
Skyway: Connecting Managed Heaps

in Distributed Big Data Systems

Khanh Nguyen
University of California, Irvine

khanhtn1@uci.edu

Lu Fang
University of California, Irvine

lfang3@uci.edu

Christian Navasca
University of California, Irvine

cnavasca@uci.edu

Guoqing Xu
University of California, Irvine

harry.g.xu@uci.edu

Brian Demsky
University of California, Irvine

bdemsky@uci.edu

Shan Lu
University of Chicago

shanlu@uchicago.edu

Abstract

Managed languages such as Java and Scala are prevalently
used in development of large-scale distributed systems. Under
the managed runtime, when performing data transfer across
machines, a task frequently conducted in a Big Data system,
the system needs to serialize a sea of objects into a byte se-
quence before sending them over the network. The remote
node receiving the bytes then deserializes them back into ob-
jects. This process is both performance-inefficient and labor-
intensive: (1) object serialization/deserialization makes heavy
use of reflection, an expensive runtime operation and/or (2)
serialization/deserialization functions need to be hand-written
and are error-prone. This paper presents Skyway, a JVM-
based technique that can directly connect managed heaps of
different (local or remote) JVM processes. Under Skyway,
objects in the source heap can be directly written into a re-
mote heap without changing their formats. Skyway provides
performance benefits to any JVM-based system by completely

eliminating the need (1) of invoking serialization/deserializa-
tion functions, thus saving CPU time, and (2) of requiring
developers to hand-write serialization functions.

CCS Concepts • Information systems → Data manage-

ment systems; • Software and its engineering → Memory

management;

Keywords Big data, distributed systems, data transfer, seri-
alization and deserialization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173200

ACM Reference Format:

Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian
Demsky, and Shan Lu. 2018. Skyway: Connecting Managed Heaps
in Distributed Big Data Systems. In Proceedings of ASPLOS ’18.

ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3173162.3173200

1 Introduction

Modern Big Data systems need to frequently shuffle data
in the cluster – a map/reduce framework such as Hadoop
shuffles the results of each map worker before performing
reduction on them; a dataflow system such as Spark supports
many RDD transformations that need to shuffle data across
nodes. As most of these systems are written in managed lan-
guages such as Java and Scala, data is represented as objects
in a managed heap. Transferring an object o across nodes is
complicated, involving three procedures shown in Figure 1.
(1) A serialization procedure turns the whole object graph
reachable from o into a binary sequence. This procedure refor-
mats each object — among other things, it extracts the object
data, strips the object header, removes all references stored in
an object, and changes the representation of certain meta data.
(2) This byte sequence is transferred to a receiver machine.
(3) A deserialization procedure reads out the byte sequence,
creates objects accordingly, and eventually rebuilds the object
graph in the managed heap of the receiver machine.

Problems While many serialization/deserialization (S/D) li-
braries [3, 22, 32] have been developed, large inefficiencies
exist in their implementations. Both our own experience (§2)
and evidence from previous work [27] show that S/D ac-
counts for 30% of the execution time in Spark. To explain
why S/D is so costly, we discuss the handling of three key
pieces of information these procedures have to extract, trans-
fer, and reconstruct for every object reachable from o: (1)
object data (i.e., primitive-type fields), (2) object references
(i.e., reference-type fields), and (3) object type.

(1) Object-data access: An S/D library needs to invoke
reflective functions such as Reflection.getField and
Reflection.setField to enumerate and access every field
to extract, on the sender side, and then write-back, on the
receiver side, each primitive object field individually. In a Big

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA K. Nguyen et al.

Figure 1. A graphical illustration of data transfer.

Data system, each data transfer involves many millions of
objects, which would invoke these functions for millions of
times or more. Reflection is a very expensive runtime opera-
tion. It allows the program to dynamically inspect or invoke
classes, methods, fields, or properties without type informa-
tion available statically at the cost of time-consuming string
lookups, and is undesirable in performance-critical tasks.

(2) Type representation: Each type is represented by a spe-
cial (meta) object in a managed runtime, and is referenced by
the headers of the objects of the type. However, type refer-
ences cannot be used to represent types in a byte sequence,
because the meta objects representing the same type may
have different addresses in different runtimes. The Java se-
rializer represents every type by a string that contains the
name of a class and all its super classes. This design causes
meta data (i.e., type strings) to consume a huge portion of the
byte sequence transferred across the network. Furthermore,
reflection must be used to resolve the type from each string
during object re-creation on the receiver node.

(3) Reference adjustment: References contained in
reference-type fields of transferred objects need to be adjusted,
since those objects will be placed in different addresses on the
receiver node. The Java serializer uses reflection to obtain and
inline the contents of referenced objects into the binary rep-
resentation of the referencing object. It constructs all objects
reachable from o on the receiver machine using reflection,
and then sets reference fields with the addresses of the just
created referenced objects through reflection.

Recent Progresses Many third-party libraries have been de-
veloped. In particular, Kryo [22] is the library recommended
in Spark. Kryo asks developers (1) to manually define S/D
functions for types involved in data transfer, which speeds up
object-data access, and (2) to manually register these types in
a consistent order across all nodes, which makes it possible
to use integers to represent types. Other libraries [3, 11, 32]
follow similar principles.

However, the fundamental inefficiencies in data transfer
still remain in Kryo – the user-defined functions need to be
invoked for every transferred object at both the sender side
and the receiver side. Due to the extremely large number
of invocations of these S/D functions during sending and
receiving, serialization and deserialization still takes a large
portion of a data processing task’s run time.

Furthermore, tremendous burden is put on developers who
use Kryo. It is difficult for developers to understand how many
and what types are involved, let alone consistently registering
these types and developing correct and efficient S/D functions
for each type. For instance, consider a HashMap object. Its
serialization involves its key-value array, all the key/value
pairs, and every key/value object. Its deserialization needs to
recreate key and value objects, pair them, and additionally
reshuffle key/value pairs to correctly recreate the key-value
array because the hash values of keys may have changed.

Our Solution – Skyway The key problem with existing S/D
libraries is that, with an existing JVM, there are no alternative
routes to transfer objects other than first disassembling and
pushing them down to a (different) binary format, and then
reassembling and pulling them back up into a remote heap. In
this paper, we advocate to build a “skyway” between managed
heaps (shown in Figure 1) so that data objects no longer need
to be pushed down to a lower level for transfer.

Skyway enhances the JVM, and enables object graphs to
be moved as is from heap to heap and used on a remote node
right after the move. Specifically, given a root object o spec-
ified by the application (e.g., the RDD object in Spark), the
Skyway-enhanced JVM performs a GC-like heap traversal
starting from o, copies every reachable object into an out-
put buffer, and conducts lightweight adjustment to machine-
dependent meta data stored in an object without changing
the object format. This output buffer can then be copied
as a whole directly into the remote heap and used almost
immediately after the transfer. This provides the following
benefits to existing and future Big Data systems: (1) Skyway
completely eliminates the cost of accessing fields and types,
saving computation costs; and (2) the developer does not need
to hand-write any S/D functions.

To achieve these goals, Skyway addresses the aforemen-
tioned three issues much more efficiently than all the existing
S/D libraries, as discussed below.

