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A global transcriptional network connecting
noncoding mutations to changes in tumor
gene expression
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Although cancer genomes are replete with noncoding mutations, the effects of these mutations remain poorly characterized.
Here we perform an integrative analysis of 930 tumor whole genomes and matched transcriptomes, identifying a network of
193 noncoding loci in which mutations disrupt target gene expression. These ‘somatic eQTLs' (expression quantitative trait
loci) are frequently mutated in specific cancer tissues, and the majority can be validated in an independent cohort of 3,382
tumors. Among these, we find that the effects of noncoding mutations on DAAM1, MTG2 and HYI transcription are recapitu-
lated in multiple cancer cell lines and that increasing DAAMT1 expression leads to invasive cell migration. Collectively, the non-
coding loci converge on a set of core pathways, permitting a classification of tumors into pathway-based subtypes. The somatic

eQTL network is disrupted in 88% of tumors, suggesting widespread impact of noncoding mutations in cancer.

distinct subtypes associated with differences in molecular,

cellular and clinical characteristics. To gain insight into this
complexity, projects such as The Cancer Genome Atlas (TCGA)
and International Cancer Genome Consortium (ICGC) have used
massively parallel DNA sequencing to construct large catalogs of
somatic mutations in many types of tumors'~. Focusing initially
on protein-coding regions, several hundred genes were found to be
recurrently mutated in cancer, a few of which are targetable thera-
peutically*.

As coding regions account for less than 2% of the human
genome, attention is now shifting to the greater number of somatic
mutations in noncoding regions’. Thus far, the clearest role for non-
coding mutations in cancer has been in the promoter of the telom-
erase reverse transcriptase gene (TERT)*, with such mutations
leading to increases in TERT expression levels in many types of
tumors®’. Although whole-genome sequencing (WGS) of tumor-
normal pairs has found recurrent somatic mutations at several
other noncoding loci, assessing the function of these mutations, if
any, has been challenging®*. In this respect, the task of functional
interpretation is greatly aided by recent efforts of consortia such
as ENCODE'""" and Roadmap'*"?, which have published extensive
reference maps of noncoding regions and their likely transcrip-
tional regulatory connections to genes. Here we show that such
networks provide critical information for identifying noncoding
mutations with functional impacts among the many others that
may be spurious®.

| | uman cancers are fundamentally heterogeneous, with many

Results

Genome-wide identification of somatic eQTLs in cancer. To
identify noncoding mutations associated with functional effects, we
performed a systematic analysis of 930 tumors integrating whole-
genome sequences, matched mRNA expression profiles and refer-
ence transcriptional interaction maps. Using WGS of paired normal
and tumor tissues in 930 patients across 22 types of cancer from
TCGA' (Fig. 1a), we identified 3.5x 107 sites with somatic single-
nucleotide variations (SNVs). We called these SNVs uniformly
across all genomes using the MuTect suite'* according to GATK
best-practice recommendations'> ' and those of Melton et al.®
(Fig. 1b). Clusters of noncoding SNVs located within 50bp of one
another were grouped, defining recurrently mutated loci (Fig. 1c,
Methods and Supplementary Fig. 1).

We then tested each locus for its association with changes in
mRNA expression of target genes (Fig. 1d). This task made use
of two additional datasets. First, enhancer-gene mappings in
GeneHancer'” were used along with promoter-proximal regions,
defined as sequences within 1 kb of each transcription start site (TSS),
to link recurrently mutated loci to putative target genes considered
to be under direct transcriptional control (Methods). Second, for
the vast majority of patients with tumor genome sequences, tumor
mRNA expression profiles were also available (Fig. 1a). From these
data, we developed a multivariate linear regression model of the
expression change of each target gene, as a function of the muta-
tion status of its linked loci and covariates, including the presence
of copy number alterations (CNAs), DNA methylation status, tissue,
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Fig. 1| Mutation calling and somatic expression quantitative trait locus analysis. a, Types of data and numbers of tumors used in this study. b, Number of
mutations called per tumor. Box plots show the distribution of this number within tumors of each tissue type (center line, median; upper and lower hinges,
first and third quartiles; whiskers, highest and lowest values within 1.5 times the interquartile range outside hinges; dots, outliers beyond 1.5 times the
interquartile range). The number of tumors of each type (sample size) is shown in the right panel. ¢, Clustering of somatic noncoding mutations resulting
in identification of recurrently mutated loci. d, Workflow of somatic eQTL analysis. WGS, whole-genome sequencing; WES, whole-exome sequencing;

SNV, single-nucleotide variation.

ancestry and sex (Fig. 1d and Methods). Conceptually, this proce-
dure is similar to identifying eQTLs, in which inherited nucleotide
variants are mapped to downstream functional changes'®". Here,
however, the variants are somatically acquired rather than inherited.
Such ‘somatic eQTL analysis’ simplifies the complexity and scope
of eQTL mapping to a relatively small number of unlinked genetic
variants: on average, 2.6 loci were tested per gene, with an s.d. of 3.1
and a maximum number of 53 (Supplementary Fig. le).

Altogether, this approach identified a cancer transcriptional net-
work of 206 regulatory interactions between 193 somatic eQTLs
and 196 gene-expression-level changes, at a false discovery rate
(FDR) of 20% (Fig. 2a,b and Supplementary Fig. 2; somatic eQTLs
at different FDR thresholds are provided in Supplementary Table 1
and the Supplementary Note). At least one locus in this network
was somatically mutated in 88% of cases studied (820 of 930),
suggesting that transcriptional dysregulation through noncod-
ing mutations is a general property of most tumors. Somatic
eQTLs linked noncoding mutations to the expression levels of 13
known tumor-suppressor genes or oncogenes®*>*' (Supplementary
Table 1), although, interestingly, known cancer-associated genes
were not significantly enriched overall (Fisher’s exact test P=0.3).
We also found that 43% of somatic eQTLs disrupted or created a
transcription factor binding motif (83 of 193; Supplementary Fig. 3
and Supplementary Table 2), although this percentage was very
similar for recurrently mutated loci not detected as somatic eQTLs
(40%; 2409 of 8607).
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Many of the identified somatic eQTLs were frequently mutated in
specific cancer tissues (Fig. 2c and Supplementary Table 3). Beyond
the promoter of TERT, which is highly mutated in several tissues as
previously noted®* (Supplementary Fig. 3a,b), we found recurrently
mutated loci associated with expression of DHX34 (mutated in 43%
of diffuse large B cell lymphoma), TUBBP5 (29% of lymphomas and
17% of liver cancers), HYI (21% of melanoma), and PCDH1 (19% of
acute myeloid leukemia), among others. While most of the somatic
eQTLs were mutated in multiple tissues, 12 of the somatic eQTLs
were mutated almost exclusively in melanoma (80% or more of the
mutations occurred in melanoma). Such enrichment for a single tis-
sue was not seen for any other tissue type.

