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Abstract—Disk I/O is a major bottleneck limiting the performance and scalability of
data intensive applications. A common way to address disk I/O bottlenecks is using
parallel storage systems and utilizing concurrent operation of independent storage
components; however, achieving a consistently high parallel /O performance is
challenging due to static configurations. Modern parallel storage systems,
especially in the cloud, enterprise data centers, and scientific clusters are commonly
shared by various applications generating dynamic and coexisting data access
patterns. Nonetheless, these systems generally utilize one-layout-fits-all data
placement strategy frequently resulting in suboptimal I/O parallelism. Guided by
association rule mining, graph coloring, bin packing, and network flow techniques,
this paper proposes a general framework for adaptive parallel storage systems, with
the goal of continuously providing a high-degree of I/O parallelism. Evaluation
results indicate that the proposed framework is highly successful in adjusting to
skewed parallel access patterns for both hard disk drive (HDD) based traditional
storage arrays and solid-state drive (SSD) based all-flash arrays. In addition to the
storage arrays, the proposed framework is sufficiently generic and can be tailored to
various other parallel storage scenarios including but not limited to key-value stores,
parallel/distributed file systems, and internal parallelism of SSDs.

Index Terms—Storage systems, parallel I/O, self-optimization
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1 INTRODUCTION

TODAY ’s most critical applications, including genome analysis, cli-
mate simulations, drug discovery, space observation & imaging,
and numerical simulations in computational chemistry and high
energy physics, are all data intensive in nature [1]. Although paral-
lel processing techniques can address the computational require-
ments, developments in the storage subsystem do not keep pace
with the computing power. Consequently, disk I/O bottlenecks
can significantly limit the performance and scalability of data
intensive applications [2]. Parallel storage systems have the poten-
tial to provide high-performance I/O through concurrent opera-
tion of individual storage components if a parallelism-aware data
layout can be continuously guaranteed [3].

Storage arrays are well known examples of parallel storage sys-
tems. Although hard disk drive (HDD) based storage arrays (HSA)
still dominate the market, all-flash arrays (AFA) composed of solid
state drives (SSD) have received considerable attention recently
due to their random access nature and superior parallel I/O poten-
tial [3]. In addition to the storage arrays, other parallel storage
scenarios include key-value stores and parallel/distributed file sys-
tems built on clusters, and SSDs themselves featuring various lev-
els of internal parallelism. Striping and declustering (grouping
dissimilar objects together) are two common techniques for data
placement in parallel storage systems. The data space is partitioned
into disjoint regions (blocks, stripes, or chunks) and distributed
over independent storage components (called hereafter disks) so
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that requests spanning different disks can be retrieved in paral-
lel [4]. As well as HSAs, existing AFAs come with traditional
RAID [5] techniques originally designed for HDDs to statically dis-
tribute data over disks [6]. In addition, several advanced decluster-
ing methods have also been proposed for the static placement of
data [7], [8], [9]. For better parallelism, a common approach in
declustering is to assume a certain disk access pattern. For instance,
the technique proposed in [7] is optimized specifically for range
queries where a range of values are searched in a multi-
dimensional dataset as in relational databases, spatial databases,
visualization, and GIS applications. However, the disk access
patterns of many real-world applications change over time, and
many realistic workloads are known to be skewed in practice [10],
[11]. Also, various applications using the same storage system can
have different access patterns. Therefore, a data layout optimized
for a specific disk access pattern may not perform well in general.
In order to utilize parallel storage systems to their full potential, parallel-
ism-aware adaptive data layout optimization is necessary.

This paper proposes a framework for self-optimizing parallel
storage systems that can automatically adapt themselves to
skewed, changing, and coexisting disk access patterns. The pro-
posed framework detects block-level disk access correlations using
association rule mining techniques, periodically redistributes the
correlated blocks into separate disks for improved I/O parallelism
using graph coloring and bin packing techniques, and while doing
this introduces a minimal amount of data movement using min-
cost flow techniques. An earlier version of this article appeared at
the IEEE HiPC 2016 conference [12]. This version eliminates the
usage of costly frequent itemset mining algorithms for finding
block correlations, and introduces a multithreaded block correlator
resulting in significantly faster storage workload analysis time.

2 BACKGROUND AND RELATED WORK

In this section, we first provide the preliminaries of data place-
ment, access patterns, and correlations in parallel storage systems.
Next, we present the motivation and related work.

2.1 Data Placement and Parallel Access Patterns

Efficient data layout is crucial in parallel disk architectures to enable
concurrency and high performance parallel I/O. Considering the
blocks of a disk I/O request, if each of the requested data blocks are
stored in a different disk, then retrieval of this request would
require 1 parallel access, where optimal number of parallel accesses
is calculated as [£] for b blocks and N disks. Data layout is com-
monly optimized by assuming static disk access pattern. For
instance, periodic declustering is optimized for range queries. If the
storage system receives range queries exclusively, then such a place-
ment technique is expected to perform well. However, the disk I/O
performance of applications will decrease dramatically when they
change their parallel access patterns and issue requests other than
range queries. In order to boost the concurrency of parallel disks, an
adaptive data layout optimization framework that can automati-
cally adapt to changing and coexisting disk access patterns is neces-
sary. We believe that such a framework can be built using block
correlations within each request and among consecutive requests.

2.2 Block Correlations

Block correlations indicate that two or more blocks are correlated if
they are requested together, or if they are requested within a very
short time interval so that they are queued and handled together
by the storage sub-system [13]. Block correlations can exist intra-
request (from the same request) or inter-request (among different
requests). Once the block correlations are detected, I/O parallelism
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Fig. 1. Storage heat maps of enterprise servers.

can be improved dramatically by placing the correlated blocks in
separate disks. In addition, correlation strengths can be determined
based on their frequencies and can be used in heuristic methods
when the optimal data layout for all requests is not feasible.

