linear model of
O and V within each region independently and obtain the sum of
squared errors (SSE0);

2. Iterate until ðSSEi � SSEi�1Þ=SSEi�1 > T or jRij ¼ 1:

(a) For all pairs of neighboring regions, evaluate the decrease or
increase of SSE after merging a pair of neighboring regions, i.e.,
fSSEi � SSEi�1g;

(b) Merge the pair of neighboring regions {Ru, Rv} that result in
the maximum decrease or minimum increase of SSE, i.e.,
Ri ¼ f…;[fRu;Rvg;…g and ki ¼ jRij ¼ ki�1 � 1.

Notes: i denotes the number of iteration. T is the stopping threshold that
needs to be specified. This paper used T¼ 0.05. SSE can also be replaced
with other metrics, such as the sum of absolute errors.

2.2.2 Development of Transfer Learning Based Region-Wise
Regression. To build a region-wise regression model, the spatial
partitioning for generating different regions is the first step and
usually requires dense samplings over the entire spatial area.
LDM measurements are not sufficient for partitioning a surface
accurately. This section proposes the solution by assuming that
the optimal spatial partitioning of a LDM measured surface is the
same with that of historical HDM measured surfaces. This
assumption is reasonable considering the discovered similar spa-
tial nonstationarity of two surfaces shown in Fig. 4. Considering
that the LDM measurement usually has only a few samples within
each of the regions, this section proposes to help the regression
within each of the regions using the following penalized solution:

Ĥ Rið Þ ¼ argmin
1

2
O Rið Þ � V Rið ÞH Rið Þð ÞT O Rið Þ � V Rið ÞH Rið Þð Þ

þ 1

2
krkH Rið Þ �H0 Rið Þk22 (9)

where the notations O;V;H denote the same meanings with those
in Eq. (6); Ri denotes the ith region of the entire partitioned sur-
face R ¼ fR1;R2;…;Rkg; H0ðRiÞ is the regression results of
region Ri estimated using HDM data; kr is a tuning parameter that
can be tuned by the same method presented in Sec. 2.1.2. The
solution to Eq. (9) is given by

ĤðRiÞ ¼ ðVðRiÞTVðRiÞ þ krIÞ�1ðVðRiÞTOðRiÞ þ krH0ðRiÞÞ
(10)

where I is the identity matrix.
Notes: As for estimating the parameters of the transfer learning

region-wise regression (tl-RR) spatial model (Eq. (8)), the proce-
dures follow similar two steps as Algorithm 1, Sec. 2.1.3. The dif-
ference is with procedure 1 where tl-RR spatial model only needs
to estimate a set of parameters for each region instead of that for
the location. This section will not repeat the whole procedures.

2.3 Inference Rule Based Spatial Model. The region-wise
regression based spatial model has limitations in dealing with the
nonstationarity with gradual change. This section proposes a solu-
tion using fuzzy inference rule. Fuzzy inference is able to partition
the surface into multiple areas with fuzzy boundaries, allowing for
characterizing complex relationships by using several simple “if-
then” rules with a better interpretability. An example can be found
in Ref. [31]. It has been widely applied in many fields including
medical image classification [32], geotechnical engineering [33],
process modeling, monitoring and optimization [31,34–36], and
control system [37,38]. Several different fuzzy inference
models and model identification methods have been developed in
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Refs. [39–44] among which adaptive network-based fuzzy infer-
ence system (ANFIS) [43,44] is the most commonly adopted
methodology and is able to learn its parameters from training
data. Thus, we propose an ANFIS-based surface variation model
under the transfer learning framework. Based on Eq. (1), the
model can be represented as the following equation:

ZðsÞ ¼ tl-ANFISðUðsÞÞ þ GPðsÞ þ eðsÞ (11)

where tl-ANFIS represents transfer-learning-based ANFIS.
Section 2.3.1 first reviews the ANFIS model. We further intro-

duce the tl-ANFIS model and present the method to estimate the
parameters of the tl-ANFIS based spatial model (Eq. (11)).

