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Magnetically modified, dye sensitized, n-type semiconductor 
electrodes were examined as a case study for magnetic field effects 
on electron transfer reactions in electrochemical power systems. 
Magnetic field effects arise through kinetics and mass transport; 
magnetic fields have negligible influence on system 
thermodynamics (i.e., no effects on open-circuit potential). 
Enhancements in the photocurrent response of dye sensitized TiO2 
semiconductor electrodes are observed. 

 
Introduction 

 
Revolutionized in the early 1990’s by Michael Grätzel and coworkers, the dye-sensitized 
solar cell (DSSC), or Grätzel cell, is a second-generation, excitonic, photo-
electrochemical device [1, 2]. Touted as an inexpensive alternative to traditional 
crystalline semiconductor-based photovoltaics (PV), DSSCs have received considerable 
attention over the last two decades. Research has focused on each area of the cell: the 
sensitizing dye [3-7], semiconductor film preparation [8-11], solid-state cells [12-17], 
photocathodes [18-20], and applications in areas such as water splitting [21-22]. The 
appeal of the DSSC lies in the combination of an amorphous, nanoparticulate 
semiconductor (e.g., TiO2), a photosensitive dye and regenerating redox couple that 
produces power densities similar to traditional single crystalline p-Si at significantly 
lower cost. To date, the best solar conversion efficiencies reported are 10.4% for DSSCs 
[23]. Before DSSCs can compete effectively with p-Si as viable solar cells, better 
efficiencies and high temperature stability coupled with high-turnover stability are 
needed. 
 
 Research at the University of Iowa has shown that magnetic fields affect electron 
transfer (ET) reactions in various power systems, including fuel cells and alkaline 
batteries [24, 25]. These effects have been demonstrated on homogeneous and 
heterogeneous ET reactions [26], for academically interesting redox probes (e.g., 
Ru(bpy)3

2+, tris(bipyridal) ruthenium(II)), as well as for absorbate reactions (e.g., for CO 
oxidation on platinum [24]). Magnetic fields affect current densities in power sources by 
altering the kinetics of ET. This modification method applied to DSSCs is a way to 
increase system efficiency.  
 
 Electronically, DSSCs are constrained by the standard reduction potential of the 
redox mediator and the Fermi level of the semiconductor. The most promising 
semiconductor to date is TiO2, with an Ef = -0.5 V vs. SCE. It is commonly coupled with 
the iodine/iodide system in an organic solvent (e.g., acetonitrile, propylene carbonate) for 
the redox mediator (E° = 0.4 V vs. SCE), restricting the maximum open-circuit potential 
(Voc) to 0.9V [2].  
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 Here, the effect of magnetic fields on the electrochemistry of DSSCs is examined. 
Magnetic modification of the n-type DSSC occurs at the semiconductor electrode. DSSC 
electrodes are tested in a quartz photoelectrochemical cell in a two-electrode setup. 
Considerations of the magnetic materials used, magnetite (Fe3O4), neodymium iron 
borate (NdFeB), and samarium cobalt (SmCo5), included: particle size analysis, coatings, 
and film distribution. Particle loading percentages, magnetization protocol, and TiO2 film 
preparation (i.e., annealing and pressing) were examined. In addition, preparation 
protocols based on film substrates were addressed. 
 

Magnetically modified electrodes display average photocurrent enhancement 
compared to unmodified electrodes; an enhancement of 40% for magnetically modified 
electrodes is typically observed over a variety of loading percentages, magnetic materials 
and preparation methods. These current enhancements translate to increased power 
output over unmodified controls.  
 

Experimental
 

Materials  
 

All materials were used as received unless otherwise noted. Conductive 
substrates, coated with a transparent conductive oxide (TCO) of fluoride doped tin(IV) 
oxide, were purchased commercially. Polyethylene terephthalate (PET) substrates with 
resistivitiesof 25 /cm (SigmaAldrich) were cut into 1in2 slides for use.  
 

Two different commercial sources of TiO2 were used, nanoparticulate TiO2 
(Aldrich), with average particle diameter of 25nm consisting primarily of anatase phase, 
and Aeroxide P25 (Acros), with a particle diameter of 21nm, consisting of a mixture of 
anatase and rutile crystal phases. The uses of each material are noted. 
 

Electrodes were magnetically modified by adding eitherSmCo5 (Alfa Aesar) and 
NdFeB (spherical annealed, Magnequench). Uncoated particles were primarily used. 
Coated magnetic particlesare used in acidic electrochemical environments (e.g., Nafion® 
modified electrodes and PEM fuel cell membranes) to protect the particle from 
degradation and prevent the contamination of the electrochemical system from unwanted 
metal ions. In the studies presented herein, the nature of the environment and the time-
scale did not require coated particles. Ball-milled magnetite particles (Fe3O4, Chemalloy) 
were used in an SEM film analysis. 
 

Principal components of the TiO2 casting solsincluded Triton X100 (reduced, 
Sigma), acetyl acetone (Sigma), ethanol (200 proof, Decon Labs), and deionized water 
(DI). Iodine (Sigma), tetrafluoroborate iodide (Sigma), and acetonitrile (Fischer) stored 
over molecular sieves were used in the redox mediator solution. Ruthenizer 535 (N3) 
(Solaronix) molecular sensitizer was prepared in ethanol solutions.  
 