Somatic eQTLs are recurrently mutated in a second cohort. To
systematically validate this network, we examined an independent
pan-cancer cohort from ICGC consisting of genome-wide somatic
mutation calls for 3,382 patients”. Notably, we found that the major-
ity of the somatic eQTLs identified in the original TCGA discov-
ery set were recurrently mutated in the ICGC validation cohort
(107 of the 193 at FDR < 20%; Fig. 2d). These included 10 of the 12
melanoma eQTLs, which again were frequently and almost exclu-
sively mutated in the melanoma samples in ICGC (Fisher’s exact
test P=4.1x107"% Supplementary Table 4). For example, a somatic
eQTL associated with increased HYI mRNA expression level was
mutated in 21% of US melanomas (TCGA) and 18% of Australian
melanomas (ICGC).
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Fig. 2 | Effect size and recurrence of somatic eQTLs. a, Volcano plot of associations between somatic eQTLs and the expression level changes of their
target genes, evaluated by significance (y axis; F-test P value, n=783 tumors) versus effect size (x axis). One unit on the x axis represents 1s.d. of change
in gene expression. FDR was calculated using the Storey approach®. Selected somatic eQTLs are labeled by coordinates in base pairs relative to the TSS

of the target gene. b, Ideogram of the 193 significant somaitc eQTLs at FDR <20%. ¢, Heat map showing the percentage of patients in various cancer
tissues with alterations in each somatic eQTL. Somatic eQTLs and cancer tissues with mutation rates of >15% are shown. d, Validation of somatic eQTL
recurrence in a pan-cancer cohort from ICGC. The quantile-quantile plot shows the observed empirical P values of mutation recurrence (n=3,382 tumors)
compared to the random expectation for the 193 somatic eQTLs. FDR was calculated using the Benjamini-Hochberg approach.

Increasing DAAMI1 expression leads to cell invasion. We next
sought to examine in more detail the somatic eQTL located 191 bp
upstream of DAAM]I (Fig. 2a and Methods), which is recurrently
mutated in patients with melanoma who have metastatic disease
in both cohorts (Fig. 2c,d). The DAAMI1 protein forms a complex
with Dishevelled and RhoA to recruit the actin cytoskeleton, which
is thought to increase the motility and invasiveness of cancer cells
in response to Wnt signaling®*~**. Mutations at this somatic eQTL
are associated with increased DAAMI mRNA expression levels
potentially owing to the loss of an E2F motif and the gain of an
Ets motif (Fig. 3a; NC_000014.8:g.59655190 G > A). To confirm a
causal relationship between the somatic eQTL and gene expression
level changes, wild-type and mutant DAAM]I regulatory elements
were inserted upstream of the GFP gene (Fig. 3b). Analysis by flow
cytometry showed that the mutated regulatory element led to a sig-
nificantly higher percentage of cells expressing GFP in melanoma,
sarcoma and breast cancer cell lines (Fig. 3c,d and Supplementary
Fig. 4). Furthermore, the GFP-expressing cells had significantly
higher levels of GFP expression with the mutant rather than the
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wild-type DAAM]I element in all four cell lines tested (Fig. 3d and
Supplementary Fig. 4c,e,g).

We also explored the functional relationship between increased
DAAMI expression and cell motility, using an established 3D col-
lagen hydrogel matrix model”. Genome-wide mRNA sequencing
was performed on cells grown within low- or high-density collagen,
mimicking the stiffness of normal or tumor tissues and eliciting less
and more invasive phenotypes, respectively’>*” (Methods). In these
experiments, DAAMI was one of the most upregulated transcripts
under invasive conditions® (Supplementary Fig. 5). To test whether
invasion was functionally dependent on DAAM]I, we quantified cell
migration behavior after DAAMI expression was increased artificially
by exogenous overexpression (Fig. 3e, Methods and Supplementary
Fig. 6e). When cells overexpressing DAAM]I were embedded in the
3D collagen hydrogel, they migrated with significantly greater persis-
tence than did wild-type cells (P=0.008, two-sided Mann-Whitney
U test; Supplementary Fig. 6a). Cells overexpressing DAAM]I also
invaded for longer distances than wild-type cells (P=0.01, two-sided
Mann-Whitney U test; Fig. 3f-h), while retaining the same velocities
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Fig. 3 | Functional validation of the mutated DAAMT regulatory element. a, A somatic eQTL in the DAAMT promoter region is associated with increased
mRNA expression levels. b, Schematic of wild-type and mutant GFP reporter constructs along with Sanger sequencing traces confirming the sequence
of the key nucleotide. ¢, Flow cytometry analysis of A375 human melanoma cells 48 h after transient transfection. The polygon delineated by black lines
shows the gated region used to define GFP* cells. d, Bar graphs (average +s.d. across three cell culture replicates; P values from two-tailed t tests) showing
the percentage of GFP* cells and the median fluorescence intensity of the GFP* cells. Individual data points are in Supplementary Table 5. e, Protein
electropherogram analysis of wild-type and DAAM1T-overexpressing MDA-MB-231 cells using antibodies against DAAM1 and tubulin. The complete
electropherogram is in Supplementary Fig. 6e. The image is representative of two independent cell culture experiments. f,g, Sample trajectories of
wild-type (f) and DAAMT-overexpressing (g) cells embedded in 2.5 mg/ml 3D collagen hydrogels. h, Total invasion distance traveled by individual cells
(the P value is from a two-tailed Mann-Whitney U test; the 95% confidence intervals of the mean were (32.3um, 48.2um) and (47.6 um, 67.0 um)

for wild-type and DAAMT-overexpressing cells, respectively). Imaging and quantification was performed on 74 and 83 cells in the wild-type and DAAM1
overexpression groups, respectively. Box plot elements are defined as in Fig. 1b.

as wild-type cells (Supplementary Fig. 6b,c). This invasive phenotype
was observed in the absence or presence of additional Wnt5a sig-
naling (Supplementary Fig. 6d). These results suggest that increased
DAAMI expression levels allow cells to more efficiently invade the
local microenvironment, thereby linking this noncoding mutation to
DAAMI overexpression and cell invasion.

