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Fig. 1. Our algorithm computes a triangular auxetic linkage that closely approximates a given surface when deployed to maximal extension via inflation. The
fabricated material is laser cut from a single sheet, mounted onto the support frame, and inflated with a generic rubber balloon.

Deployable structures are physical mechanisms that can easily transition
between two or more geometric configurations; such structures enable in-
dustrial, scientific, and consumer applications at a wide variety of scales.
This paper develops novel deployable structures that can approximate a
large class of doubly-curved surfaces and are easily actuated from a flat
initial state via inflation or gravitational loading. The structures are based
on two-dimensional rigid mechanical linkages that implicitly encode the
curvature of the target shape via a user-programmable pattern that permits
locally isotropic scaling under load. We explicitly characterize the shapes
that can be realized by such structures—in particular, we show that they can
approximate target surfaces of positive mean curvature and bounded scale
distortion relative to a given reference domain. Based on this observation,
we develop efficient computational design algorithms for approximating a
given input geometry. The resulting designs can be rapidly manufactured
via digital fabrication technologies such as laser cutting, CNC milling, or 3D
printing. We validate our approach through a series of physical prototypes
and present several application case studies, ranging from surgical implants
to large-scale deployable architecture.
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1 INTRODUCTION

Deployable structures are shape-shifting mechanisms that can tran-
sition between two or more geometric configurations. Often con-
ceived to minimize space requirements for storage or transport,
deployable structures are used, for example, for antennas or solar
panels in satellites, as coronary stents in medical applications, as
consumer products (e.g. umbrellas), or in architectural designs (e.g.
retractable bridges or relocatable, temporary event spaces).

Most existing realizations of deployable structures are geometri-
cally simple and often exhibit strong symmetries. Deploying more
general curved surfaces is made difficult by the inherent complex-
ity of jointly designing initial and target geometries within the
constraints imposed by the deployment mechanism [Gantes 2001].

We propose a new class of deployable structures and associated
computational methods that enable rapid deployment of doubly-
curved freeform surfaces (see Figure 1). Our approach is based on a
planar linkage of rigid triangles connected by rotational joints at
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vertices; this linkage has regular connectivity, but spatially varying
scale. In-plane rotation of the triangles induces an approximately
isotropic expansion or contraction in area, which allows a mechan-
ical interpretation of the linkage as an auxetic surface metamate-
rial [Saxena et al. 2016], or a geometric interpretation in terms of
conformal maps [Konakovi¢ et al. 2016]. By spatially varying the tri-
angle sizes, we effectively control the maximum possible expansion
at each point, which in turn provides control over curvature: under
maximal extension, nonuniform expansion forces the structure to
buckle out of the plane and assume a curved configuration. Here
several questions arise: which curvature functions can be encoded
in such a pattern? How can we actuate a linkage to achieve maximal
expansion? Which surfaces can we hope to realize using this proce-
dure? Several key contributions help to address these questions:

o We introduce spatially graded auxetic metamaterials suitable
for deployment via inflation or gravitational loading. In par-
ticular, we show that these deployment strategies achieve
maximal expansion everywhere and provide additional regu-
larization to ensure that the target shape is unique.

e We provide a general analysis of deformation by inflation and
gravitational loading to formally classify the set of realizable
doubly-curved target shapes.

o We present an optimization algorithm to solve the inverse
design problem: Given a desired target geometry, our method
finds appropriate scaling parameters and a corresponding
layout of the 2D linkage such that the target shape is achieved
when the linkage is deployed.

The resulting structures offer a number of benefits: (i) The rest-
state is (piece-wise) flat, which facilitates compact storage as well as
cost- and time-efficient fabrication techniques (such as laser cutting
or milling); (ii) The target geometry is directly encoded in the 2D
linkage structure so that no additional support or scaffolding is
required to guide deployment; (iii) Our approach is scale-invariant
and can be applied to realize a broad and explicitly defined class
of doubly-curved surfaces. If a given surface is not within the set
of realizable shapes, we apply optimization to find a feasible target
surface that is close to the desired design.

The rest of the paper is organized as follows: Section 2 reviews
connections to related work. Section 3 considers geometric models
of inflation and gravitational loading, helping to understand the
feasible design space. Specifically, we characterize the shapes that
can be achieved via inflation or gravitational loading in terms of
surfaces of positive mean curvature and conformal deformations
with bounded scale factor. Section 4 introduces our spatially graded
auxetic metamaterial, realized as a rigid triangular linkage. We show
how to locally adapt maximal expansion (and hence, target curva-
ture) by varying the scale and orientation of linkage elements in
the initial flat state. Section 5 describes an optimization algorithm
for solving the inverse design problem, i.e., finding suitable parame-
ters for our metamaterial that ensure the target surface is faithfully
approximated when actuated. In Section 6 we present several case
studies and physical prototypes that highlight potential applications
across domains ranging from small-scale heart stents to large-scale
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Fig. 2. Conventional heart stents are straight and typically chosen by the
surgeon from a set of standard sizes. Recent research has shown the benefits
of curved stents [Tomita et al. 2016]. Our method can be used to create
freeform curved heart stents that can be adapted to the specific geometry
of the patients’ blood vessels. The stent is administered with a catheter to
the correct position (left) inflated to its target geometry (middle, right).

air-supported domes. We conclude with a discussion of the limi-
tations of our approach, and also identify opportunities for future
research (7).

2 RELATED WORK

Computational material design. Several previous works have de-
signed custom materials to achieve high-level deformation goals.
Bickel et al. [2010] stack layers of various nonlinear base materials to
produce a desired force-displacement curve. Microstructure design
works [Panetta et al. 2015; Schumacher et al. 2015; Zhu et al. 2017]
construct small-scale structures from one or two printing materials
to emulate a large space of linearly elastic materials. These works fo-
cus on designing deformable materials that typically undergo small
stretches and return to their rest configurations when unloaded,
making them less suitable as deployment mechanisms.