2.3.1 Review of the Adaptive Network-Based Fuzzy Inference
System. Adaptive network-based fuzzy inference system is a five-
layer feedforward network (see Fig. 6, benchmark ANFIS) and
adopts Takagi-Sugeno fuzzy inference form [41]. For example,
consider a first-order Sugeno fuzzy inference system, which con-
tains two rules. Its “if-then” inference rules have the following
format:

� Rule 1: If X is A1 and Y is B1, then f1¼ p1xþ q1yþ r1.
� Rule 2: If X is A2 and Y is B2, then f2¼ p2xþ q2yþ r2.

The corresponding fuzzy reasoning mechanism is shown in
Fig. 5, where w is called “firing strength” measuring the degree, to
which the rule matches the inputs, and output f is the weighted
average of each rules’ output. fA1;B1;A2;B2g are the linguistic
labels (e.g., small, large) associated with corresponding member-
ship functions (see the Appendix). Since the ANFIS has a
network-based structure, the premise parameters, i.e., parameters
of the fuzzy membership functions flðA1Þ;lðB1Þ;lðA2Þ;lðB2Þg,
and consequent parameters fpi; qi; rig can be learned by training
dataset instead of being assigned subjectively. In this paper, the
premise parameters are denoted by a, and the consequent parame-
ters are denoted by b.

It should be noted that the fuzzy inference such as ANFIS in
this paper is not a simple aggregation of several subjective fuzzy
rules as adopted in fuzzy logic. Instead, those “if-then” rules are
carefully chosen and trained using training data. Also, ANFIS is
essentially a region-wise model with fuzzy boundaries. The “if-
then” rules reflect the partitioned regions for the input space. The
membership functions and their premise parameters decide the
positions and fuzzy boundaries of these regions. The consequent
parameters can be regarded as the coefficients of the linear regres-
sion models for each region. As such, given the input of covariates
and their corresponding coordinates, the ANFIS model is able to
characterize the spatially varying relationship between the covari-
ates and the surface height. For more technical details of ANFIS,
see Refs. [43] and [44] and the Appendix.

2.3.2 Development of Transfer-Learning-Based Adaptive
Network-Based Fuzzy Inference System. To train an ANFIS
model, a commonly used learning algorithm named hybrid learn-
ing algorithm was proposed in Ref. [44]. However, the algorithm
requires the training data to represent the features of input data
thoroughly. For instance, the range of training data should cover
the entire range of the input space, which makes the ANFIS model
have a limited capability of extrapolation. Therefore, it is a
challenge for a single surface with only LDM measurements to
estimate a fine-tuned ANFIS model. To tackle the challenge, a
transfer learning based algorithm is presented in this section to
help build the ANFIS model for LDM measured surfaces.

First, an ANFIS model characterizing the nonstationary relation-
ship between the covariate and the surface height is learned by the
hybrid learning algorithm [44] using historical HDM data. Such
ANFIS model learned using HDM data is called benchmark ANFIS
model (see Ref. [44] for the detail procedures of the algorithm).
Then, we assume that the ANFIS models for different surfaces have
the same input membership functions (premise parameters a, layer
1), but different output functions (consequent parameters b, layer 4).

The assumed relationship between the benchmark ANFIS and the
proposed tl-ANFIS is shown in Fig. 6. It can be seen that the knowl-
edge inherited from the benchmark ANFIS is the number of fuzzy
rules, layer 1, layer 2, and layer 3 (layers 2 and 3 are fixed). Such
assumption essentially indicates that the surface models share the
same pattern in region partitioning (see Sec. 2.3.1), which is vali-
dated by the similarity of the spatial nonstationarity as shown in
Fig. 4. To estimate the consequent parameters of the tl-ANFIS
model, a generalized least-squares estimation with regularization
component is proposed in the following.

