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H I G H L I G H T S

• An improved method for solar panel PV generation prediction is developed.

• Fusion of PV data from similar solar panels can significantly improve PV prediction.

• The multi-task learning algorithm is improved and generalized for time-series data.

• Systematic discussions and guidelines for implementation of the method are provided.
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A B S T R A C T

Time-series modeling of PV output for solar panels can help solar panel owners understand the power systems’
time-varying behavior and be prepared for the load demand. The time-series forecast/prediction can become
challenging due to many missing observations or a lack of historical records that are not sufficient to establish
statistical models. Increasing PV measurement frequency over a longer period increases the cost in the detection
of the PV fluctuation. This paper proposes an efficient approach to iterative multi-task learning for time series
(MTL-GP-TS) that improves prediction of the PV output without increasing measurement efforts by sharing the
information among PV data from multiple similar solar panels. The proposed iterative MTL-GP-TS model learns/
imputes unobserved or missing values in a dataset of time series associated with the solar panel of interest to
predict the PV trend. Additionally, the method improves and generalizes the traditional multi-task learning for
Gaussian Process to the learning of both global trend and local irregular components in time series. A real-world
case study demonstrated that the proposed method could result in substantial improvement of predictions over
conventional approaches. The paper also discusses the selection of parameters and data sources when im-
plementing the proposed algorithm.

1. Introduction

Photovoltaic (PV) output is one of the most critical performance
indicators for solar panels. The PV forecast/prediction can help solar
panel owners be prepared for load demand and efficiently supply the
solar energy as a complimentary source for power grids, without
overestimating or underestimating the capabilities of solar panels.
Additionally, the temporal prediction can help detect potential ab-
normal PV variations in a timely manner. Modeling of the PV time
series usually employs statistical methods to progressively predict the
PV output over time in near future based on the trend as reflected in

historical data, which is collected at a specified time interval. The time-
series model requires sufficient training data to establish adequate
statistical confidence.

As reviewed in [1], there has been a noticeable amount of research
on forecasting time-series data in solar panels and solar radiation in-
cluding ARMA (Auto-regressive and Moving Average), ARIMA (auto-
regressive integrated moving average) [2]. Time-series modeling also
considers the impact of environmental factors on the PV outputs based
on ARMAX (autoregressive-moving-average model with exogenous in-
puts) [3,4]. In [5], artificial neural networks with multi-layer percep-
tron were developed to forecast the daily solar radiation in time-series
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dataset by using transfer function of hidden layers. Almeida et al. [6]
presented another forecasting approach with a nonparametric model of
AC power forecast with quantile regression forests as machine learning
tools. The research of the forecast with nonparametric approaches are
found in [7,8] to forecast short-term PV outputs. A hybrid method using
support vector machine with firefly algorithm was introduced by [9] to
forecast the solar radiation. Time series modeling has also been applied
to other green energy generation such as wind power forecasting
[10–12].

One of the major challenges in the time-series modeling of PV
output for a solar panel is missing data or data gaps due to a variety of
reasons. Data collection may be interrupted due to technical problems
such as data measurement equipment failure, erroneous recordings,
weather factors. The problem of missing historical data is particularly
significant for a newly deployed solar panel system. As a result, there
exist substantial gaps in data collection for time-series modeling and the
missing values in time series can cause a poor prediction of PV output.
Increasing the measurement frequency of PV data or collecting more
measurements over a longer period adds to the measurement cost.
Therefore, it is essential to develop an efficient way to improve the
performance prediction of the solar panel trend when there are many
missing-value gaps in the training data for statistical modeling.

The effects of missing observations on the predicted result have
been studied by various research. The missing observations in time
series dataset can be dealt with by the following two approaches, i.e.,

1. Interpolation and extrapolation methods. Example approaches in-
clude linear interpolation, AR predictor [13], autoregressive con-
ditionally heteroscedastic [14], Kalman filtering [15], neural net-
works [16] and multiple imputation models discussed in [17].
Techniques were also developed to reduce sampling rate or time
resolution for PV time-series modeling [18]. This line of research
can help smooth the prediction data, but nevertheless does not ne-
cessarily improve the prediction/forecast accuracy due to the lim-
ited useful information added to the time-series modeling.

