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3D collagen architecture induces a conserved
migratory and transcriptional response linked to
vasculogenic mimicry
D.O. Velez1, B. Tsui 2, T. Goshia1, C.L. Chute1, A. Han1, H. Carter 3,4 & S.I. Fraley1,4

The topographical organization of collagen within the tumor microenvironment has been

implicated in modulating cancer cell migration and independently predicts progression to

metastasis. Here, we show that collagen matrices with small pores and short fibers, but not

Matrigel, trigger a conserved transcriptional response and subsequent motility switch in

cancer cells resulting in the formation of multicellular network structures. The response is not

mediated by hypoxia, matrix stiffness, or bulk matrix density, but rather by matrix

architecture-induced β1-integrin upregulation. The transcriptional module associated with

network formation is enriched for migration and vasculogenesis-associated genes that predict

survival in patient data across nine distinct tumor types. Evidence of this gene module at the

protein level is found in patient tumor slices displaying a vasculogenic mimicry (VM) phe-

notype. Our findings link a collagen-induced migration program to VM and suggest that this

process may be broadly relevant to metastatic progression in solid human cancers.

DOI: 10.1038/s41467-017-01556-7

1 Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA. 2 Bioinformatics and Systems Biology Program, University of
California, San Diego, La Jolla, CA 92093, USA. 3 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. 4Moores Cancer
Center, University of California, San Diego, La Jolla, CA 92093, USA. Correspondence and requests for materials should be addressed to
S.I.F. (email: sifraley@ucsd.edu)

NATURE COMMUNICATIONS |8: 1651 |DOI: 10.1038/s41467-017-01556-7 |www.nature.com/naturecommunications 1

http://orcid.org/0000-0001-8017-5895
http://orcid.org/0000-0001-8017-5895
http://orcid.org/0000-0001-8017-5895
http://orcid.org/0000-0001-8017-5895
http://orcid.org/0000-0001-8017-5895
http://orcid.org/0000-0002-1729-2463
http://orcid.org/0000-0002-1729-2463
http://orcid.org/0000-0002-1729-2463
http://orcid.org/0000-0002-1729-2463
http://orcid.org/0000-0002-1729-2463
mailto:sifraley@ucsd.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


An initial step in cancer metastasis is the migration of
tumor cells through the extracellular matrix (ECM) and
into the lymphatic or vascular systems1. Several features

of the tumor ECM have been associated with progression to
metastasis. In particular, regions of dense collagen are
co-localized with aggressive tumor cell phenotypes in numerous
solid tumors2, including breast3, ovarian4, pancreatic5 and brain
cancers6. However, sparse and aligned collagen fibers at the edges
of tumors have also been reported to correlate with aggressive
disease7. It remains unclear whether and how collagen archi-
tectures have a role in driving metastatic migration programs or if
they simply correlate with progression of the tumor.
Intravital microscopy studies have shown that distinct collagen

architectures are associated with specific cell motility behaviors.
Cancer cells migrating through densely packed collagen within
the tumor use invadopodia and matrix metalloproteinase (MMP)
activity to move, whereas cells in regions with less dense collagen
and long, aligned fibers migrate rapidly using larger pseudopodial
protrusions or MMP-independent ameboid blebbing8, 9. Likewise,
we previously showed in vitro that cell migration speed, invasion
distance, and cellular protrusion dynamics are modulated by

collagen fiber alignment, but that this relationship breaks down at
high collagen densities (>2.5 mgml−1)10. These findings suggest
that distinct motility regimes exist in low-density and high-
density collagen, which may have implications for metastatic
progression.
Here, we explore the relationships between collagen density,

collagen architecture, cell migration behavior, gene expression,
and metastatic potential. To do this, we develop a 3D in vitro
model system designed to probe the physical basis of cancer cell
migration responses to collagen matrix organization. Using this
system, we find that confining collagen matrix architectures with
short fibers and small pores induce a conserved migration
behavior in cancer cells leading to network formation and the
upregulation of a conserved transcriptional module, both of
which are mediated by integrin-β1 upregulation. We show evi-
dence that this in vitro behavior is consistent with phenotypic and
molecular features of clinical VM. Moreover, we show that the
associated transcriptional response is conserved among cancer
types in vitro and is predictive of patient survival in multiple
clinical datasets for various tumor types. Our integrative study
suggests that a collagen-induced migration phenotype and gene

