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This paper presents an integrated computational framework combining a Molecular Dynamics 
(MD) based social force pedestrian movement model and a stochastic infection dynamics model to 
evaluate the spread of viral infectious diseases during air-transportation. We apply the multiscale 
model for three infectious (1) Ebola (2) Influenza (H1N1 strain) and (3) SARS pathogens with 
different transmission mechanisms and compare the pattern of propagation during an Airbus A320 
carrier boarding and deplaning at an airport gate. The objective of this analysis is to assess the 
influence of pedestrian movement on infection spread during air travel. 

I. Introduction 
ir transportation medium and facilities are evolving exponentially to meet the necessity of connection, exchange 
and travel in an increasingly interconnected world. Despite its many benefits, commercial air travel enables rapid 

spread of infectious diseases across the globe [1-6]. Travelers are in close proximity to each other and are susceptible 
to infection transmission during different phases of air travel. Pedestrian movement within an airport is key to 
understanding and estimating the casual contacts between passengers and is a special case of a more general contact 
analysis. Modeling the scene at an airport provides sufficient useful insight into disease propagation.  

Pedestrian motion has been addressed using several approaches such as particle dynamics or social force models 
[7,8], models based on cellular automata [9], fluid flow models [10], and queuing based models [11].  Of these different 
approaches, the social force model has superior advantages over the other methods to evaluate passenger movement 
and interaction because each passenger is modeled individually and moves continuously which enables computing the 
individual trajectories and contact patterns between pedestrians. These models utilize the same numerical framework 
as molecular dynamics simulations in materials science [12]. 

Several studies use these generic approaches to study the travelers movement especially from the viewpoint of 
airport operations and reduction of the turnaround time of airplanes at terminals. Schultz et al. [13] mimic the intuitive 
behavior of travelers under emergency situation by a cellular automaton model. In this model, the floor area of the 
airport is subdivided into small discrete partitions where pedestrians may switch positions to neighboring spots based 
on a probabilistic distribution [13]. Several other investigators also used agent-based models to simulate pedestrian 
motion in airport terminals [e.g. 14]. Other studies such as that by Lin et al. [15] investigate the flow of pedestrians to 
their destinations by optimizing the guiding signs.  

Pedestrian movement in airports is peculiar because it involves a series of nondiscretionary as well as discretionary 
activities. For instance, prior to their scheduled flights, travelers fulfill the trip requirements starting from check-in, 
security and boarding. Once these processing steps are completed, they are often involved in individual or collective 
discretionary activities such as dining and shopping at the departure terminal [16,17]. The airport environment and 
building layout have a great influence on the passengers movements, choice and perception of activities preference 
over a set of alternatives [15,18]. This uncertainty creates additional challenges in modeling the pedestrian motion at 
airports.  

Air travel brings together people from different geographic regions with different levels of vulnerability and 
receptivity due to the variation in immunity, ethnic background, and intervention usage across geographic areas. 
Consequently, airports and airplanes are potential, prime sites for infection spread [19]. During the Ebola epidemic in 
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2014, analyses demonstrate that without travel restrictions, 7.17 infectious passengers per month would depart from 
the highly affected countries Liberia, Sierra-Leone and Guinea, to various destinations around the globe [20]. 
Transmission of Severe acute respiratory syndrome (SARS) virus via air travel has been recorded, in 2003, on three 
carries; Among 681 passengers, 23 tested positive for illness [21]. Several other diseases like tuberculosis, norovirus 
etc, have been transmitted through air travel [22-25]. In 1994, an infective with multidrug-resistant tuberculosis was 
onboard flights from Honolulu to Baltimore, passing by Chicago, transmitted the illness to passengers seated in the 
vicinity [26]. The first recorded outbreak of Influenza aboard an aircraft occurred back in 1979 when passengers were 
sharing the same cabin along three hours with a broken ventilation system with an Influenza A strain infectious 
traveler. Within three days, 72% of the 54 passengers contracted the disease [22]. 

Three main factors are known to influence the infection spread: the contagion stage of the index infectious, the 
flight duration and the frequency of contacts between passengers within the critical radius of infection [26]. The 
environmental conditions such as the ventilation [28] as well as the temperature and humadity [29] can also play an 
important role in the virus lifetime survival. The number of contacts is critically dependent on the pedestrian flow 
within airplanes and in airport lounges. Given the preponderance of infection spread through air travel, it is essential 
to identify air-travel related policies that can mitigate infection spread. 