2. Incorporation of environmental factors. The problem of predicting
the time series response PV t( ) can be mitigated by fusing the effect
of historical environmental data such as temperature, wind speed,
and humidity in ARMAX, artificial intelligent (AI) model including
ANN (artificial neural network) [1,19,20], wavelet-coupled support
vector machine model [21], and analog ensemble method [22]. The
historical PV data such as − − − …PV t PV t PV t( 1), ( 2), ( 3) in these
models can be de-seasoned by deducting the effect of solar irra-
diance IR t( ) via − − = …PV t k IR t k k( )/ ( ), 1,2,3 . It can be seen that the
historical PV responses are one of the most significant variables that
affect the forecasting/prediction performance based on the de-sea-
soned data. As such, improving the imputation of historical PV data
is highly beneficial for time series modeling.

Time-series modeling based on these methods is considered as single
task learning (STL) because the learning is accomplished by using the
data from one single source, i.e., the solar panel of interest. Due to the
limitation of information sources, such STL offers limited improvement
in learning missing values to capture the true PV trend when there are
many missing values.

A new opportunity emerges in improving the learning of the un-
observed values by sharing the knowledge or information available
from other data collected under similar conditions. For example, when
a solar panel may not have sufficient data to estimate its performance
such as a new PV system, the history of an old solar panel of the same
type under similar deployment conditions can potentially provide cross
inference about this panel. To enable such a knowledge transfer, a
machine learning framework called multi-task learning (MTL) has been
developed, which learns multiple tasks simultaneously with the key
idea of sharing the information of each task [23]. The term “task” refers
to the learning and prediction of certain target performance based on

data. Joint learning for all tasks using MTL can significantly mitigate
problems such as overfitting and unstable search due to sparse training
data while improving performance compared to STL methods [24].
Relatedness among tasks is vital in MTL [25] as unrelated or dissimilar
tasks can be detrimental to effective learning resulting in a negative
transfer of information [26]. By utilizing the task similarity, the MTL
algorithm has been applied to a Gaussian process (GP) for spatial data
based on joint priors in [26–30]. In the past, the scope of the MTL has
also been explored in [31,32] for classification problems, in [33] for
learning using task-specific features and in [34] for learning with the
informative vector machines by learning parameters based on the idea
of task relatedness. The scope of MTL is yet to be explored in time series
features for forecasting.

Based on the review, we identified two research gaps, i.e.,

1. The traditional STL has demonstrated its effectiveness in short-term
PV prediction but has its limitations when dealing with a significant
amount of missing values.

2. The traditional MTL-GP method has its limitations in time-series
modeling for PV data. We conclude that a joint learning method
using multiple similar-but-not-identical datasets has the potential in
improving learning/imputation of missing values and prediction of
solar panel performance. However, the prior research on MTL for GP
mostly dealt with spatial data without considering both local tem-
poral dependence and global trend. To the best of our knowledge,
there exists little research that explores the values of the MTL-GP
method and improves this method in time-series modeling for PV
data.

To overcome the challenge, this paper proposes an approach to
improving prediction of solar panel performance by sharing common
information among similarly related time series datasets at multiple
locations. An iterative multi-task learning Gaussian process time series
(MTL-GP-TS) algorithm is developed to learn the missing observations
in time series dataset without increasing measurement efforts. The term
”iterative” refers to the implementation of MTL procedures in an
iterative manner to gradually update the trend and local component in
the model. Specifically, an initial value will be proposed for the trend,
and multi-task learning will be implemented to estimate the local
components. The MTL-learned local components will be used to update
the trend. The updating procedure continues until the estimation error
converges. We demonstrate the proposed iterative MTL-GP-TS method
using a real-world case study based on the data collected from four
Hawaiian schools. The paper also discusses two practical issues when
generalizing the applications of the proposed algorithm.

The paper consists of the following sections. Section 2 describes the
iterative MTL-GP-TS algorithm to learn unobserved values from the
time series dataset of multiple solar panels. Section 3 presents a real-
world case study based on the PV data from four Hawaiian schools
demonstrating the iterative MTL-GP-TS method. A discussion on im-
plementing the algorithm is given in Section 4. Section 5 summarizes
the paper.