Noncoding mutations dysregulating MTG2 and HYI. Beyond
DAAMI, we examined two additional somatic eQTLs, one in the
promoter of MTG2 (+19 to+33) and another in the enhancer of
HYT (495,097 to+95,132) (Methods). The first eQTL was associated
with decreased MTG2 mRNA expression levels, likely owing to the
disruption of a HIF-1f binding motif by the G-to-A mutation 19bp
downstream of the TSS (Fig. 4a; NC_000020.10:g.60758100 G > A).
This somatic eQTL was present in several types of cancer, including
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lung adenocarcinoma and sarcoma. Using another GFP-based reporter
assay of promoter activity, we found that this G-to-A mutation greatly
decreased reporter gene expression in both A549 lung epithelial carci-
noma cells and U20S bone osteosarcoma cells (Fig. 4b). The second
eQTL was present in 21% of melanomas (Fig. 2c) and was associated
with increased HYI mRNA expression levels, likely owing to G-to-A or
GG-to-AA substitutions altering an Ets family binding motif (Fig. 4c;
NC_000001.10:g.43824528 G> A,NC_000001.10:g.43824529 G> A, or
NC_000001.10:.43824528_43824529GG > AA). As this somaticeQTL
was present in an enhancer region, we used a luciferase-based reporter
assay where regulatory elements were cloned upstream of a mini-pro-
moter and luciferase. We found that two of the three HYT enhancer vari-
ants led to increased expression levels relative to the wild-type sequence
in both A375 melanoma cells and MDA-MB-231 breast cancer
cells (Fig. 4d).
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Fig. 4 | Additional case studies. a, The somatic eQTL associated with downregulation of MTG2 is located in its 5 UTR (19 bp downstream of the TSS) and
frequently alters a potential HIF-1p binding motif. b, Flow cytometry analysis of A549 lung epithelial carcinoma cells and U20S bone osteosarcoma cells
48 h after transient transfection with MTG2 GFP reporter constructs. Bar graphs (mean +s.d. across three cell culture replicates; P values from two-tailed
t tests) showing the percentage of GFP* cells and the median fluorescence intensity of GFP* events. ¢, The somatic eQTL associated with upregulation

of HY! is located 95 kb downstream of the TSS and frequently alters a potential Ets family binding motif. d, Luciferase assay results (mean +s.d. across
four cell culture replicates; P values from two-tailed t tests) for the HY/ somatic eQTLs 48 h after transient transfection in A375 melanoma cells and
MDA-MB-231 breast cancer cells. Individual data points are available in Supplementary Tables 5 and 6.

Noncoding and coding mutations converge on pathways. Next,
we investigated the relationship between the 196 genes transcrip-
tionally regulated by somatic eQTLs and the 138 genes previ-
ously documented to have recurrent coding mutations in cancer?'.
This combined set of genes was analyzed by Network-Based
Stratification (NBS)*»*° (Fig. 5a), which uses a reference molec-
ular network to implicate network regions associated with the
genetic alterations in a tumor and groups tumors into subtypes on
the basis of similarity of these implicated regions. As a reference
molecular network, we used ReactomeFI*!, documenting 229,300
interactions among 12,177 human gene products pertaining to
previously reported protein-protein, transcriptional and meta-
bolic interactions.

This approach identified a collection of network regions (hence-
forth called ‘pathways’ for simplicity) that stratified tumors into a
hierarchy of increasingly specific subtypes (Fig. 5b). At a resolution
of ten subtypes, each subtype was enriched in 2-5 tumor tissues
and tumors of each tissue could be subdivided into 1-3 subtypes
(Supplementary Fig. 7). Nonetheless, these subtypes differed sig-
nificantly in their implications for disease-free survival, beyond
the baseline survival for each tissue (P=3.3%x107°, log likelihood
ratio test controlling for the tissue types as covariates; Fig. 5¢ and
Supplementary Fig. 8).

Subtypes aggregating noncoding and coding mutations. Among
the ten subtypes, four were of particular interest as they con-
tained a large proportion of patients with noncoding mutations
(Fig. 5d). The ‘CDKN2A-EGFR-TERT subtype’ (Fig. 5e,f) was
defined by disruption of the CDKN2A coding sequence, some-
times in combination with noncoding mutations to the TERT pro-
moter, EGFR activation, or BRAF activation. CDKN2A encodes
p14**, which can form a complex with HIF-1a and inhibit HIF-
1-mediated transcription of TERT*> *. These loss-of-function
mutations in CDKN2A may release a key brake on the activity of
hTERT. Separately, gain-of-function mutations in EGFR may lead
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to increased levels of mTOR phosphorylation and activation®,
which can upregulate telomerase activity by forming a complex
with hTERT*. The synergy between BRAF and TERT mutations
has been previously noted and attributed to modulation of TERT
transcription through BRAF-RAS-ERK signaling®. This pathway
was also linked to DAAMI promoter mutations (Fig. 5d), vali-
dated previously, as DAAM1 forms a complex with Dishevelled
(DVL3)*>*, which indirectly regulates transcription of CDKN2A
and EGEFR through inhibition of Notch1”. This subtype was the
most aggressive, with median disease-free survival time at 13
months (Fig. 5¢).

A second subtype of interest, the ‘TERT-BRAF-IDH]I subtype’
(Supplementary Fig. 9) was characterized by tumors with TERT
noncoding mutations or amplifications, combined in some patients
with coding alterations to functionally related genes such as BRAF
and SKP2. Beyond the synergy between BRAF and TERT muta-
tions as described above, SKP2 is essential for ubiquitination and
degradation of p27¥"** (encoded by CDKN1B)*, which inhibits the
activity of hTERT*. Amplification of SKP2 in this pathway may thus
increase the activity of hTERT.

A third subtype, ‘PIK3CA-PEX26-GATA3 (Fig. 5gh), inte-
grated coding alterations activating PIK3CA and inactivating
GATA3 with noncoding alterations downregulating PEX26. In this
pathway, members of the peroxisomal biogenesis factor family
(PEX26 and PEX6) appear to indirectly interact with PIK3CA and
GATA3 through the binding of SMAD family members (SMAD3
and SMAD?7)*.