Block correlations are commonly encountered in storage work-
loads. We observed this while analyzing the storage traces of vari-
ous enterprise servers from Microsoft [14]. To illustrate, Fig. 1
shows the storage heat maps of a web server, a version control
server, a research project server, a staging server, and a hardware
monitoring server. The z-axis in the figures shows the request
number starting from zero in chronological order and the y-axis
shows the starting block number (may be shifted on y-axis to elimi-
nate gaps) of the requests. Blocks falling in a certain range of x val-
ues are generally considered to be correlated. Existing patterns in
the figures clearly indicate the occurrence of block correlations,
and heavy repetition of these patterns motivates the use of a
correlation-based dynamic layout optimization.

2.3 Related Work
Although static placement received more attention [3], [5], [7], [8],
[9], dynamic data layout optimization techniques targeting single-
and multi-disk HDDs were also proposed. Among the ones targeting
single disks, block correlations were utilized in [13] for prefetching
purposes and arranging correlated blocks contiguously in a single
HDD for reduced seek time. A similar correlation-based prefetching
strategy is also proposed for scientific applications utilizing a distrib-
uted file system, where Markov models were used to predict blocks
to be served from a client cache [15]. In addition, seek-aware techni-
ques were applied in [16] to reorganize hot data blocks sequentially
on a dedicated partition of a single HDD. However, these techniques
either target single HDDs for reduced seek time or aim to improve
caching performance, without focusing on I/O parallelism.
Dynamic data layout optimization for HDD-based parallel
disks was first investigated in [17], in which the authors detect hot
disks and use disk cooling heuristics to move some data from
hot disks to cooler disks. Their heuristic keeps cooling disks until
their heat drop below a given threshold. In order to achieve this,
the authors assume that certain disk access patterns can be esti-
mated a priori without a disk access monitoring mechanism, which
is against the spirit of a dynamic system. Authors in [18] focused
on frequent seeks occurring within the individual disks of an HDD
array and proposed a data reorganization technique decreasing the
seek distance instead of focusing on device concurrency and I/O
parallelism. Most recently, authors in [19] extended the hot block
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Fig. 2. I/O monitoring, analysis, and layout planning steps.
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prefetching idea proposed in [13] for single disks to parallel disks
and applied prefetching, where additional copies of the frequently
accessed blocks are created and cached.

Existing techniques either make an assumption about data
placement and I/O patterns, or ignore I/O parallelism. Especially
with the popularity of near random access non-volatile memory
(NVM) devices, I/O parallelism deserves more attention to benefit
from the rich internal and external parallelism opportunity. Our
main concern is proposing a general framework that can provide
consistently high parallel I/O performance on both HDD- and
SSD-based parallel storage systems, without damaging the sequen-
tial data access of individual HDDs and without creating addi-
tional copies of data.

3 DyYNAMIC DATA LAYOUT OPTIMIZATION FRAMEWORK

Our proposed dynamic data layout optimization framework is
composed of the following four building blocks:

e  Storage Workload Monitoring: Monitors I/O requests and
records block IDs that are requested together in transactions.
Storage Workload Analysis: Analyzes the recorded transac-
tions to detect block correlations.
Adaptive Data Layout Planning: Plans a new layout adap-
tively based on the detected block correlations.
Efficient Data Migration: Performs the planned data layout
optimization by minimizing the data migration cost.

The rest of this section describes each component of the pro-
posed framework in more detail.

3.1 Storage Workload Monitoring Module

Block level requests can be monitored using a disk I/O tracing tool
such as blktrace [20], which can provide detailed information
about each disk request including its timestamp, event type
(queued, completed, etc.), process name/ID of the application
making the request, request type (Read/Write), starting block ID
of the request, and size of the request in blocks. Using this informa-
tion, the monitoring module divides the requests into transactions,
where each transaction represents a set of blocks that are requested
(or handled) together by the storage subsystem, and stores these
transactions line by line in an output file.

A simple transaction is composed of the blocks of a single
request (intra-request correlation); however, more patterns can be
detected by combining requests with low inter-arrival times in a sin-
gle transaction (inter-request correlation). One way to achieve this is
by defining a maximum time threshold that a transaction can span
based on the capabilities of the storage system in use. A sample I/O
monitoring output composed of three transactions is provided in
Fig. 2a, indicating that blocks 1, 2, and 3 are requested together
in the first transaction, blocks 1, 3, and 4 are requested together in
the second transaction, and blocks 4 and 5 are requested together
in the third transaction.

Typical size of an I/O monitoring output file would change
depending on the duration of the monitoring as well as the I/O
intensity of the system. Our analysis on Microsoft’s enterprise serv-
ers [14] shown in Fig. 1 indicated that typical sizes of raw monitor-
ing files change between 183 MB (wdev) and 1.95 GB (stg) for a
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week-long monitoring period, which includes an average of
3 million requests. Since transactions generally include repeating
block IDs, raw monitoring files can efficiently be compressed when
they reach a threshold limit, and stored in a compressed format
until they need to be analyzed. Once their analysis is completed,
monitoring files can immediately be removed. Although tempo-
rary storage of monitoring files can be performed on the storage
device to be optimized, their storage on a dedicated device would
eliminate additional I/O and monitoring activity.

3.2 Storage Workload Analysis Module

The storage workload analysis module is responsible for analyzing
the transactions generated by the monitoring module and finding
correlations between blocks using association rule mining techni-
ques. A common way to determine association rules is using Fre-
quent Itemset Mining (FIM) algorithms [21].

