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Figure 1: Even for near-isometric surfaces, correspondence problems can be quite challenging. Here we first compute a conformal parame-
terization over the sphere (left). Since this parameterization is not unique, we must pick an inversion (center) and rotation (right) that best
registers the two maps. We describe a fast, simple procedure for computing this transformation, and generalizations thereof.
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Abstract

Conformal parameterizations over the sphere provide high-quality maps between genus zero surfaces, and are essential for
applications such as data transfer and comparative shape analysis. However, such maps are not unique: to define correspondence
between two surfaces, one must find the Mobius transformation that best aligns two parameterizations—akin to picking a
translation and rotation in rigid registration problems. We describe a simple procedure that canonically centers and rotationally
aligns two spherical maps. Centering is implemented via elementary operations on triangle meshes in R3, and minimizes area
distortion. Alignment is achieved using the FFT over the group of rotations. We examine this procedure in the context of spherical
conformal parameterization, orbifold maps, non-rigid symmetry detection, and dense point-to-point surface correspondence.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1 Introduction fofl ! of two corresponding spherical parameterizations fi, f5.
Not surprisingly, numerical algorithms for computing spherical con-
formal parameterizations have received significant attention over the
past two decades [HAT*00,GY03,GGS03,FSDO05, KSS06, SSP08,
KSBCI12, CPS13, PKC*16]. Unfortunately, however, for a given
surface M the parameterization f is not unique: it is determined only
up to Mibius transformations, i.e., conformal maps from S? — §2.

The uniformization theorem guarantees that there is a conformal
map f : S — M from the sphere S? to any genus zero surface
M, i.e., a smooth, nondegenerate, and globally injective map that
preserves both angles and orientation. This fact is enticing for ap-
plications, since it ensures there is always a “nice” map between
any two surfaces M, M, of genus zero, given by the composition
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more iterations

input centered

Figure 2: Top: Left unchecked, iterative algorithms for spherical
conformal parameterization may apply large Mdbius transforma-
tions that severely distort area. Bottom right: A basic application
of our algorithm is to prevent this “drift” by picking a canonical
inversion that centers area distortion.

Computing the best-aligned Mobius transformation is there-
fore quite important, because it allows one to define a “cross-
parameterization” that is determined purely by the geometry of
the two surfaces (Figure 1), without reference to auxiliary data such
as landmark points. The resulting map can be used to transfer in-
formation between two similar shapes, facilitating tasks including
surface matching, point-to-point correspondence, detail transfer,
remeshing, and shape co-analysis. For a single surface, defining a
canonical Mobius inversion plays a role in, e.g., stabilizing param-
eterization algorithms (Figure 2), or mitigating area distortion in
surface flows [CPS13].

In this paper we propose a simple, pragmatic approach that finds
a centering transformation with low area distortion via a simple iter-
ative descent algorithm, then achieves rotational alignment via a fast
Fourier transform (FFT) over the group of rotations. For perfectly
isometric surfaces this procedure recovers an isometry; for near-
isometric surfaces we get reasonably good correspondence, though
of course quality is greatly restricted by the rigidity of Mdbius trans-
formations. Therefore, one way to view our method is as a fast and
reliable way to initialize more challenging (e.g., nonconvex) surface
registration algorithms, whether conformal or not.

Outline After reviewing related work (§2) and relevant mathemat-
ical background (§3), we derive a simple descent strategy that is
guaranteed to produce a unique centering transformation (§4). We
then briefly consider a generalization to non-conformal transforma-
tions, providing a trade-off between angle and area distortion (§5).
In §6 we give an explicit centering algorithm, and show how fast
signal processing can be used to register the rotational component.
We evaluate our approach in the context of spherical conformal
parameterization, spherical orbifold mapping, non-rigid symmetry
detection, and dense correspondence, highlighting some of the chal-
lenges of using conformal maps for shape registration (§7). In §8
we provide a summary and discussion of future work.

2 Related Work

The problem of finding the “best” Mobius transformation has been
studied in a variety of different contexts. For some tasks (such as
surface parameterization or data visualization) it is sufficient to
determine a canonical inversion; for other tasks (such as surface
registration) a rotation is also needed in order to align two surfaces.
We consider both tasks below.

2.1 Canonical Inversion

Suppose we do not care about rotation. Which Mobius transfor-
mation is canonical? Bern and Eppstein [BEO1] use quasiconvex
programming to maximize the minimum radius of a collection of
spheres or edge lengths, with applications to problems in data visu-
alization and mesh generation; implementation is substantially more
complicated than for the approach we present here, and optimization
of nonuniform triangle areas (as arise in conformal mapping) is left
as an open problem. Crane et al. [CPS13, Appendix E] consider
Mobius transformations that minimize area distortion in the special
setting of conformal surface immersions parameterized by mean
curvature half density, with no guarantee of optimality.