In our analysis, we have used social force based pedestrian dynamics formulation to estimate the number of contacts 
and evaluate the disease spread in an airplane and airport gate. We extend the social force model for pedestrian 
movement incorporating line forming and collision avoidance phenomena.  In earlier studies, we have implemented a 
parameter sweep on massive parallel computers to determine the model parameters ranges [27, 30]. We have 
integrated the proposed formulation with a stochastic susceptible-Infected infection transmission model [31]. In this 
paper, the model is applied to study the infection transmission at the airport gate and within airplane for the 
transmission of Ebola, SARS and H1N1 Influenza pathogens through casual contacts. 

 
II. Model Formulation 

In our problem setting, we model the movement of 
pedestrian particles based on a force-field approach proposed 
by Helbing et al. [7] which captures the actual interaction of 
pedestrians with their environment in real life situations. 
While heading towards a designated destination, the behavior 
of an individual is influenced by his inclination to move 
effectively towards his targeted terminus. Stationary crowds 
or physical barriers obstructing the course of motion alter the 
direction and diminish the speed of the pedestrians. In 
situations like boarding at an airport gate, we need to consider 
the movement of pedestrians in a line, wherein the speed of 
the pedestrian in motion is heavily dependent upon speed of 
other pedestrians in front of them in a queue.  

Considering the self-propelled pedestrian Pi as a point 
mass mi in a two dimensional space, the net resultant force 𝐹𝑖

⃗⃗  
on the particle resulting in motion can be expressed by: 

𝐹𝑖
⃗⃗    = ∑𝑓𝑖⃗⃗     =  𝑓𝑖𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗   + 𝑓𝑖

𝑝𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  = 𝑚𝑖 𝑎𝑖⃗⃗  ⃗ (1) 

Where 𝑓𝑖𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the intention force motivating the pedestrian to pursue his track despite the fact that a resulting opposing 

force 𝑓𝑖
𝑝𝑒𝑑⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗ is exerted by the surrounding to delay his locomotion. 𝑎𝑖⃗⃗  ⃗ is the acceleration vector of particle “i”. 

The force 𝑓𝑖𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ in the motion direction 𝑒𝑣̂ is the rate of change of momentum within a time interval (step) τ and is 
defined by: 

𝑓𝑖
𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗  = 𝑓𝑖𝑖𝑛𝑡  𝑒𝑣̂  = 𝑚𝑖( 

∆𝑣⃗⃗⃗⃗  ⃗

𝜏
 ) = 𝑚𝑖 ( 

𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   − 𝑣𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝜏
 )  

            = 𝑚𝑖 ( 
𝑣0𝑖(𝑡)−𝑣𝑖(𝑡)

𝜏
 ) 𝑒𝑣̂ 

 
 

(2) 

Here, 𝑣𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ designates the actual instantaneous velocity of pedestrian Pi and is characterized by its magnitude and its 
anticipated orientation. To predict collision avoidance, the expression of the desired velocity of navigation 𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
depends on each individual in motion, his position in the crowd and the foremost direction of movement in the hallway 

Figure 1. The distribution of the stationary crowd 
around the traveler Pi walking in the same 
direction of preference of the hallway. 
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of interest at every time step. The pedestrian can move in the direction of motion assigned to the hallway where he is 
located at. Let 𝑒1̂ and 𝑒𝑣̂ denote the unit vectors of directions attributed to the hallway and the pedestrian respectively. 
Since the pedestrian Pi is not impeded by any obstruction, 𝑒1̂ is the same as 𝑒𝑣̂ as shown in Figure 1. Therefore, when 
a pedestrian joins a line his desired velocity and thereby the intention force 𝑓𝑖𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ reduces according to the relation: 

𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑣0𝑖(𝑡). 𝑒𝑣̂  =  𝑣0𝑖(𝑡). 𝑒1̂ = (𝑣𝐴 + 𝛾𝑖𝑣𝐵)(1 −
𝛿

‖𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗‖
 ) . 𝑒1̂ (3) 

