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Plant functional trait change across a 
warming tundra biome

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching 
because of global feedback effects between vegetation and climate. A better understanding of how environmental factors 
shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem 
functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional 
traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships 
were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, 
highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant 
communities. Community height increased with warming across all sites over the past three decades, but other traits 
lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution 
to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height 
will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic 
communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra 
ecosystems with climate warming.

Rapid climate warming in Arctic and alpine regions is driving changes 
in the structure and composition of tundra ecosystems1,2, with poten-
tially global consequences. Up to 50% of the world’s belowground car-
bon stocks are contained in permafrost soils3, and tundra regions are 
expected to contribute the majority of warming-induced soil carbon 
loss over the next century4. Plant traits strongly affect carbon cycling 
and the energy balance of the ecosystem, which can in turn influence 
regional and global climates5–7. Traits related to the resource econom-
ics spectrum8, such as specific leaf area (SLA), leaf nitrogen content 
and leaf dry matter content (LDMC), affect primary productivity, 
litter decomposability, soil carbon storage and nutrient cycling5,6,9,10, 
while size-related traits, such as leaf area and plant height, influence 
aboveground carbon storage, albedo (that is, surface reflectance) and 
hydrology11–13 (Extended Data Table 1). Quantifying the link between 
the environment and plant functional traits is therefore important to 
understanding the consequences of climate change, but such studies 
rarely extend into the tundra14–16. Thus, the full extent of the relation-
ship between climate and plant traits in the coldest ecosystems on Earth 
has yet to be assessed, and the consequences of climate warming for 
functional change in the tundra remain largely unknown.

Here we quantify the biome-wide relationships between tempera-
ture, soil moisture and key traits that represent the foundation of plant 
form and function17, using a dataset of more than 56,000 tundra plant 
trait observations (Fig. 1a, Extended Data Fig. 1a and Supplementary 
Table 1). We examine five continuously distributed traits related to 
plant size (adult plant height and leaf area) and to resource economy 
(SLA, leaf nitrogen content and LDMC), as well as two categorical  
traits related to community-level structure (woodiness) and leaf phe-
nology and lifespan (evergreenness). Intraspecific trait variability is 
thought to be especially important in regions where diversity is low or 
where species have wide geographical ranges18, as in the tundra. Thus, 
we analyse two underlying components of biogeographical patterns in 
the five continuous traits: intraspecific variability (phenotypic plasticity 
or genetic differences among populations) and community-level var-
iability (species turnover or shifts in the abundances of species across 
space). We first investigated how plant traits vary with temperature  

and soil moisture across the tundra biome. We then quantified  
the relative influence of intraspecific trait variation (ITV) versus  
community-level trait variation (estimated as community-weighted 
trait means (CWM)) for spatial temperature–trait relationships. Finally, 
we investigated whether spatial temperature–trait relationships are 
explained by among-site differences in species abundance or species 
turnover (presence or absence).

A major incentive for quantifying spatial temperature–trait relation-
ships is to provide an empirical basis for predicting the potential conse-
quences of future warming19–21. Thus, we also estimate realized rates of 
community-level trait change over time using nearly three decades of 
vegetation survey data at 117 tundra sites (Fig. 1a and Supplementary 
Table 2). Focusing on interspecific trait variation, we investigated how 
changes in community traits over three decades of ambient warming 
compare to predictions from spatial temperature–trait relationships. 
We expect greater temporal trait change when spatial temperature–
trait relationships are (a) strong, (b) unlimited by moisture availability 
and (c) due primarily to abundance shifts instead of species turno-
ver, given that species turnover over time depends on immigration 
and is likely to be slow22. Finally, because total realized trait change 
in continuous traits consists of both community-level variation and 
ITV, we estimated the potential contribution of ITV to overall trait 
change (CWM + ITV) using the modelled intraspecific temperature–
trait relationships described above (see Methods and Extended Data 
Fig. 1b). For all analyses, we used a generalizable Bayesian modelling 
approach, which allowed us to account for the hierarchical spatial, tem-
poral and taxonomic structure of the data as well as multiple sources 
of uncertainty.

Environment–trait relationships across the tundra biome
We found strong spatial associations between temperature and  
community height, SLA and LDMC (Fig. 2a, Extended Data Fig. 2  
and Supplementary Table 3) across the 117 survey sites. Both height 
and SLA increased with summer temperature, but the temperature– 
trait relationship for SLA was much stronger at wetter than at  
drier sites. LDMC was negatively related to temperature, and  

A list of authors and their affiliations appears online.

4  O CT  O B ER   2 0 1 8  |  V O L  5 6 2  |  N A T U RE   |  5 7
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0563-7


ArticleRESEARCH

more strongly so at wetter than drier sites. Community woodiness 
decreased with temperature, but the ratio of evergreen to deciduous 
woody species increased with temperature, particularly at drier sites 
(Extended Data Fig. 3). These spatial temperature–trait relationships 
indicate that long-term climate warming should cause pronounced 
shifts towards communities of taller plants with more resource- 
acquisitive leaves (high SLA and low LDMC), particularly where soil 
moisture is high.

Our results reveal a substantial moderating influence of soil  
moisture on community traits across spatial temperature gradients2,23. 
Both leaf area and leaf nitrogen content decreased with warmer temper-
atures in dry sites but increased with warmer temperatures in wet sites 
(Fig. 2a and Supplementary Table 4). Soil moisture was important for 
explaining spatial variation in all seven investigated traits, even when 
temperature alone was not (for example, leaf area; Fig. 2a and Extended 
Data Fig. 2), potentially reflecting physiological constraints that are 
related to heat exchange or frost tolerance when water availability is 
low24. Thus, future warming-driven changes in traits and associated 
ecosystem functions (for example, decomposability) will probably 
depend on current soil moisture conditions at a site23. Furthermore, 
future changes in water availability (for example, because of changes 
in precipitation, snow melt timing, permafrost and hydrology25) could 
cause substantial shifts in these traits and their associated functions, 
irrespective of warming.

We found consistent intraspecific temperature–trait relationships 
for all five continuous traits (Fig. 2b and Supplementary Table 5). 
Intraspecific plant height and leaf area showed strong positive  
relationships with summer temperature (that is, individuals  
were taller and had larger leaves in warmer locations), whereas 
intraspecific LDMC, leaf nitrogen content and SLA were related  
to winter but not summer temperature (Extended Data Fig. 2).  
The differences in responses of ITV to summer versus winter  
temperatures may indicate that size-related traits better reflect sum-
mer growth potential, whereas resource-economics traits reflect tol-
erance to cold-stress. These results, although correlative, indicate that  
trait variation expressed at the individual or population level is  
related to the growing environment and that warming will probably  
lead to substantial intraspecific change in many traits. Thus, the 
potential for trait change over time is underestimated by using  
species-level trait means alone. Future work is needed to disentangle 

the role of plasticity and genetic differentiation in explaining the 
observed intraspecific temperature–trait relationships26, as this will 
also influence the rate of future trait change27. Trait measurements 
collected over time and under novel (experimental) conditions, as 
yet unavailable, would enable more accurate predictions of future 
intraspecific trait change.

Partitioning the underlying causes of community temperature– 
trait relationships revealed that species turnover explained most  
of the variation in traits across space (Fig. 2c), suggesting that  
dispersal and immigration processes will primarily govern the  
rate of ecosystem responses to warming. Shifts in the abundances  
of species and ITV accounted for a relatively small part of the  
overall temperature–trait relationship across space (Fig. 2c). 
Furthermore, the local trait pool in the coldest tundra sites (mean 
summer temperature <3 °C) is constrained relative to the tundra as a 
whole for many traits (Extended Data Fig. 4). Together, these results 
indicate that the magnitude of warming-induced community trait 
shifts will be limited without the arrival of novel species from warmer 
environments.