More commonly, the canonical Mobius transformation is defined
as the one that places the center of mass of a collection of points
Dl1,--.,Pn at the origin. Springborn [Spr05] shows that such a trans-
formation always exists and is unique; the same basic reasoning
would appear to extend to a positively-weighted sum of points or
any sufficiently well-behaved mass density A : M — R~.

Stereographic projection. Mébius transformations of the sphere
have many different representations. One is to stereographically
map the sphere to the plane via a point of projection p € $2, apply a
rotation 6 € [0,27), offset u € R?, and positive scaling a € R+ of
the plane, then return to the sphere via inverse stereographic projec-
tion; note there are six degrees of freedom in total, corresponding to
the dimension of the Mobius group. Li & Hartley [LHO7, Section
4.5] directly minimize the norm of the center of mass with respect
to the scaling a and offset u, which are sufficient to describe Mobius
transformations up to rotation (a statement there that the minimizer
can be obtained via a linear system appears to be in error [Har18]).
Koehl & Hass [KH14, Section 2.3] take the same approach to find
an initial guess for subsequent a nonconvex energy (note that this
strategy is actually different from the one of Springborn, which we
discuss below). Although the centering transformation is unique,
there is no clear guarantee that gradient descent on this particular
energy will always work—for instance, the norm of the center of
mass is not a convex function of a and u, due to the inverse stereo-
graphic projection. Our centering procedure (Algorithm 1) provides
a simple alternative that is guaranteed to find a canonical inversion.

Homogeneous coordinates. Springborn [SprOS5, Lemma 2] char-
acterizes the centering Mobius transformation as the minimizer
of an energy that is geodesically convex in hyperbolic space,
though is not convex with respect to any coordinates on this space.
To date there is very little work on geodesic convex optimiza-
tion [ZS16]; a practical alternative suggested by Springborn [Spr18]
is to consider Mobius transformations of the 2-sphere S? C R3
represented as linear transformations in homogeneous coordinates
p = (x,y,2,1). In particular, let E € R*** encode the Lorentz inner
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product pTEp = x% +y* + 22 — 2, so that homogeneous coordi-

nates satisfying p' Ep = 0 correspond to points on the unit sphere.
Mobius transformations are then represented by linear maps that
preserve this inner product, and hence map the sphere to itself (the
so-called Lorentz transformations). To center a collection of points
pi = (xi,¥i,zi, 1) on the unit sphere, one first minimizes the energy
®(q) = Y;log(—q " Epi/\/—qT Eq) over points g = (x,y,z,1) with
(x,,2) inside the unit ball. A Lorentz transformation is then obtained
by applying the Gram-Schmidt process (relative to E) to the vec-
tors a4 = ¢q,a1 = (1,0,0,0),ap = (0,1,0,0),a; = (0,0,1,0) (in this
order), which become the columns of a matrix A = (ay,a3,a3,a4).
The inverse matrix, A~! = EATE, gives the centering inversion.
Though the Hessian of @ is not always positive-definite, one can
switch to gradient descent at indefinite points and still arrive at a
canonical solution. Our strategy provides the same guarantees, but is
simpler to implement and tends to converge in far fewer iterations.

Euclidean coordinates. Finally, just as every rotation of space
can be expressed as an even number of reflections, every Mobius
transformation of the sphere can be expressed as an even number of
spherical reflections in standard Euclidean coordinates. In Section
4 we consider an elementary approach to centering based on this
point of view, yielding an iterative descent scheme (Algorithm 1)
that can be directly applied to triangle meshes or point sets in R3.
From a practical point of view, there appears to be no real benefit
to working with stereographic projection or homogeneous coordi-
nates: the simple Euclidean algorithm we describe is guaranteed
to work, converges rapidly, and can be implemented via straight-
forward operations in R3. Moreover, this perspective extends to
canonical spherical parameterizations that trade off between angle
and area distortion (Section 5), and in principle, provides a start-
ing point for defining canonical mappings on any domain (not just
spheres).

2.2 Conformal Registration

To establish point-to-point correspondence between surfaces, one
must find the best-aligned Mobius transformation including rotation.
Despite the importance of this problem, it has received relatively
little attention: most earlier approaches either require landmarks
(e.g., [SZS*13,LLYG14]) or perform extensive sampling of possible
three-point correspondences (e.g., [LF09, LPD13]). Unlike these
methods, our approach does not require landmarks or other auxiliary
data, and does not need to perform extensive search. A notable
exception is the method of Hass & Koehl [HK15], who optimize a
more sophisticated (albeit nonconvex) measure of metric distortion;
the resulting notion of canonical metric appears to be quite valuable
for problems in shape matching and analysis [KH14, KH15]. In this
context, our centering strategy can be viewed as a replacement for
their initialization procedure. Finally, Li & Hartley [LHO7] consider
a rotation invariant shape descriptor using spherical harmonics
relative to a canonical Mobius inversion. This descriptor cannot
however be used to determine point-to-point correspondence.