First, Skyway, by changing the JVM, transfers every object
as a whole, which completely eliminates the need of accessing
individual data fields. Furthermore, since the hashcode of an
object is cached in the header of the object, transferring the
entirety of each object preserves the original hashcode of the
object, so that hash-based data structures can be used on the
receiver node without rehashing — a process that takes a
great amount of time in traditional S/D.

Second, Skyway represents types by employing an auto-
mated global type-numbering procedure – the master node

Skyway: Connecting Managed Heaps

in Distributed Big Data Systems ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

maintains a registry of all types and their IDs, and each worker
node communicates with the master to obtain IDs for its
classes upon class loading. This process enables all classes
across the cluster to be globally numbered without any devel-
oper intervention and thus each ID can be used to uniquely
identify the same class on different nodes.

Third, Skyway employs an efficient “relativization” tech-
nique to adjust references. As objects are copied into the
output buffer, pointers stored in them are relativized in linear
time — they are changed from absolute addresses to relative

addresses. Upon receiving the buffer, the Skyway client on
the receiver node performs another linear scan of the input
buffer to absolutize the relative information in the buffer.

Skyway may push more bytes over the network than S/D
libraries, because it transfers the entirety of each object yet
S/D libraries do not transfer object headers. However, much
evidence [44] shows that bottlenecks in real systems are shift-
ing from I/O to computing, and hence, we believe this design
strikes the right design tradeoff — the savings on the compu-
tation cost significantly outweigh the extra network I/O cost
incurred by the extra bytes transferred on a modern network.
Our empirical results show that, even on a 1000Mb/s Ethernet
(e.g., most data centers use networks with higher bandwidth),
transferring 50% of more data (about 100GB in total) in Spark
for a real graph dataset increases the execution by only 4%
(on network and read I/O) whereas the savings achieved by
eliminating the S/D invocations are beyond 20%.

Why Does It Work? It is important to note that Skyway is not

a general-purpose serializer. Our insight why Skyway would
work well for Big Data processing is two-fold. First, data
processing applications frequently shuffle many millions of
objects and do so in strongly delimited phases. Hence, send-
ing objects in batch without changing their formats provides
significant execution efficiency. Second, the use of modern
network technology enables extra bytes to be quickly trans-
ferred without incurring much overhead.

We have implemented Skyway in OpenJDK 8. Our evalua-
tion on a Java serializer benchmark set JSBS [34], Spark [45],
and Flink [2] shows that (1) Skyway outperforms all the 90

existing S/D libraries on JSBS, which uses a media-content
based dataset – for example, it is 2.2× faster than Kryo and
67.3× faster than the Java serializer; (2) compared with Kryo
and the Java serializer, Skyway improves the overall Spark
performance by 16% and 36% for four representative an-
alytical tasks over four real-world datasets; (3) for another
real-world system Flink, Skyway improves its overall perfor-
mance by 19% compared against Flink’s highly-optimized
built-in serializers.

2 Background and Motivation

This section gives a closer examination of S/D and its cost
using Spark as an example.

1 class Date extends Serializable{

2 private Year4D year;

3 private Month2D month;

4 private Day2D day;

5 public Date(String year , String month , String day

) {

6 this.year = Year4D.parse(year);

7 this.month = Month2D.parse(month);

8 this.day = Day2D.parse(day);

9 }

10 public String toString () {

11 return "Date [year=" + year + " month=" + month

+ " day=" + day + "]";

12 }

13 }

14

15 class Year4D extends Serializable {...}

16 class Month2D extends Serializable {...}

17 class Day2D extends Serializable {...}

18 class DateParser extends Serializable {

19 /* Turn a string into a Date object */

20 Date parse(String s) {...}

21 }

22

23 class SimpleSparkJob {

24 void main(String [] args) {

25 StreamingContext ssc = new StreamingContext(

args[0], new Duration (1000));

26 DateParser parser = new DateParser ();

27 JavaRDD <String > lines = ssc.textFileStream("

dates.txt");

28 JavaRDD <Date > mapRes = lines.map(line -> parser

.parse(line));

29 List <Date > result = mapRes.collect ();

30 }

31 }

Figure 2. A simple Spark program that parses strings into
Date objects.

2.1 Background

When Does S/D Happen? Spark conducts S/D throughout
the execution. There are two categories of S/D tasks: clo-

sure serialization and data serialization. Closure S/D occurs
between the driver and a worker. Since a Spark program is
launched by the driver, the driver needs to execute portions
of it on remote workers.

Figure 2 shows a Spark program that reads a sequence
of strings, each of which represents a date, from a text file
(Line 27). It next parses these strings by invoking a map

function on the RDD (Line 28). The map transformation
takes a lambda expression (i.e., a closure) as input, which
parses each string by invoking the parse function that turns
a string into a Date object. Finally, the RDD action collect

is invoked to bring all Date objects to the driver.
While this program is executed by the driver, Spark sched-

ules the execution of the closure (i.e., the lambda expression
passed to map) on the worker nodes. Closure serialization is
thus needed to transfer the closure and everything it needs
from the driver to each worker node. In this example, the
closure refers to the object parser created outside its scope.
Hence, parser also needs to be serialized during closure

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA K. Nguyen et al.

serialization. This explains why the DateParser class needs
to implement the Java Serializable interface.

The second type of S/D is data serialization that occurs
between different workers or a worker and the driver. For
example, action collect would cause all Date objects on
the worker nodes to be transferred back to the driver. When
each Date object is serialized, all the (Year4D, Month2D,
and Day2D) objects directly or transitively reachable from
it are serialized as well. To shuffle data across nodes, Spark
serializes data objects on each node (e.g., the result of a map
operation) into disk files with a shuffling algorithm (e.g., sort-
based or hash-based). These files are then sent to different
remote nodes where data objects are deserialized.

How Does S/D Work? The Kryo serializer requires the de-
veloper to register classes using the following code snippet:

1 SparkConf conf = new SparkConf ();

2 conf.set("spark.kryo.registrator", "org.apache.

spark.examples.MyRegistrator");

3 ...

4 public class MyRegistrator implements

KryoRegistrator {

5 public void registerClasses(Kryo kryo) {

6 kryo.register(Date.class);

7 kryo.register(Year4D.class);

8 kryo.register(Month2D.class);

9 kryo.register(Day2D.class);

10 }

11 }

The order in which these classes are registered defines an
integer ID for each class. Using these integer class identifiers,
the bytes generated by Kryo do not contain strings, leading to
significant space savings during data transfer. Furthermore,
Kryo deserializer can now resolve types without using reflec-
tion — Kryo automatically generates code like

1 switch(id) {

2 case 0: return new Date();

3 case 1: return new Year4D ();

4 ...

5 }

that uses regular new instructions to create objects on the
receiving node.

However, in any real-world application, there can be a
large number of user classes defined (including many classes
from different libraries). Fully understanding what classes are
referenced (directly or transitively) is a very labor-intensive
process. Moreover, the developer has to manually develop
S/D functions for each of these types; without these functions,
the standard Java serializer would be used instead.

In both Kryo and the standard Java serializer, the number of
times S/D functions are invoked is proportional to the dataset
cardinality; every data transfer can easily require several mil-
lions of S/D invocations, taking a significant fraction of the
execution time.