The vector positions of pedestrian Pi and the adjacent forward traveler Pj in his way are denoted by 𝑟𝑖⃗⃗  and 𝑟𝑗⃗⃗  
respectively, and are issued from the origin of the coordinate system of the plane of motion. (𝑣𝐴 + 𝛾𝑖𝑣𝐵) accounts for 
the desired speed adjusted for the upcoming obstructions within a distance δ. 𝛾𝑖 is a positive random variable less than 
unity attributed to pedestrian “i” considering the factors that can affect his mobility such as the age, sex, body type, 
health condition, etc. 
In particular, when the traveler Pj is distant from traveler Pi in such a way that the latter’s motion is not affected 
(‖𝑟𝑖⃗⃗ − 𝑟𝑗⃗⃗ ‖ ≫ δ) then, equation (3) reduces to: 

𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑣0𝑖(𝑡). 𝑒𝑣̂  =  𝑣0𝑖(𝑡). 𝑒1̂ = (𝑣𝐴 + 𝛾𝑖𝑣𝐵). 𝑒1̂ (4) 

 
In the course of embarkation and deplaning, we have to insure impenetrability (collision avoidance) of the particles. 

This is achieved by the repulsive force 𝑓𝑖
𝑝𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and is obtained from the gradient of the repulsive term in Lennard-Jones’ 

potential as follows: 

𝑓𝑖
𝑝𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  ∑ 𝛻⃗  [ 𝜖 (

𝜎

𝑟𝑖𝑙
)12

𝑖≠𝑙

] (5) 

Where 𝜖 and 𝜎 are repulsive force field parameters  and 𝑟𝑖𝑙is the distance between the ith and the lth pedestrian. The 
second order ordinary differential equation (1) is solved by means of Nordsieck third order predictor-corrector 
integration method to compute the instantaneous displacement, speed and trajectory of every particle by extrapolating 
these entities at the next time step.  
 

The subsequent step involves determining the extent of the viral infection propagation among the travelers. Viral 
infection spread is often characterized by the reproduction number, the total number of infected an infectious member 
reproduces in given time. Statistical-mathematical models have been used to predict the evolution of  infectious 
diseases studied here. For instance, in different case studies about H1N1 outbreak, in 2009, in Israel [32] and Italy 
[33], time-dependent epidemic transmission models have been developed to obtain the reproduction number (R0) of 
the virus. R0 has also been estimated for Ebola virus during its outbreak in Africa in 2014 [34]. An uncertainty and 
sensitivity analysis of critical model parameters affecting R0 has been conductedfor 2002-2003 SARS outbreak of,  
[35].  

We use the Susceptible-Infected (SI) individual dynamic model [36] to estimate the number of infection spread 
during air travel. We assume a population of size N consisting of I(t) infected and S(t) susceptibles at time t. Thus, 

N = I(t) + S(t) (6) 

A susceptible becomes infected when coming into direct contact with an infective. However, the newly infected 
cannot be infective at the start of the incubation period of the illness during air travel, therefore there is no second 
reproduction of the illness. Moreover, the infection spread initiates due to the insertion of 𝑖𝑐0 infectives initially (𝑡0= 
0) at their “c” days of infection and d is the extent of the illness post onset of the symptoms. Let “mi” be the total 
number of contacts per infective individual “i” per time step and “N” the total population size. The probability that an 
infectious in the crowd meets other individuals is mi/N. Denote by 𝑃𝑐 the probability that a contact between a 
susceptible and an infective, whose age of infection is 𝜏 days, results in infection of the susceptible (infection 
transmission probability). In order to account for the demographic stochasticity and variations in susceptibility of the 
population, the number of newly infected individuals by an ith infective at time t, a discrete variable, is Poisson 
distributed, with a mean mi (t-1). pc .[Si (t-1)/N]. Therefore, the number of people infected at time t by all the infectives 
with an age of infection “c” is obtained by: 

I(t)~Poisson (∑ (∑ [ 𝑚𝑖(t − 1). 𝑝𝑐  . (𝑆𝑖  (t − 1)/N)]
𝑖𝑐
0

𝑖=1  )𝑑
𝑐=1 ) (7) 



4 
American Institute of Aeronautics and Astronautics 

 