Finally, the fourth subtype, ‘APOBEC2-ARIDIA-CTNNBI,
was characterized by the co-occurrence of noncoding mutations
within an enhancer of APOBEC2 and coding alterations in ARIDIA
and CTNNBI. APOBEC2 encodes a nucleic-acid-editing enzyme
with well-known mutagenic effects in cancer”. Although ARIDIA
and CTNNBI are also known cancer drivers, the connections to
APOBEC are unanticipated and create a compelling opportunity for
further study.
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Discussion

ns on signature genes for that subtype (rows).

Relative to coding changes, interpretation of noncoding mutations
poses particular challenges owing to the very large number of events
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and a limited understanding of their functional consequences.
Dealing with these challenges requires strategies to boost signal to
noise, which we have pursued here by integrating mutations with
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key structural and functional data on transcriptional networks.
Structurally, maps of enhancer- and promoter-gene interactions
amplify signal by selecting noncoding mutations within defined
regulatory regions of specific target genes. These mutations are
then characterized functionally as somatic eQTLs by requiring their
presence to be significantly associated with expression changes in
tumors. The result is a global network of transcriptional regula-
tory interactions in cancer supported by multiple lines of evidence.
Given that most tumors we analyzed had noncoding mutations
affecting some part of this network, such mutations appear to repre-
sent a widespread feature of cancer biology.

Of the approximately 200 noncoding mutations that have previ-
ously been identified as recurrent in cancer®®, one-third were also
identified here as recurrently mutated loci (Fig. 1¢), including well-
known mutations in the promoters of PLEKHSI and DPH3. Notably,
though, with the exception of TERT, these mutations did not associ-
ate significantly with mRNA expression level changes. This suggests
that the effects of these mutations are through mechanisms outside
of transcriptional regulation or that the effects on mRNA expres-
sion are weaker than could be detected given our statistical power
(Supplementary Fig. 2c). On the other hand, hundreds of somatic
eQTLs were identified, all of which were unanticipated other than
those in the promoter of TERT. Many of the affected genes are not
yet widely appreciated as cancer drivers, motivating further studies
on the mechanistic basis of noncoding mutations in cancer.

Given an association between gene expression changes and a
somatic mutation, it is important to consider whether this associa-
tion reflects a causal relationship. Although it is tempting to assume
that the occurrence of a mutation drives gene expression changes,
the opposite could be true, where the change in gene expres-
sion levels drives the appearance of the mutation (for example, by
increased opening and exposure of chromatin). It is also possible
that both effects could be due to a third causal factor. However, the
three examples we tested experimentally do support a causal link
from mutation to expression changes. These results include tran-
scriptional alterations of DAAM1, impacting cell migration (Fig. 3
and Supplementary Fig. 4); MTG2, which encodes a GTPase that
regulates mitochondrial ribosomes* (Fig. 4a,b); and HYI, which
encodes a putative hydroxypyruvate isomerase and may be involved
in carbohydrate transport and metabolism* (Fig. 4c,d).

Finally, the somatic eQTL analysis introduced here contrasts with
germline eQTL studies in several key aspects. First, in GWAS and
germline eQTL studies, testing of multiple SNPs is complicated by
the strong codependencies among neighboring SNPs at a genomic
locus—so-called linkage disequilibrium* **. In contrast, somatic
mutations near to one another in the genome are not in linkage dis-
equilibrium as these alterations, by definition, arise independently
in each tumor. Second, population stratification caused by ancestry
diversity has been a major confounder in the analysis of germline
variants**. It is less of a concern for somatic variants, as these are
derived from comparisons between tumor and normal genomes
from the same individual, eliminating many, if not all, effects due
to ancestry. Nonetheless, we controlled for ancestry diversity and
found that the impact on somatic eQTL discovery was minimal.
Given these aspects, somatic eQTL analysis may have future interest
alongside classical eQTLs as a general mode of mapping transcrip-
tional regulatory architecture.

URLs. TCGA Research Network, http://cancergenome.nih.gov/;
Firehose, https://confluence.broadinstitute.org/display/ GDAC/
Home; TCGA RNA-seq data description, https://wiki.nci.nih.gov/
display/TCGA/RNASeq+ Version+2; poibin Python package,
https://github.com/tsakim/poibin; HOMER, http://homer.ucsd.edu/
homer/index.html; somatic mutations of the 930 tumors, http://
ideker.ucsd.edu/papers/wzhang2017/; GitHub site for custom code,
https://github.com/wzhang1984/Noncoding-tumor-mutation-paper.
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Methods

Calling and clustering of somatic noncoding mutations. Somatic noncoding
mutations from 930 tumors were called as described in the main text. Clusters of
noncoding mutations within d=50bp of each other were merged using BEDTools*
until no such locus was located within d bp from any other. Loci with mutations

in k<5 tumors were removed from further analyses. The above parameters

d and k were chosen to aggregate mutations within a short distance with a modest
requirement of recurrence. We achieved very similar results when d was within

the range of 20 to 60 bp (inclusive). Whenever a subset of 930 tumors was used in
subsequent analyses (Fig. 1a), this set was again filtered to remove those altered

in fewer than k tumors within the subset. We also calculated a ‘concentration

score’ to penalize loci where mutations were spread over a large region rather than
concentrated at a single base pair, as might be expected for sites affecting gene
transcription. Within each locus, we selected the mutated position present in the
largest number of patients. The proportion of patients affected at that position

(out of all patients affected by mutations at that locus) was defined as the
concentration score. Loci scoring < 35% were removed from further study. It is worth
noting that the threshold for the concentration score is somewhat arbitrary and could
lead to certain loci with multiple closely located somatic mutations being missed. It
should also be noted that, by clustering noncoding mutations into loci, we assume
that all SNVs in a locus act in a similar way. This assumption is consistent with the
previously identified SNVs in the TERT promoter. Our analysis does not attempt to
detect loci in which different SN'Vs alter gene expression in opposite directions.

RNA-seq, CNA and DNA methylation data processing. RNA-seq, CNA (SNP 6.0)
and DNA methylation (Illumina HM450) data for TCGA tumors were downloaded
from Firehose (see URLs). The data were processed as follows. First, for RNA-seq,
the RSEM count for a gene (RNA-seq by expectation maximization)*” was
normalized by dividing by the 75th percentile of RSEM values within the tumor
sample and multiplying by 1000, according to TCGA practice (see URLs). Genes
were retained if the normalized RSEM was > 1 in>50% of tumors, resulting in
16,413 expressed genes. Normalized RSEM values were log, transformed and

z score standardized for subsequent analyses. Second, for CNAs, we used the output
of GISTIC2, which indicates gene-level CNAs for all samples. The CNAs are in units
of (copy number - 2), so that normal copy number (no amplification or deletion)
has a value of 0, whereas genes with amplifications have positive values and genes
with deletions have negative values. A gene is assigned the highest amplification or
the lowest deletion value among the markers it covers. Among the 783 patients with
both mRNA expression and genome sequence data, 761 also had copy number data
available. The remaining patients were assigned 0 for all CNAs. Third, methylation
probes were mapped to the promoter regions of genes (+ 1kb from the TSS), and
each gene was assigned the mean methylation (beta) values of these probes. Among
the 783 TCGA patients with both mRNA expression and genome sequences data,
605 had methylation data available. Methylation data for the remaining patients
were imputed using mean values for the DNA methylation of each gene.