2.2 Motivation

To understand the S/D costs in the real world, we have per-
formed a set of experiments on Spark. We execute Spark
on a small cluster of 3 worker nodes, each with 2 Xeon(R)
CPU E5-2640 v3 processors, 32GB memory, 1 SSD, running
CentOS 6.8. These three nodes are part of a large cluster con-
nected via InfiniBand. We ran a TriangleCounting algorithm
over the LiveJournal graph [4] that counts the number of tri-
angles induced by graph edges. It is widely used in social
network analysis for analyzing the graph connectivity proper-
ties [38]. We used Oracle JDK 8 (build 25.71) and let each
slave run one single executor – the single-thread execution on
each slave made it easy for us to measure the breakdown of
performance. The size of the input graph was around 1.2GB
and we gave each JVM a 20GB heap – a large enough heap
to perform in-memory computation – as is the recommended
practice in Spark. Tungsten sort was used to shuffle data.

T
im

e
(s

ec
)

T
ra

n
sf

er
re

d
 D

at
a

S
iz

e
(M

B
)

(a) (b)
Serializers Serializers

Remote Bytes

Local Bytes

Read I/O

Write I/O

Deserialization

Serialization

Computation
0

350

700

1050

1400

1750

0

3500

7000

10500

14000

17500

Figure 3. Spark S/D costs: (a) performance breakdown when
running TriangleCounting over the LiveJournal graph on three
nodes; (b) bytes shuffled under the two serializers; Local
Bytes and Remote Bytes show the number of bytes fetched
from the local and remote RDD partitions.

Figure 3(a) shows Spark’s performance under the Kryo and
Java serializers. Before transferring data over the network,
Spark shuffles and sorts records, and saves the sorted records
as disk files. The cost is thus broken down into five compo-
nents: computation time, serialization time (measured as time
spent on turning RDD records into byte sequences), write I/O
(measured as the time writing bytes onto disk), deserialization
time (measured as time spent on reconstructing RDD record
objects from bytes), and read I/O (measured as time reading
bytes). Since each JVM has a large heap compared to the
amount of data processed, the garbage collection cost is less
than 2% and thus not shown on the figure. The network cost
is negligible and included in the read I/O.

One observation is that the invocation of S/D functions
takes a huge portion (more than 30%) of the total execution
time under both Kryo and the Java serializer. Under Kryo,
the invocations of the serialization and deserialization take
18.2% and 14.1% of the total execution time, respectively;
under the Java serializer, these two take 16.3% and 17.8%.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA K. Nguyen et al.

written into the heap and can be used right away. Furthermore,
while each input buffer is shown as consuming contiguous
heap space in Figure 4, we allow it to span multiple small
memory chunks for two reasons. First, due to streaming, the
receiver may not have the knowledge of the number of sent
bytes, and hence, determining the input-buffer size is difficult.
Second, allocating large contiguous space can quickly lead to
memory fragmentation, which can be effectively mitigated by
using smaller memory chunks. Details can be found in §4.3.

Streaming is an important feature Skyway provides for
these buffers: for an output buffer, it is both time-inefficient
and space-consuming if we do not send data until all ob-
jects are in; for an input buffer, streaming would allow the
computation to be performed in parallel with data transfer.
Supporting streaming creates many challenges, e.g., how to
adapt pointers without multiple scans and how to manage
memory on the receiver node. Details can be found in §4.2.

3.3 Ease of Integration

Skyway aims to provide a simple interface for application
developers. Skyway should support not only the development
of brand new systems but also easy S/D library integration for
existing systems such as Spark. To this end, Skyway provides
a set of high-level Java APIs that are directly compatible with
the standard Java serializer.

Skyway provides SkywayObjectOutputStream and
SkywayObjectInputStream classes that are subclasses
of the standard ObjectOutputStream and Object-

InputStream. These two classes create an interface for
Skyway’s (native) implementation of the readObject

and writeObject methods. A SkywayObjectOutput-

Stream/SkywayObjectInputStream object is associated
with an output/input buffer. We have also created our
SkywayFileOutputStream/SkywayFileInputStream
and SkywaySocketOutputStream/SkywaySocketInput-
Stream classes – one can easily program with Skyway in the
same way as programming with the Java serializer.

Switching a program from using its original library to using
Skyway requires light code modifications. For example, we
do not need to change object-writing/reading calls such as
stream.writeObject(o) at all. The only modification is to
(1) instantiate stream to be a SkywayFileOutputStream

object instead of any other type of ObjectOutputStream
objects and (2) identify a shuffling phase with an API func-
tion shuffleStart. Since all of our output buffers need
to be cleared before the next shuffling phase starts (§4),
Skyway needs a mark from the developer to know when to
clear the buffers. Identifying shuffling phases is often simple
– in many systems, a shuffling phase is implemented by a
shuffle function and the developer can simply place a call
to shuffleStart in the beginning of the function. Also note
that, user programs written to run on Big Data systems, such
as the one in Figure 2, mostly do not directly use S/D libraries
and hence can benefit from Skyway without changes.

Finally, Skyway provides an interface that allows devel-
opers to easily update some object fields after the transfer,
such as re-initializing some fields for semantic reasons. For
example, the code snippet below updates field timestamp in
the class Record with the value returned by the user-defined
function updateTimeStamp when a Record object is trans-
ferred. Of course, we expect this interface to be used rarely —
the need to update object data content after a transfer never
occurs in our experiments.

1 /* Register the update function */

2 registerUpdate(Record.class , Record.class.getField(

"timeStamp"), SkywayFieldUpdateFunctions.

getFunction(SkywayUpdate.class , "

updateTimeStamp", "()[B");

3 ...

4 class SkywayUpdate{

5 /*The actual update function */

6 public byte[] updateTimeStamp (){

7 return new byte []{0};

8 }

9 }

4 Implementation

We implemented Skyway in Oracle’s production JVM Open-
JDK 1.8.0 (build 25.71). In addition to implementing our
object transfer technique, we have modified the classloader
subsystem, the object/heap layout, and the Parallel Scavenge
garbage collector, which is the default GC in OpenJDK 8. We
have also provided a Skyway library for developers.

4.1 Global Class Numbering

Skyway develops a distributed type-registration system that
automatically allows different representations of the same
class on different JVM instances to share the same integer ID.
This system completely eliminates the need of using strings
to represent types during data transfer (as in the standard
Java serializer) or the involvement of human developers to
understand and register classes (as in Kryo).

Skyway type registration runs inside every JVM and main-
tains a type registry, which maps every type string to its
unique integer ID. The driver JVM assigns IDs to all classes;
it maintains a complete type registry covering all the classes
that have been loaded in the cluster and made known to the
driver since the computation starts. Every worker JVM has
a registry view, which is a subset of the type registry on the
driver; it checks with the driver to obtain the ID for every
class that it loads and does not yet exist in the local registry
view. An example of these registries is shown in Figure 5.

Algorithm 1 describes the algorithms running on the driver
and worker JVMs. The selection of the driver is done by the
user through an API call inserted in the client code. For exam-
ple, for Spark, one can naturally specify the JVM running the
Spark driver as the Skyway driver, and all the Spark worker
nodes run Skyway workers. Fault tolerance is provided by the
application – e.g., upon a crash, Spark restarts the system on

Skyway: Connecting Managed Heaps

in Distributed Big Data Systems ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

Worker A

TypeString ID

1

2

“java.lang.Object”

“org.apache.spark.

rdd.RDD”

“java.lang.String” 5

Registry View A

klass for “java.lang.Object”

...1

...5

klass for “java.lang.String”

...

tID Old Contents

Worker B

TypeString ID

1
5

“java.lang.Object”

“java.lang.String”

120

Registry View B

klass for “java.lang.Object”

...1

...120

klass for “org.apache...Task”

...

tID Old Contents

“org.apache.spark.

scheduler.Task”

TypeString ID

1

2

4

“java.lang.Object”

“org.apache.spark.

rdd.RDD”

“java.util.HashMap”

...