Inverse elastic shape design. Another common goal is to opti-
mize deformable objects’ rest shapes so that they assume desired
equilibrium shapes under load. The inverse elastic shape design
algorithms of [Chen et al. 2014; Pérez et al. 2015] design flexible ob-
jects achieving specified poses under gravity or user-defined forces.
These works do not attempt to find compact rest configurations
amenable to efficient fabrication, transport, and deployment. One
exception is [Skouras et al. 2012], which designs rubber balloons
that inflate to desired target shapes. However, fabricating custom
rubber balloons involves a complicated multi-step molding process
best suited for small-scale target shapes. Additionally, the inflation
must be carefully controlled to avoid under- or over-inflating. In
contrast, our flat initial state facilitates simple fabrication at a wide
range of scales. Our deployment method is also more robust, since
the final state is precisely singled out by construction - the target
is reached when the material cannot expand any further.

Deployment-aware design. Other works have focused on design-
ing objects that rapidly expand into nearly rigid target shapes. Sk-
ouras et al. [2014] construct inflatable structures by fusing together
sheets of nearly inextensible material. Because each panel inflates
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Fig. 3. Design study of deployable architecture. The freeform inflatable
dome can be used as a semi-permanent, relocatable space.

into a nearly developable surface, many small panels are poten-
tially needed to closely approximate a smooth, wrinkle-free doubly-
curved surface. Zheng et al. [2016] design compact scissor linkage
assemblies that, when stretched, uniformly expand into coarse ap-
proximations of 3D shapes. Their method ensures a collision-free
expansion path for sparse wireframe designs. Dudte et al. [2016] per-
form basic research into approximating singly- and doubly-curved
surfaces with generalized Miura folds. Their origami patterns have
a single degree of freedom parametrizing their path from the flat
configuration to the target shape. For doubly curved surfaces, the
construction is bi-stable, leading to an especially simple deployment
process. However, the design algorithm produces flat configurations
with over twice the surface area of the target.

Actuated shape-shifting. The engineering and graphics communi-
ties have both sought to design mechanisms that transition between
discrete configurations or trace out continuous deformation paths
when actuated. By embedding a rigid fiber lattice in flexible silicon,
Connolly et al. [2017] design tubes that accurately reproduce bend-
ing and twisting motions when inflated. Ma et al. [2017] generalize
this idea, segmenting objects into chambers that, when inflated to
certain pressures, drive the shape into a sequence of desired poses.
Also using pneumatic actuation, Overvelde et al. [2016] present an
origami-inspired metamaterial that dramatically changes shape, and
Ou et al. [2016] design flat sheets that fold into complex origami
shapes. Raviv et al. [2014] design structures that can bend, stretch,
and fold when exposed to water. Liu et al. [2017] study how a
pre-strained elastomer sheet patterned with ink can self-fold when
heated by a lamp.

Actuated form-prescribed geometry. Recent work [Guseinov et al.
2017; Pérez et al. 2017] follows a similar rationale of encoding a
3D target surface in a flat sheet of material. In these methods, the
activation mechanism is directly integrated into the material in
the form of a pre-tensioned elastic membrane. Upon release, the
membrane contracts and forces the pre-shaped rigid elements into
their global target configuration. This approach achieves impressive

results, but has several drawbacks. (i) Pre-stretched materials are
limited in scale. (ii) Fabrication is more complex, since it requires
compositing multiple materials. (iii) Shaping by contraction means
that the flat surface is larger in area than the target surface, reducing
potential packing benefits. (iv) Closed surfaces are more difficult to
realize (only disk-topology surfaces have been shown).

Our approach is scale-invariant, does not require multi-material
compositing (our inflation balloons need not be attached to the
auxetic linkage), leads to compact flat-packed sheets, and can handle
shapes of arbitrary topology.

Auxetic Materials. Auxetic surface materials are an essential in-
gredient of our approach: auxetic linkages permit otherwise inex-
tensible flat sheets of material to uniformly stretch as needed to
deform into doubly curved surfaces. We refer the reader to [Saxena
et al. 2016] for a survey on auxetic patterns, their unique mechanical
properties, and their potential applications to diverse engineering
and medical problems. In graphics, Konakovi¢ et al. [2016] intro-
duced a design tool for fabricating curved target surfaces by cutting
auxetic patterns into flat sheets. However, the resulting uniform
linkage pattern is difficult to deploy because the target surface is
not singled out in any way; the structure can just as easily deform
into an infinite family of other surfaces. This ambiguity necessitates
the use of guide surfaces and careful manual alignment when shap-
ing the material. Our work addresses this limitation by spatially
varying the pattern to uniquely encode the target shape, enabling
rapid deployment without guide surfaces by simple expansion.

Friedrich et al. [2018] also seek to encode the target surface by
limiting the pointwise maximal stretch factors. Rather than design-
ing a fully opened linkage on the target surface, the authors outline
a heuristic to construct a partially opened pattern in the plane:
based on the scale factors of a conformal map, they insert polygonal
openings resembling those at the top of Figure 6. However, it is un-
clear how these polygonal openings are positioned and connected
to ensure proper linkage functionality. The authors then propose
an iterative evolutionary optimization process needed to bring the
fully opened pattern closer to the target surface. In contrast, our
algorithm directly ensures the target surface is closely approximated
by the fully opened linkage; furthermore, we detail efficient mech-
anisms for deployment and characterize the space of achievable
designs for each deployment mechanism.

Multi-stable auxetic patterns [Rafsanjani and Pasini 2016] are
another potential avenue for encoding maximal stretch factors in a
material: they expand from their rest configuration and settle into
stable equilibrium at one or more stretched configurations. We leave
investigation on how to modify these patterns to encode curved
surfaces as future work.