2. Development of the iterative MTL-GP-TS algorithm

The MTL algorithm for GP is first reviewed in Section 2.1 following
[27,28], and the iterative MTL-GP-TS algorithm is proposed in Section
2.2. It should be noted that we use the term ”estimation” in this paper
as the process of finding an approximated value for the model para-
meters and output. We also use the term ”learning” as the process of
gaining insights through making predictions or estimation on data. The
two terms are used interchangeably to avoid word repetition in this
paper. The term ”prediction” is used for statistical assessment of the
values in final outputs that have not been measured or may happen in
the future.
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2.1. A review of multi-task learning for Gaussian process

MTL formulation for Gaussian Processes. Assume that the data given
as a set of responses ∊ p( )1

1 , …, ∊ ∊p p( ), ( )N
1 2

1 , …, ∊ p( )N2 ,…∊ p( )M
1 , …,

∊ p( )M
N , for learning M tasks at different inputs …p p pN, 2,1 , where ∊ p( )l

i
is the response for the lth task given the ith input pi. The problem of
multi-task learning is to predict an observed response given an input p
for a certain task based on the information from all tasks (Fig. 1). By
[27,28], the response is assumed to be generated from a function of
input p, which follows a multivariate Gaussian distribution with a
covariance function κ p p( , )i j between the responses at input pi and pj
(defined as a Gaussian process). Yu et al. [27] used standard equations
for prediction using the Gaussian process to estimate the prediction at
any input p by ̂∊ = ∑p γ κ p p( ) ( , )l

i i
l

i , which estimates the response at p as
a linear combination of kernel values κ p p( , )i j . The coefficients, γi

l, are
assumed to follow a normal distribution ∼γ N μ C( , )i

l
γ γ . The distribution

parameters are assumed to jointly follow a normal-inverse-Wishart

distribution as ∼ −( )μ C μ C C τ κ( , ) 0, ( | , )γ γ γ π γ γ
1 1N IW , and π and τ

are parameters in the distributions. Given the hyper prior distribution
of μ C,γ γ, Yu et al. [27] further proposed a data prediction model under
the MTL framework as follows

1. Parameters μγ and Cγ are generated (or statistically sampled) for
once based on the normal-inverse-Wishart distribution

2. At a certain input p,

∑∊ = +p γ κ p p e( ) ( , ) ,l

i
i
l

i
(2.1)

where ∼e N σ(0, )2 .

The estimates of parameters μ C σ, ,γ γ and γi
l can be learned by an

Expectation-Maximization (EM) algorithm. The details about the EM
algorithm is reviewed in Appendix B.

MTL for solar panel PV forecasting. When the MTL model is applied
to the PV data forecasting for solar panels, ∊ p( )l

i can represent PV-re-
lated output variable for the solar panel at the location of interest. Index
p becomes a time index, and we replace it with a notation t for MTL of
time-series data in the remainder of this paper. The PV-related output
variable can be chosen as PV, PV regularized by solar irradiance, or a
local component in the PV data (see details in Section 2.2). As such, the
MTL problem aims to estimate the PV-related output of the solar panel
at the location of interest (target) by aggregating the similarity between
the solar panel’s PV output at a time point i (including those solar

panels at different locations) and the target. The similarity between
different solar panels are captured by the kernel function κ and its
strength is reflected by coefficient γi

l.
The limitation of the traditional MTL-GP method is that the ap-

proach lacks the capability of capturing the temporal trend in data,
which are critical for temporal data modeling. Specifically, the tradi-
tional MTL-GP method only predicts the spatial data in a local model
(by which data can only be estimated from those surrounding it, such as
a Gaussian Process model) by borrowing the information from other
spatial datasets. For the challenge in this paper, MTL needs to estimate
the parameters for both local model and a trend, which is separated
from the local model. However, the traditional MTL-GP cannot distin-
guish the trend from the local model. Additionally, the requirement of
Gaussian-distribution assumption in the MTL-GP method is not mostly
appropriate for PV data with significant trending patterns. This paper
will enhance the MTL-GP method to characterize both global trend and
local variations in time series data for solar panels.

2.2. Improved method: iterative multi-task learning Gaussian process for
time series (MTL-GP-TS)

The time series data can be decomposed into a trend T (including
seasonal component) and an irregular/random component ∊, i.e.,

= + ∊Z t T t t( ) ( ) ( ). The irregular or random component can usually be
assumed to follow a Gaussian process plus noise. The reasons for
choosing the Gaussian process are that (1) The local irregular compo-
nent in time series usually exhibit strong temporal correlation or local
dependency. The Gaussian process is a local modeling method, which
predicts the outcome based on the value surrounding it by using the
local dependency as learned from data; and (2) When the trend can be
correctly captured by the model, the left-over residual should be a
correlated stochastic process. The multivariate normal (Gaussian) dis-
tribution is a very common model to characterize the statistical attri-
butes of the residual stochastic process. As such, the MTL-GP method is
suitable to transfer the information among irregular components from
similar time series datasets to the dataset of interest (target). However,
learning accuracy of the irregular components using MTL-GP is greatly
influenced by the way how the trend and irregular components are
decomposed. Thus, joint consideration of the trend estimation and
learning of the irregular components poses a new challenge.