3
“java.util.HashSet”

“java.lang.String” 5
...

“org.apache.spark.

scheduler.Task”
120

Type Registry

Master

Cluster

Figure 5. Type registries used for global class numbering.

the Skyway-equipped JVMs; Skyway’s driver JVM will be
launched on the node that hosts Spark’s driver.

At the beginning, the driver populates the registry by scan-
ning its own loaded classes after the JVM finishes its startup
logic (Lines 4 – 8). Next, the driver switches to background
by running a daemon thread that listens on a port to process
lookup requests from the workers (Lines 10 – 19).

Skyway uses a pull-based communication between the dri-
ver and workers. Upon launching a worker JVM, it first re-
quests (Line 22) and obtains (Line 12) the current complete
type registry from the driver through a “REQUEST_VIEW”
message. This provides each worker JVM with a view of all
classes loaded so far in the cluster at its startup. The rationale
behind this design is that most classes that will be needed by
this worker JVM are likely already registered by the driver
or other workers. Hence, getting their IDs in a batch is much
more efficient than making individual remote-fetch requests.

We modify the class loader on each worker JVM so that
during the loading of a class, the loader obtains the ID for the
class. The loader first consults the registry view in its own
JVM. If it cannot find the class, it goes on to communicate
with the driver (Lines 29 – 34) by a “LOOKUP” message with
the class name string. The driver returns the ID if the string
exists in its own registry or creates a new ID and registers it
with the class name (Line 18). Once the worker receives this
ID, it updates its registry view (Line 34). Finally, the worker
JVM writes this ID into the meta object of the class (Line 35).
In the JVM terminology, a meta object is called a “klass” (as
shown in Figure 5). We add an extra field in each klass to
accommodate its ID.

During deserialization, if we encounter an unloaded class
on the worker JVM, Skyway instructs the class loader to load
the missing class since the type registry knows the full class
name. While other options (e.g., low-collision hash functions
such as the MD and SHA families) can achieve the same goal
of assigning each class a unique ID, Skyway cannot use them
as they cannot be used to recover class names.

Comparing with the standard Java serializer that sends
a type string over the network together with every object,
Skyway sends a type string at most once for every class on
each machine during the whole computation. Naturally, the

Algorithm 1: Driver and worker algorithms for global
class numbering.

1 /* Driver Program */
2 /*Part 1: right after the JVM starts up*/
3 JVMSTARTUP() /*Normal JVM startup logic*/
4 /*Initialize the type registry*/
5 globalID ← 0

6 registry ← EMPTY _MAP

7 foreach class k loaded in the driver JVM do

8 registry ← registry ∪ {(NAME(k), globalID++)}

9 /*Part 2: a daemon thread that constantly listens*/
10 while Message m = LISTENTOWORKERS() do

11 if m.type == “REQUEST_VIEW” then

12 SENDMSG(m.workerAddr , registry)

13 else if m.type == “LOOKUP” then

14 /*The content of a “LOOKUP” message from worker to driver is a
class string*/

15 id ← LOOKUP(registry , m.content)
16 if id == Null then

17 id ← globalID++
18 registry ← registry ∪ {(m.content , id)}

19 SENDMSG(m.workerAddr , id)

20 /* Worker Program*/
21 /* Part 1: inside the JVM startup logic*/
22 SENDMSG(driverAddr , COMPOSEMSG(“REQUEST_VIEW”, Null,

myAddr))
23 Message m = LISTENTODRIVER()
24 /*The content of a “LOOKUP” message is the registry map*/

registryView ← m.content

25 /* Part 2: after the class loading routine*/
26 clsName ← GETCLASSNAME()
27 metaObj ← LOADCLASS(clsName)
28 id ← LOOKUP(registryView , clsName)
29 if id == Null then

30 SENDMSG(driverAddr , COMPOSEMSG(“LOOKUP”,
clsName,myAddr))

31 Message m = LISTENTODRIVER()
32 /*The content of a message from driver to worker is an ID*/
33 id ← m.content

34 registryView ← registryView ∪ {(clsName, id)}

35 WRITETID(metaObj , id)

number of strings communicated under Skyway is several
orders-of-magnitude smaller. Comparing with Kryo, Skyway
automatically registers all classes, and eliminates the need
for developers to understand what classes will be involved in
data transfer, leading to significantly reduced human effort.

4.2 Sending Object Graph

Overview When writeObject(root) is invoked on a
SkywayObjectOutputStream object, Skyway starts to tra-
verse and send the object graph reachable from root. Algo-
rithm 2 describes the single-threaded logic of copying the
object graph reachable from a user-specified root , and we
discuss the multi-threaded extension later in this section.

At a high level, Skyway mimics a BFS-based GC traversal.
It maintains a queue gray holding records of every object that
has been visited but not yet processed, as well as the location
addr at which this object will be placed in the output buffer

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA K. Nguyen et al.

Algorithm 2: Copying the object graph reachable from
object root and relativizing pointers for a single thread.

Input: Shuffling phase ID sID , a top object root , output buffer ob

1 ob.allocableAddr ← 0

2 Word w ← READ(root , OFFSET_BADDR)
3 pID ← HIGHESTBYTE(w)
4 /*root has not been visited in the current phase*/
5 if pID < sID then

6 /*gray is a list of pairs of objects and their buffer addresses*/
7 gray ← {(root, ob.allocableAddr)}

8 while gray ̸= ∅ do

9 Object-Address pair (s, addr)← REMOVETOP(gray)
10 CLONEINBUFFER(s, ob, addr − ob.flushedBytes)
11 /*Update the clone of s in the buffer*/
12 WRITE(addr , OFFSET_BADDR, 0)
13 RESETMARKBITS(addr)
14 WRITE(addr , OFFSET_KLASS, s.klass.tID)
15 foreach Reference-typed field f of s do

16 Object o← s.f

17 if o ̸=Null then

18 Word v ← READ(o, OFFSET_BADDR)
19 phaseID ← HIGHESTBYTE(v)
20 if phaseID < sID then

21 /* o has not been copied yet*/
newAddr ← ob.allocableAddr

22 WRITE(o, OFFSET_BADDR, COMPOSE(sID ,
newAddr))

23 PUSHTOQUEUE(gray , {(o, newAddr)})
24 ob.allocableAddr += GETSIZE(o)

25 else

26 newAddr ← LOWEST7BYTES(v)

27 WRITE(addr , OFFSET(f), newAddr)

28 else

29 oldAddr ← LOWEST7BYTES(w)
30 WRITEBACKWARDREFERENCE(oldAddr)

31 SETTOPMARK()

ob. Every iteration of the main loop (Line 8) processes the
top record in gray and conducts three tasks.