Change in community traits over time
Plant height was the only trait for which the CWM changed over 
the 27 years of monitoring; it increased rapidly at nearly every  
survey site (Fig. 3a, b, Extended Data Fig. 3 and Supplementary 
Table 6). Interannual variation in community height was sensitive to 
summer temperature (Fig. 3c, Extended Data Fig. 2 and Supplementary 
Table 7), indicating that increases in community height are respond-
ing to warming. However, neither the total rate of temperature change 
nor soil moisture predicted the total rate of CWM change in any trait 
(Extended Data Fig. 5 and Supplementary Table 8). Incorporating 
potential ITV doubled the average estimate of plant height change over 
time (Figs. 3a, 4a, dashed lines). Because spatial patterns in ITV can 
be due to both phenotypic plasticity and genetic differences among 
populations, this is likely to be a maximum estimate of the ITV contri-
bution to trait change (for example, if intraspecific temperature–trait 
relationships are due entirely to phenotypic plasticity). The observed 
increase in community height is consistent with previous findings of 
increasing vegetation height in response to experimental warming at a 
subset of these sites28 and with studies showing increased shrub growth 
over time11.

Fig. 1 | Geographical distribution of trait and vegetation survey data and 
climatic change over the study period. a, Map of all 56,048 tundra trait 
records and 117 vegetation survey sites. b, c, Climatic change across the 
period of monitoring at the 117 vegetation survey sites, represented as mean 
winter (coldest quarter) and summer (warmest quarter) temperature (b)  
and frost day frequency (c). The size of the coloured points on the map 
indicates the relative quantity of trait measurements (larger circles indicate 
more measurements of that trait at a given location) and the colour 
indicates which trait was measured. The black stars indicate the vegetation 

survey sites used in the community trait analyses (most stars represent 
multiple sites). Trait data were included for all species that occurred in 
at least one tundra vegetation survey site; thus, although not all species 
are unique to the tundra, all do occur in the tundra. Temperature change 
and frost frequency change were estimated for the interval over which 
sampling was conducted at each site plus the preceding four years, to best 
reflect the time window over which tundra plant communities respond to 
temperature change20,29.
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Increasing community height over time was mostly attributable  
to species turnover (rather than shifts in abundance of the res-
ident species; Fig. 3b) and was driven by the immigration of taller  
species rather than the loss of shorter ones (Extended Data Fig. 6  
and Supplementary Table 9). This turnover could reflect the move-
ment of tall species upward in latitude and elevation or from local 
species pools in nearby warmer microclimates. The magnitude  
of temporal change was comparable to the change predicted based  
on the spatial temperature–trait relationship (Fig. 4a, solid lines),  
indicating that temporal change in plant height is not currently lim-
ited by immigration rates. The importance of immigration in explain-
ing changes in community height is surprising given the relatively  
short study duration and long lifespan of tundra plants, but is none-
theless consistent with a previous finding of shifts towards warm- 
associated species in tundra plant communities20,29. If the observed 
rate of trait change continues (for example, if immigration were unlim-
ited), community height (excluding potential change due to ITV) 
could increase by 20–60% by the end of the century, depending on 
carbon emission, warming and water availability scenarios (Extended 
Data Fig. 7).

Consequences and implications
Recent (observed) and future (predicted) changes in plant traits, par-
ticularly height, are likely to have important implications for ecosystem 
functions and feedback effects involving soil temperature30,31, decom-
position5,10 and carbon cycling32, as the potential for soil carbon loss 
is particularly great in high-latitude regions4. For example, increas-
ing plant height could offset warming-driven carbon loss through 
increased carbon storage due to woody litter production5 or through 
reduced decomposition owing to lower summer soil temperatures 
caused by shading3,30,32 (negative feedback effects). Positive feedback 
effects are also possible if branches or leaves above the snowpack reduce 
albedo11,12 or increase snow accumulation, leading to warmer soil tem-
peratures in winter and increased decomposition rates3,11. The balance 
of these feedback systems—and thus the net effect of trait change on 
carbon cycling—may depend on the interaction between warming and 
changes in snow distribution33 and water availability34, which remain 
mostly unknown for the tundra biome.

The lack of an observed temporal trend in SLA and LDMC, 
despite strong temperature–trait relationships over space, highlights 
the limitations of using space-for-time substitution for predicting 

Fig. 2 | Strong spatial relationships in traits across temperature and 
soil moisture gradients are primarily explained by species turnover. 
a, Spatial relationship between community-level (CWM) functional 
traits, mean summer (warmest quarter) temperature and soil moisture 
(n = 1,520 plots within 117 sites within 72 regions). b, Spatial relationship 
between summer temperature and ITV (note the log scale for height and 
leaf area). c, Standardized effect sizes were estimated for all temperature–
trait relationships both across communities (CWM; solid bars) and 
within species (ITV; open bars with solid outlines). Effect sizes for 
CWM temperature–trait relationships were further partitioned into the 
proportion of the effect driven solely by species turnover (light bars) 
and abundance shifts (dark bars) over space. Dashed lines indicate the 
estimated additional contribution of ITV to the total temperature–trait 
relationship (CWM + ITV). The contribution of ITV is estimated from 

the spatial temperature–trait relationships modelled in b. Soil moisture in 
a was modelled as continuous but is shown predicted only at low and high 
values to improve visualization. Transparent ribbons in a and b indicate 
95% credible intervals for model mean predictions. Grey lines in b  
represent intraspecific temperature–trait relationships for each species 
(height, n = 80 species; LDMC, n = 43; leaf area, n = 85; leaf nitrogen 
content (leaf N), n = 85; SLA, n = 108; the number of observations per trait 
is shown in Supplementary Table 1). In all panels, asterisks indicate that 
the 95% credible interval on the slope of the temperature–trait relationship 
did not overlap zero. In a, two asterisks indicate that the temperature × 
soil moisture interaction term did not overlap zero. Winter temperature–
trait relationships are shown in Extended Data Fig. 2. Community 
woodiness and evergreenness are shown in Extended Data Fig. 3.
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short-term ecological change. This disconnect could reflect the influence  
of unmeasured changes in water availability (for example, owing to 
local-scale variation in the timing of snowmelt or hydrology) that  
counter or overwhelm the effect of static soil moisture estimates.  
For example, we would not expect substantial changes in traits demon-
strating a spatial temperature × moisture interaction (LDMC, leaf  
area, leaf nitrogen content and SLA), even in wet sites, if warming  
also leads to drier soils. Plant height was the only continuous trait for 
which a temperature × moisture interaction was not important, and 
was predicted to increase across all areas of the tundra regardless of 
recent soil moisture trends (Fig. 4c, d). Spatiotemporal disconnects 
could also reflect dispersal limitation of potential immigrants (for 
example, with low LDMC and high SLA) or establishment failure due to 
novel biotic35 or abiotic36 conditions other than temperature to which 
immigrants are maladapted22,36. Furthermore, community responses to 
climate warming could be constrained by soil properties (for example, 
organic matter and mineralization) that themselves respond slowly to 
warming20.

The patterns in functional traits described here reveal the extent to 
which environmental factors shape biotic communities in the tundra. 
Strong temperature- and moisture-related spatial gradients in traits 
related to competitive ability (for example, height) and resource capture 
and retention (for example, leaf nitrogen and SLA) reflect trade-offs in 
plant ecological strategy9,37 from benign (warm, wet) to extreme (cold, 
dry) conditions. Community-level trait syndromes, as reflected in ordi-
nation axes, are also strongly related to both temperature and moisture, 
suggesting that environmental drivers structure not only individual 
traits but also trait combinations—and thus lead to a limited number 

of successful functional strategies in some environments (for example, 
woody, low-SLA and low-leaf nitrogen communities in warm, dry sites; 
Extended Data Fig. 8). Thus, warming may lead to a community-level 
shift towards more acquisitive plant strategies37 in wet tundra sites, but 
towards more conservative strategies in drier sites as moisture becomes 
more limiting.

Earth system models are increasingly moving to incorporate rela-
tionships between traits and the environment, as this can substantially 
improve estimates of ecosystem change38–40. Our results inform these 
projections of future tundra functional change38 by explicitly quanti-
fying the link between temperature, moisture and key functional traits 
across the biome. In particular, our study highlights the importance of 
accounting for future changes in water availability, as this will probably 
influence both the magnitude and direction of change for many traits. 
In addition, we demonstrate that spatial trait–environment relation-
ships are driven largely by species turnover, suggesting that modelling 
efforts must account for rates of species immigration when predicting 
the speed of future functional shifts. The failure of many traits (for 
example, SLA) to match expected rates of change suggests that space-
for-time substitution alone may inaccurately represent near-term eco-
system change. Nevertheless, the ubiquitous increase in community 
plant height reveals that functional change is already occurring in 
tundra ecosystems.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0563-7.