100

100

10–1

101

101

102

102

103

103

104

104

105

Time (min)

2.5 mg ml–1

Before
After

6 mg ml–1

Before
After

0

5

10

15

20

P
R

W
 m

od
el

 p
er

si
st

en
t t

im
e

ns

2.5 mg ml–1

Bef
or

e
Afte

r

Cell division Bef
or

e
Afte

r

Cell division
Bef

or
e

Afte
r

Cell division
Bef

or
e

Afte
r

Cell division
Bef

or
e

Afte
r

Cell division
Bef

or
e

Afte
r

Cell division

0

5

10

15

20

P
R

W
 m

od
el

 
pe

rs
is

te
nt

 ti
m

e **

6 mg ml–1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ns

2.5 mg ml–1

S
in

gl
e-

ce
ll 

m
ea

n 
ve

lo
ci

ty
(μ

m
 m

in
–1

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
in

gl
e-

ce
ll 

m
ea

n 
ve

lo
ci

ty
(μ

m
 m

in
–1

)

***

6 mg ml–1

0

50

100

150

200

ns

2.5 mg ml–1

S
in

gl
e-

ce
ll 

ne
t

in
va

si
on

 d
is

ta
nc

e 
(μ

m
) 

0

50

100

150

200

S
in

gl
e-

ce
ll 

ne
t

in
va

si
on

 d
is

ta
nc

e 
(μ

m
) **

6 mg ml–1

6 mg ml–1 2.5 mg ml–1

2.5
 m

g m
l–
1

6 m
g m

l–
1

0

200

400

600

800

***

M
ea

n 
st

ru
ct

ur
e 

le
ng

th
 (

μm
)

MDA-MB-231 PAS stain

6 mg ml–1 2.5 mg ml–1

2.5 m
g m

l–
1

6 m
g m

l–
1

0

1

2

3

4

5
***

%
 S

ta
in

ed
 a

re
a

COL4A1 DAPI Merged

2.
5 

m
g 

m
l–1

6 
m

g 
m

l–1

MDA-MB-231 on top of Matrigel (2D)
MDA-MB-231 embedded

in Matrigel (3D)

First 24 h 72 h

M
S

D
 (

μm
2 )

100

100

10–1

101

101

102

102

103

103

104

104

105

Time (min)

M
S

D
 (

μm
2 )

a b c d

e f g

h i j

Fig. 1 High-density 3D collagen microenvironment promotes a switch to persistent cell migration in cancer cells. a Mean squared displacement (MSD) and
persistent time of MDA-MB-231 cells before and after cell division in high-density collagen. The persistent time was calculated from the MSDs using the
persistent random walk model (see “Methods”). MSDs are shown for 12 representative cell trajectories. bMean MSD and persistent time of MDA-MB-231
cells before and after cell division in low-density collagen. The persistent time was calculated from the MSDs using the persistent random walk model (see
“Methods”). MSDs are shown for 12 representative cell trajectories. c Single-cell velocity measured at 2 min intervals before and after cell division. d
Single-cell net invasion distance before and after cell division for cells in high-density and low-density collagen. e Representative image of MDA-MB-231
cells cultured in a 6 mgml−1 (left) and in a 2.5 mgml−1 (right) collagen I matrix after 7 days of culture. Cells are stained with Alexa-488 Phalloidin (F-Actin)
and DAPI (nuclei). Scale bar 250 μm. f Quantification of mean structure length in low-density and high-density collagen, from images acquired in three
independent experiments. g PAS stain of MDA-MB-231 cells cultured for 7 days in a 3D collagen gel of high-density (left) and low-density (right). Scale bar
100 μm. h Immunofluorescence staining of MDA-MB-231 cells for collagen IV after 7 days of culture in 6 vs. 2.5 mgml−1. Representative images of n= 2
biological replicates. Bar graph shows mean and s.e.m. of quantification of stained area performed in 15 different fields of view. Scale bar 100 μm. i MDA-
MB-231 cells cultured on top of growth factor-reduced matrigel after 24 h (left) and after 72 hours (right). Scale bar
250 μm. j MDA-MB-231 cells cultured inside growth factor-reduced matrigel in 3D culture for 7 days. Scale bar 100 μm. Box plots show quartiles of the
dataset with whiskers extending to first and third quartiles. n= 3 biological replicates for all experiments unless otherwise noted. Statistical significance
was determined by Mann–Whitney U test and is indicated as *, **, *** for p≤ 0.05, p≤ 0.01, p≤ 0.001, respectively
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expression program are linked to a metastatic clinical tumor cell
phenotype and potentiates future work to identify mechanistic
strategies capable of limiting metastasis in several cancers.