As shown in Fig. 6, the final output f 0 is represented as a linear
combination of the consequent parameters given the values of pre-
mise parameters transferred from the benchmark ANFIS. The out-
put f 0 in Fig. 6 can be written as follows:

f 0 ¼ w1

w1 þ w2

f 01 þ
w2

w2 þ w2

f 02

¼ �w1f
0
1 þ �w2f

0
2

¼ �w1xð Þp01 þ �w1yð Þq01 þ �w1ð Þr01 þ �w2xð Þp02 þ �w2yð Þq02 þ �w2ð Þr02
¼ Xb (12)

which is a linear function with the consequent parameters b,
where b ¼ ½p01; q01; r01; p02; q02; r02�

T; X ¼ ½�w1x; �w1y; �w1; �w2x; �w2y;
�w2�. As a result, for an ANFIS model having M rules and P input
variables with sample size N, the following regularized general-
ized least-squares estimation problem can be formulated to obtain
the consequent parameters:

b̂ ¼ argmin
1

2
Z� Xbð ÞTR�1 Z� Xbð Þ þ 1

2
kakb� b0k22 (13)

where b0 is the consequent parameters of the benchmark ANFIS
model; Z is a vector of response observations with sample size N;

Fig. 5 Takagi-Sugeno fuzzy rules. Adapted from [44].

Fig. 6 Architecture of ANFIS and tl-ANFIS
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R is the covariance matrix of the residuals; and ka is a tuning
parameter that can be tuned by the same method presented in
Sec. 2.1.2. The dimensions of Z, X, R, and b are N� 1,
N�M(Pþ 1), N�N, and M(Pþ 1)� 1, respectively. The solu-
tion to Eq. (13) is given by

b̂ ¼ ðXTR�1X þ kaIÞ�1ðXTR�1Zþ kab0Þ (14)

where I is the identity matrix.

2.3.3 Parameter Estimation for the Transfer-Learning-Based
Adaptive Network-Based Fuzzy Inference System Based Spatial
Model. The parameters of the tl-ANFIS based spatial model (see
Eq. (11)) include those in the tl-ANFIS, the spatial Gaussian pro-
cess, and white noise. This subsection presents the procedures for
estimating these parameters.

The parameters of the benchmark ANFIS are first learned
through the hybrid learning algorithm in Ref. [44] using the
historical HDM data. Then, based on the proposed tl-ANFIS, the
premise parameters of the benchmark ANFIS are treated as one
part of the common information and will be transferred directly to
the tl-ANFIS spatial model. The remaining nondirectly transfera-
ble parameters of the tl-ANFIS spatial model indicating the
surface-to-surface difference are learned using two iterative steps
including (1) estimation of the parameters of tl-ANFIS and (2) esti-
mation of the parameters of GP and e, until convergence. Usually,
the convergence is achieved in less than three rounds of iteration.

Denote the nondirectly transferable consequent parameters of
tl-ANFIS by b, and denote the parameters of the spatial GP and
noise e by h. The learning procedures are summarized in
Algorithm 3. It should be noted that the generalized least-squares
estimation (Eq. (14)) increases the computational complexity due
to R. To reduce the computational complexity, ordinary least-
squares can be used, i.e., eliminate R, and mostly will not impact
the estimation a lot. Then, the algorithm needs no iteration and
becomes a two-step algorithm that is similar to Algorithm 1.

Algorithm 3 Learning b and h

Input: LDM surface height measurements Z and covariates data U at the
same locations S, and a benchmark ANFIS estimated by the HDM meas-
ured surface.
Output: b and h.
Procedures:

1. Calculate the outputs for layer 1, layer 2, and layer 3 of the tl-ANFIS
using input ½US�, and obtainW ¼ f�w1; �w2;…; �wMg, whereM is the
number of fuzzy rules (implementation details refer to Appendix);

2. Calculate X usingW, U, and S via

X ¼ W �
½US 1�1

. .
.