Fig. 3 | A tundra-wide increase in community height over time is related 
to warming. a, Observed community trait change per year (transformed 
units). Solid lines indicate the distribution of CWM model slopes (trait 
change per site) whereas dashed lines indicate change in CWM plus 
potential intraspecific change modelled from spatial temperature–trait 
relationships (CWM + ITV). Circles (CWM) or triangles (CWM + 
ITV) and error bars indicate the mean and 95% credible interval for the 
overall rate of trait change across all sites (n = 4,575 plot-years within 
117 sites within 38 regions). The vertical black dashed line indicates 0 
(no change over time). b, Standardized effect sizes for CWM change 
over time were further partitioned into the proportion of the effect 
driven solely by species turnover (light bars) or shifts in abundance of 
resident species (dark bars) over time. Dashed lines indicate the estimated 

additional contribution of ITV to total trait change over time (CWM 
+ ITV). Asterisks indicate that the 95% credible interval on the mean 
hyperparameter for CWM trait change over time did not overlap zero. 
c, Temperature sensitivity of each trait (that is, correspondence between 
interannual variation in CWM trait values and interannual variation in 
summer temperature). Temperatures associated with each survey year 
were estimated as five-year means (temperature of the survey year and 
four preceding years), because this interval has been shown to be most 
relevant to vegetation change in tundra20 and alpine29 plant communities. 
Circles represent the mean temperature sensitivity across all 117 sites, 
error bars are 95% credible intervals on the mean. Changes in community 
woodiness and evergreenness are shown in Extended Data Fig. 3.
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Fig. 4 | Community height increases in line with space-for-time 
predictions but other traits lag. a, Observed community (CWM) trait 
change over time (coloured lines) across all 117 sites versus expected 
CWM change over the duration of vegetation monitoring (1989–2015) 
based on the spatial temperature–trait (CWM) relationship and the 
average rate of recent summer warming across all sites (solid black lines). 
Coloured dashed lines indicate the estimated total change over time if 
predicted intraspecific trait variability is also included (CWM + ITV). 
Values on the y axis represent the magnitude of change relative to 0  
(that is, trait anomaly), with 0 representing the trait value at t0. b, c, Total 
recent temperature change (b) and soil moisture change (c) across the 
Arctic tundra (1979–2016). Temperature change estimates are derived 
from gridded temperature data from the Climate Research Unit (CRU), 
estimates of changes in soil moisture are derived from downscaled 

European Centre for Medium-Range Weather Forecasts Re-Analysis 
(ERA-Interim) soil moisture data. Circles in b represent the sensitivity 
(cm per °C) of CWM plant height to summer temperature at each site 
(see Fig. 3c). Areas of high temperature sensitivity are expected to 
experience the greatest increases in height with warming. d, e, Spatial 
trait–temperature–moisture relationships (Fig. 2a) were used to predict 
total changes in height (d) and leaf nitrogen content (e) over the entire 
1979–2016 period based on concurrent changes in temperature and soil 
moisture. Note that d and e reflect the magnitude of expected change 
between 1979 and 2016, not observed trait change. See Methods for details 
on estimates of the change in temperature and soil moisture. The outline of 
Arctic areas is based on the Circumpolar Arctic Vegetation Map  
(http://www.geobotany.uaf.edu/cavm).
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Methods
Below we describe the data, workflow (Extended Data Fig. 1b) and detailed meth-
ods used to conduct all analyses. No statistical methods were used to predetermine 
sample size.
Community composition data. Community composition data used for calculating 
CWM were compiled from a previous synthesis of tundra vegetation resurveys2 
(including many International Tundra Experiment (ITEX) sites) and expanded 
with additional sites (for example, Gavia Pass in the Italian Alps and three sites 
in Sweden) and years (for example, 2015 survey data added for Iceland sites, 
Qikiqtaruk–Herschel Island (QHI) and Alexandra Fiord; Supplementary Table 2). 
We included only sites for which community composition data were roughly equiv-
alent to percentage cover (that is, excluding estimates approximating biomass), for 
a total of 117 sites (defined as plots in a single contiguous vegetation type) within 
38 regions (defined as a CRU41 grid cell). Plot-level surveys of species composition 
and cover were conducted at each of these sites between 1989 and 2015 (see the 
previous study2 for more details regarding data collection and processing). On 
average, there were 15.2 plots per site. Repeat surveys were conducted over a min-
imum duration of 5 and up to 21 years between 1989 and 2015 (mean duration, 
13.6 years), for a total of 1,781 unique plots and 5,507 plot–year combinations. Plots 
were either permanent (that is, staked; 62% of sites) or semi-permanent (38%), 
such that the approximate but not exact location was resurveyed. The vegetation 
monitoring sites were located in treeless Arctic or alpine tundra and ranged in 
latitude from 40° (Colorado Rockies) to 80° (Ellesmere Island, Canada) and were 
circumpolar in distribution (Fig. 1a and Supplementary Table 2). Our analyses only 
include vascular plants, because there was insufficient trait data for non-vascular 
species. Changes in bryophytes and other cryptogams are an important part of 
the trait and function change in tundra ecosystems42,43, thus the incorporation of 
non-vascular plants and their traits is a future research priority.
Temperature extraction for community composition observations. We extracted sum-
mer (warmest quarter) and winter (coldest quarter) temperature estimates for each 
of the vegetation survey sites from both the WorldClim44 (for long-term averages; 
http://www.worldclim.org/) and CRU41 (for temporal trends; http://www.cru.uea.
ac.uk/) gridded climate datasets. WorldClim temperatures were further corrected 
for elevation (based on the difference between the recorded elevation of a site and 
the mean elevation of the WorldClim grid cell) according to a correction factor 
of –0.005 °C per m increase in elevation. This correction factor was calculated by 
extracting the mean temperature and elevation (WorldClim 30-s resolution maps) 
of all cells that fall in a 2.5-km radius buffer around our sites and fitting a linear 
mixed model (with site as a random effect) to estimate the rate of temperature 
change with elevation.

The average long-term (1960–present) temperature trend across all sites was 
0.26 °C (range, −0.06 to 0.49) and 0.43 °C (range, −0.15 to 1.32) per decade for 
summer and winter temperature, respectively.
Soil moisture for community composition observations. A categorical measure of 
soil moisture at each site was provided by the principle investigator of the site 
according to previously described methods2,45. Soil moisture was considered to 
be (1) dry when during the warmest month of the year the top 2 cm of the soil was 
dry to the touch; (2) mesic when soils were moist year round, but standing water 
was not present; and (3) wet when standing water was present during the warmest 
month of the year.
Soil moisture change for maps of environmental and trait change. We used high- 
resolution observations of soil moisture from the European Space Agency (ESA) 
CCI SM v.04.2 to estimate soil moisture change over time (Fig. 4c). To calculate 
the mean distribution of soil moisture, we averaged the observations for the period 
between 1979 and 2016. Because the ESA CCI SM temporal coverage is poor for 
our sites, temporal data were instead taken from the European Re-analysis (ERA-
Interim; volumetric soil water layer 1) soil moisture estimates for the same time 
period. We downscaled the ERA-Interim data to the 0.05° resolution of ESA CCI 
SM v.04.2 using climatologically aided interpolation (delta change method)46. The 
change in soil water content was then calculated separately for each grid cell using 
linear regression with month as a predictor variable. To classify the soil moisture 
data into three categories (wet, mesic or dry) to match the community composi-
tion dataset, we used a quantile approach on the mean soil moisture within the 
extent of the Arctic. We assigned the lowest quantile to dry and the highest to 
wet conditions. For the trends in soil moisture between 1979 and 2016, we first 
calculated the percentage change in relation to the mean, and then calculated the 
change based on the categorical data (for example, 5% change from category 1 
(dry) to category 2 (mesic)).
Changes in water availability for analysis. Although the strong effect of soil moisture 
on spatial temperature–trait relationships suggests that change in water availa-
bility over time will play an important part in mediating trait change, we did not 
use the CRU estimates of precipitation change over time, because of issues with  
precipitation records at high latitudes and the inability of gridded datasets to capture  
localized precipitation patterns47,48. The CRU precipitation trends at our sites 