First, based on the object-address pair (s, addr) retrieved
from gray, an object s is cloned into buffer ob at a location
calculated from addr (Line 10). CLONEINBUFFER would
also adjust the format of the clone if Skyway detects that the
receiver JVM has a different specification from the sender
JVM, following a user-provided configuration file that speci-
fies the object formats in different JVMs. Second, the header
of the clone is updated (Lines 12 – 22). Third, for every
reference-typed field f of s, Skyway pushes the referenced
object o into the working queue gray if o has not been visited
yet and then updates f with a relativized address (i.e., o’s
position in output buffer), which will enable a fast reference
adjustment on the receiver machine (Lines 15 – 27).

As objects are copied into the buffer, which is in native
memory, the buffer may be flushed (i.e., the streaming pro-
cess). A flushing is triggered by an allocation at Line 10 —
the allocation first checks whether the buffer still has space
for the object s; if not, the buffer ob is flushed and the value
of ob.flushedBytes is increased by the size of the buffer.

Reference Relativization Imagine that a reference field f

of an object s points to an object o. Skyway needs to adjust
f in the output buffer, as o may be put at a different address
on the receiver node. Skyway replaces the cloned field f with
the relative address in ob where o will be cloned to. This will
allow the receiver node to easily calculate the correct absolute
value for every reference in an input buffer, once the input
buffer’s starting address is determined.

We first describe the overall relativization algorithm, and
then discuss how Skyway addresses the three challenges
caused by streaming and multi-phase data shuffling.

As shown on Lines 15 – 27 of Algorithm 2, for each
reference-type field s.f , Skyway follows the reference to find
the object (o). Skyway determines whether o has been vis-
ited in the current data-shuffling phase; details are discussed
shortly. If not (Line 20), we know o will be cloned to the end
of the output buffer at location ob.allocableAddr . We use
this location to fill the baddr field of o (Line 22), and bump
up ob.allocableAddr by the size of o to keep tracking the
starting address of the next cloned object in ob. If o has been
visited (Line 26), we retrieve its location in the output buffer
from the lowest seven bytes of the baddr field in its object
header, which we will explain more later. We then update the
clone of f with this buffer location newAddr at which the
clone of o will be or has already been placed (Line 27).

The first challenge is related to streaming. When Skyway
tries to update f with the output-buffer location of o’s clone
(f points to o), this clone may have been streamed out and no
longer exists in the physical output buffer. Therefore, Skyway
has to carefully store such buffer-location information, mak-
ing it available throughout a data-shuffling phase. Skyway
saves the buffer location in the header of the original object,
not the clone, using an extra field baddr. The modified object
layout is shown in Figure 6(a). When o is reached again via a
reference from another object o′, the baddr in o will be used
to update the reference in the clone of o′.

The second challenge is also related to streaming. The
buffer location stored in baddr of an object s and in its
record in gray-queue both represent the accumulative bytes
that have been committed to other objects in output buffer
before s. However, when Skyway clones o into the buffer,
it needs to account for the streaming effect that the physi-
cal buffer may have been flushed multiple times. Therefore,
Skyway subtracts the number of bytes previously flushed
ob.flushedBytes from addr when computing the actual ad-
dress in the buffer to which s should be copied (Line 10).

The third challenge is due to multi-phase data shuffling.
Since one object may be involved in multiple phases of shuf-
fling, we need to separate the use of its baddr field for dif-
ferent shuffling phases. Skyway employs an sID to uniquely
identify a shuffling phase. Whenever Skyway updates the
baddr field, the current sID is written to as a prefix to
the highest byte of baddr. Thus, Skyway can easily check
whether the content in a baddr field is computed during the

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA K. Nguyen et al.

After the input buffer is filled, Skyway performs a linear
scan of the buffer to absolutize types and pointers. For the
klass field of each object, Skyway queries the local registry
view to get the correct klass pointer based on the type ID
and writes the pointer into the field. For a relative address
a stored in a reference field, Skyway replaces it with a + s

where s is the starting address of this input buffer.
There is one challenge related to streaming. Since Skyway

may not know the total size of the incoming data while allo-
cating the buffer, one buffer of a fixed length may not be large
enough. Skyway solves this by supporting linked chunks – a
new chunk can be created and linked to the old chunk when
the old one runs out of space. Skyway does not allow an
object to span multiple chunks for efficiency. Furthermore,
when a buffer contains multiple chunks, the address transla-
tion discussed above needs to be changed. We first need to
calculate which chunk i a relative address a would fall in.
Then, because previous chunks might not be fully filled, we
need to calculate the offset of a in the i-th chunk. Suppose
si is the starting address of chunk i and hence, si + offset is
the final absolute address for a. This address will be used to
replace a in each pointer field.

As each input buffer corresponds to a distinct sender, we
can safely start the computation to process objects in each
buffer for which streaming is finished. This would not create
safety issues because objects that come from different nodes
cannot reference each other. However, we do need to block
the computation on buffers into which data is being streamed
until the absolutization pass is done.

Interaction with GC After receiving the objects, it is im-
portant for the Skyway client on the receiver JVM to make
these objects reachable in the garbage collection. Skyway
allocates all input buffers in the old generation (tenured) of
the managed heap. In Skyway, we use the Parallel Scavenge
GC (i.e., the default GC in OpenJDK 8), which employs a
card table that groups objects into fixed-sized buckets and
tracks which buckets contain objects with young pointers.
Therefore, we add support in Skyway that updates the card
table appropriately to represent new pointers generated from
each data transfer.

5 Evaluation

To thoroughly evaluate Skyway, we have conducted three
sets of experiments, one on a widely-used suite of bench-
marks and the other two on widely-deployed systems Spark
and Flink. The first set of experiments focuses on comparing
Skyway with all existing S/D libraries – since most of these
libraries cannot be directly plugged into a real system, we
used the Java serializer benchmark set (JSBS) [34], which was
designed specifically to evaluate Java/Scala serializers, to un-
derstand where Skyway stands among existing S/D libraries.
JSBS was initially designed to assess single-machine S/D. We

*** skyway ***

colfer

protostuff

protostuff−manual

protobuf/protostuff

datakernel

protostuff−graph

protostuff−runtime

protobuf/protostuff−runtime

protostuff−graph−runtime

kryo−manual

smile/jackson/manual

kryo−opt

kryo−flat−pre

avro−generic

cbor/jackson/manual

avro−specific

wobly

kryo−flat

wobly−compact

cbor/jackson+afterburner/databind

capnproto

cbor−col/jackson/databind

smile/jackson+afterburner/databind

smile−col/jackson/databind

thrift−compact

fst−flat−pre

thrift

Other 63 S/D libraries

0 5000 10000
Time (ms)

Component 1−Network 2−Deserialization 3−Serialization

Figure 7. Serialization, deserialization, and network perfor-
mance of different S/D libraries. Although we have compared
Skyway with 90 existing libraries, we include in this table
Skyway and 27 fastest-performing libraries. The last bar is
simply a placeholder of the 63 libraries that perform slowly.

modified this program to make it work in a distributed setting;
details are discussed shortly.

In the second and third set of experiments, we modified the
Spark and Flink code to replace the use of Kryo and the Java
serializer (in Spark) and built-in serializers (in Flink) with
Skyway in order to assess the benefit of Skyway to real-world
distributed systems. All of our experiments were run on a
cluster with 11 nodes, each with 2 Xeon(R) CPU E5-2640 v3
processors, 32GB memory, 1 100GB SSD, running CentOS
6.8 and connected by a 1000Mb/s Ethernet. Each node ran 8
job instances. The JVM on each node was configured to have
a 30GB heap.