Electrode Preparation  
 

Unmodified casting sols contained TiO2, Triton X100, and acetyl acetone, in a 
mixture of DI and ethanol in equal proportions and a template was used to doctor-blade a 
1cm2 active area [1]. Electrodes prepared on PET substrates were annealed to 250°C for 
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two hours under vacuum, with an approximate ramp rate of 10°C/min. After cooling to 
room temperature, electrodes were equilibrated in a saturated solution of N3 dye in 
ethanol for at least 18 hours. No blocking layer or redox solutions additives were 
considered to optimize efficiency.  
 

Electrodes were prepared as two layer electrodes. These two layer electrodes 
contain a single layer of unmodified TiO2 (annealed) on the ITO substrate. A second 
layer is bladed atop the first that contains 10% magnetic particles(by mass TiO2). 
Electrodes modified with SmCo5 are annealed under N2(g) to prevent cobalt oxidation. 
Control electrodes were prepared similarly, two layer configurations without particles in 
the second layer (no difference in current behavior was observed between electrodes with 
two layers TiO2 versus one layer).   
 
Analysis 
 

A twoelectrode configuration was used for all electrochemical analysis of the 
modified electrodes. A quartz cuvette with an optically flat window was used for 
photoelectrochemical measurements. A platinum mesh in a Teflon® housing served as 
the counter/reference electrode. A Teflon wedge was used to minimize the interelectrode 
distance (0.3mm). Approximately 1mL of the redox solution (0.5M TBAI and 0.04M I2 
in acetonitrile) was added to the cuvette. 
 

Electrochemical measurements were performed with a CH Instruments 760B 
potentiostat. The light source, an Oriel Solar Simulator with a 150W Xe-halogen lamp, 
was used in conjunction with an air mass (AM) 1.5 filter. Cyclic voltammetry was used 
for characterization. Lightpower measurements were taken with a ThorLabs D3MM 
Thermal Head sensor. Output from the solarsimulator is 20 mW/cm2, the value used in 
efficiency calculations.  

 
Particle and surface characterizations were accomplished by scanning electron 

microscopy (SEM, Hitachi S-3400N) complemented with elemental mapping. Elemental 
mapping was performed using a Bruker energy dispersive spectroscopy system - 
targeting iron and titanium. 
 

Results and Discussion 
 
Surface and Particle Characterization 
 

Particle and surface characterizations of the TiO2 films were undertaken to ensure 
maximum film homogeneity. Magnetically modified TiO2 electrodes were magnetized 
within an external magnetic field prior to annealing; to ensure that magnetic materials did 
not agglomerate during this procedure, samples were prepared analogously to the 
working electrodes, substituting an aluminum SEM sample stub for the PET 
substrate.Uncoated magnetite particles were ball milled in hexanes untilan average size of 
18.8 ± 14.8 m is reached. Particle distribution within annealed TiO2is shown in Figures 1 
and 2. Figure 3 is an SEM image of unmilled SmCo5 particles, which are of similar size 
and distribution to the magnetite particles analyzed.   
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Only electrochemical measurements from the first scans were recorded and 
analyzed. No long term measurements were conducted. Dye desorption into the redox 
solution was observed in voltammetric sweeps after the first scan. A dye desorption effect 
was observed over a series of electrode trials and measured by UV-vis of spent redox 
mediator solution. It has been shown that potentials greater than -1.0V vs. SCE encourage 
dye desorption [2] and this, in addition to the relatively large volume of redox solution 
used to make the measurements, may have further induced dye desorption.   
 

Although electrodes were prepared by a variety of methods, utilizing different 
materials and structures, this article focuses on PET substrates. Variation in data due to 
the magnetic material was observed. 
 
Energy Conversion Efficiency Calculation 
 

Precise measurements of open-circuit potential (Voc), short-circuit current 
density(Jsc), and input power(Win) are important for calculating fill factor (FF) and 
photovoltaic efficiency. Fill factor and efficiency calculation were used as criteria for 
evaluating the enhancement of modified cells over unmodified cells. Fill factor is defined 
as: 

 
                                                          [1] 

 
where Jmp and Vmp are current density and voltage at maximum power, respectively. Jmp 
and Vmpare determined from a power curve (potential versus power). Photovoltaic 
efficiency is defined as: 

                                                  [2] 
where Win = 20mW/cm2. 
 
PET Substrate-based Electrodes 
 

The upper limit for annealing PET based electrodes is restricted to the melting 
point of PET (~ 250 °C). At 250 °C, TiO2 films achieve stability for electrochemical 
analysis. Electrodes prepared on PET were annealed at 250°C for 2 hours. When 
modified with SmCo5, annealing occurred under vacuum (~900 mTorr). Vacuum 
prevents the oxidation of SmCo5 modified electrodes. Advantageously, 250°C is below 
the Curie temperature (Tc) of NdFeB. Tc is the temperature above which a magnetis 
demagnetized (Tc for NdFeB ~ 300 °C, Tc for SmCo5 ~ 800°C).  

 
Both SmCo5 and NdFeB modified electrodes display enhanced currentresponses 

versus unmodified control electrodes. Figure 4 shows an iV-curve for NdFeB modified 
electrodes vs. unmodified electrodes. NdFeB modified electrodes display the greatest 
photocurrent (iph) enhancement. This is not unexpected, as magnetic effects are 
proportional to a material’s magnetic energy product, measured in MegaGauss-oerstads 
(MGo). The maximum energy product of NdFeB is almost twice that of SmCo5 magnets 
(12-24 MGo for SmCo vs. 18-48MGo for NdFeB) [26]. Figure 5 shows the iph response 
of SmCo5 modified electrodes on PET. Table I gives average efficiency values (based on 
equation 2) and statistics for the electrodes displayed in Figures 4 and 5. Magnetic effects 
on fill factor values are negligible (< 0.2%); these values are not tabulated. 
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