III. Results and Discussion 

 
During an epidemic outbreak, the prevalence of the disease in a large population relies on the ability of a pathogen to 
establish unrestrained reproductive infections. Consequently, disease control, suppression or prevention starts by 
determining the core of its initiation as well as the incidence, medium, range and probability of propagation. During 
the progression of illness, the variation of antigens in the blood serum can be captured, and it determines the severity 
of the patient’s situation. In this study, we refer to observations of the evolution of the antibodies within the incubation 
period of the virus to generate what is referred as infectivity profile. The probability of infection (𝑝𝑐) has a major 
influence on the findings as it determines the total of newly infected passengers who were exposed to the 
contamination within a suitable environment for propagation. We carry out simulations for Ebola, SARS and H1N1 
Influenza viruses since these contagions were previously encountered in air travel.  For Ebola, the infectivity profile 
is acquired by the amount of  RNA (ribonucleic acid) virus copies above the detection threshold in the blood serum 
since the illness contraction [37]. The daily logarithmic amounts of RNA for fatal and non-fatal contagion are averaged 
along the 21 days of illness period, then divided by the total to obtain the probability of infection at a designated day 
(Figure 2). For SARS pathogen, the viral gene expression of the nucleocapsid (N) protein (Figure 3), detected at 
different rates along the evolution of the virus from post onset of the symptoms till convalescence is indicative of the 
possibility of transmission [38]. For, Influenza H1N1, sometimes the viral shedding and RNA are not detectable 
(especially until 5-6 days of onset of symptoms) in positively tested patients [39]. The contraction of the influenza 
virus is also replicated in mamals. For instance, experimental investigations are conducted on pigs [40,41], mice [42] 
and ferrets [43] for a better observation and understanding of the virus. The H1N1 nasal, oral or ocular shedding has 
been detected by determining the relative equivalent unit (REU) from viral RNA level [44]. In our model, we assume 
that the transmission of Influenza disease occurs through aerosols expelled during coughing, sneezing or talking thus 
via nasal route. Therefore, the infectivity profile for H1N1 virus is obtained from measuring the evolution rate of REU  
in saliva from the first day of disease contraction. The infectivity profile is shown in Figure 4. The infectivity data for 
the three viruses under investigation is, then, combined with the number of contacts between pedestrians generated 
using the pedestrian movement model to assess the extent of disease propagation among the travelers onboard. 
 
The time evolution of pedestrian trajectories has been displayed for 
both ingress from a gate (Figure 5) and egress from an Airbus A320 
carrier (Figure 6) respectively for comparison of outputs. During the 
enplaning, the trajectories of passengers, initially seated or standing 
in the departure lounge, heading to the passenger boarding bridge and 
finding their assigned onboard seats, are modeled. In both scenarios, 
the instantaneous position and speed of each walking individual are 
obtained from solving equation (1) using a predictor-corrector 
numerical integration. Many qualitative features of pedestrian 
movement are captured by the model. For instance, lane formation is 
observed in the hallways, in addition to reduced speed at bottlenecks 
where passengers from different seating zones merge and head to the 
airplane (Figure 5). Similar features are observed in egress when 
passengers walk out of their seats toward the aisle (Figure 6).  

  
Figure 2. Infectivity profile along the days after 

clinical signs of Ebola infection. 
Figure 3. Infectivity profile along the days post onset 

of SARS symptoms. 

Figure 4. Infectivity profile along the days 
post infection with H1N1 virus. 
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Figure 5. Simulation snapshot of an embarkation of an Airbus A320 from a departure lounge at different 
time steps. 
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Figure 6. Simulation snapshot of Airbus A320 deplaning at different time steps. 

 
The identity of infectious individual is not known beforehand, therefore all the possible permutations of a single 

infective are run to estimate the mean of newly infected susceptibles denoted by 𝜆𝑖 where “i” ranges from 1 to the 
total passenger capacity of the aircraft. Due to the stochastic nature of the problem, we assume that the number of 
newly infected travelers by a single infectious chosen randomly among the airplane passengers is Poisson distributed 
with mean 𝜆𝑖 at every simulation. After performing all the simulations in parallel, the effective probability of means 
is calculated. Then, using the Bayes’ theorem the probabilities are combined to generate the probability distributions 
shown in Figures 7 and 8. 