5.1 Java Serializer Benchmark Set

The JSBS contains several workloads under which each seri-
alizer and deserializer is repeatedly executed. Each workload
contains several media content objects which consist of prim-
itive int and long fields as well as reference-type fields. The
driver program creates millions of such objects, each of which
is around 1KB in JSON format. These objects are serialized
into in-memory byte arrays, which are then deserialized back
to heap objects. To understand the cost of transferring the byte
sequences generated by different serializers, we modified the
benchmark, turning it into a distributed program – each node
serializes these objects, broadcasts the generated bytes to all
the other nodes, and deserializes the received bytes back into
objects. To execute this program, we involved five nodes and

Skyway: Connecting Managed Heaps

in Distributed Big Data Systems ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

executed this process 1000 times repeatedly. The average S/D
time for each object and the network cost are reported.

We have compared Skyway exhaustively with 90 existing
S/D libraries. Due to space constraints, we excluded from the
paper 63 slower libraries whose total S/D time exceeds 10
seconds. The performance of the fastest 28 libraries is shown
in Figure 7. Skyway, without needing any user-defined S/D
functions, is the fastest of all of them. For example, it is 2.2×
faster than Kryo-manual, which requires manual development
of S/D functions. It is more than 67× faster than the Java
serializer, which is not shown in the figure.

Colfer [11] is the only serializer whose performance is
close to (but still 1.5× slower than) that of Skyway. It em-
ploys a compiler colf(1) to generate serialization source code
from schema definitions to marshal and unmarshal data struc-
tures. Hence, the use of colf(1) requires user-defined schema
of data formats, which, again, creates a practicality obstacle
if data structures are complicated and understanding their
layouts is a daunting task.

Skyway’s faster S/D speed is achieved at the cost of greater
numbers of bytes serialized. For example, Skyway generates,
on average, 50% more bytes than the existing serializers. The
details of the numbers of bytes are omitted from the paper
due to space constraints. Note that the increased data amount
does not cause the network cost to change much, whereas the
computation cost in S/D is significantly reduced.

5.2 Improving Spark with Skyway

Experience We have modified Spark version 2.1.0 (released
December 2016) to replace the use of Kryo-manual with the
Skyway library. Spark was executed under Hadoop version
2.6.5 and Scala version 2.11. Our experience shows that the li-
brary replacement was rather straightforward – to use Skyway,
we created a Skyway serializer that wraps the existing In-
put/OutputStream with our SkywayInput/OuputStream ob-
jects. We modified the Spark configuration (spark.serializer)
to invoke the Skyway serializer instead of Kryo. Since data
serialization in Spark shuffles orders of magnitude more data
than closure serialization, we only used Skyway for data
serialization. The Java serializer was still used for closure
serialization. The entire SkywaySerializer class contains
less than 100 lines of code, most of which was adapted di-
rectly from the existing JavaSerializer class. The number
of lines of new code we wrote ourselves was only 10: 2 lines
to wrap the I/O stream parameters, 3 lines to modify calls to
readObject, and 5 lines to specify tuning parameters (e.g.,
buffer size).

Programs and Datasets We ran Spark with four representa-
tive programs: WordCount (WC), PageRank (PR), Connected-
Components (CC), and TriangleCounting (TC). WordCount is
a simple MapReduce application that needs only one round of
data shuffling. The other three programs are iterative graph ap-
plications that need to shuffle data in each iteration. We used

Graphs #Edges #Vertices Description

LiveJournal [5] 69M 4.8M Social network
Orkut [18] 117M 3M Social network

UK-2005 [6] 936M 39.5M Web graph
Twitter-2010[23] 1.5B 41.6M Social network

Table 1. Graph inputs for Spark.

Sys Overall Ser Write Des Read Size

Kryo 0.39∼ 0.94 0.33∼ 0.89 0.12∼ 0.83 0.11∼ 0.55 0.01∼ 0.03 0.31∼ 1.09
(0.76) (0.59) (0.61) (0.26) (0.02) (0.52)

Skyway 0.27∼ 0.92 0.19∼ 1.29 0.12∼ 1.61 0.04∼ 0.43 0.01∼ 0.05 0.91∼ 3.13
(0.64) (0.62) (0.97) (0.16) (0.02) (1.15)

Table 2. Performance summary of Skyway and Kryo on
Spark: normalized to baseline (Java serializer) in terms of
Overall running time, Serialization time, Write I/O time,
and Deserialization time, Read I/O time (including the net-
work cost), and the Size of byte sequence generated. A lower
value indicates better performance. Each cell shows a percent-
age range and its geometric mean.

four real-world graphs as input – LiveJournal (LJ) [4], Orkut
(OR) [18], UK-2005 (UK) [6], and Twitter-2010 (TW) [23];
Table 1 lists their details.

For PageRank over Twitter-2010, Spark could not reach
convergence in a reasonable amount of time (i.e., 10 hours)
for all configurations. We had to terminate Spark at the end of
the 10th iteration and thus the performance we report is w.r.t.

the first 10 iterations. All the other iterative applications ran
to complete convergence. We have experimented with three
serializers: the Java serializer, Kryo, and Skyway.

Spark Performance Figure 8(a) reports the running time
comparisons among three serializers over the four input
graphs. Since different programs have very different perfor-
mance numbers, we plot them separately on different scales.
For each dataset, WordCount and ConnectedComponents fin-
ished much more quickly than PageRank and TriangleCount-
ing. This is primarily due to the nature of the application –
WordCount has one single iteration and one single round of
shuffling; it is much easier for ConnectedComponents (i.e.,
a label propagation application, which finishes in 3-5 itera-
tions) to reach convergence than the other two applications
that often need many more iterations.

It is the same reason that explains why Skyway performs
better for PageRank and TriangleCounting – since they per-
form many rounds of data shuffling, a large portion of their
execution time is taken by S/D and thus the savings in data
transfer achieved by Skyway are much more significant for
these two applications than the other two.

A detailed summary of each run-time component is pro-
vided in Table 2. Network time is included in Read. On
average, Skyway makes Spark run 36% and 16% faster than
the Java serializer and Kryo. Compared to the Java serializer,
Kryo achieves most of its savings from avoiding reading/writ-
ing type strings since Kryo relies on developers to register

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA K. Nguyen et al.