Results
High-density collagen promotes fast and persistent migration.
To first investigate the role of 3D collagen density in modulating
the migration phenotype of breast cancer cells, we embedded
MDA-MB-231 cells in collagen I matrices at densities mimicking
normal breast tissue, 2.5 mgml−1 collagen10, 11, and cancerous
breast tissue, 6 mgml−1 collagen10, 11. We observed that cells
migrating in dense collagen initially appeared to be trapped and
were unable to invade. However, after one division cycle, most
cells switched to a highly invasive motility behavior, significantly
increasing their persistence, velocity, and total invasion distance
(Fig. 1a–d, left panels). This behavior was not observed in cells
embedded in the low-density matrix, where cell migration was the
same before and after division (Fig. 1a–d, right panels). Inter-
estingly, cells that were in contact with the coverslip and not fully
embedded in the high-density condition did not undergo the
same migration transition upon division (Supplementary Fig. 1a,
b). The motility responses we observed in 2.5 and 6 mgml−1

collagen matrices were not unique to MDA-MB-231 breast cancer
cells. Similar migration patterns were observed for HT-1080
fibrosarcoma cells embedded in the same collagen matrix con-
ditions (Supplementary Fig. 1c), suggesting that these responses
may be conserved among distinct cancer types. To further
examine whether the observed migration behavior was cell-type
dependent, we tested the response of normal mesenchymal
human foreskin fibroblasts (HFF-1) to low-density and high-
density collagen conditions. Over an observation period of 48 h,
HFF cells migrated consistently with very low persistence. Cells
invaded less than three cell lengths in
low-density collagen. In high density, HFFs elongated to reach
cell lengths up to 300 μm but did not invade significantly (Sup-
plementary Fig. 1d).

Density-induced migration results in cell network structures. It
was unexpected that both MDA-MB-231 and HT-1080 cancer
cells migrated faster and further in high-density collagen condi-
tions. Intuitively, cell migration would be expected to slow in
dense conditions where more matrix must be remodeled to enable
cell movement. Moreover, this behavior was common to both
cancer cell types but not displayed by normal fibroblasts, which
represent residents of the stroma and also undergo mesenchymal
migration in collagen. This motivated us to investigate the long-
term implications of the rapid migration phenotype induced in
cancer cells under high-density conditions. After 1 week of cul-
ture in high-density collagen, breast cancer cells undergoing
rapid, and persistent migration formed interconnected network
structures that resembled the early stages of endothelial tubulo-
genesis (Fig. 1e, left). The average length of cell networks after 1
week was 437 μm (Fig. 1f). Interestingly, these network structures
do not appear to be caused by cells aligning along collagen fibers
(Supplementary Fig. 1e). In contrast, cells cultured in low-density
collagen for 1 week migrated slowly with low persistence, and
remained as single cells (Fig. 1e, right). HT-1080 cells also formed
network structures in high-density collagen and remained as
single cells in low-density collagen (Supplementary Fig. 1f). HFFs
remained as single cells in both high-density and low-density
conditions (Supplementary Fig. 1g). The transition of cancer cells
from single-cell migration to network formation suggested a
potential transdifferentiation event, and the cell networks were
reminiscent of a cancer phenotype known as vasculogenic
mimicry (VM). VM is thought to arise from tumor cells that

acquire the ability to form networks in the tumor ECM lined with
glycogen-rich molecules and basement membrane proteins that
can be perfused with blood. However, the tumor cells lining these
networks do not express endothelial surface markers such as
CD3112, 13. Periodic acid schiff (PAS) staining of the networks
formed in our high-density collagen condition confirmed the
presence of glycogen-rich molecules (Fig. 1g) and immuno-
fluorescence confirmed the presence of basement membrane
protein COL4A1 (Fig. 1h), as in VM.