included many data gaps filled by long-term mean values, especially at high-latitude  
sites45. As a purely exploratory analysis, we used the downscaled ERA-Interim 
data described above to investigate whether trait change is related to summer soil 
moisture change (June, July and August; Extended Data Fig. 5b). However, we 
caution that changes in soil moisture in our tundra sites are primarily controlled 
by the timing of the snow melting, soil drainage, the permafrost table and local 
hydrology25, and as such precipitation records and coarse-grain remotely sensed 
soil-moisture change data are unlikely to accurately represent local changes in soil 
water availability. For this reason, we did not use the ERA-Interim data to explore 
spatial relationships between temperature, moisture and community traits, as the 
categorical soil moisture data (described above) were collected specifically within 
each community composition site and are therefore a more accurate representation 
of long-term mean soil moisture conditions in that specific location.
Trait data. Continuous trait data (adult plant height, leaf area (average one-sided 
area of a single leaf), SLA (leaf area per unit of leaf dry mass), leaf nitrogen content 
(per unit of leaf dry mass), and LDMC (leaf dry mass per unit of leaf fresh mass) 
(Fig. 1a, Extended Data Fig. 1a and Supplementary Table 1) were extracted from 
the TRY49 3.0 database (https://www.try-db.org/TryWeb/Home.php). We also ran a 
field and data campaign in 2014–2015 to collect additional in situ tundra trait data 
(the ‘Tundra Trait Team’ (TTT) dataset50) to supplement existing TRY records. All 
species names from the vegetation monitoring sites, TRY and TTT were matched to 
accepted names in The Plant List using the R package Taxonstand51 (v.1.8) before 
merging the datasets. Community-level traits (woodiness and evergreenness) 
were derived from functional group classifications for each species2. Woodiness 
is estimated as the proportion (abundance) of woody species in the plot, whereas 
evergreenness is the proportion of evergreen woody species abundance out of all 
woody species (evergreen plus deciduous) in a plot. Because some sites did not 
contain any woody species (and thus the proportion of evergreen woody species 
could not be calculated), this trait is only estimated for 98 of the 117 total sites.
Data cleaning for TRY data. TRY trait data were subjected to a multi-step clean-
ing process. First, all values that did not represent individual measurements or 
approximate species means were excluded. When a dataset within TRY contained 
only coarse plant height estimates (for example, estimated to the nearest foot), we 
removed these values unless no other estimate of height for that species was avail-
able. We then identified overlapping datasets within TRY and removed duplicate 
observations whenever possible. The following datasets were identified as hav-
ing partially overlapping observations: GLOPNET (Global Plant Trait Network 
Database), The LEDA Traitbase, Abisko and Sheffield Database, Tundra Plant 
Traits Database and Kew Seed Information Database (SID).

We then removed duplicates within each TRY dataset (for example, if a value 
is listed once as ‘mean’ and again as ‘best estimate’) by first calculating the ratio of 
duplicated values within each dataset, and then removing duplicates from datasets 
with more than 30% duplicated values. This cut-off was determined by manual 
evaluation of datasets at a range of thresholds. Datasets with fewer than 30% dupli-
cated values were not removed in this way as any internally duplicate values were 
assumed to be true duplicates (that is, two different individuals were measured and 
happened to have the same measurement value).

We also removed all species mean observations from the ‘Niwot Alpine Plant 
Traits’ database and replaced it with the original individual observations provided 
by M.J.S.
Data cleaning for the combined TRY and TTT dataset. Both datasets were checked 
for improbable values, with the goal of excluding likely errors or measurements 
with incorrect units but without excluding true extreme values. We followed a 
series of data-cleaning steps, in each case identifying whether a given observation 
(x) was likely to be erroneous (that is, ‘error risk’) by calculating the difference 
between x and the mean (excluding x) of the taxon and then dividing by the stand-
ard deviation of the taxon.

We used a hierarchical data-cleaning method, because the standard deviation 
of a trait value is related to the mean and sample size. First, we checked individual 
records against the entire distribution of observations of that trait and removed 
any records with an error risk greater than 8 (that is, a value more than 8 standard 
deviations away from the trait mean). For species that occurred in four or more 
unique datasets within TRY or TTT (that is, different data contributors), we esti-
mated a species mean per dataset and removed observations for which the species 
mean error risk was greater than 3 (that is, the species mean of that dataset was 
more than 3 standard deviations away from the species mean across all datasets). 
For species that occurred in fewer than four unique datasets, we estimated a genus 
mean per dataset and removed observations in datasets for which the error risk 
based on the genus mean was greater than 3.5. Finally, we compared individual 
records directly to the distribution of values for that species. For species with more 
than four records, we excluded values above an error risk Y, where Y was dependent 
on the number of records of that species and ranged from an error risk of 2.25 
for species with fewer than 10 records to an error risk of 4 for species with more 
than 30 records. For species with four or fewer records, we manually checked trait 
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values and excluded only those that were obviously erroneous, based on our expert 
knowledge of these species.

This procedure was performed on the complete tundra trait database, includ-
ing species and traits not presented here. In total 2,056 observations (1.6%) were 
removed. In all cases, we visually checked the excluded values against the distribu-
tion of all observations for each species to ensure that our trait cleaning protocol 
was reasonable.

Trait data were distributed across latitudes within the tundra biome (Extended 
Data Fig. 1a). All trait observations with latitude and longitude information were 
mapped and checked for implausible values (for example, falling in the ocean). 
These values were corrected from the original publications or by contacting the 
data contributor whenever possible.
Final trait database. After removing duplicates and outliers as described above, 
we retained 56,048 unique trait observations (of which 18,613 are contained in 
TRY and 37,435 were newly contributed by the TTT50 field campaign) across the 
five continuous traits of interest. Of the 447 identified species in the ITEX dataset, 
386 (86%) had trait data available from TRY or TTT for at least one trait (range 
52–100% per site). Those species without trait data generally represent rare or 
uncommon species unique to each site; on average, trait data were available for 97% 
of total plant cover across all sites (range 39–100% per site; Supplementary Table 1).
Temperature extraction for trait observations. WorldClim climate variables were 
extracted for all trait observations with latitude and longitude values recorded 
(53,123 records in total, of which 12,380 were from TRY and 33,621 from TTT). 
Because most observations did not include information about elevation, tempera-
ture estimates for individual trait observations were not corrected for elevation and 
thus represent the temperature at the mean elevation of the WorldClim grid cell.
Analyses. Terminology. Here we provide a brief description of acronyms and sym-
bols used in the methods and model equations. α is used to designate lower-level 
model intercepts; β is used to designate lower-level model slopes; γ is used to 
designate the model parameters of interest (for example, the temperature–trait 
relationship); CWM designates the mean trait value of all species in a plot, weighted 
by their abundance in the plot; CWM + ITV designates CWM adjusted with the 
estimated contribution of ITV based on the intraspecific temperature–trait rela-
tionship of each species; and ITV designates variation in trait values within the 
same species (that is, intraspecific trait variation).
Models. All analyses were conducted in JAGS and/or Stan through R (v.3.3.3) using 
packages rjags52 (v.4.6) and rstan53 (v.2.14.1). In all cases, models were run until 
convergence was reached, which was assessed both visually in traceplots and  
by ensuring that all Gelman–Rubin convergence diagnostic �R( )54 values were less 
than 1.1.

A major limitation of the species mean trait approach, which is often used in 
analyses of environment–trait relationships, has been the failure to account for 
ITV, which could be as or more important than interspecific variation55,56. We 
addressed this issue by using a hierarchical analysis that incorporates both with-
in-species and community-level trait variation across climate gradients to estimate 
trait change over space and time at the biome scale. We used a Bayesian approach 
that accounts for the hierarchical spatial (plots within sites within regions) and 
taxonomic (intra- and inter-specific variation) structure of the data as well as 
uncertainty in estimated parameters introduced through absences in trait records 
for some species, or through taxa that were identified to genus or functional group 
(rather than species) in vegetation surveys.
ITV. To calculate intraspecific temperature–trait relationships, we used a subset of 
the trait dataset containing only those species for which traits had been measured 
in at least four unique locations spanning a temperature range of at least 10% of the 
entire temperature range (2.6 °C and 5.0 °C for summer and winter temperature, 
respectively), and for which the latitude and longitude of the measured individual 
or group of individuals was recorded. The number of species meeting these criteria 
varied by trait and temperature variable: 108 and 109 for SLA, 80 and 86 for plant 
height, 74 and 72 for leaf nitrogen, 85 and 76 for leaf area, and 43 and 52 for LDMC, 
for summer and winter temperature, respectively. These species counts correspond 
to 53–73% of the abundance in the community. The relationship between each trait 
and temperature (Fig. 2b) was estimated from a Bayesian hierarchical model, with 
temperature as the predictor variable and species (sp) and dataset-by-location (d) 
modelled as random effects:

α σ~  trait log normal( , )d
observed

sp, spi

α α β σ~ + TNormal( , )d dsp, sp sp 1

β σ~ BNormal( , )sp 2

α σ~ ANormal( , )sp 3

in which the tilde (~) indicates ‘distributed as’, T indicates temperature, i represents 
each trait observation and Α and Β are the intercept and slope hyperparameters, 
respectively. Because LDMC represents a ratio and is thus bound between 0 and 1,  
we used a beta error distribution for this trait. Temperature values were mean- 
centred within each species. We used non-informative priors for all coefficients.