Linking recurrently mutated loci to transcriptional target genes. Our
recurrently mutated loci were extended by 100bp on each side when mapping to
promoters or enhancers. Transcriptional regulatory interactions from recurrently
mutated loci to target genes were defined whenever a locus had 50% of its sequence
overlap with either the promoter region of a gene (+ 1kb from its TSS) or a gene
enhancer region defined by GeneHancer"”. In the case where an enhancer was
shorter than a locus, the mapping was performed when 50% of the enhancer
sequence overlapped with the locus.

Somatic eQTL analysis using multivariate linear regression. For each gene target
linked to recurrently mutated loci, we fit a regression model of the normalized gene
expression level e as a function of J, the alteration status of its recurrently mutated
loci (1, mutated; 0, wild type), controlling for the impact of CNA status ¢ (0, wild
type; positive value, amplification; negative value, deletion), DNA methylation

m (mean beta value), 21 tumor tissues ¢ (binary variables), 3 ancestries r (binary
variables: Asian; black or African American; white), gender g (1, female; 0, male)
and 20 hidden factors & (real values) as covariates

e=py+pl+pBc+Bm+pt+pir+hg+ph (1)

The hidden factors & were identified using probabilistic estimation of
expression residuals (PEER)**, while accounting for the effect of known
covariates f, r and g. The number of hidden factors was determined by the posterior
variance of the factor weights, as previously recommended”. The parameters
were estimated from data from 783 tumors with matched RNA-seq and WGS data.
Somatic eQTLs were identified as follows. First, for each gene, we selected features
by adding an L1-norm to the objective function based on the least-squared error
between the true and predicted gene expression levels.

(=& +21pll @

The sparsity parameter A was optimized by cross-validation. For genes in
which the L1-norm resulted in f, =0 for all loci, we decreased 4 to include at least
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one locus. Second, to assess whether the mutation status of any locus contributed
significantly to gene expression, the accuracy of the complete model was compared
to that of a simple model under the null hypothesis of no genetic associations

(i.e., #,=0 for all loci). The F-test P value between the two nested models was used
as the test statistic. Third, having derived an F-test P value for each gene, g values
were calculated using the Storey approach® with a threshold of FDR < 20%. And
finally, for each gene that passed the selection, this threshold was mapped back to
the equivalent F-test P value of each locus. Loci with F-test P values below or equal
to this threshold were included in the final list and defined as somatic eQTLs.

We elected to perform one test per gene for three reasons. First, in GWAS
and typical (germline) eQTL studies, linkage disequilibrium complicates the
simultaneous testing of multiple SNPs in a single model because these SNPs are
usually codependent. Unlike inherited SNPs, somatic mutations observed in a
tumor population are not in linkage disequilibrium no matter how closely they
are located. Therefore, a simple F test, which assumes independent influences
of multiple factors, is sufficient to simultaneously test whether any loci are
associated with gene expression. Second, for each gene, all eQTLs share the
same set of covariates along with the associated phenotype of mRNA expression
level. If multiple eQTLs are associated with gene expression levels, they can be
covariates of one another. It is then convenient to fit them all in a single model
and enjoy the benefit of gene-based approaches such as feature selection by L1
regularization. Third, there is precedent in the literature to fit gene-level models
in eQTL studies™ *.

Power analysis. Statistical power depends on various parameters, including the
number of samples, the eQTL effect size, the noise, and the significance threshold.
Instead of a simulation based on a model of noise, we evaluated statistical power
using the actual data. All locus-gene pairs were plotted in Supplementary Fig. 2c,
evaluated by the number of patients with mutations (x axis) versus the change in
gene expression given the mutation (y axis; defined by W= %, one unit

of W represents 1s.d. of change in residual gene expression). Power was defined

as 1 - P(type II error) at a significance level of P(type I error) =0.0085, which is
approximately at 20% FDR. We calculated power using the pwr.f2.test function in
R, where the f effect size was calculated on the basis of the proportion of variance

al(ernaﬂve
1

has 50% power to detect a somatic eQTL Wlﬁl i?lve mutations if W> 1.2 or with ten
mutations if W>0.9.

explained by two nested models ( f “““) Our somatic eQTL analysis

Independent validation of recurrence. To validate the recurrence of mutations
in the identified somatic eQTLs, we downloaded simple somatic mutations
(substitutions) called from the WGS of n=3382 publicly available non-US donors
from the ICGC?. For each eQTL, the number of mutated patients k was used as
the test statistic. To determine whether k was greater than expected owing to the
background mutation rate (BMR), we developed an approach for estimating BMR
that was conceptually similar to MutSigCV™. First, a large pool of 20,000 candidate
background sequences was created by randomly reassigning (without replacement)
the location of the eQTL to the same type of noncoding genomic regions
(promoters or putative enhancers'’) while retaining the eQTLs length.

Each of these 20,000 sequences was placed in a 3D feature space taking into
account nucleotide content, DNA replication timing and gene expression.
Nucleotide content was represented as the percentages of all possible
mononucleotides (A/T versus C/G), dinucleotides (e.g., AA, AC and AG) and
trinucleotides (for example, AAA, AAC and AAG), encoded as a 44-dimensional
vector. This information was then compressed into a single feature representing
nucleotide content, using the Pearson’s correlation between the vector of the
candidate sequence and the vector of the original eQTL. DNA replication timing
was obtained from ENCODE via the UCSC Genome Browser™. To create a

single replication timing feature, we used the average wavelet-smoothed signal
from the following 14 cell lines: BJ, GM06990, GM12801, GM12812, GM12813,
GM12878, HeLa-S3, HepG2, HUVEC, IMR-90, K562, MCF-7, NHEK and SK-
N-SH, according to the method of Melton and colleagues®. For gene expression,
the median expression value of the nearest gene (log,-transformed RNA-seq data,
783 TCGA patients) was used as a feature. The above three features were z score
standardized. Within this feature space, the top 5% (1,000 of 20,000) background
sequences with the smallest Euclidean distance to the eQTL of interest were
selected. For each patient, a patient-specific BMR was estimated as the number
of sequences with at least one mutation in that patient out of the 1,000 selected
sequences. Finally, we estimated the probability of having observed k or more
mutations in # patients in the eQTL of interest using a Poisson binomial model