Polyhedral Patterns. When deployed, our auxetic linkage’s equi-
lateral triangles and hexagonal openings tile the target surface with
a tri-hex pattern. A common task in architectural geometry is to
rationalize curved input surfaces using planar polyhedral patterns.
Schiftner et al. [2009] and Jiang et al. [2015] both introduce algo-
rithms that can approximate input surfaces with tri-hex patterns
as a special case. Vaxman et al. [2017] propose a form-finding tool
for general combinatorial patterns and show applications to tri-hex
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meshes. These works focus on symmetry, planarity, and other pat-
tern quality requirements, making no attempt to ensure the tri-hex
pattern can be flattened into a planar configuration by closing the
hexagons, which is essential in our approach.

3 SHAPE SPACE

Which shapes can we hope to achieve with our structures? The
answer depends jointly on the geometry of the structure, as well
as the method used to actuate it. Rather than study this question
in terms of the detailed geometry of a specific mechanical linkage,
we will first consider an idealized model based on smooth differen-
tial geometry. This analysis will then inform the design of discrete
mechanical linkages and their physical actuation described in Sec-
tion 4 and the corresponding optimization algorithm discussed in
Section 5. In particular, we will explicitly characterize the shapes
one can hope to achieve via (i) inflation and (ii) gravitational load-
ing; we will also make an interesting connection between inflated
balloons and conformal geometry (Section 3.2.1).

3.1 Preliminaries

In this section, we consider a closed, compact, and oriented topologi-
cal surface M with geometry given by amap f : M — R3 assigning
coordinates to each point of M. The differential df of f maps tan-
gent vectors X on M to the corresponding vectors d f (X) in R3; the
differential is also sometimes denoted as the Jacobian or deformation
gradient. A map f is an immersion if its differential is injective, i.e.,
if at each point p € M it maps nonzero vectors to nonzero vectors;
since M is compact, it is an embedding if f is also injective (loosely
speaking: if it has no self-intersections). Formally, we will require
that f is a twice differentiable immersion with bounded curvature.
To any immersed surface we can associate the quantity

vol(f) := LN-fdAf,

where N is the outward unit normal, and dAf is the area element
induced by f; when f is embedded, vol(f) is just the enclosed
volume. We will also use g and H to denote the metric and mean
curvature (resp.) induced by f. We use the definition H = %Vf -N,
so, e.g., a sphere has constant positive mean curvature. If dA and
dA are two area measures on M, we will write dA < dA to mean
that dA(U) < dA(U) for all open sets U € M. When considering
variations of the surface, we will think of f as a time-parameterized
family of immersions f(t) and adopt the shorthand ¢ := %¢|t:0
for any time-varying quantity ¢.

3.2 Inflation

To understand the space of shapes that can be achieved via inflation,
we consider an idealized and purely geometric model of rubber bal-
loons. From a mechanical viewpoint, our model would correspond
(very roughly) to a thin isotropic elastic membrane with spatially
varying maximal expansion. This model should however be taken
with a grain of salt: our goal here is not to formulate a precise me-
chanical model, but rather to get a sense of the most significant
geometric effects exhibited by our discrete mechanism—a more rig-
orous analysis (e.g., based on homogenization of the small-scale
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Fig. 4. Design study of a freeform chair realized using four layers of spatially
graded auxetic material to fully cover the surface (see Section 5 for details).

geometry) is beyond the scope of this paper. Moreover, for compu-
tational design, it is often more useful to have a simple and easily
computable geometric model than a detailed mechanical model
which is accurate but difficult to explore due to heavy computa-
tional requirements (e.g., finite element analysis).

We specifically consider the geometry of immersions that (i) lo-
cally maximize enclosed volume, and (ii) do not stretch area above
a given upper bound. Note that we do not consider questions of dy-
namics (e.g., “can this configuration be reached from a given starting
point?”), which are notoriously difficult even without constraints on
volume or area. Instead we consider only the simple static question
of, “what will be true about a surface that achieves these conditions?”
In particular, we make the following observation:

PROPOSITION 3.1. Let dA™ be an area measure on M. Among all
(twice differentiable) immersions f : M — R3 such that dAg < dAT,
those that locally maximize the enclosed volume vol(f) will (i) have
strictly positive mean curvature H > 0 away from sets of measure
zero, where H > 0; and (ii) will achieve the upper bound on area
@dAr = dAY).

ProoF. (i) Suppose an immersion f admits a nonempty open set
D € M on which H < 0. Then we can construct a smooth positive
function u : M — R supported on D and consider the outward
normal variation f := uN. The corresponding first-order changes
in volume and area measure are given by

L vol(f)lr=0 = f udAg >0 and
M

L dAfli=0 = 2uHdAf,
respectively. Since uH < 0, this variation increases volume without
increasing area; hence, f is not a volume maximizing immersion.
Moreover, if H < 0 at any point p € M, then (by continuity of H)
there must be an open ball around p on which H is strictly negative.
Hence, on sets of measure zero, an immersion f that maximizes
volume must have H > 0.
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Fig. 5. When inflated, rubber balloons exhibit near-conformal deformation
(indicated by the preservation of right angles), further motivating our use
of an auxetic design space for inflatable structures.

(ii) Since both dAf and dA™ are area measures, we have dAT =
@dAy for some continuous function ¢ : M — R.If dAy < dA*,
then there will be at least one point p € M where ¢(p) < 1, and
by continuity, an open neighborhood D around p where ¢ < 1.
Letting u be a smooth positive function supported on D, a normal
variation uN will now increase the volume without violating the
area bound. O

Roughly speaking, the surfaces that can be realized via infla-
tion in our model are those that have positive mean curvature (see
Proposition 3.1 and Section 4.1 for further discussion). In practice,
we therefore modify a given target surface to have positive mean
curvature, as described in Section 3.4.

3.2.1 Conformal Balloons.

Suppose we no longer consider volume maximization nor an upper
bound on area, but simply ask about the shape of a balloon that
tries to minimize the elastic membrane energy when filled with
a fixed volume of air. In particular, the Dirichlet energy Ep(f) :=
f M af |2 dAo models an elastic membrane with zero rest length, or,
asymptotically, the energy due to extreme stretching. Critical points
of Dirichlet energy are called harmonic maps, and any harmonic
map between topological spheres is necessarily holomorphic or anti-
holomorphic [Eells and Wood 1976]. We hence find a connection to
conformal geometry:

THEOREM 3.2. Consider a surface (M, go) of spherical topology.
Among all embeddings f : M — R3 of fixed enclosed volumevol(f) =
¢, any embedding minimizing the membrane energy Ep is conformal,
i.e., the induced metric g := df ® df is conformally equivalent to go.