3.2.1 Frequent Itemset Mining (FIM)

FIM algorithms can find block correlations as well as the frequency
of the correlations indicating their strengths. The original motivation
of FIM was the need to analyze supermarket customer behavior to
discover which products were purchased together and with what
frequency. Using this information, supermarkets can place corre-
lated products next to each other on the shelves to boost their sales.
Our layout optimization idea is motivated by the product placement
idea of supermarkets, where we propose to place the correlated
blocks into separate parallel storage components to boost concur-
rency and parallel I/O performance. Mining the transactions pro-
vided in Fig. 2a using the FIM techniques for set— size = 2 returns
the output shown in Fig. 2b. In each row of the FIM output in Fig. 2b,
the first two numbers represent the ID of the correlated blocks
and the third number in parentheses represents the frequency of this
correlation. In other words, blocks 1 and 2 are requested together
once, blocks 1 and 3 are requested together twice, and so on. Using
this FIM output, we can construct an undirected correlation graph
G(V, E) as shown in Fig. 2c such that each vertex v € V represents a
block, each edge (u,v) € E represents a correlation between blocks u
and v, and edge weights represent the correlation frequencies.

3.2.2 Multithreaded Block Correlator (MBC)

Frequent itemset mining algorithms and their data structures are
designed for the generic case of searching all possible item combi-
nations of all itemset sizes. However, finding correlated block pairs
(set-size = 2) is sufficient for generating our target correlation
graph. In this section, we propose a high-performance multi-
threaded block correlator, customized for our purposes, which
takes the I/O monitoring result as an input (Fig. 2a) and generates
the correlation graph (Fig. 2c) as an output. For a given set of m
blocks (items) in a transaction, finding all possible block pairs is
basically 2-combination of m, requiring (7) = ""=1) jterations.
Once the block pairs are determined for each transaction, the corre-
lation graph can be updated in constant time on average using
adjacency lists supported by hash tables. Although even the
sequential implementation of this block correlation technique
would provide a significant performance improvement over the
FIM approach, it is possible to improve the performance of block
correlation even further by using parallelization techniques.

Our multithreaded block correlator is provided in Algorithm 1,
which assigns a separate transaction to every thread and threads
perform pair enumeration as well as graph insertion operations in
parallel. Transactions (tasks) can be assigned to threads in two dif-
ferent ways: (i) Dividing the file into equal size chunks (in bytes)
and assigning each thread a separate chunk, (ii) Reading the file
sequentially and assigning transactions to the threads one by one.
We tested both approaches and found that the second approach
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yields better performance in shared memory settings due to
improved file I/O, caching, as well as better load balancing among
the threads. There are two implementation options for the sequen-
tial task assignment: (i) Using a thread pool approach and dedicat-
ing a producer thread for performing file I/O as well as inserting
the tasks into the work queue, (ii) Using a thread safe I/O library
and allowing threads to perform file read in parallel using a single
file handle and implicit/explicit file locking mechanisms. In
Algorithm 1, we use the second implementation choice and assume
an implicit file locking; however, the first approach is expected to
provide a similar performance since the synchronization needs to
be enforced either during the file I/O operation or during the task
insertion/subtraction operations.

Algorithm 1. Multithreaded Block Correlator (MBC)

Input: I/O monitoring file f in market basket format
Output: Correlation graph G(V, E)
1: for all transaction in f in parallel do
blocks(1, ..., m) = array of block IDs (items) in transaction
3 fori—1:m—1do
4: v; +—blocks|]
5: adj_list_v; «— GETADILIST(G, v;)
6.
7
8

AcqQuirReLock (adj_list-v;.lock)
forj—i+1:mdo
: v; —blocksl[y]
9: UPDATEGRAPH (G, adj_list_v;, v;)

10: REeLEASELOCK (adj_list_v;.lock)

11: forj<«— m:2do

12: v; «blocks][;]

13: adj_list_v; — GETADJLIST(G, v;)
14: AcouireLock (adj_list_v;.lock)

15: fori —j—1:1do

16: v; «blocks|z]

17: UPDATEGRAPH (G, adj_list_v;,v;)
18: ReLeEASELOCK (adyj-list_v;.lock)

Atline 1 of Algorithm 1, every thread reads the transactions from
the I/O monitoring file using a thread-safe I/O library guaranteeing
that each thread receives a unique transaction. Next, lines 2-18 are
executed by all threads in parallel. At line 2, the transaction items
(block IDs) are tokenized and stored in blocks array. Nested loops at
line 3 and 7 perform the block pair enumeration, and the correlation
graph is updated at line 9. In order to protect the shared correlation
graph structure, we can either utilize regular hash tables with locks
or use concurrent hash tables [22] for both mapping vertices to adja-
cency lists (outer level) and mapping adjacency list members to the
corresponding edge weights (inner level). In Algorithm 1, we use a
combination of these two approaches for the best performance. We
found that the concurrent hash table implementation [22] provides
us the best performance at the outer level as utilized at line 5; how-
ever, locking with regular hash tables achieves a better performance
at the inner level as performed atlines 6,9, and 10. The reason behind
better performance of regular hash tables at the inner level is because
there is less lock contention at that level. However, at the outer level
there is increased lock contention; therefore, using a concurrent hash
table provides better performance.

Using an outer level hash table eliminates the naive coarse-
grained locking approach, which locks the entire graph structure
and prevents concurrent accesses, even if the concurrent thread
operations are on non-conflicting regions of the graph. This coarse-
grained locking approach generally causes an increase in lock
contention. Our finer-grained locking approach, at the inner adja-
cency list level, alleviates the lock contention problem by allowing
a high degree of concurrent graph updates. In addition, once the
lock is achieved at line 6 for the adjacency list of vertex v;, all the
edges from v; to all possible v; enumerations can be inserted at
lines 7-9 with only one acquire-lock operation, eliminating frequent
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locking/unlocking overhead. Since our correlation graph is undi-
rected, the adjacency lists for the opposite end vertices are updated
at lines 11-18 with the same motivation of eliminating frequent
locking /unlocking issue.