We further explored whether the strength of intraspecific temperature–height 
relationships varied by functional group. We find that all functional groups (includ-
ing dwarf shrubs, which are genetically limited in their ability to grow upright) 
show similar temperature–trait relationships (Extended Data Fig. 9a). These 
results suggest that intraspecific temperature–height relationships are not just a 
consequence of individual growth differences, and are not restricted to particular 
functional groups with greater capacity for vertical growth (for example, tall shrubs 
and graminoids versus dwarf shrubs and certain forb species).
Calculation of CWM values. We calculated the CWM (that is, the mean trait value 
of all species in a plot, weighted by the abundance of each species), for all plots 
within a site. We used a Bayesian approach to calculate trait means for every spe-
cies (s) using an intercept-only model (such that the intercept per species (αs) is 
equivalent to the mean trait value of the species) and variation per species (σs) with 
a lognormal error distribution:

α σ~  trait log normal( , )i s s
observed

Because LDMC represents a ratio and is thus bound between 0 and 1, we used 
a beta error distribution instead of log normal for this trait. When a species was 
measured multiple times in several different locations, we additionally included a 
random effect of dataset-by-location (d) to reduce the influence of a single dataset 
with many observations at one site when calculating the mean per species:

α σ~  trait log normal( , )i s d d
observed

,

α α σ~ Normal( , )s d s s,

We used non-informative priors for all species intercept parameters for which there 
were four or more unique trait observations, so that the species-level intercept and 
variance around the intercept per species were estimated from the data. To avoid 
removing species with little or no trait data from the analyses, we additionally used 
a ‘gap-filling’ approach that enabled us to estimate the trait mean of each species 
while accounting for uncertainty in the estimation of this mean. For species with 
fewer than four but more than one trait observation, we used a normal prior with 
the mean equal to the mean of the observation(s) and variance estimated based 
on the mean mean:variance ratio across all species. In other words, we calculated 
the ratio of mean trait values to the standard deviation of those trait values per 
species for all species with greater than four observations, then took the mean of 
these ratios across all species and multiplied this number by the mean of species 
X (in which X is a species with 1–4 observations) to get the prior for σ. For species 
with no observations (see Supplementary Table 1), we used a prior mean equal 
to the mean of all species in the same genus and a prior variance estimated based 
on the mean mean:variance ratio of all species in that genus or 1.5× the mean, 
whichever was lower. If there were no other species in the same genus, then we 
used a prior mean equal to the mean of all other species in the family and a prior 
variance estimated based on the mean mean:variance ratio of all species in the 
family or 1.5× the mean, whichever was lower.
Incorporating uncertainty in species traits to calculate CWM values. To include 
uncertainty about species trait means (owing to ITV, missing trait information 
for some species or when taxa were identified to genus or functional group rather 
than species) in subsequent analyses, we estimated community-level trait values 
per plot by sampling from the posterior distribution (mean ± s.d.) of each species 
intercept estimate and multiplying this distribution by the relative abundance of 
each species in the plot to get a CWM distribution per plot (p) per year (y):

. .( )Normal CWM , CWMp y p y,
mean

,
s d

This approach generates a distribution of CWM values per plot that propagates 
the uncertainty in the mean estimate of each trait for each species into the plot-
level (CWM) estimate. By using a Bayesian approach, we are able to carry through 
uncertainty in mean estimates of traits to all subsequent analyses and reduce the 
potential for biased or deceptively precise estimates due to missing trait obser-
vations.
Partitioning turnover and estimating contribution of ITV to temperature–trait rela-
tionships. To assess the degree to which the spatial temperature–trait relationships 
are caused by species turnover versus shifts in abundance among sites, we repeated 
each analysis using the non-weighted community mean (all species weighted 
equally) of each plot. Temperature–trait relationships estimated with non-weighted 
community means are due only to species turnover across sites.
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Finally, we assessed the potential contribution of ITV to the community-level 
temperature–trait relationship by using the modelled intraspecific temperature–
trait relationship (see ‘ITV’) to predict trait ‘anomaly’ values for each species at each 
site based on the temperature of that site in a given year relative to its long-term 
average. An intraspecific temperature–trait relationship could not be estimated 
for every species owing to an insufficient number of observations for some spe-
cies. Therefore, we used the mean intraspecific temperature–trait slope across all  
species to predict trait anomalies for species without intraspecific temperature–trait 
relationships.

Site- and year-specific species trait estimates were then used to calculate ITV-
adjusted CWM (CWM + ITV) for each plot in each measured year, and modelled 
as for CWM alone. As these adjusted values are estimated relative to the mean 
value of each species, the spatial temperature–trait relationship that includes this 
adjustment does not remove any bias in the underlying species mean data. For 
example, if southern tundra species tend to be measured at the southern edge of 
their range while northern tundra species tend to be measured at the northern 
edge of their range, the overall spatial temperature–trait relationship could appear 
stronger than it really is for species with temperature-related intraspecific variation. 
This is a limitation of any species-mean approach.

Estimates of temporal CWM + ITV temperature–trait relationships are not 
prone to this same limitation as they represent relative change, but should also be 
interpreted with caution as intraspecific temperature–trait relationships may be 
due to genetic differences among populations rather than plasticity, thus suggesting 
that trait change would not occur immediately with warming. We therefore caution 
that the CWM + ITV analyses represent estimates of the potential contribution 
of ITV to overall CWM temperature–trait relationships over space and time, but 
should not be interpreted as measured responses.

In summary, we incorporate intraspecific variation into our analyses in three 
ways. First, by using the posterior distribution (rather than a single mean value) 
of species trait mean estimates in our calculations of CWM values per plot, so that 
information about the amount of variation within species is incorporated into all 
the analyses in our study. Second, by explicitly estimating intraspecific tempera-
ture–trait relationships based on the spatial variation in traits among individuals 
of the same species. Third, by using these modelled temperature–trait relationships 
to inform estimates of the potential contribution of ITV to overall (CWM + ITV) 
temperature–trait relationships over space and time.
Spatial community trait models. To investigate spatial relationships in plant  
traits with summer or winter temperature and soil moisture (Fig. 2a, c), we 
used a Bayesian hierarchical modelling approach in which soil moisture and 
soil moisture × temperature vary at the site level while temperature varies by 
WorldClim region (unique WorldClim grid × elevation groups). In total, there 
were 117 sites (s) nested within 73 WorldClim regions (r). We used only the first 
year of survey data at each site to estimate spatial relationships in community 
traits.

α α~ + . .( )CWM Normal , CWMp p
mean

s r
s d

α γ γ σ~ +M M TNormal( , )s s s s1 2 1

α γ γ σ~ + TNormal( , )r r0 3 2

in which M indicates moisture, CWMp
mean is the mean of the posterior distribution 

of the CWM estimate per plot (p) and . .CWMp
s d  is the standard deviation of the 

posterior distribution of the CWM estimate per plot (see ‘Incorporating uncer-
tainty in species traits to calculate CWM values’). See Supplementary Information 
for complete STAN code.

As woodiness and evergreenness represent proportional data (bound between 
0 and 1, inclusive), we used a beta–Bernoulli mixture model of the same struc-
ture as above to estimate trait–temperature–moisture relationships for these traits 
(Extended Data Fig. 3a, b). The discrete and continuous components of the data 
were modelled separately, with mixing occurring at the site- and region-level esti-
mates (αs and αr).