ProorF. Let f be a non-conformal embedding with volume ¢, and
let> := f (M) ¢ R3 denote the image of ]; . We know that a map
minimizing Dirichlet energy over all orientation-preserving embed-
dings f : (M, go) — X is holomorphic (and in particular, conformal
since it is injective and orientation-preserving). Therefore, because
f is not conformal, we can find an embedding f* mapping to ¥ with
smaller Dirichlet energy. This f* still has volume c, but lower Ep,

so f is not minimal. O

Due to the rather simplistic model of membrane energy, one might
wonder whether this theorem provides any useful information about
real physical balloons or our auxetic mechanisms (which allow an

area scaling of at most 4). However, Dirichlet energy will still tend
to dominate more realistic nonlinear models of elasticity in the
limit of large stretching. Consider for instance the elastic energy
described by Chao et al. [2010], E(f) := fM ldf — Rfl2 dA, where
Ry denotes the rotation closest to d f. In the limit of large strain, the
quadratic (i.e., Dirichlet) term of the expansion |df]? — 2(df, Re) +
IRfIZ dominates, and we are left with the same picture as before.
Moreover, the nonlinear terms drop off rather quickly, suggesting
that one should observe conformal behavior even for moderate
stretching—as supported by physical experiments such as the one
pictured in Figure 5. This observation further motivates our use of
auxetic materials with bounded scale factors for inflatable structures.

3.3 Gravitational Deployment

Gravity is an even simpler mechanism for shape deployment: just
suspend a sheet of material by its boundary and let gravity pull it
into the target shape. This approach is most suitable for surfaces
with simple boundary curves like in Figure 11. In fact, to simplify
the fabrication process, we require that the initial surface spanning
the boundary curves be a height field; otherwise attaching the flat
material to the boundary curves would require a complicated manual
deformation. The height field property also guarantees that the
downward gravitational force has a positive component along the
surface’s normal direction, ensuring that it can pull the surface open
analogously to the inflation setup.

When fabricated from our idealized material (characterized by
having zero stiffness until an upper area bound is reached), we ob-
serve that height-field-initialized surfaces will remain height fields
during the deployment. This follows from the fact that only two
types of forces act on interior points during the deployment: gravity
and the material stresses enforcing the area bound. Gravity pushes
points in the material straight downward, decreasing height values
but preserving the height field property. Stresses enforcing the area
stretch bound always take the form of tensile forces: regions of
material that have reached their stretching bound pull uniformly
inward against the surrounding material (tangentially to the sur-
face). Unlike expansive forces, these tensile forces act to straighten
out the material and will not cause the sheet to fold over itself to
violate the height field property.

We now characterize the space of height field surfaces deployable
by gravity, again ignoring questions of dynamics. For consistency
with the inflation setup, we orient the surface’s height axis verti-
cally (parallel to gravity) and choose the surface orientation so that
normals point downward. The gravitational deployment process is
formulated as minimizing the immersion f’s gravitational potential
energy:

U(f)::fo~sz,

where z is the height axis vector oriented opposite gravity and scaled
by the gravitational acceleration constant. Note that dA is the area
element induced by an isometric immersion of M (for which we
assume the material density is 1) and is independent of the particular
immersion f.
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PROPOSITION 3.3. A height field surface represented as a smooth
immersion f : M — R3 that locally minimizes the gravitational po-
tential energy U(f) over all smooth immersions satisfying dAg < dA*
and Dirichlet conditions f = fi51 on OM, must (i) have non-negative
mean curvature H > 0 everywhere and H > 0 almost everywhere;

and (ii) achieve the upper bound on area (dAy = dAt).

ProOF. (i) Suppose there exists a region D € M of nonzero mea-
sure on which H < 0 or dAf < dA*. We can construct a smooth,
positive bump function u compactly supported on D so that the
positive normal variation f := uN decreases gravitational potential
to first order:

LU(f + tuN)lp=0 = fDuN.sz <0,

because N - z < 0 by the height field property. Furthermore, this
variation does not violate the upper bound on area. If dAy < dA*,
no bound is active in D, and the variation must be admissible. If
H < 0, the area measure changes by

dAyp = 2uHdAg <0

for all points in D, and the variation is admissible. Therefore, f does
not locally minimize gravitational potential energy. (The proof of
part (ii) is analogous to Proposition 3.1.)

O

3.4 Projection to Feasible Surfaces

If the surface violates the positive mean curvature requirement, we
must modify it for compatibility with our deployment mechanisms.
However, we wish to keep the design as similar to the input surface
as possible. Accordingly, we change the surface only where needed,
leaving the regions of positive mean curvature untouched. In the
regions violating the requirement, we make the smallest change
necessary in mean curvature space.

We propose the following repair process to achieve these goals:
apply mean curvature flow f = —HN to each region of negative
mean curvature, terminating when mean curvature reaches zero.
Then, to ensure H > ¢ > 0, an arbitrarily small, smooth normal
variation can be applied, computed, e.g., by solving Equation 1 with
H = 1 and zero Dirichlet boundary conditions.

Our repair process indeed produces the closest admissible surface
in the sense of minimizing pointwise curvature distance |H — Hy|
almost everywhere in M (where Hy is the mean curvature of the ini-
tial immersion): it preserves mean curvature in the positive regions
and minimally adjusts each non-positive value. Curvature-based
distance metrics like this are often considered good models of per-
ceptual distance [Kim et al. 2002]. However, for the examples we
tried, we can make an additional observation: the repair process
also locally minimizes pointwise distances to the original surface.