T
im

e
(s

ec
)

Serializers

T
im

e
(s

ec
)

Serializers

T
im

e
(s

ec
)

Serializers

T
im

e
(s

ec
)

Serializers

T
im

e
(s

ec
)

Serializers

(a)

(b)

Read I/O

Write I/O

Deserialization

Serialization

Computation

UK-TC

0

15000

30000

45000
UK-PR

0

5000

10000

15000
UK-CC

0

2000

4000

6000
UK-WC

0

300

600

900

1200

LJ-TC

0

1000

2000

3000

LJ-PR

0

2000

4000

6000
LJ-CC

0

300

600

900
LJ-WC

0

50

100

150

200
OR-WC

0

50

100

150

200

250
OR-CC

0

500

1000

1500
OR-PR

0

1000

2000

3000
OR-TC

0

4000

8000

12000

16000

TW-WC

0

1500

3000

4500
TW-PR

0

5000

10000

15000

20000

25000
TW-TC

0

15000

30000

45000

60000

QA

0

15000

30000

45000

60000
QB

0

2500

5000

7500

10000
QC

0

1500

3000

4500

6000

7500
QD

0

2500

5000

7500

10000
QE

0

10000

20000

30000

TW-CC

0

5000

10000

15000

Figure 8. (a) Spark with Java serializer, Kryo, and Skyway; (b) Flink with Skyway and Flink’s built-in serializer.

classes. As a result, the I/O in network and local reads has
been significantly reduced. Skyway, on the contrary, bene-
fits most from the reduced deserialization cost. Since the
transferred objects can be immediately used, the process of
recreating millions of objects and calling their constructors is
completely eliminated. Furthermore, it is worth noting, again,
that Kryo achieves its benefit via heavyweight manual devel-
opment – there is a package of more than 20 classes (several
thousands of lines of code) in Spark developed to use Kryo,
while Skyway completely eliminates this manual burden and
simultaneously achieves even higher performance gains.

The number of bytes transferred under Skyway is about the
same as the Java serializer, but 77% more than Kryo due to
the transferring of the entirety of each object. The increased
data size is also reflected in the increased write I/O. Skyway’s
read I/O time is shorter than that of the Java serializer. This
is primarily due to the elimination of object creation – we
only need one single scan of each buffer instead of reading in
individual bytes to create objects as done in Kryo. Skyway’s
read I/O is longer than that of Kryo because Kryo transfers
much less bytes.

To understand what constitutes the extra bytes produced by
Skyway, we analyzed these bytes for our Spark applications.
Our results show that, on average, object headers take 51%,
object paddings take 34%, and the remaining 15% are taken
by pointers. Since headers and paddings dominate these extra

bytes, future work could focus on compressing headers and
paddings during sending.

Memory Overhead To understand the overhead of the extra
word field baddr in each object header, we ran the Spark
programs with the unmodified HotSpot and compared peak
heap consumption with that of Skyway (by periodically run-
ning pmap). We found that the difference (i.e.,, the overhead)
is relatively small. Across our four programs, this overhead
varies from 2.1% to 21.8%, with an average of 15.4%.

5.3 Improving Flink with Skyway

We evaluated Skyway with the latest version of Flink (1.3.2,
released August 2017) executing under Hadoop version 2.6.5.
Flink has both streaming and batch processing models. Here
we focus on the batch-processing model, and particularly,
query answering applications.

Flink reads input data into a set of tuples (e.g., rows in
relational database); the type of each field in a tuple must
be known at compile time. Flink can thus select a built-in
serializer for each field to use when creating tuples from the
input. Flink falls back to the Kryo serializer when encounter-
ing a type with neither a Flink-customized nor a user-defined
serializer available. Since the read/write interface is clearly
defined, we could easily integrate Skyway into Flink.

Skyway: Connecting Managed Heaps

in Distributed Big Data Systems ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

Description

QA Report pricing details for all items shipped within the last 120 days.
QB List the minimum cost supplier for each region for each item in the database.
QC Retrieve the shipping priority and potential revenue of all pending orders.
QD Count the number of late orders in each quarter of a given year.
QE Report all items returned by customers sorted by the lost revenue.

Table 3. Descriptions of the queries used in Flink.

Overall Ser Write Des Read Size

0.71∼ 0.88 0.56∼ 1.06 0.51∼ 1.76 0.58∼ 0.82 0.49∼ 1.13 1.23∼ 2.03
(0.81) (0.77) (0.96) (0.75) (0.61) (1.68)

Table 4. Performance improvement summary of Skyway on
Flink: normalized to Flink’s built-in serializer.

We used the TPC-H [37] data generator to generate a
100GB dataset as our input. Next, we transformed 5 rep-
resentative SQL queries generated by TPC-H into Flink ap-
plications. The description of these queries can be found in
Table 3. They were selected due to the diverse operations they
perform and database tables they access.

Figure 8(b) shows Flink’s performance improvement using
Skyway. Performance summary is also shown in Table 4.

In Flink, the amount of time in deserialization (8.7%) is
much less than that in serialization (23.5% on average). This
is because Flink does not deserialize all fields of a row upon
receiving it – only those involved in the transformation are
deserialized. Despite this lazy mechanism, Skyway could im-
prove Flink’s performance by, an overall of 19%, compared to
Flink’s built-in serializer. The total number of bytes written by
Skyway is also higher than the baseline – on average, Skyway
emits 68% more bytes. It is worth noting that Skyway is com-
pared with Flink’s highly optimized built-in serializer; it is
statically chosen and optimized specifically for the data types
involved in the queries, and has been shown to outperform
generic serializers such as Kryo.

6 Related Work

Object Sharing in the OS The idea of sharing memory
segments across processes has been studied in the OS de-
sign [10, 15, 19, 24, 33]. An object can exist in different
address spaces, allowing the system to share memory across
simultaneously executing processes. Mach [33] introduces the
concept of a memory object mappable by various processes.
The idea was later adopted in the Opal [10] and Nemesis [19]
operating systems to describe memory segments character-
ized by fixed virtual offsets. Lindstrom [24] expands these
notions to shareable containers that contain code segments
and private memory, leveraging a capability model to enforce
protection. Although most contemporary OSes allow one
process to be associated with a single virtual address space
(SVAS), there exist systems that support multiple virtual ad-
dress space (MVAS) abstractions.

The idea of multiple address spaces has mainly been ap-
plied to achieve protection in a shared environment [10, 15,
35]. More recently, to support the vast physical memory

whose capacity may soon exceed the virtual address space
size supported by today’s CPUs, SpaceJMP [15] provides a
new operating system design that promotes virtual address
spaces to first-class citizens, which enables process threads to
attach to, detach from, and switch between multiple virtual ad-
dress spaces. Although this line of work is not directly related
to Skyway, they share a similar goal of achieving memory
efficiency when objects are needed by multiple processes.
XMem [39] is a JVM-based technique that shares heap space
across JVM instances. None of these techniques target object
transfer in distributed systems.

Memory Management in Big Data Systems A variety of
data computation models and processing systems have been
developed in the past decade [1, 7, 9, 12, 13, 21, 30, 31,
36, 41–43, 45]. MapReduce [14] has inspired much re-
search on distributed data-parallel computation, including
Hyracks [20], Hadoop [1], Spark [45], and Dryad [21]. It
has been extended [41] with Merge to support joins and
adapted [12] to support pipelining. Yu et al. propose a pro-
gramming model [42] for distributed aggregation for data-
parallel systems. A number of high-level declarative lan-
guages for data-parallel computation have been proposed,
including Sawzall [31], Pig Latin [30], SCOPE [9], Hive [36],
and DryadLINQ [43]. These frameworks are all developed in
managed languages and perform their computations on top of
the managed runtime. Hence, data shuffling in these systems
can benefit immediately from Skyway, as demonstrated in
our evaluation (§5).