Even though our scope in this paper is limited to the shared
memory parallelization of the proposed custom block correlation
approach, it would also be possible to parallelize this algorithm in
distributed memory architectures using the MapReduce paradigm.
In distributed settings, the I/O monitoring file is expected to be
stored in a distributed file system, where the mappers can read the
file chunks, transaction by transaction, and perform block pair enu-
meration for each transaction by emitting the MapReduce key-
value pairs of <key=block-pair,value=1>. On the other hand,
reducers can aggregate these key-value pairs and find the final fre-
quency values of the block pairs as in the famous wordcount
example of MapReduce. At the end, the correlation graph can be
generated using the final output file of MapReduce.

3.3 Adaptive Data Layout Planning Module

The aim of the adaptive data layout planning module is to use
block correlations produced by the storage workload analysis mod-
ule and to plan a new correlation-based data layout that boosts
concurrency and I/O parallelism. However, optimal placement is
a challenging problem, even in simplified cases.

3.3.1 Basic Layout Planning

In this section, we formulate the correlation-based basic layout
planning as an optimization problem as follows:

Problem Definition 1 (Basic Layout Optimization Problem
(BLOP)): Given N disks and a correlation graph G(V, E) such that
each vertex v € V represents a data block and each edge (u,v) € E rep-
resents a correlation between blocks w and v, plan a data layout so that
for every correlated block pair (u,v) € E, blocks u and v are stored in
different disks.

Theorem 1. BLOP is NP-complete.

Proof. Given a correlation graph G(V,E), the proper (vertex)
k-coloring [23] colors the vertices of G with a maximum of % col-
ors such that adjacent vertices receive different colors as shown
in Fig. 2c. BLOP is equivalent to the proper k-coloring problem
for k= N, where each color represents a unique disk. Since
proper k-coloring is NP-complete, BLOP is also NP-complete. O

Based on the above proof, we are able to reduce our basic layout
planning problem into a type of classic NP-complete Vertex Color-
ing Problem (VCP) called the proper k-coloring. Vertex coloring is a
well studied problem and various heuristics are proposed, ana-
lyzed, and optimized. Therefore, by reducing our problem to this
well-known problem, we can adapt these heuristics instead of pro-
posing an entirely new and unproven heuristic.

Although BLOP outlines the main purpose of our layout planning
strategy, it is simplified and requires additional considerations to be
applied in real world settings. First, since the number of vertices
(blocks) in the graph is expected to be much larger than the number
of colors (disks) available, | V| > N; a proper N-coloring of the gener-
ated graph G(V; E) is generally not expected to be feasible. Therefore,
a more practical approach is to color the graph by minimizing the
conflicts: the number of edges having both vertices with the same
color. This technique is called soft coloring. Also, in real world settings
each disk has a maximum capacity not to be exceeded, and therefore
disk capacities should be considered while planning the layout. In
order to handle disk capacities, we can use traditional bin-packing
techniques, where every color (disk) is assigned a maximum capacity
in bytes based on the disk capacity limit and every vertex (block) has
a weight in bytes based on the block size.
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3.3.2  Min-Conflict Bin Packing

Including the aforementioned real world considerations, our lay-
out planning problem becomes equivalent to another NP-complete
problem called the Min-Conflict Bin Packing (MCBP). We skip the
equivalence proof here since it follows from the proof of Theorem 1,
and directly provide the definition of MCBP:

Problem Definition 2 (Min-Conflict Bin Packing (MCBP)).
Given a set I of items i of size w;, N bins of size W, and a conflict
graph G = (I, E) where (i, j) € E if items i and j cannot be packed in
the same bin, compute the minimum number of conflicts that must
occur if the set I is packed in N bins of size W.

MCBP is defined in [24] as a combination of soft coloring and bin
packing problems, and an effective heuristic is provided for prob-
lems closer to coloring than packing as in our case. Based on this
heuristic, initially colors are mapped to vertices randomly. Next, a
random vertex i having conflicts with some other vertices is chosen,
and the color c¢ that locally minimizes the total number of conflicts
without violating the capacity constraint of ¢ is mapped to i. Ties are
broken randomly and the algorithm continues until no constraint is
violated or until some given termination criterion is met. Our pro-
posed layout planning heuristic tailors the MCBP heuristic to our
specific problem type and it has the following four properties:

P1 Instead of starting with a random color-to-vertex mapping, we
map the colors to vertices based on the original data layout.
This property allows us to eliminate unnecessary data move-
ments in the future.

P2 Instead of a random iteration order, we perform local optimization
in decreasing order of Total Correlation Frequency (TCF) of the
vertices, where the TCF of a vertex can be calculated by sum-
ming the weights of all its edges. This property prioritizes the
movement of blocks having more correlations with other blocks.

P3 We store the correlation strengths in the edge weights and our
conflict calculation during the local optimization process con-
siders these edge weights. In other words, we count each con-
flict based on the strength of the correlation instead of
counting each of them only once. This way, block correlations
occurring more frequently are given more importance.

P4 If there is more than one candidate color that can be mapped to
a vertex, we break the tie by choosing the color having more
available capacity instead of a random selection. This property
helps to balance disk loads.

Our layout planning heuristic is provided in Algorithm 2. Each
vertex v € {1,,|V|} represents a block and each color ¢ € {1,, N}
represents a disk, where N is the total number of disks in the sys-
tem. The heuristic begins by initializing the graph and the neces-
sary data structures at lines 1-7. At line 1, a vertex v is given a color
c if the block corresponding to v was originally stored in the disk
corresponding to ¢ (P1). Line 2 initializes the caps array using the
initial disk capacities in bytes. Next, TCF values of the vertices are
calculated at lines 5-6 and sorted in descending order at line 7.
Local optimizations are performed at lines 9-18 starting from the
vertex having the maximum TCF value (P2). Line 11 initializes the
confs array that records how many conflicts would result if vertex v
was assigned to color c. Lines 12-13 fill the confs array by visiting
all the adjacent vertices of v and summing their edge weights (P3).
At line 15, we map the color ¢ to vertex v if ¢ has fewer conflicts
than v’s current color respecting the disk capacities. If c and ©’s cur-
rent color yield the same number of conflicts, then we break this tie
by choosing the color that has the most available capacity (P4),
where TV is the maximum safe disk capacity in bytes and w is the
block size in bytes. A safe value for W can be determined based on
the load balancing threshold of the disks and the maximum block
movements permitted to a disk. Local optimizations shown at lines
9-18 are repeated until the number of conflicts does not improve
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from the previous iteration by a predefined percentage e. Based on
our experiments, we found € = 5% to be an efficient stopping crite-
rion according to the number of iterations it causes and the perfor-
mance improvement it yields in the framework. Although it was
not necessary for our case, an additional condition can be added at
line 19 to bound the number of iterations by a constant. The pro-
posed layout planning heuristic has the worst-case time complexity
of O(|V|log [V| + |E]).