We formalize the repair process as follows. For a smooth initial
immersion fy : M — R3, the regions R; € M on which H < 0
are always bounded by well-defined curves JR;. The repair pro-
cess cuts away each fy(R;) and replaces it with a minimal surface
f(R;) spanning the same immersed boundary curve. This viewpoint
corresponds to the limit ¢ — 0.

First, we consider the space of admissible variations one might
apply to the repaired surface when attempting to move it closer
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to the original. We consider an arbitrary suitably regular variation
f := R; —» R?and define normal velocity u := f-N for convenience.
We observe that u = 0 on dR; since the perturbed surface must still
fill the same boundary curve.

The corresponding first-order change in mean curvature is [Dogan
and Nochetto 2012]:

2H=—Afu—(K%+K§)u+2f-VfH=—Afu—ZIKIu, (1)

where k1 = —k3 are the minimal surface patch’s principal curvatures.
The term involving f vanishes because H = 0, and we applied the
simplification K% + K% = 2|k1x2| = 2|K]. Preserving non-negative
mean curvature requires:

Hz20 = apu+2Klu<0.

For small |K| (mildly curved repaired patches), we expect the Lapla-
cian term to dominate and force the normal velocity to achieve its
minimum on the boundary dR; (superharmonic functions obey a
minimum principle). But u = 0 there, forcing u > 0 inside R;.
Furthermore, in our experiments, closest points on the original
surface always lie to the negative side of the repaired patch in that,
Vp € f(R;) and nearest original points p* = argminjc s ) lIp = pll,
we have N - (p* — p) < 0. This should be expected for moderate
edits, as the curvature flow process converging to the minimal
surface moves points only in the positive normal direction. In these
cases, moving any point on our repaired surface closer to the original
surface requires a motion in the negative normal direction which,
for small |K]|, violates the non-negative mean curvature constraint.

4 MATERIAL DESIGN

Our goal is to design a mechanism that deforms from an initial flat
configuration into a doubly-curved target surface when actuated by
inflation or gravity. Konakovi¢ et al. [2016] study a similar problem,
where linkages based on the regular 2D Kagome lattice are deformed
into general curved target shapes. This approach has two key ob-
stacles to overcome when it comes to rapidly deployable structures,
namely (i) a perfectly regular lattice encodes no information about
the target shape, necessitating some kind of “scaffolding” such as a
3D print to guide assembly, and (ii) there is no clear way to actuate
such a surface, which must be laboriously pointwise-aligned to the
mold and deformed by hand. These observations motivate us to (i)
encode the target shape into the linkage by considering a spatially
varying pattern rather than a regular one, and (ii) consider geome-
tries that can be rapidly deployed via inflation or gravity, as studied
in Section 3.

Discrete Conformal Geometry. A key motivation for starting with
the Kagome lattice is that, as observed by Konakovi¢ et al. [2016],
deformations of this lattice behave at the large scale like conformal
mappings with bounded scale factor. This loose analogy is made a
bit more precise by making a connection to the Cauchy-Riemann
equations: for both conformal maps and the lattice, infinitesimal
planar motions are determined by real degrees of freedom at the
boundary. Another connection recently made by Lam [2017] is that
infinitesimal rotations of the lattice can be described as discrete
harmonic functions (in the usual sense of the cotangent Laplacian),
mirroring the fact that for the logarithmic derivative log(z’) = u+10
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initial 2D state

fully expanded

Fig. 6. Spatially variable maximal expansion of the linkage can be achieved
by scaling and rotating the linkage triangles in the initial 2D state. When
already fully opened (left), no more expansion is possible. When fully closed
(right), the linkage can expand to increase by a factor two in length (or a fac-
tor of four in area). Partially opening the initial configuration allows varying
the scale factor, indicated by the size of the orange triangles connecting the
barycenters of the openings.

of a holomorphic map z, the two components u, 6 describing scaling
and rotation (resp.) are conjugate harmonic. To date, however, there
is still no complete discrete theory of conformal maps based on
the Kagome lattice that includes finite deformations, nor confor-
mal immersions in R3. Nonetheless, adopting the conformal point
of view allows us to leverage well-developed tools from computa-
tional conformal geometry for the purpose of designing deployable
mechanisms.

Mechanical Properties. From a mechanical point of view, linkages
based on the Kagome lattice are flexible enough to produce a wide
variety of curved surfaces and already have a locking mechanism
built-in: stretching the material to four times its original area fully
opens the linkage, blocking further expansion. In fact, one can easily
show that the linkage is rigid (albeit unstable) in its fully open con-
figuration; additional forces such as gravity or air pressure help to
stabilize the fully open state. We take advantage of these mechanical
properties to aid deployment. In particular, we adapt the pattern to
achieve a spatially varying (rather than constant) maximum bound
on expansion across the surface. When deployed, the varying expan-
sion leads to out-of-plane buckling; thus the linkage must assume a
curved configuration.

The geometric and mechanical pictures can of course be linked:
the bound on expansion in the discrete linkage can be modeled by
a bound on the conformal scale factor e of a smooth conformal
map, and the buckling exhibited by the deployed linkage is approx-
imately determined by the Yamabe equation Au = e**K relating
the logarithm of the scale factor to the Gaussian curvature K of
a smooth surface approximating the target geometry. To explore
designs for our mechanical linkage, we therefore adopt a strategy
based on geometry: first, we compute a conformal map from the
plane to the target surface, and read off the scale factors Ayt := e*.
We then use these factors to design or “program” a spatially-graded
pattern that approximately matches the corresponding maximum

initial 2D state

initial 2D state

fully closed

! !

variable, partial expansion

variable, partial expansion

fully expanded

target 3D state
requires guide surface

target 3D state
automatically deployed

Fig. 7. The method of Konakovi¢ et al. [2016] (left) uses a uniform, fully
closed initial 2D state and achieves its target state with variable partial
openings. Proper deployment thus requires a guide surface and precise
manual alignment. In contrast, our spatially varying initial openings in
the 2D state allow encoding the target surface in the flat configuration,
facilitating automatic deployment by maximal expansion without the need
of any guide surface (right).

expansion at each point. When fully expanded, a mechanism based
on this pattern should approximate the desired target shape. Below
we first consider the uniqueness of the deployed configuration, be-
fore detailing how to program the desired maximal expansion factor
into our discrete triangular linkage.