Previous pioneering studies have shown that several aggressive
melanoma cell lines, which produce VM in vivo also intrinsically
form VM network structures when cultured on top of Matrigel or
collagen I in a 2D in vitro context13, 14. Recently, other aggressive
tumor cell types have been shown to intrinsically form VM-like
network structures on top of Matrigel or in 2.5D culture in
Matrigel15–19. Here, it is important to note that variations exist in
the consistency of commercial ECM products as well as the
terminology used to describe 3D culture. We define 3D culture
strictly as a condition where cells are fully embedded, in contact
with ECM on all sides, and located a sufficient distance away
from the coverslip bottom and sides of the culture dish to avoid
their influence. We define 2.5D culture as a pseudo 3D culture
where cells are embedded in the ECM but in contact with
coverslip. Our previous studies have demonstrated the impor-
tance of these distinctions, as cell behavior and protein
localization are differentially regulated in each context20–22.
Therefore, we sought to understand whether the network
phenotype induced by a 3D collagen I environment was distinct
from that induced by a 2D Matrigel environment. First, we asked
whether our cells formed network structures on top of Matrigel.
Few cells aligned within the first 24hrs of culture, and nearly all
cells aggregated after 72 h (Fig. 1i). Next, we embedded MDA-
MB-231 cells inside of Matrigel, in 3D culture. In this context,
cells did not form network structures but instead formed rough-
edged, disorganized spheroids (Fig. 1j). Thus, high-density
collagen uniquely induced the network-forming phenotype in a
more physiologically relevant 3D context.

A conserved transcriptional response precedes migration. We
hypothesized that the persistent migration phenotype of cancer
cells leading to network formation in high-density collagen
conditions (collagen-induced network phenotype, CINP) could
be the result of a transdifferentiation event wherein a unique cell
motility gene module was upregulated. To test this, we conducted
RNA sequencing of MDA-MB-231, HT-1080, and HFF cells
cultured in low-density and high-density collagen matrices after
24 h (Fig. 2a), the time point just before most cancer cells in the
high-density collagen matrix underwent at least one cycle of cell
division and began to invade with increased persistence. As the
majority of cancer cells cultured under high-density conditions
participated in network formation, we expected their bulk tran-
scriptional profile to be dominated by this phenotype23. Then we
asked whether common stem cell and differentiation markers
were upregulated in association with the network-forming phe-
notype. Indeed, several known stem cell markers were upregu-
lated (Fig. 2b), and three were common to both cancer cell types:
JAG1, ITGB1, and FGFR1. This suggested that both cancer cell
types harbored stem-like qualities, which could facilitate sig-
nificant transcriptional reprogramming.

Analyzing more broadly, we then asked which genes were
differentially regulated (TPM fold change ≥1.5) in high-density
collagen compared to low-density collagen in each cell type and
whether these genes represented unique or conserved transcrip-
tional response modules. As expected, cell type accounted for the
most variance in gene expression (Fig. 2c). However, after a
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z-score transformation of the gene expression of each cell type,
the collagen matrix condition accounted for the bulk of the
remaining variance in gene expression (Fig. 2d). This suggested
the presence of gene expression programs linked to collagen
matrix conditions.
Using a Venn diagram approach to identify conserved

expression modules, we discovered a set of 70 genes that were
upregulated by both cancer cell types but not normal cells in
response to high-density collagen (Fig. 2e; Supplementary Fig. 2a).
Gene ontology (GO) enrichment analysis revealed that these 70
common-to-cancer genes were significantly enriched for annota-
tions in blood vessel development and regulation of migration
(Fig. 2f, g). Importantly, changes in the threshold for differential
expression did not significantly alter the primary gene ontology
categories identified (Supplementary Fig. 2d; Supplementary
Table 1). Key genes involved in Notch signaling, i.e., RBPJ and
LFNG, were among the 70. Importantly, LAMC2, JAG1, and
THBS1 genes identified in this common-to-cancer gene set have
been previously associated with a VM phenotype intrinsically
displayed by metastatic melanoma, which was assessed by
targeted microarray analysis for angiogenesis, ECM, and cell
adhesion genes24, 25. Upregulated surface markers were not
endothelial in nature, and did not represent any specific tissue or
cell type (Fig. 2g).