Because Arctic and alpine tundra sites might differ in their trait–environment 
relationships owing to environmental differences (for example, in soil drainage), 
we also performed a version of the spatial community trait analyses in which the 
elevation of each site is visually indicated (not modelled; Extended Data Fig. 9b). 
We did not attempt to separately analyse trait–environment relationships for Arctic 
and alpine sites owing to the ambiguity in defining this cut-off (that is, many 
sites can be categorized as both Arctic and alpine, particularly in Scandinavia and 
Iceland) and because of the small number of southern, high-alpine sites (European 
Alps and Colorado Rockies).

For estimation of the overall temperature–trait relationship, we used a model 
structure similar to that above but with only temperature as a predictor (that is, 

without soil moisture). This model was used for both CWM and non-weighted 
mean estimates to determine the degree to which temperature–trait relation-
ships over space are due to species turnover alone (non-weighted mean) and for 
CWM + ITV plot-level estimates to determine the likely additional contribution 
of ITV to the overall temperature–trait relationship, as described above.

Standardized effect sizes for CWM temperature–trait relationships (Fig. 2c) 
were obtained by dividing the slope of the temperature–trait relationship by the 
standard deviation of the CWM model residuals. Effect sizes for ITV, turnover only 
and CWM + ITV were estimated relative to the CWM value for that same trait 
based on the slope values of each temperature-trait relationship.
Trait change over time. Change over time (Fig. 3a, b) was modelled at the CRU 
grid cell (region) level. We first estimated a region-by-year (r, y) effect to account 
for the non-independence of observations made within the same region and year. 
We also included site (s) as a random effect when there was more than one site per 
region (to account for non-independence of sites within a region) and plot (p) as 
a random effect for those sites with permanent (repeating) plots (to account for 
repeated measures on the same plot over time):

α α α~ + + . .CWM Normal( , CWM )p y p s r y p y,
mean

, ,
s d

in which CWMp y,
mean is the mean of the posterior distribution of the CWM estimate 

per plot (p) in a given year (y) and . .CWMp y,
s d  is the standard deviation of the pos-

terior distribution of the CWM estimate per plot and year (see ‘Incorporating 
uncertainty in species traits to calculate CWM values’). For non-permanent plots 
and for sites that were the only site within a region, αp or αs, respectively, were set 
to 0.

Region-level slopes were then used to fit an average trend of community trait 
values over time, in which Y represents calendar year (centred within each region) 
as a linear predictor:

α α β σ~ + YNormal( , )r y r r r y, , 0

β σ~ BNormal( , )r 1

α σ~ ANormal( , )r 2

in which Α and Β are the intercept and slope hyperparameters, respectively. 
See Supplementary Information for complete STAN code. This model was used for 
both CWM and non-weighted mean plot-level estimates to determine the degree 
to which temporal trait change is due to species turnover alone (non-weighted 
mean) and for CWM + ITV plot-level estimates to determine the potential addi-
tional contribution of ITV to overall trait change. We did not account for temporal 
autocorrelation in these models as most plots were not measured annually (average 
survey interval = 7.2 years) and did not have more than three observations over the 
study period (average number of survey years per plot = 3.1).

Standardized effect sizes for CWM change over time (Fig. 3b) were obtained by 
dividing the slope of overall trait change over time (mean hyperparameter across 
117 sites) by the standard deviation of the slope estimates per site. Effect sizes for 
turnover-only and CWM + ITV changes are estimated relative to the CWM change 
value for that trait based on the slope values of each.

To estimate the change in the proportion of woody and evergreen species over 
time (CWM change only; Extended Data Fig. 3c, d) we used a beta–Bernoulli 
mixture model of the same form described above. The discrete and continuous 
components of the data were modelled separately, with mixing occurring at the 
region × year effect (αr,y). We additionally assessed whether the rate of observed 
trait change over time was related to the duration of vegetation monitoring at each 
site. There was no influence of monitoring duration for any trait (data not shown).
Temperature sensitivity. Temperature sensitivity (Fig. 3c) was modelled as the var-
iation in CWM trait values with variation in the five-year mean temperature (that 
is, the mean temperature of the survey year and the four preceding years). A four-
year lag was chosen because this interval has been shown to best explain vegetation 
change in tundra20 and alpine29 plant communities. The model specifics are exactly 
as shown above (see ‘Trait change over time’), but with temperature in the place 
of the linear year predictor (Y). Temperatures were centred within each region.
Observed versus expected changes in traits. To compare rates of observed versus 
expected community trait change (Fig. 4a), we first calculated the mean rate of 
temperature change across the 38 regions in our study, and then estimated the 
expected degree of change in each trait over the same period based on this tem-
perature change and the spatial relationship between temperature and CWM trait 
values (see ‘Spatial community trait models’). We then compared this expected 
trait change to actual trait change over time (see ‘Trait change over time’). To 
create Fig. 4a, we used the overall predicted mean value of each trait in the first 
year of survey (1989) as an intercept, and then used the expected and observed 
rates of trait change (± uncertainty) to predict community trait values in each year  
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thereafter. We subtracted the intercept from all predicted values to show trait 
change as an anomaly (difference from 0). The difference between the expected 
(black) and observed (coloured) lines in Fig. 4a represents a deviation from 
expected. To calculate total trait change, including the estimated contribution of 
intraspecific change (coloured dashed lines), we followed the same procedure as 
described for ‘observed’ trait change but where this observed change was based 
on plot-level CWM + ITV estimates that varied by year based on the temperature 
in that year and the temperature–trait relationship per species (see ‘Partitioning 
turnover and estimating contribution of ITV to temperature–trait relationships’).
Trait change versus changes in temperature and soil moisture. To determine whether 
the rate of trait change can be explained by the rate of temperature change at a site, 
the (static) level of soil moisture of a site or their interaction (Extended Data Fig. 5), 
we modelled the rate of trait change (see ‘Trait change over time’) and compared 
it to the rate of temperature change over the same time interval (with a lag of four 
years) and soil moisture:

β γ γ γ γ σ~ + + +T M T MNormal( , )r r r r r0 1 2 3

in which βr is the rate of trait change per region (Extended Data Fig. 5a). When 
sites within a region were measured over different intervals or contained different 
soil moisture estimates, they were modelled separately to match with temperature 
change estimates over the same interval and soil moisture estimates, which varied 
at the site level.

We also conducted this analysis using estimates of soil moisture change (with a 
lag of four years) from downscaled ERA-Interim data (volumetric soil water layer 
1). This model took the same form as above, but with moisture change in place of 
static soil moisture estimates (Extended Data Fig. 5b). Trait change was modelled 
at the site (rather than region) level, because estimates of soil moisture change 
varied at the site level. Because ERA-Interim data were not available for every site, 
this analysis was conducted with a total of 101 rather than 117 sites. We note that 
the results of this analysis should be interpreted with caution, as local changes in 
soil moisture may not be well-represented by coarse-scale remotely sensed data, 
as previously described.
Species gains and losses as a function of traits. We explored whether turnover in 
community composition was related to species’ traits (Extended Data Fig. 6). We 
estimated species gains and losses at the site (rather than plot) level to reduce the 
effect of random fluctuations in species presences and absences due to observer 
error or sampling methodology. Thus, sites with repeating and non-repeating plots 
were treated the same. A ‘gain’ was defined as a species that did not occur in a 
site in the first survey year but did in the last survey year, whereas a ‘loss’ was the 
reverse. We then modelled the probability of gain or loss separately as a function 
of the mean trait value of each species. For example, for gains, all newly observed 
species received a response type of 1 whereas all other species in the site received 
a response type of 0:

α α β~ + +response Bernoulli( trait )i s r r i

α σ~ ANormal( , )r 1

β σ~ BNormal( , )r 2

α σ~ Normal(0, )s r

We included a random effect for site (s) only when there were multiple sites within 
the same region (r), otherwise αs was set to 0. We considered the responses of 
species to be related to a given trait when the 95% credible interval on the slope 
hyperparameter (B) did not overlap zero.
Trait projections with warming. We projected trait change for the minimum 
(Representative Concentration Pathways (RCP)2.6) and maximum (RCP8.5) IPCC 
carbon emission scenarios from the NIMR HadGEM2-AO Global Circulation 
Model (Extended Data Fig. 7). We used the midpoint years of the WorldClim 
(1975) and HadGem2 (2090) estimates to calculate the expected rate of temper-
ature change over this time period. We then predicted trait values for each year 
into the future based on the projected rate of temperature change and the spatial 
relationship between temperature and community trait values (see ‘Spatial com-
munity trait models’).