4.1 Uniqueness

The spatially varying maximal extension factor uniquely determines
the fully expanded linkage’s metric. In other words, the deployed
shape is completely determined up to isometric deformation. Does
this mean that the metamaterial uniquely encodes the target shape?
In general, the answer is no. For instance, the material alone cannot
distinguish between “bumps” with negative or positive mean cur-
vature since both produce the same metric distortion. However, in
this case our specific deployment methods provide additional regu-
larization: they always produce surfaces of positive mean curvature,
eliminating this ambiguity.

Convex surfaces are known to be unique up to global rigid trans-
formations. Surprisingly, the question of whether smooth closed
surfaces can be flexible in R3 (i.e., admit infinitesimal deformations
preserving the metric) remains an open problem in differential ge-
ometry [Ghomi 2017]. So far, no examples have been found, and in
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practice, all of our examples deployed to their proper target config-
urations.

4.2 Auxetic Linkages with Locally-Controlled Stretching

We now consider how to adapt the regular triangle auxetic link-
age structure to impose a spatially-varying upper scaling bound
tailored to the conformal scale factor Agt. We begin with the follow-
ing observation: taking the standard linkage pattern (with length
stretch factor A in the range 1 < 1 < 2) and pre-stretching by 2/Agt
yields a new material with the stretching bounds Atgt/2 < A < Atgt.
Effectively, this pre-stretching limits the amount of additional ex-
pansion possible until the fully opened configuration is reached (see
Figure 6). This reduces our problem to producing a linkage with a
spatially-varying pre-stretch in its flat configuration. The challenge
now is to piece together patches with different pre-stretch. As illus-
trated in Figure 6, this can only be done by scaling the triangles, as
will be detailed below.

Figure 7 shows an example and provides a comparison between
our spatially graded auxetic linkage and the homogeneous pattern
proposed in [Konakovi¢ et al. 2016]. Note that the nonuniform link-
age structure no longer fully opens or closes in the plane like the reg-
ular auxetic linkage could; once any region (hexagonal opening) in
the pattern fully opens or fully closes, further expansion/contraction
requires spatially varying the stretch factors, inducing curvature
that forces the structure into 3D.

5 MATERIAL OPTIMIZATION

In this section, we describe our computational workflow and the op-
timization algorithm for computing the deployable auxetic linkage
for a given design surface.

Preprocessing. Our first step is to analyze the input surface to
ensure that it satisfies the positive mean curvature requirement.
As discussed in Section 3.4, we correct infeasible surfaces by ap-
plying mean curvature flow adapted to operate only on regions of
non-positive mean curvature(see also Figure 9). We use implicit
integration for the flow as proposed by [Desbrun et al. 1999]:

(M" + LY = Mx,
where M is the mass matrix, h is the step size, L is the positive
semidefinite cotan Laplace matrix, x is a matrix of vertex positions
(one row per input surface vertex), and the superscripts indicate the
iteration number. We run this flow until convergence updating only
the positions of vertices with non-positive mean curvature.

Given the corrected input surface S, our goal now is to find the
2D layout of the triangular linkage that, when deployed to maximal
expansion, approximates S as closely as possible. Figure 8 illustrates
the main steps of our algorithm.

Conformal Flattening and Remeshing. We first compute a confor-
mal map f : S — Q from the target surface S to a planar domain
Q c R? using the methods of [Sawhney and Crane 2017]. We check
if the conformal scale factors are within the bounds prescribed by
the linkage mechanism, and, if necessary, introduce cone singulari-
ties at user-selected locations to reduce scale distortion as described
below. Next, we sample the parametric domain Q with a regular
equilateral triangle mesh Mjp that defines the base structure of our
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linkage. The user selects the resolution and orientation of this mesh
to match her design intent. Lifting Mp onto S by the inverse map
£ yields Msp.

3D Linkage Optimization. We now obtain an initial guess for the
fully-opened linkage structure by constructing the medial triangle
for each triangle in M3p (i.e., inscribing a triangle by connecting
edge midpoints; see Figure 8). While this initialization is already
close to the desired target configuration, the discrete nature of the
lifting function introduces inaccuracies that necessitate further opti-
mization. In particular, we need to ensure that the linkage triangles
remain equilateral and are maximally expanded everywhere while
staying close to the target surface. Fortunately, these objectives
can be formulated easily in the context of the projective approach
of [Bouaziz et al. 2012]. Specifically, to obtain the linkage’s curved
target configuration L3p we minimize an energy function Ej3p de-
fined as the sum of three different objective terms over the vertex
positions x,

Ep3p(x) = leexpand(X) + wZEequi(X) + w3Edesign(X)v ()
with weights ;. Each term can be formulated as a sum of constraint
proximity functions of the form ¢(x¢) = [|xc — P(x¢) ||§, where x.
is the vertex set involved in the specific constraint, and P denotes
the projection operator to the constraint set, as detailed below.

We observe that in the fully expanded
state, the hexagonal openings formed by
the linkage must attain maximum area. By
Cramer’s theorem [Niven 1981, p. 236], this
maximum is achieved when all vertices of
the opening lie on a circle.

We thus introduce the expansion term

Eexpand = Z lIxp — PC(Xh)Hg,
heH
where h is an index set of vertices in a particular hexagonal opening,
and H is the collection of all such index sets in the linkage. Pc(x,)
defines the projection to the circle closest to the vertices of xy,
computed as described in [Bouaziz et al. 2012].

Contrary to the uniform pattern used in [Konakovi¢ et al. 2016],
our linkage triangles need to vary in scale to introduce spatially
varying maximal expansion. In order to let triangles scale freely but
keep their equilateral shape, we introduce the energy

2
Eequi = ) lIxe = Prxo)ll3,
teT

where ¢ is the index set of the vertices of a triangle, T is the set of all
linkage triangles, and Pr is the projection to the closest equilateral
triangle, computed using shape matching as described in [Umeyama
1991].