Further exploration of our dataset with respect to individual
cancer cell types revealed that, beyond the conserved transcrip-
tional response, high-density collagen also triggered the expres-
sion of genes related to vasculogenesis in a cell type-dependent
manner. For example, breast cancer cell networks upregulated
VEGFA fold change= 1.65 and MMP14 fold change= 1.72, but
fibrosarcoma cell networks did not. Some of these genes have
been previously associated with the VM network phenotype of
melanoma cells (Supplementary Fig. 2c)24.

Next, we assessed the 35 genes that were upregulated in
response to high-density collagen by all three cell types (Fig. 2e).
These genes were enriched primarily for annotations in regulation
of cell differentiation (Fig. 2h). However, it is important to take
into account the inherent flaws associated with GO enrichment
analysis. For example, some categories showing enrichment in the
35 genes common-to-all cell lines contain very few genes and may
not represent real enrichment. However, this limitation is not
observed in the top enriched categories in the 70 genes common-
to-cancer cells, where most category contains at least 10 genes
(Fig. 2f). The genes associated with each enrichment category are
given in Supplementary Tables 2 and 3.

Interestingly, SERPINE1, a secreted protease inhibitor involved
in coagulation and inflammation regulation, was identified in the
common-to-all gene module (Supplementary Fig. 2b). Several
Serpine protein family members have previously been implicated
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as drivers of metastasis correlating with VM18 and with brain
metastases of lung and breast cancers26.

Integrin-β1 upregulation is required for CINP. We next sought
to identify the matrix feature triggering transdifferentiation. The
physical parameters of stiffness, pore size, and fiber organization
differ between the low density 2.5 mgml−1 and high density 6 mg
ml−1 collagen matrices10. Chemical cues may also change. For
example, adhesive ligand density and binding site presentation to
integrins and other matrix receptors may differ27, 28 as well as
accumulation or release of autocrine and paracrine signals
sequestered by the ECM29–31. Each of these features could
potentially impact cancer cell motility behavior and gene
expression.
As matrix stiffness has been implicated in driving epithelial-to-

mesenchymal transitions (EMT) and aggressive phenotypes11, 32,
33, we first asked whether increased stiffness of the high-density
collagen matrix was responsible for triggering transdifferentia-
tion. To test this, we developed a collagen polymerization
procedure (“Methods”) that increases the stiffness of the low-
density matrix to match the stiffness of the high-density matrix
(Fig. 3a). By lowering the polymerization temperature from 37 to

20 °C, polymerization slowed, allowing fibers to form more
organized and reinforced fiber structures with larger pores
(Supplementary Fig. 1I). Breast cancer cells cultured in this
stiffened low-density condition did not undergo network
formation (Fig. 3b), suggesting that 3D stiffness is not sufficient
for triggering the transdifferentiation.
Next, we sought to determine whether the smaller pore size of

the high-density matrices triggered transdifferentiation. One way
in which smaller pore sizes could influence cell behavior is by
restricting the diffusion of molecules to and from the cells34.
More specifically, the imbalance between oxygen diffusion to cells
and oxygen consumption by cells in 3D matrices has been shown
to promote hypoxic conditions in some cases35. Since regions of
VM have previously been associated with markers of hypoxia
in vivo36, 37, we hypothesized that cells in high-density collagen
created a more hypoxic condition than in low-density collagen
and that low-oxygen levels could trigger network formation. To
test this, we cultured MDA-MB-231 cells in low-density collagen
under a hypoxic atmosphere of 1% oxygen for 1 week. To confirm
that a hypoxic response was achieved, we assessed the level of
HIF1A mRNA expression by RT-qPCR at day 7 and found a
significant decrease in HIF1A expression (Fig. 3c). This is a
common response to long-term hypoxia by various cancer cell
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lines38–40. However, hypoxia was not sufficient to induce network
formation in any portion of the cancer cell population in the low-
density collagen matrix (Fig. 3d, left). For comparison, we also
assessed the HIF1A mRNA expression of breast cancer cells
cultured for 1 week in low-density collagen under 21% oxygen, in
high-density collagen under 1% oxygen, and in high-density
collagen under 21% oxygen (Fig. 3c). These results suggested that
cells cultured in high-density collagen experience increased
hypoxia compared to cells cultured in low-density collagen under
normal atmospheric conditions. Nevertheless, the hypoxic
response achieved in low-density collagen under 1% oxygen
exceeded that induced by high-density matrix alone. Cells in
high-density matrix under 1% oxygen continued to predomi-
nately display a network phenotype (Fig. 3d, right), but the
average network length (Fig. 3e) was significantly shorter than
cells in high-density collagen under normoxic conditions
(Supplementary Fig. 1h). Previous studies have reported that
hypoxia is not sufficient to induce a VM phenotype in melanoma
cells in vitro13. It is possible that in vivo, additional stromal cell
secreted factors or cell–cell interactions modulated by hypoxia
may indirectly influence the VM process37, 41.