 
These plots (Figures 7 and 8) represent the probabilistic distribution of infected passengers who were closely 

exposed to Ebola, Infulenza H1N1 and SARS viruses. These viral organisms are transmitted through direct contact or 
dispersion of particles exhaled from an infectious member by talking, coughing or sneezing, and remain sustained in 
the environment for a certain time before depositing and contaminating contiguous surfaces [45,46]. Mangili and 
Gendreau [47] indicate large droplet and airborne mechanisms are possibly highest risk transmission mechanisms 
during air travel. The transmission distance also depends on specific disease, for example, SARS has been transmitted 
by short range droplet based as well as longer range airborne mechanisms [48,49]. Primary mode of transmission for 
Ebola is through contact droplets [50], but studies with monkeys indicate possible transfer through aerosols [45,51]. 
Likewise, the influenza virus may be transmitted through coarse droplets or microscale bioaerosols being respired into 
the respiratory tract of a susceptible member [52]. There’s a debate on the nature of transmission of Influenza virus. 
Wong and Yuen (2006) suggest that transmission occurs when the virus particles are suspended in air and inhaled by 
a susceptible individual or when that individual touches a contaminated surface with deposited droplets and then 
touches their eyes, nose or mouth [52]. 
 

The size of these particles as well as the environmental condition play an important role in contagion dispersion. 
Small particles dispersed in aerosols transmit over large distances, for example, experiments indicate micrometer sized 
aerosol clouds generated during cough traveling over 2 m [53,54]. Smaller aerosols can be driven farther by ventilation 
or a freestream flowing from a high static pressure location to a lower pressure zone [55, 33]. Based on primary modes 
of transmission, coarse droplets for Ebola and aerosol for SARS and H1N1, we assume radii of infection of 1.2m (48 
in) and 2.1m (84 in) respectively. Note that the infectivity profiles for both Ebola and SARS are quite close in values 
and less than 0.1, so the selection of radii of infection makes a noticeable difference in the number of contacts and 
transmission. For Influenza virus, the infectivity is at a higher rate compared to Ebola and SARS. This can be reflected 
by the reproduction number R0. For instance, an infectious agent with SARS can reproduce 2-3 newly infected 
indivuduals, but this range increases considerably to an upper limit of 20 for H1N1 [55]. In Figure 7, we consider an 
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infectious passenger at his first day is onboard among the susceptible population. Ebola and H1N1 record a peak of 2 
newly infected passengers exposed to the virus, whereas this number increases to 5 for SARS due to the wider range 
of infectivity. Shifting the infectivity to its highest (day 3 for Ebola, day 5 for H1N1 and day 4 or 5 for SARS), the 
means of the Poisson distribution increases by one unit for Ebola and SARS but expands tremendously for H1N1 
since the infectivity reaches its peak of 30% at the fifth day of H1N1 infection.   
 
 We followed a similar approach for the deplaning strategies. We found that deplaning had a smaller impact on 
infection dynamics because of the lower number of new contacts and lower time of exposure during the comparatively 
faster process. From the results for deplaning under similar conditions, shown in Figure 8, It can be noticed that the 
distribution of newly infected individuals behaves in the same way as that of Figure 7. However, the mean number of 
infected reduces to 1 for H1N1 and Ebola and to 2 to SARS at day 1. Egress phase is of a shorter period of time 
compared to boarding, therefore, there are fewer contacts and lower number of infected.  
  

 

(a) 

 

(b) 
Figure 7. Infection profile at (a) the first and (b) peak days respectively post onset of symptoms during a 

random ingress to an Airbus A320 (144pax)  for Ebola, Influenza H1N1 and SARS contagions. 
 

 
(a) (b) 

Figure 8. Infection profile at (a) the first and (b) peak days post onset of symptoms during deplaning from 
an Airbus A320 for Ebola, Influenza H1N1 and SARS contagions. 

 

IV. Summary 
 
In this paper, we simulated a boarding process at the departure lounge and deplaning from the airbus A320 airplane. 

The objective of the pedestrian movement methodology is to mimic the actual comportment of pedestrians in an airport 
terminal. We then evaluated the infectious disease spread for different viral contagions such as Ebola, SARS and 
Influenza H1N1. The study can be expanded to include different pedestrian movement patterns and air travel policies 
to determine if there is a reduction in infection spread by using specific boarding policies (e.g. reducing gate waiting 
time vs. spreading out passengers), while accounting for uncertainty due to discretionary activities prior to enplaning.  
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