Pizi=Y ¥ ITrI] 0-) 3)

I=k AcF i€A  jeA

where F, is the set of all subsets of k integers that can be selected from {1, 2, ..., n},
p; or p; is the probability that patient i or patient j is mutated, A is a set of k integers
that can be selected from {1, 2,..., n} and A° is the complement of A. In practice,
we used an approximation for the Poisson binomial in the poibin Python package
(see URLs).
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Transcription factor binding motif analysis. Each reference and somatically
altered nucleotide site, along with +7bp of flanking sequence, was analyzed using
HOMER?™ (see URLs). HOMER searches for matches within a library of 319
vertebrate motifs (position weight matrices). Specifically, we ran the findMotifs.pl
program with default parameters to find motifs from FASTA files. The reference
and altered sequences were used as the background for each other to control the
nucleotide context. The command line is

findMotifs.pl seqList_mappable_alt.fa fasta log/ -fastaBg seqList_mappable_ref.
fa -p 16 -find ~/soft/homer/data/knownTFs/vertebrates/known.motifs

The list of somatic eQTLs that disrupt or create transcription factor binding
motifs in four or more patients is reported in Supplementary Table 2.

Prioritizing somatic eQTLs for subsequent functional validation. The three
somatic eQTLs selected for functional studies (DAAM]I1, HYI1 and MTG2) were
chosen based on the specific biological interest of the authors and several rules of
thumb:

1. The somatic eQTL alters a known transcription factor binding motif in
many patients;

2. The somatic eQTL falls in open chromatin in previously mapped cell lines
and conditions (for example, in regions with markers such as H3K27ac
and H3K4mel)';

3. The affected target gene has high endogenous mRNA expression levels in
cell lines*® that match where the somatic eQTL was detected;

4. The somatic eQTL is not present in a region with repetitive DNA.

Note that none of this information was used to filter loci before somatic eQTL
analysis, as it is not complete, conclusive or cancer specific.

Generation of reporter plasmids. To examine the effect of the DAAM1 somatic
eQTL on gene expression levels, the wild-type and mutant regulatory regions,
from —233 bp to + 148 bp relative to the TSS, including the somatic eQTL at —202
to —191bp, were synthesized and cloned upstream of GFP (Fig. 3b). For MTG2,
the cloned region spanned —200bp to +200bp relative to the TSS, including the
somatic eQTL at+19 to+ 33 bp.

For the somatic eQTL located in the HYT enhancer, the region corresponding
to+94,931 to+ 95,332 bp relative to the TSS, including the somatic eQTL
at+95,097 to+ 95,132 bp, was cloned into the firefly luciferase reporter plasmid
pGL4.23 (Promega). Mutations were generated using the Q5 Site-Directed
Mutagenesis kit (New England BioLabs). All inserts for the GFP and luciferase
reporter plasmids were confirmed to match the human reference genome hg19 by
Sanger sequencing.

Promoter and enhancer activity assays. Cell lines used to evaluate promoter
activity were plated in six-well dishes at 300,000 cells per well, with three replicates
per group. The next day, plasmid DNA (1 pg) was transfected using Lipofectamine
3000 (Thermo Fisher). Forty-eight hours after transfection, cells were harvested
and suspended in ice-cold PBS with 1% FBS. GFP expression was measured
by flow cytometry on a FACSCalibur or FACSCanto (BD Biosciences). Flow
cytometry data were analyzed with FlowJo v10 (BD Biosciences). Cells with typical
forward (size) and side (granularity) scatter properties were further analyzed
for GFP expression. As a negative control, cells were transfected with an empty
lentiGuide-Puro plasmid (Addgene) for the DAAMI experiments (Fig. 3¢,d and
Supplementary Fig. 4) or a promoterless GFP plasmid (pRMT-tGFP, Origene) for
the MTG2 experiments (Fig. 4b). As a positive control for all GFP experiments,
we used a plasmid with the cytomegalovirus promoter upstream of GFP. All
flow cytometry experiments were performed at least three times. Early pilot
experiments were often performed on single or duplicate samples with the final
triplicate version often performed at least twice.

To evaluate the activity of the enhancer region of HYI, A375 and MDA-MB-231
cells were plated in white, opaque, 96-well plates at 10,000 cells per well, with
four replicates per group. Cells were transfected 24 h later using Lipofectamine
3000 with 33 ng of total DNA: 27.5 ng of the firefly pGL4.23 constructs and 5.5
ng of control Renilla pGL4.75 (Promega) plasmid. Firefly and Renilla luciferase
activities were measured 48 h after transfection using the Dual-Glo Luciferase
Assay System (Promega) according to the manufacturer’s instructions. Luciferase
values were collected on a BioTek Synergy HT, and data were collected via Gen5
2.01.14 software. To calculate relative luciferase values, background signal was first
subtracted from each channel. Then, firefly luminescence was divided by Renilla
luminescence. The average value for the wild-type enhancer was set to 1, and the
mutated samples were evaluated in comparison to this control. Experiments in
both cell lines were performed three times, with each experiment consisting of
samples in quadruplicate.

DAAMI overexpression. Wild-type MDA-MB-231 breast cancer cells were
transfected with a plasmid encoding the full DAAMI cDNA (Origene, RC217675).
Cells were then selected using G418 (500 pg/ml) for 7 d to ensure stable expression
of the DAAM1 construct. DAAM1 overexpression was verified by extracting total
protein and quantifying using the Wes electropherogram (Proteinsimple) with anti-

DAAMI antibody (clone WW-3, sc-100942, lot B1815, Santa Cruz, 1:250 dilution)
and anti-tubulin antibody (clone YL1/2, MAB1864, lot 2886723, Millipore, 1:250
dilution). DAAM1 expression was 5.5-fold greater in cells with the DAAM1
overexpression construct relative to wild-type cells (Supplementary Fig. 6e).