Finally, to keep the linkage close to the design surface, we apply
positional constraints of the form

Edesign = ., %0 = Ps(x0) I3,
veV
where v is a vertex index, V' is the set of all linkage vertices, and Pg
defines the projection to the closest point on S.
The minimization of Ej3p then follows the typical local/global
iteration strategy (see also [Sorkine and Alexa 2007]): the local
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Fig. 8. Sketch of the optimization algorithm for computing the spatially graded auxetic linkage for a given input surface S.

step computes all the constraint projections involved in the objec-
tive terms for the fixed current vertex positions; the global step
subsequently solves for the optimal vertex positions keeping the
constraint projections fixed. Details on the precise definitions of
the projection operators and the corresponding numerical solver
implementations can be found in [Bouaziz et al. 2012] and [Deuss
et al. 2015].

2D Linkage Optimization. The 3D optimization provides us with
the curved target configuration Lsp of the linkage in its fully opened
state. Now we need to find the contracted linkage in the plane that
defines the material rest state to be fabricated. We formulate this
problem as a second projective optimization. We first apply the
necessary topological cuts to convert M,p into a regular triangular
linkage Lop with uniform triangle sizes (Figure 8). Note that this flat
linkage has a one-to-one vertex correspondence with the deployed
linkage L3p. Next, we optimize the 2D vertex coordinates u of Lyp
so that the triangles assume the edge lengths of Lsp. This is again
easily implemented using a projective edge length constraint of the
form

Fegge = . Il(wi =) = Pp(ui, u))l3,
(i,j)€E

where (i, j) denotes the vertex indices of an edge and E is the set of
edges of the linkage. The operator

_Ixi = xgl

Pg(uj,uj) (u; —uy)

lla; —ujl|
projects to the closest edge with target length ||x; — x;|| of the
corresponding edge in the 3D linkage L3p. We also add the non-
penetration constraint proposed in [Konakovi¢ et al. 2016] to avoid
collisions in the 2D state. The final optimized linkage Lyp then
defines the flat auxetic surface material that deploys to the desired
target state.

Algorithm Parameters. Our implementation of the projective con-
straint solver is based on the open-source library provided by [Deuss
et al. 2015]. We set the weights in (2) to w; = w2 = 100 and w3 = 1
and apply between 100 to 600 iterations, depending on the mesh
resolution. Total computation time for 3D and 2D optimization for
a linkage with 8k triangles is 1.8 minutes on a standard desktop
computer with 4.2 GHz computed on a single core.

Cone Singularities. When the conformal scale factors exceed the
maximal expansion limits of the auxetic linkage, we need to insert
cone singularities in the conformal map to reduce scale distortion.
Singularities can also be mandated by the input surface’s topology
(to satisfy the Gauss-Bonnet theorem). These singularities corre-
spond to boundary vertices of Myp where the incident boundary
curves (seams) close up when lifted to Msp by the conformal map.

Because conformal maps preserve an-
gles, for the surface to close up and form
aregular equilateral triangle mesh when
lifted to Msp, the sum of triangle an-
gles around the singular vertex in Myp—

referred to as the cone angle—must be an ay
integer multiple of Z. In the inset figure, S

we show an example with cone angle ST”

and see how the equilateral triangle mesh (and an inscribed linkage)
will properly stitch together when lifted to Msp. Figure 10 shows
examples with singularities of cone angle 47” and ST”

In-plane Opening. In case the computed scale factors do not fully
cover the maximal admissible range, the resulting 2D linkage can
still be expanded in the plane until one hexagonal opening is fully
opened—or contracted until one opening is fully closed—as shown
in the inset.

We leverage this property for the
fabrication result in Figure 1 to re-
duce the material stresses at the tri-
angle joints during inflation by pre-
opening the linkage as much as pos-
sible; this minimizes the rotation
necessary to achieve the fully ex-
panded configuration. In the opti-
mization, we add an additional angle
constraint [Deng et al. 2015] with a low weight that either tries to
expand or contract the linkage in the flat configuration, depending
on the user’s preference.

Filling in the Surface. If the user desires a deployed surface with-
out holes, the hexagonal openings in the fully expanded linkage can
be filled in by layering four sheets offset from each other:
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Fig. 9. From left to right: input design surface, modified surface with positive mean curvature everywhere, optimized linkage in deployed state, 2D rest state
of flat-fabricatable material. In the bottom row, a singularity of cone angle 2Z is introduced to bring the conformal scale factors to lie within the admissible

range.

However, simply creating copies of the optimized linkage L3p and
shifting them does not work: this would effectively translate the
deployed surface itself and also would lead to triangles imperfectly
fitting the hexagonal holes due to the varying scale factors. In-
stead, these sheets must be designed by offsetting copies of Myp in
the parametric domain and lifting/optimizing them in 3D. Figure 4
shows an example of a surface filled in with this method.

Verification by Simulation. Recall that the above optimization
maximizes surface expansion of the linkage on a target surface
of positive mean curvature. In the smooth setting, our analysis in
Section 3 shows that this defines a deployable target surface under
inflation or gravity. To verify that this observation also holds in
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the discrete case, and that the computed linkage does indeed define
a steady state under inflation or gravitational loading, we apply a
physics-based simulation. We use the same projective approach as
we did for linkage design, using only edge length constraints to keep
triangles rigid and positional constraints to fix the boundary. We
augment this optimization with dynamics as proposed in [Bouaziz
et al. 2014] by applying forces on the linkage vertices. For inflation,
the force vectors are oriented along the surface normal, for gravity
along the fixed negative vertical axis.