To further explore whether pore size reduction induced
transdifferentiation of cancer cells, we sought to interrogate this
parameter independently of collagen density. In our model, the
high-density condition contains 2.4 times more collagen than the
low-density condition. This increase in total collagen reduces
pore size, but also presents more adhesive ligands to cells, which
could increase integrin activation. To separate pore size from bulk
density, we developed a collagen structure engineering technique
that reduced the pore size and fiber length of the low-density
matrix to approximate that of the high-density matrix. Under
normal polymerization conditions, low-density collagen self-
assembles into relatively long, structured fibers. When non-
functionalized, inert polyethylene glycol (PEG) was mixed into
collagen monomer solution prior to polymerization, molecular
crowding-restricted fiber formation. This resulted in shorter,
more interconnected fibers yielding smaller pores (Fig. 3f–i)
without increasing stiffness (Fig. 3a). Breast cancer cells
encapsulated in this pore size-reduced low-density matrix
underwent network formation over the course of 1 week (Fig. 3j).
To control for the possible influence of PEG itself, PEG was
added into media on top of a normally polymerized low-density
gel embedded with cells and allowed to diffuse into the interstitial
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spaces among the fibers to reach the same final concentration as
was used in the pore size-reduced low-density matrix (10 mgml−1

PEG). Cells maintained in this molecularly crowded condition
over 1 week did not form networks, but instead remained as
single cells. However, a noticeable slowing of cell migration
occurred, which resulted in an anisotropic patterning of single
cells throughout the matrix (Fig. 3k). These results suggested that
the fiber architecture of high-density collagen induces network
formation independently of the bulk increase in adhesive ligand
density and confirms that bulk matrix stiffness is not involved.
The short, more isotropic arrangement of fibers associated with

both the high-density collagen and low-density PEG crowded
collagen conditions could act on cells through local cell–matrix
interactions transduced by integrin signaling. Integrin-β1
(ITGB1) is a canonical receptor for collagen I, a central node in
ECM signal transduction, and a critical mediator of breast cancer
progression in mouse and in vitro models42. Here, ITGB1 was
upregulated by both cancer cell types in response to confining
matrix conditions (Fig. 2b). Thus, we next asked whether the
network-forming phenotype observed in confining matrix con-
ditions was mediated by ITGB1. CRISPR-Cas9 technology was
used to silence ITGB1 expression with single guide RNAs
(sgRNAs), and constructs expressing sgRNAs targeting eGFP
were used as controls (Fig. 4a). Silenced and control cells were
embedded separately and sparsely in low-density and high-
density collagen matrices. Cells were monitored by time-lapse
microscopy for early migration behavior then imaged again after
one week. In low-density collagen, ITGB1-silenced cells main-
tained a similar level of migration capability to wild type (WT)
cells in low-density matrices, but used an ameboid blebbing