3D collagen cell migration assays. Collagen matrices were prepared by mixing
cells suspended in culture medium and 10 X reconstitution buffer, one-to-one

with soluble rat tail type I collagen in acetic acid (Corning)*. Sodium hydroxide
was used to normalize pH (pH 7.0, 10-20 pl 1 M NaOH), and the mixture was
placed in 48-well culture plates for polymerization at 37 °C. Final gel volumes were
approximately 200 pl with the final collagen concentration set to 2.5 mg/ml. The
polymerized cell-laden hydrogels were incubated for 24 h under a standard cell
culture environment before imaging. Gels were then transferred to a microscope
stage-top incubator, and cells were imaged at low magnification (10X ) every 2 min
for 48 h. The coordinates of cell location in each time frame were determined using
image recognition software (Metamorph/Metavue, Molecular Devices). Tracking
data were processed to calculate cell speed using an extension of previously
published scripts®’. Cell migration assays (Fig. 3f-h) were performed two times,
and both attempts showed the same trend.

RNA sequencing from cells in 3D culture. In Supplementary Fig. 5, cell migration
assays were performed using wild-type MDA-MB-231 breast cancer cells and
HT-1080 fibrosarcoma cells. 3D collagen I gels were seeded in three independent
experiments and harvested after 24 h of culture for RNA extraction and directly
homogenized in TRIzol reagent (Thermo Fisher). Total RNA was purified using
the High Pure RNA Isolation kit (Roche), and the integrity of the sample was
verified using RNA Analysis ScreenTape (Agilent Technologies). Total RNA
samples were sequenced using the TruSeq Stranded mRNA Sample Prep kit
(Illumina) and the Illumina MiSeq platform at a depth of > 25 million reads per
sample. Paired-end reads were aligned to the hg19 UCSC human genome reference
using Bowtie2* and streamed to eXpress™ for transcript abundance quantification.

Tumor genetic profiles integrating noncoding and coding alterations. Integrated
genetic alteration profiles were constructed for the 810 tumors with WGS, WES
and CNA data (Fig. 1a) as follows. Known oncogenes or tumor suppressors’' were
combined with the set of target genes of eQTLs identified by the somatic eQTL
analysis (see above); each of these genes was then classified as wild type (0) or
altered (1) in each tumor, constituting its tumor genetic profile. In this profile,

an alteration was defined as follows. Most oncogenes (for example, EGFR) were
considered altered (activated) if impacted by a missense mutation, in-frame indel or
copy number amplification. For oncogenes typically altered only by amplification®!
(CCND1, MDM2, MDM4, MYC, MYCL, MYCN, NCOA3 and SKP2), only copy
number amplifications were considered as alterations and not SN'V's or indels.
Tumor suppressors (for example, CDKN2A) were considered altered (inactivated)
if there was any type of non-silent mutation or a copy number deletion. For each
target gene, we defined a dominant direction of regulation de{+1, —1} as the

sign of the coefficient (f, in equation (1)) of its most significantly associated

eQTL. Noncoding mutations in eQTLs that led to a transcriptional change in the
dominant direction were considered alterations of such genes. For TERT, copy
number amplifications in the coding region were also considered as alterations,

as both promoter mutations and gene amplifications have been associated with
growth advantage of tumor cells and poor prognosis of patients®°'.

Network-based stratification to identify tumor subtypes. Network propagation®
was used to compute the pairwise similarities among tumor genetic alteration
profiles (see above) within the Reactome functional interaction network
(ReactomeFI)*'. Each tumor genetic profile was propagated across this network
on the basis of a random walk model (equivalent to heat diffusion) with a restart
probability of 0.5. After convergence, the score of each gene (temperature)
represents its network proximity to genetic alterations. The top 70 principal
components of these scores, representing the tumor’s network-transformed profile
(Fig. 5a), were analyzed using the sklearn.cluster.SpectralClustering package®
(affinity = k-Nearest-Neighbors, assign-labels =discretize, n_clusters=[2...10]).
This method first constructs a similarity graph on all pairs of tumors, where

each tumor is connected to the k others with the shortest Euclidean distance. We
chose k=170, which ensures that the similarity graph is connected, as previously
recommended®. Next, this graph is analyzed to partition tumors into subtypes

at different resolutions (number of subtypes n=[2...10]). Following spectral
clustering, each set of n (parent) subtypes was compared to the n+ 1 (child)
subtypes to track the similarity of tumor assignments (Fig. 5b). An arrow was
drawn from a parent to child subtype if they shared >18 tumors.

Characterizing tumor subtypes with signature genes and subnetworks. For each
subtype, we defined a set of ‘signature genes’ as those that had higher network-
transformed scores in that subtype than others (¢ test, Benjamini-Hochberg

FDR <0.1) and, among these, were more frequently altered in that subtype (Fisher
exact test, FDR <0.05; Fig. 5b—e). To identify subnetworks, this set was expanded
to include ‘intermediate genes’ with relatively high network-transformed scores

(t test, FDR <0.05) that lay on the shortest paths between each pair of signature
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genes. The union of the signature and intermediate genes was used to induce a
subnetwork within ReactomeFI*', referenced in the main text as the corresponding
‘pathway’ impacted in that subtype (Fig. 5d). An additional filter was applied in
Fig. 5e and Supplementary Fig. 9a, where we only visualized the signature genes
with ten or more mutations and the shortest paths among them with at most one
intermediate gene. All networks were visualized in Cytoscape®.

Survival analysis. We used the coxph package in R statistical software to fit Cox
proportional-hazard models*. P values were calculated by log likelihood ratio test.
To evaluate whether the subtype classifications provided additional prognostic
power beyond the baseline survival expectancy due to cancer tissue, we compared
the likelihood for the complete model, including NBS-derived molecular subtypes s
and cancer tissues ¢ as covariates, against that of a null model that included cancer
tissues ¢ only

Complete model: A(t | s,c) =1, (t) exp (ﬂo +ﬂls +ﬂzc) (4)

Null model: A(tlc) = A,(t)exp (B, + B,c) (5)

where 4(t) is the baseline hazard function. Then, a log likelihood ratio statistic
was defined as

De—2In likelihood for null model ©)
likelihood for complete model

Finally, a chi-squared test P value was calculated on the basis of D with the number
of degrees of freedom equal to the number of NBS-derived molecular subtypes.

Life Sciences Reporting Summary. Further information on experimental design is
available in the Life Sciences Reporting Summary.

Code availability. Custom codes for annotating mutations, somatic eQTL analysis,
validation of recurrence, motif analysis and NBS are available through GitHub
(see URLs).