To fill the gap, this paper develops an iterative MTL-GP-TS algo-
rithm that simultaneously estimates the trend and irregular component
through information transfer among datasets. The estimation procedure

Fig. 1. The framework of multi-task learning.
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is described as follows.
Iterative MTL-GP-TS algorithm:

1. Start with initial time series data Z t( )l
0 of size ( ×n 1), where

= …l 1,2,3 indicates data source or task, i.e., different solar panels;
2. Clean the raw data to generate sorted data Z t( )s

l by removing out-
liers and replacing them using the estimates based on a K-Nearest
Neighbors (KNN) method. Details about the KNN method are re-
viewed in Appendix C;

3. Randomly select data points from Z t( )s
l during a time period to

create the training dataset and the rest data during this period form
the testing dataset to simulate “missing observations.” The valida-
tion dataset is formed using those observations after the period to
validate the forecasted values for future data. The separation of the
datasets are summarized in Fig. 2;

4. Provide an initial estimate of testing datasets (that simulate
“missing observations”), Z t( )l , by a linear interpolation based on
the training dataset;

5. Set =i 0 for the iteration index and =T t( ) 0l
0 ∀ t for initialization;

6. Estimate irregular component, ∊ t( )i
l , which is assumed to follow

Gaussian process, by a decomposition, i.e., ∊ t( )i
l = −Z t T( )l

i
l(t);

7. Estimate the irregular component using MTL-GP algorithm given
∊ = …t l( ), 1,2,3i
l from all data sources, denoted as ∊ t( )iM

l . The MTL
procedure includes (1) setting the initial values for μ C,γ γ, and γ ,
which will be used for the first iteration of EM and (2) using the EM
algorithm (Appendix A) to estimate μ C,γ γ , and γ .

8. Estimate the output value by = + ∊Z t T t( ) ( )i
l

i
l

iM
l ;

9. When iteration >i 1, check if ▵ = <− −
−

RMSE δ| |% | |%i
RMSE RMSE

RMSE
i i

i
1

1
,

where RMSEi is the root-mean-square error calculated by com-
paring the predicted output Z t( )i

l with true value Z t( )l
0 in the raw

training dataset at the ith iteration and δ assumes a very small
value. If yes, the result converges, the final trend T t( )f

l is obtained,
and we can exit the iteration. If no or when iteration index ≤i 1,
update the trend by subtracting ∊ t( )iM

l from Z t( )l and then apply
interpolation to learn +T t( )i

l
1 ;

10. Go to next iteration by ← +i i 1 and start with step 4;
11. Conduct parameter selection based on the steps above to identify

the appropriate hyperparameters in the model (Discussed in Section
4.1);

12. Conduct data source selection based on the steps above to find the
datasets to be included for the learning (Discussed in Section 4.2).

The flowchart of the procedure is summarized in Fig. 3. A time
series model such as ARIMA can be fitted to the final estimated trend
T t( )f
l via the iterative MTL-GP-TS to predict future performance. It

should be noted that smooth moving average (SMA) method can be
applied for the trend estimation to mitigate the effect of noise induced
by measurement and/or weather factors.

The rationale of the proposed algorithm is as follows. The iterative
method is used to deal with a challenge on simultaneous estimation of
both trend and local irregular components in the time series data. In
this problem formulation, the local irregular components can be
learned through multi-task learning (MTL) based on the similarities
with the solar panels at other locations. The iterative approach is a
logical way to gradually learn about the two terms by first tentatively
estimating the local component through MTL based on initial values
and then updating the trend and local component until convergence
after several iterations.

Remark: The determination of the necessary data points or sample
size sufficient for the multi-task learning should be judged by how
much the algorithm can improve the prediction accuracy (RMSE). As
the sample size increases, the prediction performance of multi-task
learning and STL both improve and RMSE improvement by the iterative
multi-task learning compared with the traditional STL is expected to
increase first and then approximate asymptotically to a stable constant
when the sample size grows large. Therefore, the amount of RMSE
improvement becomes bounded and the benefits brought by multi-task
learning thus become limited when the sample size is relatively large.