½US 1�M

2
664

3
775 ¼

�w1½US 1�
�

�wM½US 1�

2
4

3
5
T

;

where ½US 1� is the matrix that combines process variables U, coordi-
nates of locations S, and a column vector of a constant 1;

3. Initialize the covariance matrix R of residuals to identity matrix I,
and initialize b to zero matrix 0;

4. Estimate b based on Eqs. (13) and (14):

b̂
i ¼ ðXTR�1X þ kaIÞ�1ðXTR�1Zþ kab0Þ ;

where b̂
i
denotes the estimation of b at the ith iteration (b̂

0 ¼ 0);

5. Use b̂
i
and U to calculate the estimated surface mean Ẑmean and the

de-trended height data Ẑsp:

Ẑsp ¼ Z� Ẑmean ¼ Z� tl-ANFISðU; Sjb̂iÞ ;
6. Estimate h using dataset fẐsp; Sg (estimation method refers to Ref.
[27]), and calculate the covariance matrix R of the residuals;

7. Repeat step 4 to step 6 until converge:

kbi � bi�1k < d0 ;

where d0 is a small positive threshold that is predetermined based on appli-
cations and accuracy requirements. It is chosen to be 0.1 for the case study.

2.4 Remarks on Transfer Learning Methods. Remark 1:
Method comparisons. This paper has discussed three models that
can characterize nonstationarity for abrupt or gradual changes
in the covariate-surface height relationship by conducting
point-wise, region-wise, and fuzzy region-wise modeling. GWR
estimates a set of parameters at every location of interest using
weighted least squares. Therefore, it is computationally com-
plex. By contrast, RR and ANFIS have fewer parameters and
are more computationally efficient. As mentioned earlier, the
type of nonstationarity can be either an abrupt change or grad-
ual change. GWR uses a weight function to capture the coeffi-
cient change, which makes the estimated coefficients change
smoothly (gradually). RR estimates model coefficients inde-
pendently within each region. Thus, the estimated coefficients
would exhibit piece-wise patterns with an abrupt change.
ANFIS partitions the input space using regions with fuzzy
boundaries, and it usually results in smooth (gradual) transitions
between different regions. Table 2 summarizes the nonstationary
patterns that three models can capture along with computational
complexity (assume that tl-ANFIS uses ordinary least-squares
instead of generalized least-squares) under the transfer learning
framework.

Remark 2: Applicable conditions of transfer learning. It should
be noted that the transfer learning can improve the modeling of
surface variations only when the nonstationarity are similar such
as shown in Fig. 4. If the nonstationary relationship is highly influ-
enced by other incontrollable and unobservable manufacturing
factors, the similarity assumption might be violated due to the
intractable change of these factors, potentially causing negative
knowledge transfer and jeopardizing surface modeling accuracy.
We would recommend the following guidelines to mitigate poten-
tial negative knowledge transfer. First, it is advisable to include
the data of machined surfaces from the same type of manufactur-
ing line because the machine settings are mostly the same. Sec-
ond, for surface shape modeling, we should choose covariates to
be those that significantly impact axial cutting force, a universal
factor contributing to the generation of surface shape variations.
The prior research [1,15] on HDM surface data modeling reported
that in normal surface manufacturing processes, the axial cutting
force variations are mostly affected by the MRR and the number
of cutter insert engagement. The surface variation patterns
induced by the two variables (covariates) can account for a signifi-
cant percent of surface flatness errors. As such, using these varia-
bles as covariates can reduce the likelihood of the negative
knowledge transfer since their impacts on surface shape variations
are similar across multiple surface machining processes. Third,
the similarity of covariate-surface height relationship can be com-
pared for different parts such as Fig. 4 before employing transfer
learning.

Remark 3: Covariate selection. If multiple covariates play
unknown and unequal roles in affecting the surface height varia-
tions, selecting the covariates that significantly affect the genera-
tion of surface variations is necessary. The covariate selection can
be achieved by adopting the commonly used variable selection
methods, e.g., lasso method [25] for GWR and region-wise regres-
sion, backward selection method [45] for ANFIS.