A simple idea for performing rotational alignment is to apply
principal component analysis to conformal scale factors, but this
approach merely aligns quadratic terms in the Fourier expansion—
ignoring the large “spikes” of area distortion typically seen in a
conformal parameterization. A more sophisticated idea is to apply
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Fourier-type methods directly to the Mobius group—here one en-
counters two challenges. First, the group of Mobius transformations
is not compact, making it impossible to use existing generalizations
of the Fast Fourier Transform (FFT) [MR95, Roc97]. Second, the
Mobius group is six-dimensional, so even if a signal-processing ap-
proach were possible, the storage and run-time requirements would
be prohibitively expensive. From this point of view, finding a canoni-
cal inversion can also be viewed as a way of reducing the dimension-
ality of the problem, allowing us to facilitate a (lower-dimensional)
signal processing approach to achieve alignment (Section 6).

3 Review

We first review some basic facts and notation that are needed to
derive our basic centering algorithm.

3.1 Notation

Throughout we will use |- | and (-, ) to denote the usual Euclidean
norm and inner product on vectors in R3. For any time-varying
quantity ¢(z) we will use a single dot to denote the derivative at
time zero, i.e.,

t=0

3.2 Mdbius Transformations of the Sphere
Consider the open unit ball in R? given by the set of points
B = {x€R3:|x| < 1}.
and let $2 be the boundary of B3, i.e., the unit sphere. For any center

¢ € B3, we can compose a spherical reflection x — (x+¢)/|x +c|?
with translation and scaling to obtain a map

+c
c(x) = (1— 2 X
el i= (1= )

+c

that takes S2 to $2 (as illustrated in Figure 3). We will refer to
such maps as inversions. All conformal maps from the sphere to
itself (including rotations) can be expressed as an even number of
inversions—though for the purpose of centering (where we do not
care about rotation, and where orientation is superficial) we can
consider just a single inversion.

Figure 3: Left: An inversion M. will push the sphere toward the
inversion center c. Right: If ¢(t) = tu is a time-varying family of
centers (for some fixed vector u), then the motion %nc looks like a
flow toward c along the gradient of the linear function (u,x).
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Figure 4: A spherical conformal parameterization f : S — M dis-
torts area by a factor A. Viewing A as a mass density on the sphere,
we seek an inversion 1) that puts the center of mass at the origin.

4 Canonical Centering

Let f : S? — M be a spherical conformal parameterization of a genus
zero surface M C R3. The area element dA on M is then related to
the standard area element dA g on the sphere by

dA = ldAsz,

where the function A : 2 — R is called the conformal scale factor.
We will use pg € R3 to denote the corresponding center of mass

Up := /Szl(x)diSz:/;zdi, (1)

i.e., the position x on the sphere, weighted by the conformal factor
A. Suppose we apply an inversion 7). to the sphere, yielding a new
parameterization f on. ! with conformal factors A.. Then the new
center of mass is

wie) = '/Szlc(x)diSz :/Sz Ne(x) dA, @)

since when the integral on the left is pulled back under 7., the
conformal scaling due to the 1! component of fon; ! cancels
with the change in area due to the pullback. We seek an inversion
that moves the center of mass to the origin (i.e., (c) = 0), which
can be acheived by minimizing the energy

E:=}lu(e)P

with respect to the inversion center c. (Note that we do not need to
consider rotations, which have no effect on the norm.) The corre-
sponding gradient is given by

V.E=Ju, 3)

where J; denotes the Jacobian of p with respect to ¢ (and T denotes
the transpose). To compute this Jacobian, consider a time-varying
inversion center ¢(t) := tu for some fixed vector u € R3. The time
derivative of 1. at# = 0 is then

e () = = ).

In other words, moving the center of inversion toward u causes each
point x to slide tangentially on the sphere, along the direction closest
to u. As a result, the sphere will gradually contract near the head of
u, and expand near its tail (consider Figure 3, right). Applying our

expression for 7 to Equation 2, we then get

o= 2/ u— (u,x)x dA.
Js2

Noting that Jy,u = f1 for all u, the Jacobian at ¢ = 0 is therefore
J#|C:0:2/Szid—x®di, )

where id denotes the identity, and ® is the outer-product.