3. A case study on four Hawaiian schools

The iterative MTL-GP-TS method is demonstrated using a case study
based on solar panel datasets consisting of photovoltaic output (PV,
unit: kilowatts) and plane of array (POA, unit: kilowatts per square
meter) irradiance from four schools in Hawaii.1 The data were collected
using “Schott Solar SunTrack Local” data acquisition system. The data
from four school locations are selected as the input to the iterative MTL-
GP-TS algorithm based on the fact that these solar panels are supplied
by the same manufacturer (i.e., SunPower SPR-200-BLK PV modules)
and expected to exhibit similar variation patterns that enable the
knowledge transfer across solar panels.

Remark: The distance between school locations does not play a
dominant role that impacts the prediction results. The key to the pre-
diction is if the data at different locations may exhibit similar variation
patterns. In Section 4.1, this paper provides a data source selection
method that allows for judgment on whether or not a location can be
included in the prediction.

The data sources are from Nanakuli High and Intermediate school
(N), Jarrett Middle school (J), Highlands Intermediate school (H), and
Waianae High school (W). All data sources show a strong positive
correlation between the PV and POA value. Such variation patterns
induced by POA changes could potentially mask the abnormal patterns
that are associated with the intrinsic problems in solar panels, which
users expect to detect. The removal of the POA induced effect in data
can better expose the variation patterns due to potential problems in
the solar panels. Thus, the ratio of PV over POA (i.e., PV POA/ ) is used
as time series observations to suppress the effect of POA. After re-
moving the POA induced variation, the data still exhibit cyclic patterns
for time series modeling. The solar panel PV data for “H school” is to be
forecast, and the rest of schools (N, J, W) supply complementary data
for multi-task learning.

The data are recorded daily and collected from Jan’2008 to
April’2012 for the four schools (N, J, H, and W). The scope of the study
is to predict the PV performance of solar panels over days and months.
Although this study deals with a relatively long-term forecasting, the
methodology is applicable for short-term PV forecasting as well. The
data from Jan’2008 to April’2012 contained some inaccurate mea-
surements and missing observations for some months. Outliers induced
by inaccurate measurements are removed using Tukey’s approach while
specifying reasonable cleaning parameter that ensures no data point is

Fig. 2. An illustration of training, testing, and validation datasets. Data are randomly
selected and removed from the original data to simulate the “missing values.” These data
create a testing dataset (white bar). The proposed iterative MTL-GP-TS algorithm is ap-
plied to the training datasets (black bar) and thereby estimate the missing values corre-
sponding to the time period of the testing dataset. The validation dataset (grey bar) is
obtained from a future period after training and testing datasets. The training and esti-
mated testing data are jointly used to fit an ARIMA time series model to estimate the
future values corresponding to the validation dataset. The estimation for the future period
will be compared with the values in the validation dataset to evaluate forecasting per-
formance.

1 The data source is available at http://www.hawaiianelectric.com/heco/_hidden_
Hidden/EducationAndConsumer/Sun-Power-for-Schools?cpsextcurrchannel=1.
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too large or too small compared to the rest of data points. Afterwards, a
KNN method is used to replace values of those outliers in raw datasets.
In this study, a 2-NN approach is used to generate missing observations
in datasets by searching for values in two neighboring datasets.

The performance of the model is evaluated by testing the difference
between predictions and true values in the testing and validation da-
tasets. Specifically, the data are separated into training, testing, and

validation data sets. The training dataset is used to estimate the ARIMA
model based on the iterative MTL-GP-TS algorithm. The testing dataset
includes some observations within the timespan of training dataset but
excluded from the training set in order to simulate missing values. Its
purpose is to test if the proposed algorithm can correctly impute the
data within the timeframe of the training dataset. The validation da-
taset refers to those observations that happen after the timeframe of the

Fig. 3. Flowchart of the iterative MTL-GP-TS al-
gorithm.

Fig. 4. A schematic example for iterative MTL-GP-TS learning. Left side: Initial time series (data point labeled as a circle) of solar panel data source-1, data source-2 and data source-3
starting during Years 1 to 3. Right side: MTL-GP-TS predictions for H school solar panel data source-2 from Years 1 to 3. Jointly learned MTL-GP-TS time series observations for solar panel
data source-2 from Years 1 to 3 can be used to further predict the PV outputs in Years 4 and 5. Note: data are not fully displayed due to space limitation.
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training data. The purpose of the validation set is to test if the algorithm
can forecast the future observations after the training data. In this
study, the dataset has a weekly time interval, where 44 data points are
training data, and 144 data points are testing (missing) data points. The
test data points are treated as missing observations in time series. It can
be seen that 75% of values are considered as missing data points and
excluded from the training data. The validation dataset contains 17
data points.