These projections are not intended to predict actual expected changes in traits 
over the next century, as many other factors not accounted for here will also 
influence this change. In particular, future changes in functional traits will prob-
ably depend on concurrent changes in moisture availability, which are less well 
understood than temperature change. Recent modelling efforts predict increases 
in precipitation across much of the Arctic57, but it is unknown whether increasing 
precipitation will also lead to an increase in soil moisture and/or water availabil-
ity for plants, as the drying effect of warmer temperatures (for example, due to 

increased evaporation and/or decreased duration of snow cover58) may outweigh 
the effect of increased precipitation. Instead, these projections are an attempt to 
explore theoretical changes in traits over a long-term period when using a space-
for-time substitution approach.
Principal component analysis. We performed an ordination of CWM values per 
plot on all seven traits (Extended Data Fig. 8). Because community evergreenness 
could only be estimated for plots with at least one woody species, the total number 
of plots included in this analysis is reduced compared to the entire dataset (1,098 
plots out of 1,520 in total). We used the R package vegan59 (v.2.4.6) to conduct a 
principal component analysis (PCA) of these data. This analysis uses only trait 
means per plot, and therefore information about CWM uncertainty due to ITV 
and/or missing species is lost. The analysis was performed on log-transformed 
trait values49. We extracted the axis coordinates of each plot from the PCA and 
used the spatial trait–temperature–moisture model described above (see ‘Spatial 
community trait models’) to determine whether plot positions along both PCA 
axes varied with temperature, moisture and their interaction.
Trends in the abundance of species. To provide more insights into the species- 
specific changes that have occurred over time in tundra ecosystems, we calculated 
trends in abundance for the most common (widespread and abundant) species 
in the community composition dataset (Supplementary Table 10). We estimated 
trends for all species that occurred in at least five sites at a minimum abundance of 
5% cover (mean of all plots within a site) across all years. We additionally included 
species that occurred at low abundance (1% or more) but were widespread (at 
least 10 sites). This technique yielded a total of 79 species. Abundance changes 
were modelled as described for trait change over time, but because abundance 
(proportion of plot cover) is bounded between 0 and 1, inclusive, we used a beta–
Bernoulli mixture model. Abundance change was then estimated per species (sp) 
across all regions (r):

α α β σ~ + YNormal( , )r y r r r ysp, , sp, sp, sp, , sp

β σ~ Normal(B , )rsp, sp 1

α σ~ Normal(A , )sp r, sp 2

We additionally extracted region-specific slopes per species (βsp,r) to calculate a 
proportion of regions in which a given species was increasing or decreasing (‘Prop. 
Increase’ and ‘Prop. Decrease’ in Supplementary Table 10). Because regional slopes 
are modelled as random effects, these estimates are not entirely independent (that 
is, they will be pulled towards the overall species mean slope), but provide an 
approximate estimate of whether directional trends in abundance are consistent 
across the range of a species.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. STAN code for the two main models (spatial temperature–
moisture–trait relationships and community trait change over time) is provided 
in the Supplementary Information. Code for trait data cleaning is provided in the 
Tundra Trait Team data repository50 (https://github.com/ShrubHub/TraitHub, 
https://tundratraitteam.github.io/).

Data availability
Trait data. Data compiled through the Tundra Trait Team are publicly accessible50. 
The public TTT database includes traits not considered in this study as well as 
tundra species that do not occur in our vegetation survey plots, for a total of nearly 
92,000 trait observations on 978 species. Additional trait data from the TRY trait 
database can be requested at https://www.try-db.org/.
Composition data. Most sites and years of the vegetation survey data included in 
this study are available in the Polar Data Catalogue (ID 10786_iso). Much of the 
individual site-level data has additionally been made available in the BioTIME 
database60 (https://synergy.st-andrews.ac.uk/biotime/biotime-database/).
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Extended Data Fig. 1 | Overview of trait data and analyses. a, Count of 
traits per latitude (rounded to the nearest degree) for all georeferenced 
observations in TRY and TTT that correspond to species in the 
vegetation survey dataset. b, Work flow and analyses of temperature–

trait relationships. Intraspecific temperature–trait relationships over 
space were used to estimate the potential contribution of ITV to overall 
temperature–trait relationships over space and time (CWM + ITV) as trait 
measurements for individual plants over time are not available.
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Extended Data Fig. 2 | All temperature–trait relationships. Slope 
of temperature–trait relationships over space (within-species (ITV) 
and across communities (CWM)) and with interannual variation 
in temperature (community temperature sensitivity). Spatial 
- ITV, spatial relationship between ITV and temperature; spatial-
CWM, spatial relationship between CWM and summer temperature; 
temporal sensitivity-CWM, temperature sensitivity of CWM (that is, 
correspondence between interannual variation in CWM values with 
interannual variation in temperature). Error bars represent 95% credible 
intervals on the slope estimate. We used five-year mean temperatures 
(temperature of the survey year and four previous years) to estimate 

temperature sensitivity, because this interval has been shown to 
explain vegetation change in tundra20 and alpine29 plant communities. 
All slope estimates are in transformed units (height = log(cm), 
LDMC = logit(g g−1), leaf area = log(cm2), leaf nitrogen = log(mg g−1), 
SLA = log(mm2 mg−1)). Community (CWM) temperature–trait 
relationships are estimated across all 117 sites; intraspecific temperature–
trait relationships are estimated as the mean of 108 and 109 species for 
SLA, 80 and 86 species for plant height, 74 and 72 species for leaf nitrogen, 
85 and 76 species for leaf area, and 43 and 52 species for LDMC, for 
summer and winter temperature, respectively (see Methods for details).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Community woodiness and evergreenness 
over space and time. a, b, Variation in community woodiness (a) and 
evergreenness (b) across space with summer temperature and soil 
moisture. Community woodiness is the abundance-weighted proportion 
of woody species versus all other plant species in the community. 
Community evergreenness is the abundance-weighted proportion of 
evergreen shrubs versus all shrub species (deciduous and evergreen). 
The evergreen model was generated using a reduced number of sites (98 
instead of 117), because some sites did not have any woody species (and 
it was thus not possible to calculate a proportion of evergreen species). 

Both temperature and moisture were important predictors of community 
woodiness and evergreenness. The 95% credible interval for a temperature 
× moisture interaction term overlapped zero in both models (−0.100 to 
0.114 and −0.201 to 0.069 for woodiness and evergreenness, respectively). 
c, d, There was no change over time in woodiness (c) or evergreenness (d).  
Thin lines represent slopes per site (woodiness, n = 117 sites; 
evergreenness, n = 98 sites). In all panels, bold lines indicate overall model 
predictions and shaded ribbons designate 95% credible intervals on these 
model predictions.
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Extended Data Fig. 4 | Range in species mean values of each trait by 
summer temperature. Black dashed lines represent quantile regression 
estimates for 1% and 99% quantiles. Species mean values are estimated 
from intercept-only Bayesian models using the estimation technique 

described in the Methods (see ‘Calculation of CWM values’). Species 
locations are based on species in the 117 vegetation survey sites. All values 
are back-transformed into their original units (height (cm), LDMC (g g−1), 
leaf area (cm2), leaf nitrogen (mg g−1), SLA (mm2 mg−1).
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Extended Data Fig. 5 | The rate of community trait change is not 
related to the rate of temperature change or soil moisture for any 
trait. a, b, Rate of CWM change over time per site (n = 117 sites) related 
to temperature change and long-term mean soil moisture (a) or soil 
moisture change (b) at a site. Points represent mean trait change values 
for each site, lines represent the predicted relationship between trait 
change, temperature change and soil moisture or soil moisture change, and 
transparent ribbons are the 95% credible intervals on these predictions. 