4.1 Existence and Uniqueness

Following the gradient V.E will always yield a unique center ¢ € B>
that places the center of mass u at the origin. To see why, first
note that the Jacobian Jy, has full rank, since it is a positive linear
combination of linearly independent rank-2 operators id —x ® x.
Hence, the energy gradient V. .E = JJ 1 will be zero if and only if
Uo = 0, i.e., if the center of mass is already at the origin. Moreover,
as the center approaches the boundary of the ball, the energy tends
toward its maximum value, i.e., lim, 1 E =c Js2 dA. Hence, there
must be a minimum at some point on the interior of B3. To see that
the centering inversion is unique, recall that an inversion moves
each point toward the centering direction ¢ (except for the poles £c).
Hence,

{e:Me(x)) = (e, ).

Suppose the center of mass is already at the origin, i.e., yy = 0, and
let i (c) be the center obtained by applying an inversion with any
center ¢ € B?. Then

(@) = [ fene) da> [ (ex) da = te.po) =0.

(Note that the inequality is strict since A is a smooth function; hence,
not all mass can be concentrated at the poles.) Hence, there can be
no inversion that leaves the center of mass at the origin.

5 Generalized Centering

In Section 4 we studied the centering problem via explicit geomet-
ric calculations in R3. In this section we consider an alternative,
functional perspective that naturally generalizes beyond conformal
transformations of the sphere. To make a link between the two points
of view, suppose that x = (x1,x,x3) are coordinates on R3. Then we
can think of u as the projection of the conformal factor A onto the
space of linear functions spanned by the corresponding coordinate
functions e; : > — R;x + x;. In other words, we can identify u with
the function %Z?:] (Je2 A e; dAg2)e;. Additionally, infinitesimal
inversions look like gradients of linear functions, i.e., for ¢(r) = tu,
we have

%ﬁc(z) (X) =u— <M7X>X = V<x7 u)u

as depicted in 3, right. Hence, the center of mass  is zero if and only
if the conformal factors vanish when projected onto the space of
linear functions; if 1 is nonzero, then we can always reduce its norm
by “flowing” along the gradient of some linear function. Rather
than thinking about conformal factors, we could also just say: the
parameterization is centered if the coordinate functions on $2 vanish
when integrated with respect to the area of the target surface. As we
will see in Section 5.2, the notion of a centered parameterization can
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therefore be generalized by replacing the linear functions with any
collection of smooth functions F, and the area element dA with a
volume form @ on any manifold. Likewise, our centering motions
will no longer be infinitesimal Mobius transformations, but rather
flows along gradients of functions in F. The key observation is
that, as with the sphere, a parameterization that is not centered can
always be improved by such motions, i.e., the norm of the center u
has local minima only when p = 0.

5.1 Preliminaries

We briefly review some basic concepts needed for our generaliza-
tion; more detailed discussion can be found in a standard text on
differentiable manifolds, such as Abraham et al. [AMR93]. Let M
be a compact connected orientable n-manifold without boundary,
and let dV be the volume form on M—in the context of Section 4,
for instance, M = S? and dV = dAg. We will use || - || and ((,-)) to
denote the L2 norm and inner product (resp.) with respect to dV'.

A smooth vector field X on M defines a flow map Fx;: M — M
obtained by following integral curves of X for time #; this map is
always well-defined and invertible up to some sufficiently small
time 7 > 0. We will use (Fx ;)+® to denote the pushforward of an
n-form @ under such a flow. The Lie derivative

Lyw:= 4 o (F_x1)x0 )

then describes the infinitesimal change in  as we advect it along
—X. For any scalar function ¢, the Lie derivative satisfies a product
rule Lx (¢w) = ¢ Lx 0+ (Lx ), and for an n-form on a manifold
without boundary we have [, Lx (¢ @) = 0 (by Cartan’s formula
and Stokes’ theorem). Hence,

[ ocxo=— [ (xo)o, ©)

i.e., under a flow along X, integration of a function ¢ simply
changes by (minus) the directional derivative of f along X. For
scalar functions, the Lie derivative is just the directional derivative,
ie,Lx¢=(X,V¢), where V¢ is the gradient of ¢.

5.2 Generalized Centering

Consider a k-dimensional space of functions F C W' (M), none of
which are constant. We define the center of mass of a volume form
o relative to F as the unique function ty(®) € F satisfying

(voto(@)) = [ o %

for all y € F. Equivalently, if F has an orthonormal basis ey, ..., eg,
then Lip(@) = Y5, (fiyex®) ey, i.e., po(®) is effectively the “pro-
jection” of w onto F. For any function ¢ € F, we then define

w(9) := po((Fyg,1)+0)

as the center of mass obtained by flowing the volume form @ along
the gradient of ¢. We say that ¢ centers @ (with respect to F) when
1(¢) =0, and can measure how far we are from being centered via
the energy

. 2
E:= Yl

We then get a result that generalizes the one we had for inversions:

(© 2018 The Author(s)
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Theorem: If (1(¢) # 0, then there is a function y € F such that
flowing @ along the gradient vector field X = Vy reduces the quan-
tity ||]|2, i.e., we can always bring t(¢) closer to the origin.