In the iterative MTL-GP-TS algorithm, the missing observations
were learned by sharing the information among multiple time series if
the datasets are from similar sources. For example, as shown in Fig. 4,
three solar panel time series data can be learned jointly using the
iterative MTL-GP-TS. The forecasting is achieved based on ARIMA, the
most general class of models for time series prediction, which also ex-
cels in capturing the periodical cycles in the PV data [1]. It also deals
with non-stationarity in the data by taking initial differencing steps.
More detailed explanation of ARIMA is provided in Appendix B.

Fig. 5 shows the predicted trend along with confidence interval by
using MTL-GP-TS after two iterations and STL ARIMA model based on
the dataset with missing data, respectively. The results are compared
with the trend values fitted to full data (as called true trend). It can be
seen that the trend predicted by MTL-GP-TS is significantly closer to the
true trend and the confidence interval is significantly narrower. The
confidence interval for STL (bounded by green curves in Fig. 5) is wider
than that of iterative MTL-GP-TS (bounded by red curves) due to a large
standard deviation in interpolated sample dataset (missing values
learned by interpolation). Also, it is observed that both iterative MTL-
GP-TS and STL trends are mostly above the true trend during these
months. Such a pattern was caused by the training dataset chosen lacks
data points that can capture a significant trend drop for both iterative
MTL-GP-TS and STL.

The RMSE of the predicted output (denoted as RMSE-predict) values
between the STL and iterative MTL-GP-TS methods for H school are
presented in Table 1. It is noticed that the RMSE-predict are improved
by 25% after two iterations by the proposed method for solar panels in
H school compared with STL, and the iterative MTL-GP-TS demon-
strates substantial improvement in reducing RMSE of predicted values
for performance prediction of trend estimation. The improvement in
RMSE-predict indicates that the iterative MTL-GP-TS can outperform
the traditional STL time-series modeling in predicting trend when time
series dataset contains a significant amount of missing observations.
Table 1 also shows the values for MAE (Mean Absolute Error) and
MAPE (Mean Absolute Percentage Error). All these metrics demonstrate
a significant improvement compared with STL. Fig. 6 shows a residual
plot for the prediction based on the iterative MTL-GP-TS algorithm, and
the residual mostly exhibits a relatively random pattern with a constant
mean and stable variation. Still, some patterns can be observed, and it

could be further mitigated by adopting a GARCH (generalized auto-
regressive conditional heteroskedasticity) model, which refines the
error terms and can potentially make the residual plot more random.
Table 2 further provides a common approach to the cross-validation for
time series data based a walk forward method, by which the obtained
model is used to forecast the observations at k steps ahead, where
= …k 1,2,3 . It can be seen that the prediction RMSE based on the im-

putation using the iterative MTL-GP-TS algorithm is similar to that in
Table 1 and is very stable for multi-step forecasting.

4. Discussion

The applications of the proposed MTL-GP-TS algorithm in this paper
can be generalized for various PV data. This section discusses two
practical issues when implementing the algorithm for generic PV data
including hyper-parameter and data source selections.

4.1. Hyper-parameter selection for the iterative MTL-GP-TS algorithm

The improvement by the iterative MTL-GP-TS method also depends
on the appropriate selection of hyper-parameters in the iterative MTL-
GP-TS algorithm. In this section, we show the effect of hyper-parameter

Fig. 5. Residuals of fitted ARIMA model with
MTL-GP-TS learned trend. The MTL-predicted
trend is closer to the true trend and MTL gen-
erates a narrower confidence interval (bounded
by red curves) compared with that by STL
method (bounded by green curves).

Table 1
Prediction performance measurement metrics using the iterative MTL-GP-TS and STL
based on H school data.

Metrics MTL-GP-TS STL % Improvement

RMSE 0.38 0.5 24
MAE 0.31 0.38 18.42
MAPE 40.47 53.97 25

Fig. 6. Residuals of fitted ARIMA model with MTL-GP-TS learned trend.
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selection based on a case study, in which the real data from the four
Hawaiian schools along with a reference dataset from solar panel
manufacturer, Sunpower (available in2,3,4), were employed to gen-
erate/simulate long-term data. Specifically, six years of simulated PV
data were generated beyond 2012 over a ten-year timespan in total by
applying time series models fitted to the real data from the four Ha-
waiian schools. The expanded dataset is separated into training, testing,
and validation sets. The generated dataset has in total 480 time points
over ten years with a weekly time interval. The training and testing sets
contain 77 data points and 307 data points, respectively. Thus, about
80% data (testing data) are considered as missing and excluded from
training dataset. The validation dataset includes 96 data points with a
weekly interval in Years 9 and 10 for each school.