Algorithm 2. Layout Planning Heuristic

Input: Uncolored correlation graph G(V, E)

Output: Colored correlation graph G(V; E)
1: Initially color the vertices based on the original data layout
2: caps (1, ..., N) = array of initial disk capacities in bytes
3: forv e Vdo

4 wvtcf=0
5:  foru € v.adjdo
6: v.tef += (u, v).weight
7: S(1, ..., [V|) = vertices sorted (descending) by tcf
8: repeat
9: fori«—1:|V|do
10: v 5[]
11: confs (1,..., N)=0
12: foru € v.adjdo
13: confs[u.clr] += (u, v).weight
14: forc—1:Ndo
15: if (confs[c] < confs[v.clr]land caps[c] + w < W) or
(confs[c] == confs[v.clrland caps[c] + w < caps[v.clr])
16: caps[v.clr] -=w
17: v.elr=c
18: capslc] +=w

19: until Acon ficts < €

3.4 Efficient Data Migration

Property P1 of the proposed layout planning heuristic aims to elimi-
nate unnecessary data movements during reorganization by ini-
tially mapping colors to the disks based on the original block
locations. In order to test the efficiency of this technique, in this sec-
tion we provide an efficient optimal algorithm for color to disk map-
ping guaranteeing the minimum data movement. Therefore, by
using the colored graph returned by the adaptive data layout plan-
ning module, the data migration module maps each color to a sepa-
rate disk, minimizing the number of block movements. A brute
force solution would consider all possible (\%‘c' color-to-disk map-
pings for C colors and N disks; where C' < N, calculate the amount
of blocks to be moved for each possible mapping, and choose the
mapping yielding the minimum amount of block movements. How-
ever, it would require unacceptably high execution time for large N
due to its factorial time complexity. A polynomial time solution can
be achieved by constructing the problem as a flow network and
solving it using the minimum cost flow techniques [25], where an
edge is drawn from source to every color vertex, from every color
vertex to every disk vertex, and from every disk vertex to sink. Edge
capacities are set to 1 and edge costs are set to 0 except the edges
between a color vertex and a disk vertex, which is set to the amount
of the data movement caused by such mapping. Running a mini-
mum cost flow algorithm on the constructed graph will return the
optimum color-to-disk mapping, yielding the minimum data move-
ment. Readers are directed to the earlier version of this paper [12]
for an in-depth description of this Section.

3.5 Additional Optimizations for HDD-Based Systems

Random I/0O in an HDD requires the device to first position the
read/write head on the correct cylinder (seek time), and then wait
while the disk rotates to the correct sector (rotational latency);
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causing a variable positioning time. Although the proposed con-
currency techniques will immediately boost the performance of
HDD-based parallel disks for many realistic workloads, the inter-
nal disk geometry of HDDs should not be ignored completely since
an additional performance improvement can be achieved for cer-
tain workloads if the access sequentiality of the individual HDDs
can be preserved as much as possible while boosting the concur-
rency of parallel HDDs. Considering the sequentiality of correlated
blocks in individual disks and total size of these sequential blocks,
the proposed framework can be optimized even further for HDD-
based parallel disks by grouping the sequential blocks from the
same HDD and reorganizing these groups together for better con-
currency without breaking their sequentiality. For this purpose,
before generating the graph structure shown in Fig. 2c, the layout
planning module needs to group sequential blocks located in the
same disk and create a single vertex in the graph for each group.
The resulting graph will be a hybrid graph including single block
vertices not having any sequential correlations with other blocks
and group vertices representing sequentially correlated blocks.
Edges of a group vertex and its edge weights will continue to rep-
resent the correlations of the particular group with other single or
group vertices and their correlation strength, respectively, and this
information can be calculated easily by considering the group
memberships. In addition, a maximum group size (in bytes) should
be set based on the transfer rate of the disks as larger group sizes
work against concurrency.

4 EVALUATION

In this section, we share our performance evaluation and cost anal-
ysis using simulations driven by real-world application workloads.

4.1 Experimental Setup

Our simulations were run in DiskSim 4.0 using the SSD patch from
Microsoft Research. We ran experiments on both HDD-based stor-
age arrays (HSA) and SSD-based all-flash arrays. In both cases, we
used the maximum number of disks supported by the simulator,
100 for HSAs and 14 for AFAs. We set the block/page size to 512B
to match the block size of our workloads. As our performance met-
ric, we use read and write I/O latency (response time) values
reported by DiskSim. DiskSim is configured in a way that it allows
more than one request to be outstanding in the storage subsystem,
and queuing time is included in the reported response time. Each
experiment is repeated 5x with random block distributions and the
results were averaged.

4.1.1  Frequent Itemset Miner

As a Frequent Itemset Mining (FIM) algorithm, we used the
Borgelt’s Eclat miner [21]. In order to mine for only correlated
block pairs, we set both the minimum number of items parameter
(—m) and the maximum number of items parameters (—n) to 2.