Proof: We proceed essentially as in Section 4: the gradient of the
energy E can be expressed as VyE = J;/,L, where Jy, 1 F — F
denotes the Jacobian of u with respect to ¢. To evaluate J, y at
¢ = 0, consider a time-varying function ¢(¢) = ry for any fixed
function y € F. Then

u(et)) = % IJO((FVV/J)*(D)-

Juw‘q):o =&

t=0 t=0

Taking the L? inner product with y and applying Equation 7 gives

Wuv)goo= [ v 4

and applying Equations 5 and 6 then yields

Wduw)goo= [ WE-vyo= [ (Coywio= [ Vv v)o.

Since F contains no constant functions, Vy must be nonzero; more-
over, o is a volume form and hence positive everywhere. As in the
case of inversions, then, the Jacobian J); is strictly positive definite,
and hence the energy gradient VE will vanish at ¢ = 0 if and only
if po(w) is zero, i.e., if @ is centered. O

FVW,[)*(D7

t=0 (

Uniqueness of the centering motion is less clear—the argument
used for Mobius transformations of the sphere was purely geometric,
and hence does not generalize to the functional setting. Note that
in practice, Jy; is just a real k x k matrix which can be used to
implement a descent algorithm that looks identical to Algorithm 1;
here the function ¢ plays the role of the center ¢, and inversion is
replaced by advection along V¢.

Example: Higher-Order Harmonics

A trivial example of centering in this framework would be to let
F be the linear functions on M = R"; in this case our procedure
flows mass along the corresponding constant vector fields, which
is the same as just translating the center of mass to the origin. As
a more interesting example we return to the case of the sphere,

T®

input degree 1

degree 1, 2

degree 1,2, 3

Figure 5: By considering centering motions beyond just Mobius
transformations, we can trade off between area and angle distortion.
Here we use gradients of spherical harmonics of increasing degree.
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and seek a parameterization that is centered with respect to some
collection of “low-frequency” functions—in particular, we let 7
consist of low-order spherical harmonics, as shown in Figure 5. For
degree-one harmonics (just linear functions) we get only infinites-
imal inversions; for progressively higher order harmonics we get
additional, non-conformal motions that allow better distribution of
area, at the cost of angle distortion. This picture also makes it clear
that our Mobius centering procedure eliminates any “low-frequency”
area distortion, since the linear component of the conformal scale
factors A vanishes. Here and in similar experiments we find that our
procedure always yields a centered parameterization (1 (®@) = 0).

Non-Gradient Flows

In addition to transformations characterized by flows along gradients
of functions, one would also like to consider transformations along
divergence-free vector fields. Unfortunately, our centering approach
does not extend to these cases and we believe that centering with
respect to divergence-free transformations is much harder. In the
case of the sphere, for example, inversions are characterized by
the gradients of linear functions. Applying a pointwise 90-degree
rotation, we obtain the complimentary space of divergence-free
vector fields. These characterize (infinitesimal) rotations, completing
the group of Mobius transformations. As we cannot center with
respect to them, the next section describes and efficient approach
for aligning over the space of rotations.

6 Mbobius Registration

We now consider the task of finding correspondence between two
genus zero surfaces, which we perform in three steps: first compute
a conformal parameterization of each surface over the sphere, using
any method (see references in Section 1), find canonical centering
inversions (Section 6.1), and finally compute the rotation that best
aligns the two centered parameterizations (Section 6.2). Though our
method can in principle be applied to any surface representation,
we give an explicit algorithm for triangle meshes. We will assume
that each input mesh is encoded by a collection of triangles 7 with
areas A :— R~ from the original surface M, and will assume that
the vertices V C $? have already been mapped to the unit sphere
$2. (To instead apply our algorithm to a set of points P C 2, one
can simply replace the triangle centers with P and the triangle areas
with A =1 in Algorithm 1.) A complete implementation of this
procedure, including spherical parameterization, can be found at
https://github.com/mkazhdan/MoebiusRegistration.

6.1 Centering Algorithm

The analysis in Section 4 suggests a simple algorithm for centering
a given parameterization: simply perform gradient descent on the
energy E with respect to the inversion center c, starting at any point
in B3. Since the gradient vanishes only at the global minimum (and
the energy goes to % (s (1))2 as ¢ approaches the boundary of B3),
we will always obtain a canonical centering, up to rotation. Since
we have an explicit expression for the Jacobian Jy; of the center with
respect to ¢, this algorithm can easily be accelerated using Gauss-
Newton iterations rather than simple gradient iterations, as shown
in Algorithm 1. Here, C(7) denotes the center of mass of a triangle

Algorithm 1 MOBIUSCENTER(T,V, A, €)

Input: A mesh with triangles 7', areas A : T — R+, a conformal
parameterization specified by vertex coordinates V C §2, and a
stopping tolerance € > 0. (C(7) denotes the center of 7, normal-
ized to have unit length.)