For hyperparameter selection, the RMSE values are computed for
multiple candidate combinations of hyperparameter values for valida-
tion dataset and compared to select the combination that achieves the
minimum RMSE. Each hyper parameter is assumed to take a number of
discrete values within a certain range. The hyper-parameter values for
τ π, and σ2 were explored within [0.0001, 0.1, 1, 10, 20], [0.0001, 0.1,
1, 10, 20] and [1, 250, 500, 750, 1000], respectively. All 125 ex-
haustive combinations were tested to identify the appropriate para-
meter settings by comparing RMSE values. Due to the page limitation,
Fig. 7 partially shows the response surface subplots of hyper parameters
vs. RMSE, where one hyper parameter in each subplot was always kept
constant at a certain value while searching for the lowest RMSE within
the range of two other hyper parameters. It has been observed that the
smaller τ π, and σ2 values could yield prediction results with lower
RMSE’s. For the solar panel of interest (H school), the prediction results
with the lowest RMSE were found when =τ 20, < <π0.0001 0.1 and

=σ 12 .
After hyper-parameter selection, the RMSE-predict value for H

school is presented in Table 3, which compares the results between the
STL and iterative MTL-GP-TS methods. By using the selected hyper
parameters, the RMSE-predict improvement by the iterative MTL-GP-TS
is 66.67% for solar panels in H school compared with using traditional
STL ARIMA method.

4.2. Selection of data sources in the iterative MTL-GP-TS algorithm

In the MTL, it is not always true that the inclusion of more data
sources can improve the prediction [35,36]. Adding more data sources
may generate very slight improvement or even negative impact on the
prediction RMSE. For instance, the inclusion of all data sources into the
iterative MTL-GP-TS algorithm to predict unobserved values in the solar
panel of interest (H school) might result in a larger or similar RMSE-
predict compared with that estimated by including only fewer data
sources. Therefore, data source selection could be necessary to identify
useful data sources prior to multi-task learning.

A best subset selection method can be performed to identify the
potential data sources to be included in the iterative MTL-GP-TS

algorithm. Specifically, the best subset selection method tests different
subsets of the available data sources (N, J, W, S, and Sunpower’s re-
ference data) as inputs to perform the iterative MTL-GP-TS, and the
subset that yields the lowest RMSE for the testing data will be identified
as the most appropriate data sources to be included.

Based on the same dataset in Section 4.1, the results learned by the
iterative MTL-GP-TS algorithm for H school using the solar panel data
from different subsets of data sources were compared. Table 4 shows
the RMSE-predict values of the predicted PV data in H school in Years 9

Table 2
Cross validation (Walk forward Validation) of the
fitted ARIMA model for the MTL-GP-TS trend.

Step RMSE

1-step 0.2301343
2-step 0.2338434
4-step 0.2369701
5-step 0.236674
10-step 0.2233119

Fig. 7. Response surface plots of hyper parameters with RMSE. Starting from top, plot 1
shows RMSE results vs. hyper parameters τ and π when σ2 is fixed. Plot 2 shows RMSE
results vs. hyper parameters τ and σ2 when π is fixed. Plot 3 shows RMSE results vs. hyper
parameters π and σ2 when τ is fixed.

Table 3
RMSE-predict using the iterative MTL-GP-TS vs. STL for H school after hyper-parameter
selection.

RMSE-MTL-GP-TS RMSE-STL %RMSE improvement

0.15 0.45 66.67

2 http://us.sunpower.com/sites/sunpower/files/media-library/white-papers/wp-
sunpower-module-degradation-rate.pdf.

3 http://energyinformative.org/lifespan-solar-panels/.
4 http://us.sunpower.com/utility-scale-solar-power-plants/oasis-power-plant/.