Recently, there has been much interest in optimizing mem-
ory management in language runtimes for efficient data pro-
cessing [8, 16, 17, 25, 26, 28, 29]. These works are largely
orthogonal to Skyway, although Skyway also fits in the cate-
gory of language runtime optimizations. ITask [16] provides
a library-based programming model for developing interrupt-
ible tasks in data-parallel systems. ITask solves the memory
management problem using an orthogonal approach that in-
terrupts tasks and dumps live data to disk. In addition, it is
designed specifically for data-parallel programs and does not
work for general (managed) systems.

7 Conclusion

This paper presents Skyway, the first JVM-based system that
provides efficient data transfer among managed heaps. Our
evaluation shows that Skyway outperforms all existing S/D
libraries and improves the widely-deployed systems Spark
and Flink.

Acknowledgments

We thank the anonymous reviewers for their valuable and
thorough comments. We are also grateful to Kathryn McKin-
ley who pointed us to important related works. This mate-
rial is based upon work supported by the National Science

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA K. Nguyen et al.

Foundation under grants CCF-1319786, CNS-1321179, CCF-
1409829, IIS-1546543, CNS-1514256, CNS-1613023, CNS-
1703598, and by the Office of Naval Research under grants
N00014-14-1-0549 and N00014-16-1-2913.

References
[1] Apache 2017. Hadoop: Open-source implementation of MapReduce.

http://hadoop.apache.org. (2017).
[2] Apache Flink 2017. Apache Flink. http://flink.apache.org/. (2017).
[3] Apache Thrift 2017. Apache Thrift. http://thrift.apache.org/. (2017).
[4] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang

Lan. 2006. Group Formation in Large Social Networks: Membership,
Growth, and Evolution. In KDD. 44–54.

[5] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang
Lan. 2006. Group Formation in Large Social Networks: Membership,
Growth, and Evolution. In KDD. 44–54.

[6] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I:
Compression Techniques. In WWW. 595–601.

[7] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose,
and Rares Vernica. 2011. Hyracks: A flexible and extensible foundation
for data-intensive computing. In ICDE. 1151–1162.

[8] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J. Carey. 2013.
A Bloat-Aware Design for Big Data Applications. In ISMM. 119–130.

[9] Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill Ramsey, Darren
Shakib, Simon Weaver, and Jingren Zhou. 2008. SCOPE: easy and
efficient parallel processing of massive data sets. Proc. VLDB Endow.

1, 2 (2008), 1265–1276.
[10] Jeff Chase, Miche Baker-Harvey, Hank Levy, and Ed Lazowska. 1992.

Opal: A Single Address Space System for 64-bit Architectures. SIGOPS

Oper. Syst. Rev. 26, 2 (1992), 9.
[11] Colfer. 2017. The Colfer Serializer.

https://go.libhunt.com/project/colfer. (2017).
[12] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,

Khaled Elmeleegy, and Russell Sears. 2010. MapReduce online. In
NSDI. 21–21.

[13] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI. 137–150.

[14] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[15] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic, Reto
Achermann, Paolo Faraboschi, Wen-mei Hwu, Timothy Roscoe, and
Karsten Schwan. 2016. SpaceJMP: Programming with Multiple Virtual
Address Spaces. In ASPLOS. 353–368.

[16] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan Lu.
2015. Interruptible Tasks: Treating Memory Pressure As Interrupts for
Highly Scalable Data-Parallel Programs. In SOSP. 394–409.

[17] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingam, Manuel Costa, Derek G. Murray,
Steven Hand, and Michael Isard. 2015. Broom: Sweeping Out Garbage
Collection from Big Data Systems. In HotOS.

[18] Google. 2017. Orkut social network. http://snap.stanford.edu/data/com-
Orkut.html. (2017).

[19] Steven M. Hand. 1999. Self-paging in the Nemesis Operating System.
In OSDI. 73–86.

[20] UC Irvine. 2014. Hyracks: A data parallel platform. http://code.

google.com/p/hyracks/. (2014).
[21] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-

terly. 2007. Dryad: distributed data-parallel programs from sequential
building blocks. In EuroSys. 59–72.

[22] Kryo 2017. The Kryo serializer. https://github.com/

EsotericSoftware/kryo. (2017).
[23] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.

What is Twitter, a Social Network or a News Media?. In WWW. 591–
600.

[24] A. Lindstrom, J. Rosenberg, and A. Dearle. 1995. The Grand Unified
Theory of Address Spaces. In HotOS. 66–71.

[25] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. 2015.
Trash Day: Coordinating Garbage Collection in Distributed Systems.
In HotOS.

[26] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. 2016.
Taurus: A Holistic Language Runtime System for Coordinating Dis-
tributed Managed-Language Applications. In ASPLOS. 457–471.

[27] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-tolerant Software
Distributed Shared Memory. In USENIX ATC. 291–305.

[28] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu,
Sanazsadat Alamian, and Onur Mutlu. 2016. Yak: A High-Performance
Big-Data-Friendly Garbage Collector. In OSDI. 349–365.

[29] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guo-
qing Xu. 2015. FACADE: A compiler and runtime for (almost) object-
bounded big data applications. In ASPLOS. 675–690.

[30] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins. 2008. Pig Latin: a not-so-foreign language for
data processing. In SIGMOD. 1099–1110.

[31] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. 2005.
Interpreting the data: Parallel analysis with Sawzall. Sci. Program. 13,
4 (2005), 277–298.

[32] Protocol Buffers 2017. Protocol Buffers. https://developers.google.

com/protocol-buffers/docs/javatutorial. (2017).
[33] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert

Baron, David Black, William Bolosky, and Jonathan Chew. 1987.
Machine-independent Virtual Memory Management for Paged Unipro-
cessor and Multiprocessor Architectures. In ASPLOS. 31–39.

[34] Eishay Smith. 2017. The Java Serialization Benchmark Set.
https://github.com/eishay/jvm-serializers. (2017).

[35] Masahiko Takahashi, Kenji Kono, and Takashi Masuda. 1999. Efficient
Kernel Support of Fine-Grained Protection Domains for Mobile Code.
In ICDCS. 64–73.

[36] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. 2009. Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endow. 2, 2 (2009), 1626–1629.

[37] TPC. 2014. The standard data warehousing benchmark.
http://www.tpc.org/tpch. (2014).

[38] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of
‘small-world’ networks. Nature 393, 6684 (1998), 440–442.

[39] Michal Wegiel and Chandra Krintz. 2008. XMem: Type-safe, Transpar-
ent, Shared Memory for Cross-runtime Communication and Coordina-
tion. In PLDI. 327–338.

[40] Java World. 2017. The Java serialization algorithm re-
vealed. http://www.javaworld.com/article/2072752/

the-java-serialization-algorithm-revealed.html. (2017).
[41] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker.

2007. Map-reduce-merge: simplified relational data processing on large
clusters. In SIGMOD. 1029–1040.

[42] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. 2009. Distributed
Aggregation for Data-parallel Computing: Interfaces and Implementa-
tions. In SOSP. 247–260.

[43] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: a system for
general-purpose distributed data-parallel computing using a high-level
language. In OSDI. 1–14.

[44] Matei Zaharia. 2016. What is changing in Big Data?
https://www.microsoft.com/en-us/research/wp-content/uploads/

2016/07/Zaharia_Matei_Big_Data.pdf. (2016). MSR Faculty
Summit.

[45] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster computing with working

Skyway: Connecting Managed Heaps

in Distributed Big Data Systems ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

sets. In HotCloud.