Output: Centered vertex coordinates V C S2.

1: while true
% p Teer C(OA(R)
3: if || < € then break

4 Ty 2YerA(T)(I-C(0)C(7)T) > build Jacobian

5.

6

7

> compute center of mass

c—J,u > compute inversion center
forveV

v (1= |eP) s +e

> apply inversion

8: return V

T; for simplicity we use the average of its vertices. We do not need
to explicitly compute the conformal scale factors A, since they are
already accounted for by the area weights A. The simple form of the
Gauss-Newton update arises from the fact that J;, is symmetric, and
hence —(JJJu)*IJJ = —Jljl. Here we use a unit time step, though
for larger or more challenging models it may be helpful to take a
smaller step (i.e., replace ¢ with cc for some constant ¢ € (0,1))
or perform an explicit line search (setting the energy of centers ¢
outside the unit ball to infinity). Note that this algorithm assumes
that vertices v are on the unit sphere, i.e., |v|2 = 1; it will not work
properly for spheres of other radii.

Generalized centering. To center with respect to a general col-
lection of functions F with orthonormal basis ey, ..., e, we make
two modifications to Algorithm 1. First, C(7) returns a vector con-
taining the value of each basis function at the triangle center. Second,
the transformation in Line 7 is replaced by numerical advection of
the spherical triangulation along the gradient of ¢, which is now
viewed as a function on M. That is, we move each vertex along the
surface M with velocity determined by the gradient. Here one must
be careful to take sufficiently small time steps, in order to avoid
triangle flips.

6.2 Rotational Alignment

We next seek the rotation that best aligns the two parameterizations.
To do so, we first sample the conformal factors of each mesh onto a
regular spherical grid (Figure 6, top right). We then find the rotation
that maximizes the correlation between conformal factors, via a fast
spectral transform.

Sampling conformal factors. Given a centered mesh (V,T) with
original areas A : V — R-(, we compute the total area contained
in each cell of a regular spherical grid, divided by the area of the
spherical cell—these values represent the average conformal factor
over the cell (Figure 6, bottom right). Note that simply sampling
the area ratio at the cell center can yield significant aliasing, since
a conformal parameterization may map a large region of the mesh
to a very small region on the sphere. We likewise apply a low-pass
filter to further reduce potential aliasing (Figure 6, bottom left).
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scale factors
(low-pass)

Figure 6: Prior to rotational alignment, the input mesh (top left)
is parameterized, centered, and tessellated by an equirectangular
grid (top right). Sampled conformal factors (bottom right) are then
low-pass filtered (bottom left) to mitigate aliasing. (Scale factors
are visualized by scaling points on the unit sphere according to |A|.)

Aligning conformal factors. To obtain our final registration, we
compute the rotation that maximizes the correlation between the
scale factors sampled from the two meshes. This rotation is obtained
in three steps: (1) We compute the forward fast spherical harmonic
transform [HRKMO3] to get an expression of each spherical func-
tion in terms of the spherical harmonics. (2) We cross-multiply the
spherical harmonic coefficients within each frequency band to obtain
the coefficients of the correlation in terms of the rotational harmon-
ics. (3) We apply the fast inverse Wigner-D transform [KROS] to
obtain a sampling of the correlation on a regular 3D grid of Euler
angles. Since the input functions are band-limited, the correlation
function is also band-limited; to robustly detect maxima we use a
regular grid whose resolution is twice the band-width. To get an
orientation-reversing registration (e.g., for reflective symmetry de-
tection), we can simply apply a reflection to one of the two sampled
functions. Note that if either shape has rotational symmetries we
will of course obtain only one possible registration; this ambiguity is
a fundamental feature of the registration problem (and has nothing
to do with our particular algorithm).

7 Evaluation

To evaluate our approach we consider four applications: stabiliz-
ing a spherical conformal parameterization algorithm, computing
spherical orbifold parameterizations, detecting non-rigid intrinsic
symmetry, and finding dense point-to-point correspondence. The
first two examples demonstrate the utility of our approach; the latter
two illustrate some of the challenges faced when using conformal
parameterization for surface registration. We also provide some
basic information about performance.