Table 2 Theoretical comparisons of three methods (where O is
“big O notation” measuring the asymptotic running time of an
algorithm)

GWR RR ANFIS

Complexity O(N2) O(N) O(N)
Gradual change � �
Abrupt change �
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3 Case Studies

Two real-world case studies were conducted to compare and
demonstrate the advantages of the proposed transfer learning
based methods. The correlation-enabled spatial model in Ref. [16]
(denoted as CK) and ordinary Kriging (denoted as OK) model
were employed as the comparison benchmark. An exponentiation
kernel function was used for the GP model (see Eq. (15)). The
root-mean-square error (RMSE) is used as the metric to evaluate
the modeling performance

k si; sjð Þ ¼ cf exp �ksi � sjk
cl

� �
þ cndi;j (15)

where di,j is the Kronecker delta function; and cf, cl, and cn are
unknown coefficients to be estimated.

It is worth noting that this paper focuses on the modeling of sur-
face height in lateral resolution and does not consider the effect of
different vertical resolution of HDM and LDM. The modeling of
surface height in vertical resolution can refer to Ref. [46]. As

such, without loss of generality, the case studies in this section
simulated the CMM measurements (LDM measurements) via
selecting sparser samples from HDM measurements.

3.1 Case A: Surface Variation Modeling for Automotive
Engine Head Deck Faces. The methods were applied to model-
ing the surface variations for automotive engine head deck faces.
A laser holographic interferometer was employed to measure two
engine head surfaces (denoted as surface I and surface II) at high
resolution (lateral:150 lm and vertical 0.1 lm)(see Fig. 7(a)) in
an automotive engine plant. A subset of these measurements is
sampled as CMM measurements (see Fig. 7(c)). For a metal work-
piece with a bulky volume such as engine head/blocks, the effect
of fixture clamping on surface flatness is insignificant. Addition-
ally, the optical metrology system employed in-plant has limited
resolution in characterizing the surface texture such as roughness.
Thus, the effects of fixturing and spindle dynamics are not consid-
ered. The process variables that impact surface shapes due to axial
cutting force variations such as MRR and cutting insert engage-
ment are included as covariates in the case studies. In particular,
case A uses the MRR as the only covariate since the number of
cutter insert engagement does not significantly change over the
engine surface (see Figs. 7(b) and 7(d)).

To enable the transfer learning, we use the HDM measurements
and MRR data from the surface I to build the benchmark
GWR/RR/ANFIS model. The LDM measurements (CMM meas-
urements) and MRR data from the surface II are then used to
update the GWR/RR/ANFIS model. The logic is also outlined by
the arrows in Fig. 7.

The model RMSEs for surface II of all the five methods are
shown in Table 3. As can be seen from the results, the modeling

Fig. 7 Logic of transfer learning (TL)-based spatial modeling for an engine head surface: (a) HDM measurements for surface I
(partial enlarged detail shown in the box); (b) normalized MRR for surface I; (c) LDM measurements for surface II; (d) normal-
ized MRR for surface II; and (e) modeling of surface II using TL-based spatial model (partial enlarged detail shown in the box)

Table 3 Surface modeling results of case A (RMSE unit:3 1023

mm)

Method RMSE

tl-GWR spatial 2.43
tl-RR spatial 3.69
tl-ANFIS spatial 2.15
CK 4.04
OK 5.26

Fig. 8 Modeling results of tail sections on surface II versus true data for the engine head deck face. It can be
seen that the proposed methods (b) and (d) achieve an estimation closer to the true data (a) compared with a
state-of-the-art method (e) and a commonly used method (f). Method (c) estimates bad at the left tail section.
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accuracy is improved by 54%, 30%, 59%, and 23% through data
fusion methods, i.e., tl-GWR, tl-RR, tl-ANFIS, and CK, respec-
tively, compared with the method with no data fusion (OK). The
improvement brought by the data fusion methods can be visualized
in Fig. 8, which shows the true and the estimated surface height of
a partial area in surface II. It can be seen that the tl-ANFIS spatial
model and the tl-GWR spatial model successfully captured the sur-
face height variations and showed significant improvement over the
OK model. However, the proposed tl-RR spatial model showed bad
estimations at this tail section, especially the left tail section. The
reason for causing the bad estimations was the nonstationary rela-
tionship of MRR-surface height changed gradually instead of
abruptly, and the piece-wise assumption of tl-RR did not hold. Due
to the nonstationary relationship between the surface height and
MRR, state-of-the-art CK method failed to characterize the surface
height variations accurately and showed only limited improvement
over the OK model. In summary, incorporating the nonstationary
relationship would greatly improve the modeling accuracy, and the
transfer learning framework plays a key role in building those mod-
els that are modeling nonstationarity.