4.1.2  Multithreaded Block Correlator (MBC)

We implemented our multithreaded block correlator in C++ using
the POSIX threads (pthreads) library, and compiled it using g++ ver-
sion 5.4.0, optimization level 2 (-O2). As the concurrent hash table
for mapping vertices to their corresponding adjacency lists, we used
the implementation discussed in [22]. As a regular hash table for the
adjacency lists themselves, we used std: :unordered_map as part
of C++11 and used pthreads’ mutex locks to achieve mutually exclu-
sive access. The machine we used for evaluation has two 14-core
Intel Xeon E5-2680 V4 processors and each core is running at
2.4 GHz clock rate. The system has 128 GB of memory and it runs
Ubuntu 16.04.1 LTS operating system with kernel version 4.4.0-79-
generic. For comparison purposes, we have also implemented the
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TABLE 1
Workload Statistics (for First 100k Requests, First 50k Training, Remaining 50k Testing)

R/W Avg.R/W 1/0 Unique Data Re-access InterArrival (%)
Workload Application (%) Size (KB) Size (MB) Size (MB) (%) < 100 pus
Training Testing Training  Testing  Training Testing Training Testing Testing vs. Training Training Testing

wdev Test Web Server 205 /795 14.6/854 14.6/7.7 88/85 443.7 4154 137.6 155.2 81.9 78.7 79.4
src2 Version Control ~ 17.1 /829 49/951 62/68 53/62 328.0 301.8 115.3 77.5 92.5 78.0 76.4
rsrch Research Projects  18.3 /81.7 0.6/994 74/94 105/82 4400 401.5 139.9 93.4 88.0 81.4 78.1
stg Staging Server 126/874 115/885 93/86 99/83 4254 414.9 122.7 161.7 83.7 80.2 82.9
hm Hardware Monitor 484 /51.6 419 /581 88/65 92/74 3714 399.2 188.6 168.0 73.8 63.8 72.6

AVERAGE RESULTS: 234/766 147/853 93/78 87/77 401.7 386.5 140.8 131.2 84.0 76.4 77.9

sequential version of MBC, which we refer to as Sequential Block
Correlator (SBC).

4.1.3

Our workloads are from various HDD-based enterprise servers
with a 512 B block size, where each server is configured with one
or more RAID-5 arrays as data volumes. However, the only infor-
mation provided in the workload traces related to the block loca-
tions is the corresponding volume numbers, which ranges between
1 to 4. Therefore, we need to assume an initial data layout for map-
ping block IDs to 100 disk HSAs and 14 disk AFAs. Many natural
data access patterns of various applications, including web servers
and general purpose key-value stores have been shown to be
skewed in a manner that can be approximated by a Zipf-like distri-
bution using higher values of «, where the relative probability of a
request for the ith most popular item is proportional to 1/i%,
0 <« < 1[10], [26]. For « = 0, requests are evenly distributed, and
for @ =1 (Zipf's law), access distribution is skewed towards the
most popular item. In other words, some data is accessed more fre-
quently than the rest, resulting in hot spots of data locality. Based
on a previous work performed on web traces, a realistic o value is
found to lie between 0.64 and 0.83 [26].

In order to test our proposed framework under various skew in
parallel access patterns, we performed our initial data placement
by following a set of Zipf-like distributions so that the relative
probability of accessing a block on the i-th most popular disk is
proportional to 1/:* for 0 < « < 1. Zipf-like distributions are com-
monly used in storage system research to perform initial data
placement [27]. Deng et. al [28] indicates that the skew of disk I/O
access is often referred to as the 80/20 rule of thumb (correspond-
ing « = 0.85 in Zipf), or in more extreme cases, the 90/10 rule. The
80/20 rule indicates that twenty percent of storage resources
receive eighty percent of I/O accesses, while the other eighty per-
cent of resources serve the remaining twenty percent of 1/O
accesses. Following a similar pattern, we tested our framework for
a={0.0,0.2,04,0.6,0.8,1.0}. For o = 0.0, the disks are accessed
evenly, and for o = 1.0, the distribution follows a true Zipf distri-
bution (rather than Zipf-like), where the parallel access pattern is
skewed towards the most popular disk.

Initial Data Layout

4.1.4  Evaluation Methodology and Workloads

Different workloads include different numbers of requests, affect-
ing a fair comparison of results based on the length of the history
observed. In order to have consistency between workloads, we
consider the first 100,000 requests of each workload. Next, we split
each workload into a training set and a testing set. The training set
is the first 50 percent of the requests, and the testing set is the
remaining 50 percent. After splitting the workloads, only the train-
ing set is used by our framework for detecting the patterns and
determining the layout optimization plan, and only the testing set
is used to evaluate the performance of our framework. This separa-
tion is crucial for realistic evaluation since no improvement will be

achieved if the detected patterns based on the history are not re-observed
in the future.

We evaluate our framework using five publicly available real-
world storage workloads provided by Microsoft [14]. These work-
loads include block level I/O requests of various enterprise and pro-
duction servers running in Microsoft, including a web server(wdev),
a version control server (src2), a research projects server (rsrch), a
staging server (stg), and a hardware monitoring server (hm). Rele-
vant workload statistics for utilized portions of the workloads are
provided in Table 1 for both training and testing sets, including R/
W percent, average R/W size, total I/O performed (R+W), total
amount of unique data accessed, re-access percent (percent of test-
ing data previously observed in training), and the percentage of
requests that have interarrival time of less than 100 us.

4.2 Experimental Results

We first briefly share the results of I/O performance evaluation for
AFAs and HSAs, including the effect of additional HDD optimiza-
tions described in Section 3.5 and the cost analysis in terms of the
data movement. Extended version of performance evaluation
results and cost analysis can be found in the earlier version of this
paper [12] including the accompanying performance graphs. In this
version, we mainly focus on the performance evaluation of the pro-
posed Multithreaded Block Correlator compared with its sequential
counterpart as well as the previously proposed FIM approach.