(© 2018 The Author(s)
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7.1 Stabilizing Conformal Parameterization

In principle, one might expect algorithms for spherical conformal
parameterization to be oblivious to Mdbius transformations, but in
reality discretization error causes certain Mobius transformations
to be preferred. For instance, one way to obtain a conformal map is
to minimize Dirichlet energy, which for the sphere is naturally dis-
cretized as }1 Yo we 682, where 0, is the angle between the endpoints
of an edge e (i.e., an arc on the sphere $2), and w, is the correspond-
ing cotangent weight (from the input domain M). A trivial way to
minimize this energy is to move all vertices to a common point,
and this is exactly the kind of behavior observed in many iterative
algorithms: the parameterization “drifts” toward a Mobius transfor-
mation that concentrates all vertices at a point. We can prevent this
behavior by simply applying our centering algorithm (Algorithm 1),
as demonstrated in Figure 2 for a conformal map computed via
conformalized mean curvature flow (CMCF) [KSBC12].

7.2 Spherical Orbifold Parameterization

A spherical orbifold is a quotient of the sphere S by a finite group
of rotations—intuitively, a tiling of the sphere. Conformal parame-
terization over such domains has recently been explored as a way
to reduce area distortion for genus zero surfaces [AKL17]. We con-
sider a different algorithmic approach: first, we create a multiple
covering M of the input geometry M, then we compute a conformal
parameterization of this covering over the sphere. By centering this

centered

Figure 7: Spherical orbifold maps with cyclic symmetry (top) and
tetrahedral symmetry (bottom). Though an arbitrary spherical con-
formal parameterization of a covering space might not be rotation-
ally symmetric (center), our centering procedure ensures that it
exhibits the desired orbifold symmetry (right). Black lines indicate
cuts made on the input mesh (left).
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Figure 8: Cumulative distribution of reflective symmetry distances
for the TOSCA high-resolution models.

parameterization, we ensure that it exhibits the same rotational sym-
metry as the target orbifold. To construct the covering surface we cut
the surface M along an open curve; we then glue together multiple
copies of the cut surface M*. For instance, to get a covering with
a cyclic symmetry group C, we make n copies M;,...,M, (each
with the same triangle areas as M), and glue the “right” side of the
cut on M} to the “left” side of the cut on M}, ; (modulo n). We
then conformally parameterize the covering surface M via CMCEF,
which entails little more than iteratively solving a discrete Poisson
problem involving the cotangent Laplacian. Though the initial map
may not exhibit rotational symmetry (Figure 7, middle), centering
this map yields the desired result (Figure 7, bottom). Compared with
the method of Aigerman et al. [AKL17] this construction is con-
ceptually much simpler: we do not need to carefully determine and
implement boundary conditions; we simply need to construct a cov-
ering space with the desired topology, and build a standard Laplace
matrix on a domain without boundary. On the other hand, our system
is n times larger, and we guarantee nothing about injectivity.

7.3 Non-rigid Bilateral Symmetry Detection

Many common shapes (such as the human body) exhibit strong
bilateral symmetry. Even if such a shape has been deformed non-
rigidly (e.g., by bending an arm), this symmetry can be detected
by seeking an orientation-reversing map M — M that is close to an
isometry. In our setting, this means looking for the anti-conformal
map 7 : S? — S2 that best preserves the conformal scale factors A
of a spherical parameterization. A nice property of our centering
procedure is that it will yield a parameterization with reflective
symmetry, if one exists: since the gradient of a symmetric configu-
ration always lies in the plane of symmetry (and inversion in such
a point preserves symmetry), starting at a symmetric configuration
will yield a symmetric minimizer. But since the minimizer of our
energy is unique, any parameterization that admits symmetric scale
factors will have a symmetric minimizer. To detect bilateral symme-
try, we can therefore center our parameterization, then compute the
best orientation-reversing registration of the surface with itself (as
described at the end of Section 6.2).

To gauge the effectiveness of this procedure we applied it to
the TOSCA high-resolution dataset [BBKOS8], which consists of
80 non-rigidly deformed models across 9 different categories. (For
models with several connected components we used the component
with largest area; we also performed hole-filling when necessary.)
For each model, we computed a conformal parameterization using
CMCEF, and sampled scale factors onto a 256 x 256 equirectangular
grid. Figure 8 shows the cumulative distribution of bilateral symme-

A //; - side

® L4 Sfront " <=
— top

Figure 9: To measure bilateral symmetry of a given mesh (left), we
compute a centered conformal parameterization, then look for an
orientation-reversing orthogonal transformation that best preserves
the conformal scale factors A (right), here visualized as a normal
offset from the unit sphere.

try distances for these models, with and without centering. Distance
values are normalized to the range [0, 1], with smaller distances
corresponding to parameterizations with greater reflective symmetry.
As expected, we find that centering significantly improves symmetry
detection (since arbitrary Mobius transformations do not preserve
reflective symmetry). However, the distances are still perhaps larger
than one might expect, given that all models have reflective sym-
metry in their unposed state. Consider for instance the cat model
pictured in Figure 9 (left), which exhibits a relatively large sym-
metry distance. As seen in Figure 9 (right), the conformal scale
factors exhibit relatively poor reflective symmetry, e.g., the front
paws are not aligned, and are stretched by different amounts. In
other words: the deformation is not a perfect isometry. To get a
better measure of symmetry, one might replace the simple L? dis-
tance with a more sophisticated distance measure (e.g., based on
optimal transport [LPD13]); exploring our generalized centering
procedure in this context might also prove useful. It is also worth
noting that perturbations of the metric yield smooth changes in the
parameterization only when they are real analytic [FK17], which
may cause instability for certain kinds of deformations.