3.2 Case B: A Surface Milling Experiment. Two solid
blocks of aluminum 2024-T351 with dimensions of

75� 270� 75mm3 were cut in a face milling operation, which
were used by our prior study [15]. The depth of cut is 0.5mm,
the feed rate is 0.5mm/tooth, and the spindle speed is 1000 rpm.
The cutter has an effective diameter of 101.6mm with five
inserts. The face milling operation was implemented on a Cin-
cinnati computer numerical control machine (model HMC-
400EP), and the machined surfaces were measured by a Shapix
laser holographic interferometer, an HDM system for surfaces.
One block is used to train the benchmark model and the other
is used for model validation. The surface measurements, two
covariates, and down-sampled surface data to simulate LDM
measurements are shown in Fig. 9. Panel (a) shows the HDM
surface measurement for block I used for training the bench-
mark model. Panel (b) shows the two covariates, MRR and the
number of cutter inset engagement, when machining block I.
LDM data were generated via downsampling from the HDM
data of block II. The sampling positions are shown in panel (c).
The covariates for block II are shown in panel (d). Figure 9
also outlines the logic of the transfer learning from block I to
block II.

The modeling RMSEs for block II are summarized in Table 4.
Compared with CK and OK, the proposed transfer learning based
methods greatly improved the modeling accuracy. Concerning
RMSE, the improvements of the three methods over OK method
are 38%, 33%, and 39%, respectively. Figure 10 compares the
modeled surface variations and demonstrates that the proposed
tl-GWR, tl-RR, and tl-ANFIS achieved better estimations of sur-
face variations compared with CK and OK. It should be noted that
the correlation-enabled spatial model (CK) developed in the prior
research gives misleading overall correlation information due to
the nonstationary relationships, making the estimation even worse
than OK. It is also noticed that tl-RR method did not make signifi-
cant worse estimations than tl-GWR and tl-ANFIS as it did for
case A. The reason for the improvement is that the introducing of

Fig. 9 Logic of TL-based spatial modeling for the block surface: (a) HDM measurements for block I; (b) normalized MRR and
the number of insert-engagement for block I; (c) LDM measurements for block II; (d) normalized MRR and the number of
insert-engagement for block II; and (e) modeling of block II using TL-based spatial model

Table 4 Surface modeling results of case B (RMSE unit:3 1023

mm)

Method RMSE

tl-GWR spatial 0.85
tl-RR spatial 0.92
tl-ANFIS spatial 0.83
CK 1.69
OK 1.37

Fig. 10 Surface modeling results for block II. The results show that the proposed tl-GWR (b), tl-RR(c), and tl-ANFIS (d)
achieve the estimation closer to the true data (a) compared with a state-of-the-art method (e) and a commonly used method (f).
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a categorical covariate, i.e., the number of insert engagement,
makes the nonstationary relationship change less smoothly.

4 Conclusions

This paper solves a problem of improving surface variation esti-
mation based on LDM surface data regularly measured in-plant by
fusing historical HDM surface data that have limited availability.
The idea of fusion is to first extract spatial surface variation patterns
that reflect common cutting force dynamics in surface milling oper-
ations from the HDM data and then transfer the information on the
patterns to a target surface of interest that is only measured by
LDM. The surface variation patterns extracted from the HDM data
are characterized by a number of covariates that are correlated to
surface height. The knowledge transfer is enabled by the same
impact of covariates on the surface height across multiple surface
machining processes. Such a relationship between the covariate and
the surface height can vary over different surface areas, exhibiting
strong spatial nonstationarity. The spatial nonstationarity can signif-
icantly affect the surface modeling accuracy. To deal with the non-
stationarity challenges in the fusion of LDM and HDM data
problem, this paper develops three spatial models under a transfer
learning framework, including a point-wise local regression based
spatial model (tl-GWR spatial model), region-wise regression based
spatial model (tl-RR spatial), and fuzzy-region-wise inference rule
based spatial model (tl-ANFIS spatial model). The tl-GWR is
straightforward in dealing with spatial nonstationarity, which con-
ducts weighted regression for every location. GWR can deal with
nonstationarity with gradual change; however, it may introduce a
large number of model parameters and increase computational
complexity. The two region-wise models (tl-RR and tl-ANFIS)
have fewer parameters and are more computationally efficient than
tl-GWR among which the tl-RR deals with nonstationarity with
abrupt change and the tl-ANFIS deals with nonstationarity with
gradual change and even nonlinearity.