Both mean soil moisture and soil moisture change were modelled as 
a continuous variables, but are shown as predictions for minimum 
and maximum values or rates of change. Trait change estimates are in 
transformed units (log for height, leaf area, leaf nitrogen and SLA, and 
logit for LDMC). Soil moisture change was estimated from downscaled 
ERA-Interim data and may not accurately represent local changes in 
moisture availability at each site.
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Extended Data Fig. 6 | Increasing community height is driven by the 
immigration of taller species, not the loss of shorter ones. Probability 
that a species newly arrived in a site (gained) or disappeared from a site 
(lost) as a function of its traits (n = 117 sites). Lines and ribbons represent 
overall model predictions and the 95% credible intervals on these 

predictions, respectively. Dark ribbons and solid lines represent species 
gains whereas pale ribbons and dashed lines represent species losses. Only 
for plant height was the trait–probability relationship different for gains 
and losses.
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Extended Data Fig. 7 | Comparison of actual, expected and projected 
CWM trait change over time. Actual, expected and projected CWM 
trait changes are shown as solid coloured, solid black, and dashed or 
dotted lines, respectively. The expected trait change is calculated using 
the observed spatial temperature–trait relationship and the average rate 
of recent summer warming across all sites. Note that these projections 
assume no change in soil moisture conditions. The dotted and dashed 
black lines after 2015 show the projected trait change for the maximum 

(RCP8.5) and minimum (RCP2.6) IPCC carbon emission scenarios, 
respectively, from the HadGEM2 AO Global Circulation Model, given the 
expected temperature change associated with those scenarios. Points along 
the left axis of each panel show the distribution of present-day CWM 
per site (n = 117 sites) to better demonstrate the magnitude of projected 
change. Values are in original units (height (cm), LDMC (g g−1), leaf area 
(cm2), leaf nitrogen (mg g−1) and SLA (mm2 mg−1)).
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Extended Data Fig. 8 | Community trait co-variation is structured by 
temperature and moisture. a, PCA of plot-level community-weighted 
traits for seven key functional traits demonstrating how communities vary 
in multidimensional trait space. Trait correlations are highest between SLA 
and leaf nitrogen, and evergreenness and woodiness. Variation in SLA, leaf 
nitrogen, evergreenness and woodiness (principal component (PC)1) are 
orthogonal to variation in height (PC2). Variation in leaf area and LDMC 
are explained by both PC1 and PC2. The colour of the points indicates 

the soil moisture status of each plot at the site-level. b, c, Plot scores along 
PC1, related to plant resource economy, vary with summer temperature, 
soil moisture and their interaction (b), whereas plot scores along PC2 
vary only with soil moisture (c). The colour of the points indicates the soil 
moisture of each site. Because not all plots and sites had woody species 
(and thus proportion evergreen could not be calculated), this analysis 
was conducted on a subset of 1,098 (out of 1,520) plots at 98 (out of 117) 
different sites.
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Extended Data Fig. 9 | Temperature–trait relationships by growth 
form and site elevation. a, Mean (±s.d.) intraspecific temperature–
height relationships (n = 80 species) per functional group. Dwarf shrubs 
are defined as those shrubs that do not grow above 30 cm in height (as 
estimated by regional floras, such as Flora of North America, USDA or the 
Royal Horticultural Society) and are generally genetically limited in their 
ability to grow upright. There are no differences among functional groups 
in the magnitude of mean intraspecific temperature–height relationships. 

b, Relationship between community-weighted trait values, summer 
temperature and soil moisture across biogeographical gradients, as in 
Fig. 2a. Points represent mean estimates per site (n = 117 sites) and are 
sized by the elevation of the site (larger circles indicate higher elevation). 
Ribbons represent the overall trait–temperature–moisture relationship 
(95% credible intervals on predictions at minimum and maximum soil 
moisture) across all sites.
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Extended Data Table 1 | Ecosystem functions influenced by each of the seven plant traits

Data are from previous publications61–90.

© 2018 Springer Nature Limited. All rights reserved.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection No software or code was used in the collection of community composition data. Trait data come from a variety of sources and 
information about software used is often not available. In some cases, ImageJ (various versions) was used to estimate leaf area.

Data analysis All Bayesian analyses were done in either JAGS or Stan through R (v. 3.3.3) using the packages rjags (v. 4.6) or rstan (v2.14.1). The R 
package Taxonstand (v. 1.8) was used to clean species names and identify synonyms. The R package vegan (v. 2.4.6) was used in the 
ordination. All graphs were made using the R package ggplot2 (2009). Model equations are provided in the methods for all analyses. 
Model code (Stan) is provided for the two main analyses in the supplementary information.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Trait data 
Data compiled through the Tundra Trait Team are publicly accessible (see data paper published in Global Ecology & Biogeography; Bjorkman et al. in press). The 
public TTT database includes traits not considered in this study as well as tundra species that do not occur in our vegetation survey plots, for a total of nearly 92,000 
trait observations on 978 species. Additional trait data from the TRY trait database can be requested at try-db.org.  
 
Composition data 
Most sites and years of the vegetation survey data included in this study are available in the Polar Data Catalogue (ID # 10786_iso). Much of the individual site-level 
data has additionally been made available in the BioTIME database (Dornelas et al. 2018; https://synergy.st-andrews.ac.uk/biotime/biotime-database/). 
 
References 
Bjorkman, AD, IH Myers-Smith, SC Elmendorf, S Normand, HJD Thomas, et al. Tundra Trait Team: a database of plant traits spanning the tundra biome. Global 
Ecology and Biogeography. In press. 
Dornelas, M, LH Antão, F Moyes, AE Bates, AE Magurran, et al. 2018. BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and 
Biogeography. 27: 760-786.

Field-specific reporting
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For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study involves plant community composition data at 117 sites around the Northern Hemisphere tundra biome. We used 
Bayesian hierarchical models for most analyses (plots nested within sites nested within regions). A region was defined as a WorldClim 
or CRU grid cell, depending on the analysis (across space or over time). We combined the community composition data with >50,000 
trait observations from the TRY and TTT trait databases.

Research sample We focused on vascular plant species as trait data are rarely available for bryophytes. Most repeat vegetation sampling occurred in 
permanent marked plots (2/3) while the remainder were randomly placed plots within a specific area. Most of the community 
composition data was previously archived at the Polar Data Catalogue (ID # 10786_iso); trait data are available through the TTT (fully 
public) and TRY (partially public) trait databases.

Sampling strategy We included all available community composition and functional trait data. Thus, sample size was not predetermined but rather a 
maximum possible based on available data. 

Data collection Data was collected by many different people in many different locations (see authorship contribution statement).

Timing and spatial scale Community composition data were collected between 1989 and 2015 at 117 tundra sites, including Arctic tundra sites in Alaska, 
Canada, Fennoscandia, Iceland, and Siberia, and alpine tundra sites in the Colorado Rockies and European Alps. The exact sampling 
dates vary by site. Trait data were collected between 1964 and 2016 (though the vast majority of trait data were collected since the 
1990's).

Data exclusions In order to ensure that comparisons among sites are not biased due to the method of vegetation survey, we included only sites 
which were surveyed using a method equivalent to percent cover. Trait data were "cleaned" - first by removing any impossible values 
(e.g., LDMC values greater than 1, plant height of 0) and then according to the algorithm described in the methods. The trait data 
cleaning code, along with the cleaned and uncleaned versions of the trait dataset, are publicly available as a GitHub repository (see 
Bjorkman et al. Global Ecology and Biogeography, in press).

Reproducibility Our study was not experimental, but the large number of sampling sites (117) spread across the Northern Hemisphere tundra biome 
ensures good spatial replication.

Randomization Our study does not include experiments, thus samples were not randomly allocated into experimental groups. We account for spatial 
and temporal non-independence of samples by using a hierarchical approach to analysis (plots nested within sites nested within 
regions).
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Blinding Group allocation was based on physical proximity only (plots within sites within regions). Vegetation surveys were not conducted 
with the goal of documenting trait change over time, thus bias in data collection is unlikely.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Field conditions varied by site. All sites from which community composition data were collected have mean summer (warmest 

quarter) temperatures of 10 degrees C or less.

Location Community composition data were collected in 117 tundra sites spanning the Northern Hemisphere (including both Arctic and 
alpine tundra). Trait data were collected in hundreds of locations across the Northern Hemisphere.

Access and import/export The appropriate data collection permits were obtained whenever necessary. The permits necessary varied among the different 
sites.

Disturbance Vegetation sampling was non-destructive. In some cases, trait measurements required removing between 1 and 10 leaves from 
an individual plant.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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