Our experiments confirm that the linkages properly deploy, reach-
ing an equilibrium configuration very close to Lsp. For each of our
examples, we compute the maximal distance between vertices in
Lsp and their corresponding pairs in the equilibrium linkage. We
then compute a maximum relative vertex deviation for each model
by dividing this distance by the length of the bounding box diagonal.
The model with the worst relative deviation has a maximal vertex
distance of 0.0513 and a bounding box diagonal of 28.5, giving a
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Fig. 10. Cone singularities are required when modeling closed surfaces
such as the sphere. The simulated models at the top depict examples with
cone angles of 4;7/3 and 557 /3, respectively. At the bottom, lower-resolution
fabricated prototypes with cone angles of 4;7/3 are shown, one fabricated
by laser cutting with triangles connected by rings, one 3D printed with
ball joint connections. The surfaces have been closed manually along the
boundary elements prior to inflation.

relative deviation of 0.0018. In all cases, the differences are nearly
imperceptible.

6 RESULTS

We verify our material design and optimization approach with a
number of numerical and physical experiments, illustrating a range
of potential application fields with different materials and usage
domains. Figure 9 shows several examples of our deployable auxetic
surfaces computed with the optimization algorithm described in
Section 5.

Fabricated Prototypes. Figure 1 shows how one can deploy a
doubly-curved freeform surface from a single flat sheet of mate-
rial. The expansive forces for deployment are created by a generic
rubber balloon that is inflated against the support plane. As the bal-
loon is pumped with air, it presses against and deforms the linkage
until the target shape is reached at maximal stretch. The balloon has
no information about the target shape, which is solely encoded in
the linkage pattern computed by our algorithm. Note that while the

inflated surface has positive mean curvature everywhere as required
by our analysis, both positive and negative Gaussian curvature are
present in the target shape. Figure 10 shows how cone singulari-
ties are introduced when inflating closed surfaces. The structure
of Figure 11 illustrates how gravitational forces can be used to de-
ploy the target shape from the flat rest configuration. The resulting
structure is in tension everywhere and can thus be used for physical
form-finding of self-supporting structures in analogy to the famous
approach of Antoni Gaudi [Fernandez 2006].

Application Case Studies. Figure 2 illustrates an application in
personalized medicine, where a deployable freeform coronary stent
can be customized to a specific patient. The stent is fabricated as
a flat structure, then rolled into a thin cylinder. When inflated,
the stent adopts the desired freeform shape to best advance blood
flow in the critical artery. Figure 3 highlights an application in
deployable architecture to construct a relocatable, semi-permanent
structure. Compared to the simple geometries of existing inflatable
structures, our approach supports a broader class of freeform shapes,
which allows adapting the structure to the design-specific interior
space requirements. Figure 4 illustrates how multiple layers of our
programmable auxetic material combine to create the approximately
closed surfaces of a freeform chair (deployed by gravity).

7 LIMITATIONS AND FUTURE WORK

Our current deployment strategies using inflation or gravity can
only actuate a subset of the surfaces realizable with a graded aux-
etic linkage: those with positive mean curvature. Adding additional
constraints—for example, in the form of strings connecting cer-
tain vertices and thus preventing expansion towards positive mean
curvature—can enlarge the space of deployable shapes. It is an in-
teresting question for future work to find a minimal set of such
constraints for a given target surface.

For closed surfaces and surfaces requiring singularities, we must
introduce cuts to flatten the material to the plane (see Figure 10 and
bottom row of Figure 9). While this retains the benefits of planar
fabrication, the deployment becomes more complex, as the material
has to be re-connected along the cut seam prior to actuation.

Our results confirm that we obtain a close approximation of the
target shape even for relatively coarse resolutions of the linkage.
However, although we have observed several connections to confor-
mal mapping theory that inform our optimization algorithms, we
currently do not have a discrete theory for the geometry of graded
auxetic linkages. Developing such a theory in the context of discrete
differential geometry is an exciting avenue for future work.

While our fabricated prototypes provide a proof-of-concept for
the physical realizability of our designs, we do not address impor-
tant fabrication-related issues at different scales. In particular, it is
crucial for robust deployment to optimize the joints connecting the
linkage triangles. It also would be interesting to test techniques for
permanently rigidifying the deployed structure. We hope that our
work can stimulate new research in material science, mechanical
engineering, and architectural construction to study these questions
in more detail.

ACM Trans. Graph., Vol. 37, No. 4, Article 106. Publication date: August 2018.



106:12 « Konakovié-Lukovi¢ et. al.

TNy
X
208
"\i’
o

e

\.
%

Fig. 11. Deployment via gravity. The auxetic linkage shown on the bottom right has been optimized to match the input design surface on the left. The structure
has been assembled in the flat state from individually laser-cut triangles that are connected by metallic rings to enable the rotational motion of the linkage
triangles. When lifted onto the rectangular support, the surface automatically deploys into its target shape. Note that boundary vertices are fixed along the
long edges of the support rectangle, and connected with strings on the short edges.

8 CONCLUSION

Numerous physical objects, such as ship or airplane hulls, build-
ing facades, clothing, and many consumer products are fabricated
by shaping thin, initially planar materials. The shaping process
typically involves bending, stretching, or otherwise deforming the
material using a mold or scaffold to guide the deformation towards
the desired 3D shape. Deployable structures provide an alternative
where the shaping process and resulting target geometry are implic-
itly encoded in the structure itself. We have shown that spatially
graded auxetics are well suited to implement deployable surface
structures. Instead of rationalizing a 3D design surface for a given
homogeneous material, we spatially optimize the material itself. By
carefully controlling the expansion behavior of the material, we di-
rectly program the target surface geometry into the flat 2D rest state.
Inflation or gravitational loading then automatically deploys the
rest state towards the target, which is assumed when the material
cannot expand any further. As a consequence, we can leverage the
efficiency of 2D digital fabrication technologies without requiring
any additional 3D guide surface. Our deployment strategy is robust
and reversible, which supports efficient storage and transport and
enables new applications for semi-permanent structures.

The combination of limited-expansion auxetic material with a
deployment via inflation or gravity imposes limits on the space of
realizable shapes. Our analysis clearly delimits this space and di-
rectly informs our computational solution, providing designers with
an effective tool to realize new deployable structures not possible
before.
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