7.4 Dense Correspondence

Mobius registration also provides dense point-to-point correspon-
dence between source and target models (71,V}),(T2,V2). After
applying the procedure from Section 6, we map each source vertex
v € Vj to the target surface by locating the spherical triangle T € T
containing v; the barycentric coordinates of v in T give a map back
to the original target surface. Figure 10 shows an example from the
TOSCA dataset; the map between surfaces is visualized by placing
each vertex of the source mesh at the corresponding location on the
target mesh. Here we get reasonable correspondence on the torso,
but imprecise alignment of appendages (e.g., the legs on the source
are mapped just below the legs on the target). Since these features
are represented by extremely small regions on the sphere, even small
amounts of non-isometric deformation (visualized in Figure 10, bot-
tom right) can result in large alignment errors. As with symmetry
detection, one might therefore use this procedure to initialize a more
sophisticated (albeit more expensive) correspondence algorithm.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.



A. Baden, K. Crane & M. Kazhdan / Mobius Registration

' source

é N7
N
N\

“T,,/vb /‘/\,‘V 8
7
o NG

X Sl

-

source —> target anisotropic distortion

Figure 10: Dense correspondence between source and target mod-
els (top) is visualized by placing each vertex of the source mesh at
the corresponding location on the target mesh (bottom left). Non-
isometric deformation (bottom right) can cause substantial misalign-
ment of features that are mapped to small regions on the sphere
(anisotropy © is the ratio of larger to smaller singular value).

model vertices | center tessellate correlate

octopus 10K 0.01 02/04/13 | 03/22/27
centaur 16K 0.02 02/04/12 | 02/2.1/27
cat 28K 0.02 03/06/15 | 03/22/30
Michael 53K 0.06 03/06/14 | 03/22/28
hand 66K 0.09 07/1.1/27 | 03/22/28
bunny 104K 0.09 09/16/35 | 03/22/28
armadillo 173K 0.17 1.0/1.6/33 | 03/22/27

Table 1: Timings for the different stages of processing. For tessella-
tion and correlation we use equirectangular grids of resolution N =
128, 256, and 512. All times are in seconds.

7.5 Performance

Table 1 gives timings for Mbius centering, spherical tessellation,
and correlation, for several models and at several different grid
resolutions. Timings were measured on a Windows PC with an
Intel Core i7-6600 processor and 16 GB of RAM. The centering
procedure appears to have linear complexity, typically achieving a
center norm of about 10~ 17 in three or four iterations. Tessellation is
less efficient, but still linear in the number of vertices (absolute cost
depends on the number of grid cells containing each triangle). The
cost of computing the final rotational correlation is independent of
mesh complexity; for an N x N grid, the inverse Fourier transform
over the rotation group has a cost in O(N4).

(© 2018 The Author(s)
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8 Conclusion

The allure of uniformization is that it provides a near-canonical map
between surfaces of equivalent topology, but as we have seen, work-
ing purely in the conformal setting can be quite restrictive when
it comes to applications. Other, more flexible notions of canoni-
cal mappings have the potential to be quite powerful in geometry
processing—though many questions remain to be explored. Ideally,
one would like to find maps that are not only canonical, but also
exhibit low metric distortion (i.e., small distortion of both angles
and areas). Replacing the geometric picture of Mobius transforma-
tions with the more functional picture introduced in Section 5 yields
an enticing framework for this problem, with many questions that
remain to be explored. For instance, we know very little about the
conditions under which the generalized center exists and is unique;
we also have no strategy for centering with respect to nonintegrable
motions (i.e., vector fields that do not arise from a scalar potential).
It is also natural to consider more informative notions of distance
beyond L? (e.g., the Wasserstein distance), or centering with respect
to other conformally invariant 2-forms (e.g., the square-norm of
the gradient of the heat-kernel-signature). Finally, there is the ques-
tion of how different choices of centering motions (i.e., different
choices of the space F) impact geometric properties of the centered
parameterization. For instance, one can always use the Laplacian
eigenfunctions to get a space of low-frequency deformations, but it
is not clear that these motions are ideal for, e.g., minimizing metric
distortion. Overall, we are hopeful that the functional, flow-based
point of view will spark new ideas about how to define and construct
canonical maps between surfaces, just as it has provided a valuable
perspective on canonical Mobius transformations of the sphere.
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