4.2.1 SSD-Based All-Flash Arrays (AFA)

Our evaluation indicated that disk I/O latency of the static layout
consistently increases as the parallel access pattern becomes
more skewed. However, for many workloads, our dynamic self-
optimization framework can keep the I/O latency as stable as pos-
sible without being affected by the skew in the parallel access pat-
terns of the workloads. Considering all workloads and all « values
of the Zipf-like distribution, our framework achieves 111 percent
Read, 52 percent Write, and 53 percent overall (R+W) performance
improvement over the static layout on average.

4.2.2 HDD-Based Storage Arrays (HSA)

The results for HSAs are similar to AFAs; except, the damage of not
performing dynamic layout optimization is more severe since HDDs
are substantially slower compared to SSDs, especially in their read
performance. In HSAs, response time for the static layout generally
increases exponentially as the access pattern gets skewed. However,
similar to the AFA case, our framework keeps the response time and
I/0 performance of the storage system as stable as possible. Consid-
ering all workloads and all « values, our framework including
the additional HDD optimizations achieves 366 percent Read,
82 percent Write, and 170 percent overall (R+W) performance
improvement over the static layout on average.

Performing additional HDD optimizations is especially crucial
for workloads having frequent sequential access patterns in their
individual HDDs. When we reorganize the sequential blocks of
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TABLE 2
Cost versus Overall(R+W) Performance - AFA

Threshold =1 Threshold =5 Threshold = 10
Workload = 0 MB) Per(%) CostMB) Per(%) CostMB) Per(%)
wdev 82.09 16.97 9.39 9.40 1.23 6.28
src2 63.03 97.14 3.37 66.23 1.46 60.07
rsrch 76.19 89.26 4.09 41.90 0.76 32.89
stg 83.40 31.97 5.94 13.57 2.22 10.64
hm 102.63 30.46 5.70 9.86 0.95 5.66
AVG 81.46 53.15 5.69 28.19 1.32 23.10

individual disks together as described in Section 3.5, we achieve an
additional 216 percent Read, 24 percent Write, and 86 percent over-
all (R+W) performance improvement over the static layout aver-
aged over all workloads and « values. Based on the specifications
of the storage system that we used in our experiments, we set the
maximum group size to 512 KB (1024 blocks). This value is calcu-
lated using the difference between the average-case and the worst-
case positioning time of the HDD that we used, and the amount of
data that it can transfer sequentially within this time.

4.2.3 Migration Cost Analysis

In this section, we analyze the cost of the proposed framework in
terms of data migration and demonstrate how this cost can be con-
trolled easily by using the correlation frequency values. Correlation
frequency of a block pair stored in the edge weight of the correla-
tion graph indicates the strength of the correlation. In other words,
it indicates the number of times this correlation occurred in the his-
tory. Therefore, correlations with high frequency have high chance
to be repeated in the future. By ignoring the correlations with less
than a certain threshold, it is possible to reduce the cost of data
migration. On the other hand, reducing the number of correlations
considered by the framework is also expected to cause a reduced
I/0 performance as a side effect.

In Table 2, we illustrate the trade-off between the migration cost
(data moved in MB) and the I/O performance improvement (in
percent) using various threshold correlation frequency values for
AFAs. The provided values are averages for all «. For the previ-
ously discussed experimental results using threshold =1, our
framework moves 81.5 MB of data on average, and gains an aver-
age of 53.2% performance improvement. Such an improvement
was possible due to frequent re-access of the same data and low
inter-arrival time between requests. Table 1 shows that on average,
the testing workloads request 386.5 MB of data (I/O Size), where
only 131.2 MB of this is unique. Moreover, on average 84% of data
that is requested in testing is previously observed in training,
clearly outlining the frequent re-access behavior. In addition,
77.9 percent of the testing requests have inter-arrival times of less
than 100 us creating a bursty I/O pattern and convoy effect.

Since the reorganization is performed on the training data,
100 percent of data that can possibly be reorganized for each work-
load is shown in Table 1 as “Unique Data Size - Training”. For the
correlation frequency threshold of 1, our framework reorganized
54.5 percent (hm) to 68.0 percent (stg) of this data (58.2 percent on
average). Nevertheless, data movement amount and percentage can
easily be decreased by increasing the threshold correlation fre-
quency value and slightly losing from the performance. In Table 2,
increasing the threshold from 1 to 5 reduces the data movement cost
an average of 15.6x with 2.2x loss in performance (corresponds to
28.19 percent performance improvement) by reorganizing only
4.1 percent of total data. Moreover, increasing the threshold from
1 to 10 reduces the cost an average of 71.2x while decreasing the per-
formance improvement 3.1x (corresponds to 23.10 percent perfor-
mance improvement) by reorganizing only 0.97 percent of total data.
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Fig. 3. Speed-up performance of MBC.

We observed a similar trade-off for HSAs; where increasing the
threshold from 1 to 10 reduced the cost an average of 74x while caus-
ing only 9.8x performance loss (corresponds to 23.59 percent perfor-
mance improvement) by reorganizing only 1.15 percent of total data.
Extended migration cost versus performance analysis for HSAs is
provided in the earlier version of this paper [12]. An alternative tech-
nique would be determining an upper limit for the amount of data to
be reorganized, and performing reorganization up to this amount of
blocks in decreasing total correlation frequency order.

Finally, we have also analyzed the effect of Property P1 pre-
sented as part of the proposed layout planning heuristic, which
aims to minimize the amount of data movement by initially map-
ping colors to disks based on the original data layout, with the aim
of keeping blocks in their original locations as much as possible.
For the workloads that we have investigated and the block correla-
tions existing within them, our analysis revealed that due to P1,
the original mapping stays within 1-2 percent of the optimal map-
ping provided by the min-cost flow algorithm. Nevertheless, since
this behavior may change depending on the properties of the work-
load in use, it is still valuable to check the the optimal mapping
before performing the data movement.