Data availability. The somatic mutations of the 930 tumors are publicly available
(see URLs). RNA-seq data are accessible through GEO series accession GSE101209.
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» Experimental design

1. Sample size

Describe how sample size was determined. All of the flow cytometry experiments presented (Fig 3, Fig 4, Sup Fig 4) were
performed in three independent cell culture replicates (Sup Table 5). Each
triplicate consists of 50,000 events counted through the flow counter. Although
the sample size was not pre-determined, it proved sufficient to observe a very
significant difference in % GFP+ and GFP intensity (two-tailed t-test p = 5.63E-07
to 5.74E-04). Experiments with this sample size are in accordance to conventions in
this field.
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For the luciferase assays (Fig 4d), each experiment was performed in four
independent cell culture replicates (Sup Table 6). Although the sample size was not
pre-determined, it proved sufficient to observe a very significant difference in %
GFP+ and GFP intensity (two-tailed t-test p = 4.60E-08 to 6.21E-03). Experiments
with this sample size are in accordance to conventions in this field.

In the cell migration assay, 74 and 83 cells were imaged in the two groups in Fig. 4h
and Sup Figs 6a-c, and 63 and 15 cells were images in Fig 6d. The sample size is
sufficient to observe a significant difference in invasion distance, persistence, and
invasion distance with additional Wnt5a signaling (two-tailed Mann—Whitney U
test p =0.01, 0.008, and 0.0002, respectively).

In somatic eQTL analysis (Fig 2a), all 783 TCGA tumors with both genome sequence
and mRNA expression data were used for the study. The sample size is sufficient to
identify 193 somatic eQTLs at a FDR of 20% (F-test).

In the validation of somatic eQTL recurrence (Fig 2d), all 3,382 publicly available
non-US ICGC tumors with whole genome sequence data were used for the study.
The sample size is sufficient to validate that the majority of the somatic eQTLs
identified in the original TCGA discovery set were recurrently mutated in the ICGC
validation cohort (107 of the 193 at an empirical FDR of 20%).

In the RNA-seq analysis (Sup Fig 5b), each experiment was performed in three
independent cell cultures. Although the sample size was not pre-determined, it
proved sufficient to observe a significant difference in DAAM1 expression (two-
tailed t-test p = 0.056 and 0.016). Experiments with this sample size are in
accordance to conventions in this field.

2. Data exclusions
Describe any data exclusions. No data were excluded from the analysis.
Note that in our analysis, although loci were selected in a series of consecutive

steps (Figs 1c, d), each locus was tested in the full set of tumors (n = 783) for which
whole genome sequence and mRNA expression are both available.

3. Replication

Describe whether the experimental findings were All flow cytometry experiments were performed at least three times. Early pilot
reliably reproduced. experiments were often performed on single or duplicate samples with then the




o

n/a

o o gl

final triplicate version often also performed at least twice. The figure presented
always represented the majority of experimental findings.

All luciferase assays experiments were performed three times, with each
experiment consisting of samples in quadruplicate. The figure presented always
represented the majority of experimental findings.

Cell migration assays (Fig. 4f-h) were performed two times and both attempts
showed the same trend.

Randomization

Describe how samples/organisms/participants were No method of randomization was used.
allocated into experimental groups.

Blinding
Describe whether the investigators were blinded to The investigators were not blinded to group allocation during data collection and/
group allocation during data collection and/or analysis. or analysis.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the
Methods section if additional space is needed).

Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

|X| A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same
sample was measured repeatedly

|X| A statement indicating how many times each experiment was replicated

El The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more
complex techniques should be described in the Methods section)

|X| A description of any assumptions or corrections, such as an adjustment for multiple comparisons
|X| The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

|X| A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

[X] Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

» Software

Policy information about availability of computer code

7. Software
Describe the software used to analyze the data in this Custom code is publicly available at https://github.com/wzhang1984/Noncoding-
study. tumor-mutation-paper. Otherwise we used bedtools v2.23.0 to cluster mutations,

GeneHancer for enhancer-gene mappings, R v3.2.5 for statistical learning,
probabilistic estimation of expression residuals (PEER) v1.3 to identify hidden
factors, UCSC Genome Browser to obtain DNA replication timing, poibin Python
package (https://github.com/tsakim/poibin) for the Poisson binomial model,
HOMER v4.8.2 for motif analysis, FlowJo v10.2-4 for flow cytometry data analysis,
Metamorph/Metavue v7.8 for tracking cells, Bowtie2 v2.2.6 and eXpress v1.5.1 for
RNA-seq analysis, and Cytoscape v3.5.1 for network visualization.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.
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» Materials and reagents

Policy information about availability of materials

8.

10.

Materials availability

Indicate whether there are restrictions on availability of
unigue materials or if these materials are only available
for distribution by a for-profit company.

Antibodies

Describe the antibodies used and how they were validated
for use in the system under study (i.e. assay and species).

Eukaryotic cell lines
a. State the source of each eukaryotic cell line used.

b. Describe the method of cell line authentication used.

c. Report whether the cell lines were tested for
mycoplasma contamination.

d. If any of the cell lines used are listed in the database
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.

There are no restrictions on the availability of the materials used for this project
except for the GFP and Luciferase reporter constructs, which will be available upon
publication.

DAAM1 overexpression was verified by extracting total protein and quantitating it
using the Wes electropherogram (ProteinSimple) with an anti-DAAM1 antibody
(clone WW-3, cat# sc-100942, lot# B1815, Santa Cruz, 1:250 dilution, mouse) and
an anti-tubulin antibody (clone YL1/2, cat# MAB1864, lot# 2886723, Millipore,
1:250 dilution, rat).

Both antibodies were raised against human antigens and have been tested by their
manufacturers for use with human samples.

The following cell lines were acquired directly from ATCC: A375, RPMI-7951, U20S,
A549 and HT1080. MDA-MB-231 cells were acquired from the PSOC network.

U20S, MDA-MB-231 and HT-1080 cell genomic DNA was submitted for STR
characterization to IDEXX BioResearch. The others were not, as they were recently
obtained specifically for this project.

All cell lines are tested for mycoplasma upon receipt, or 48-72 hours post-thawing
from cryostorage. All tests gave negative results.

None of the cell lines used are listed in ICLAC's v8 records.

» Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11.

Description of research animals

Provide details on animals and/or animal-derived
materials used in the study.

No animals were used

Policy information about studies involving human research participants

12.

Description of human research participants

Describe the covariate-relevant population
characteristics of the human research participants.

The study does not involve human research participants
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