Two real-world case studies using automotive engine head deck
face measurements and a surface milling experiment were con-
ducted to compare the proposed methods with a traditional Kriging
model based on statistical interpolation/extrapolation and a state-of-
the-art correlation-enabled spatial model. The results demonstrated
that the proposed tl-ANFIS and tl-GWR methods could achieve sig-
nificant improvement in surface variation modeling compared with
the two previous methods. The proposed tl-RR method also
improved the modeling accuracy but with less amount of improve-
ment than tl-ANFIS and tl-GWR, because the spatial nonstationar-
ity of the two cases were of gradual change. It is noticeable that the
correlation-enabled model even generates worse RMSE due to a
lack of consideration of nonstationarity relationship. Therefore, we
can conclude that incorporating nonstationarity can greatly improve
the modeling accuracy of surface variations, and transfer learning is
an effective method in building those nonstationarity involved
models with inadequate data. For the three proposed models, we
can conclude that tl-ANFIS spatial model is the best solution for
these two cases regarding the modeling accuracy and computational
efficiency. The tl-RR spatial model could be employed when the
discovered nonstationarity is of abrupt change. The tl-GWR spatial
model can be used as an alternative to the tl-ANFIS model when
the number of estimating locations is not large. The transfer learn-
ing methods considering nonstationarity provide guidelines for in-
plant quality control for surface machining processes by cost-
effectively utilizing multiresolution data to improve surface varia-
tion monitoring. The proposed methods also have the potential to
be applied to other processes where multiresolution data are meas-
ured, and a common nonstationary relationship between the inde-
pendent variables and response can be discovered.
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Appendix: Adaptive Network-Based Fuzzy Inference

System Model Layer by Layer

As can be seen from Fig. 6, assume that we have two input vari-
ables x and y, and one response variable f, the description of
ANFIS is given as follows:

� Layer 1: This layer specifies the membership function for
every input variable

L1i ¼ lAi
ðxÞ (A1)

where L denotes node function which is membership func-
tion in layer 1, x is the input to node i, and Ai is the linguistic
label (e.g., small, large) associated with membership function
lAi

. A commonly used Gaussian membership function is as

follows:

lAi
xð Þ ¼ e

� x�cið Þ2

2a2
i (A2)

where {ai, ci} is the parameter set for node i in layer 1. The
parameters in this layer are called premise parameters.

� Layer 2: Every node in this layer is a fixed operator P which
multiplies the incoming memberships from layer 1

wi ¼ lAiðxÞ � lBiðyÞ; i ¼ 1; 2 (A3)

where w denotes the “firing strength” of a fuzzy rule.
� Layer 3: Every node in this layer is a fixed operator N calcu-

lating the weight of the ith rule for input x and y which is
called “normalized firing strength”

�wi ¼
wi

w1 þ w2

; i ¼ 1; 2 (A4)

� Layer 4: Every node in this layer has the following node
function:

L4i ¼ �wifi ¼ �wiðpixþ qiyþ riÞ (A5)

where {pi, qi, ri} is the parameter set. The parameters in this
layer are called consequent parameters.

� Layer 5: The node in this layer is a fixed operator R which
calculates the final output as the summation of outputs from
layer 4

L51 ¼ f ¼
X
i

�wifi ¼

X
i

wifi

X
i

wi

(A6)
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