4.2.4  Performance of Multithreaded Block Correlator (MBC)

In this section, we evaluate the execution time performance of the
Multithreaded Block Correlator (MBC) proposed in Section 3.2.2,
compared with the execution time of the Frequent Itemset Mining
(FIM) algorithm, as well as the Sequential Block Correlator. In
order to fairly calculate the execution times of these algorithms, we
repeated every run 5x and averaged the results by clearing the
page cache, directory entries, and the inodes from the memory
before every run. Fig. 3a and 3b show the speed-up performance of
MBC compared to SBC for 100k and 500k requests, respectively.
The z-axis shows different workloads, and the y-axis shows the
speed-up achieved over the sequential implementation ($£9) for 2
threads (2T), 4 threads (4T), and 8 threads (8T). For 100k requests,
averaged over all workloads, MBC achieved 1.36x speed-up using
2 threads, 2.24x speed-up using 4 threads, and 2.73x speed-up
using 8 threads. For 500k requests, speed-up values slightly
increased to 1.45x, 2.5x, and 3.38x for 2, 4, and 8 threads, respec-
tively. For both request sizes, we observed a stable speed-up per-
formance after 8 threads.

We discovered that the speed-up behavior of MBC is directly
related to the transaction size of the workloads. As shown in
Table 1, average request size of our training workloads is around
8 KB on average, corresponding to an average of 16 blocks (items)
per transaction since the block size is 512 B. In addition, wdev has
the largest average transaction size and src2 has the smallest aver-
age transaction size. Similarly, we observed the largest speed-up
with wdev and the smallest speed-up with src2.

We also share the execution time of MBC and SBC in seconds,
compared with the execution time of the FIM approach in Table 3.
In this table, we are only showing the MBC for 8 threads since it
provides the best performance. It is clear from the table that FIM
requires considerably longer time to perform the storage workload
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TABLE 3
Execution Time of FIM, SBC, and MBC

Execution Time (in seconds)

Workload
orxioa 100k Requests 500k Requests

wdev- FIM 210.53 1294.37
wdev- SBC 14.30 54.67
wdev- MBC (8T) 4.71 14.02
src2- FIM 82.30 1817.49
src2- SBC 3.15 16.06
src2- MBC (8T) 1.38 5.45
rsrch- FIM 175.61 1172.13
rsrch- SBC 8.05 25.63
rsrch- MBC (8T) 2.95 7.72
stg- FIM 252.12 1343.67
stg- SBC 9.00 29.80
stg- MBC (8T) 3.35 8.67
hm- FIM 245.14 2642.50
hm- SBC 14.19 41.68
hm- MBC (8T) 4.89 12.58

analysis compared to SBC and MBC. Precisely, FIM is 14.7x to 28x
slower than SCB (21.6x on average), and 44.7x to 75.3x slower than
MBC (57.9x on average), MBC providing up to 248.77 seconds
faster storage workload analysis time than FIM for 100k. The gap
between FIM and our custom block correlators increases further
for larger workload sizes. For 500k requests, FIM is up to 113.2x
slower than SCB (58.2x on average), and up to 333.5x slower than
MBC (188.5x on average), MBC providing up to 2629.92 seconds
faster storage workload analysis time than FIM for 500k requests.
These results clearly outline the superiority of the multithreaded
block correlator over the FIM approach.

5 DiIsSCUSSION

In addition to the storage arrays, the proposed framework can also
be applied to various parallel storage scenarios, including key-
value stores, parallel/distributed file systems, and NVMs with var-
ious levels of internal parallelism. Readers are directed to the ear-
lier version of this paper [12] for our insights on the further
applicability, and our extended discussion on the system-specific
tailoring for storage heterogeneity and replication.

Although slightly increasing the correlation frequency thresh-
old reduces the data migration cost considerably as shown in
Table 2, reorganization rate limitation techniques can also be incor-
porated to keep layout optimization from overwhelming regular
application I/O by limiting the number of active block movement
operations both for the entire storage system and for each disk.
Similar techniques are shown to be effective in large scale storage
systems, such as the rate-limited re-replication technique imple-
mented in the Goog]le File System.

An important system implementation includes the automatic trig-
gering of the proposed framework. Although optimization can be
triggered in fixed intervals, especially idle or low activity times, such
static reorganization would be against the nature of adaptive parallel
storage systems. Instead, reorganization should be automatically
triggered based on the disk I/O performance of the storage system,
when the I/O performance drops below a predefined threshold.
Disk I/O latency based service-level agreements (SLA) or QoS speci-
fications are commonly used in cloud computing and enterprise data
centers [3], which can be used to determine such thresholds.

Although the proposed system cannot help a workload with
read-once or write-once behavior, since we propose persistent and
periodic data layout optimization, the proposed system does not
have the assumption or requirement for the data to be accessed in
the last monitoring period. Since there will be multiple and
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continuous monitoring periods, certain data might not have been
touched in the last monitoring period, but could still have been
optimized based on previous monitoring periods. Finally, the pro-
posed system currently does not consider moving quiescent data,
which can also be reorganized over the disks to balance available
disk space utilization, or could be completely archived (if allowed)
in another storage system to alleviate possible capacity-based limi-
tation in layout planning. Such optimization can easily be per-
formed in file-level, based on the last access time of the files.

6 CoONCLUSION AND FUTURE WORK

In this paper, first we show evidence that block correlations exist in
storage workloads, then introduce a framework to detect the corre-
lated blocks efficiently using a multithreaded block correlator and
reorganize the detected blocks to improve I/O parallelism. The
proposed framework is generic and can be applied to various par-
allel storage systems to achieve dynamic adaptability. Our future
work includes adapting the proposed framework to allow online
continuous detection of block correlations using stream data min-
ing techniques [29]. This will allow us to eliminate intermediate
trace storage and offline trace analysis so that a faster reaction to I/
O bottlenecks can be achieved.
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