T. Shireen et al. Applied Energy 212 (2018) 654–662

660

http://us.sunpower.com/sites/sunpower/files/media-library/white-papers/wp-sunpower-module-degradation-rate.pdf
http://us.sunpower.com/sites/sunpower/files/media-library/white-papers/wp-sunpower-module-degradation-rate.pdf
http://energyinformative.org/lifespan-solar-panels/
http://us.sunpower.com/utility-scale-solar-power-plants/oasis-power-plant/


and 10 when using five, four and three data sources. By combining the
results in Tables 3 and 4, it can be seen that the inclusion of three data
sources (N, J, and H schools) from four schools can yield a substantial
improvement in PV value prediction. However, the inclusion of all
schools and manufacturer (Sunpower) reference data into the learning
does not improve the prediction. In fact, the RMSE-predict even slightly
increases. Thus, N, J, and H schools are sufficient for the iterative MTL-
GP-TS algorithm.

5. Conclusion

This paper identifies and explores the value of diversely recorded PV
data for solar panels of similar types over a living or working area.
Specifically, a new data fusion method based on multi-task learning is
proposed for improving time series data imputation and prediction of
PV output of solar panels without increasing measurement efforts. The
method overcomes the challenge in time series data modeling when a
significant amount of historical data are missing or unavailable by
sharing information from other similar-but-not-identical time series. In
addition, the proposed MTL-GP-TS algorithm generalizes the existing
MTL method for Gaussian spatial processes to the learning of both

global trend and local irregular components in time series data in an
iterative manner. The algorithm was applied to predict PV data over
time for solar panels deployed in four Hawaiian schools. The real-world
case study demonstrated that the iterative MTL-GP-TS method could
efficiently learn the unobserved values in time series dataset, resulting
in improved predictions of PV time series for solar panels. Parameter
selection was conducted to identify appropriate hyper parameters. It
has also been found that the performance of the proposed algorithm
depends on the selection of solar panel data sources and therefore data
source selection is necessary. The outcome of this research can help on-
time preparations for load demand and assessment of solar panel con-
ditions. The method can also be applicable to health condition predic-
tion and missing data imputation for a wide range of applications such
as construction structures and mechanical/electronic devices. The fu-
ture study involves (1) consideration of weather condition into the
proposed algorithm and (2) time series model refinement to better in-
corporate the data volatility by considering the variation in the error
term such a Garch model.
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Appendix A. EM Algorithm

This section reviews the Expectation-Maximization (EM) algorithm used to estimate the parameters in the model = μ σΘ C{ , , }γ γ
2 . The EM al-

gorithm involves an iterative procedure that alternates between an expectation step, and a maximization step. Details about the EM algorithm has
been documented in [27].

• Expectation, E-step: This step estimates the expectation and covariance of = …γ l m, 1, , , given the initial parameters of Θ.
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where ∈ ×κl n nl is the kernel function κ (·,·) that estimates the similarity between pl and p, where pl is the vector of data points for task l.

• Maximization, M-step: This step optimizes the parameters = μ σΘ C{ , , }γ γ
2 based on the E step. The parameter estimation for Θ is given by [27] as

follows,
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where tr(·) is the trace operator.

Appendix B. ARIMA model

This section briefly reviews the ARIMA (auto-regressive integrated moving average) model. An ARIMA model takes initial differencing steps on
data to eliminate the non-stationarity and generalize the time series model for non-stationary data. The math representation for an ARIMA (p d q, , ) is

Table 4
RMSE-predict of H school with different number of data sources.

No. of data sources in MTL-GP-TS RMSE-predict of H school

5 (N, J, H, W, Sunpower) 0.15
4 (N, J, H, W) 0.14
3 (N, J, H) 0.14
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given by [1]

∑ ∑⎛
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where the notations ∊ t( ) and e t( ) are the same as in Eq. (2.1); L is a time lag operator, the parameters p and q represent the time lags involved in the
autoregressive and moving average terms, respectively; and the parameter d reflects the order of differencing performed on the data. These para-
meters are usually designated before fitting the ARIMA model parameters ϕi and θi to data.

Appendix C. KNN method

This section briefly reviews the K-nearest Neighbors (KNN) method used in the paper to replace the values of outliers in the training and testing
datasets. The KNN method is a non-parametric approach to approximate values locally based on the surrounding data [37]. The approximation can
be made by assigning weight wi to the contributions of the neighbors tNi so that nearest neighbors contribute more to the average than the more
distant data points as follows,

∑=Z t w Z t( ) ),
i

i N( i
(A.7)

where weight wi is usually set to be inversely proportional to the distance d between t and tNi, i.e., ∝w d t t1/ ( , )i i Ni and∑ =w 1i i . The approximation
adopted in this paper is essentially a generalization of linear interpolation.
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