migration phenotype instead of a mesenchymal migration
phenotype (Fig. 4b). In high-density conditions, ITGB1-silenced
cells migrated faster than WT cells, but were significantly less
persistent and did not invade (Fig. 4c–e). Surprisingly, after 1
week ITGB1-silenced cells in high-density collagen-formed
spheroid structures instead of cell networks, whereas control
cells exhibited the same behavior as the WT in both collagen
conditions (Fig. 4f). Retrospective analysis of WT MDA-MB-231
cells in high-density collagen revealed that a small fraction
spontaneously formed spheroid structures (Fig. 4g). These
findings suggest that either basal expression level or upregulation
of ITGB1 dictates the network-forming phenotype. To distinguish
between these two possibilities, we next sorted the parental WT
population based on basal ITGB1 expression level and then
embedded high and low expressing cells separately in confining
high-density collagen matrices (Fig. 4h). We observed no
appreciable differences in the percentage of networks versus
spheroids formed by the sorted populations after one week.
However, ITGB1 low cells proliferated less and displayed fewer
total number of network or spheroid structures (Fig. 4i) even
though the initial seeding density was the same (Supplementary
Fig. 3a).
To further explore the link between the upregulated transcrip-

tional module and the network-forming phenotype, we asked
whether ITGB1-silenced spheroid-forming cells showed different
gene expression patterns than WT network-forming cells. To
assess this, we conducted qRT-PCR analysis of a subset of the 70-
gene panel in the two cell phenotypes. Upregulation of several key
genes were maintained in the spheroid-forming cells, whereas
other genes were no longer upregulated (Fig. 4j). These results
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show that ITGB1 regulates some aspects of the transcriptional
module associated with the network-forming phenotype.
Finally, we asked whether upregulated genes in our transcrip-

tional module that have previously been implicated as drivers of
VM in vitro were functionally active in our network-forming
phenotype. LAMC2 (Ln-5, gamma 2 chain) was previously found
to be upregulated in aggressive melanoma cells that intrinsically
display the VM phenotype compared to less aggressive melanoma
cells that do not display VM. Moreover, it was implicated as a
driver of VM network formation, since the cleavage of this
secreted matrix molecule by MMP-2 and MT1-MMP produces
pro-migratory fragments. In 2D culture of aggressive melanoma
cells on top of collagen I, the inhibition of LAMC2 cleavage
blocked VM network formation43. Using shRNA to knockdown
LAMC2, we found that LAMC2 KD MDA-MB-231 cells maintain
their ability to form network structures in 3D high-density
collagen (Supplementary Fig. 3b, c). COL4A1 is another matrix
molecule upregulated by cells undergoing the network phenotype
(Figs. 1h and 2g) and previously implicated in driving migra-
tion44. COL4A1 KD in MDA-MB-231 cells also did not inhibit
the ability of cells to form network structures in 3D high-density
collagen (Supplementary Fig. 3b, c).

CINP transcriptional module predicts poor prognosis in
human cancer. Finally, we sought to determine whether the
CINP triggered by our 3D system was clinically relevant. To test
this, we first asked whether the 70 common-to-cancer genes
associated with the CINP could predict cancer patient prognosis.
We anticipated that if this gene signature was indicative of a more
metastatic cancer cell migration phenotype, its expression would
correlate with poor patient outcomes. Since late stage tumors are
already characterized by migration of tumor cells to distant
lymph nodes or organs, we hypothesized that a gene signature
associated with metastatic migration would correlate with prog-
nosis in early (stage I and II) but not late (stage III and IV) stage
tumors. Using the cancer genome atlas (TCGA), we first analyzed
data for breast cancer patients with respect to the expression of
the 70-gene signature. An expression metagene was constructed
using the loadings of the first principal component (CINP PC1)
of a 195 Stage I patient by 70-gene matrix (Supplementary Fig. 4a,
also see “Methods”). Then a survival analysis was conducted,
comparing patients with the highest (top 30%) and lowest (bot-
tom 30%) expression metagene scores by log-rank test. The
cumulative survival rate of these two groups differed significantly
(log-rank p= 0.049); however, there was insufficient data to
power a hazard ratio (HR) calculation (Fig. 5a). Analysis using
the more data-rich METABRIC microarray database of breast
cancer patients showed similar results for Stage I, confirming the
prognostic value of the gene set (log-rank p= 0.037, HR= 1.40,
Cox p= 0.002, Fig. 5b). Applying the same analysis to stage II

breast cancer patients revealed that the CINP metagene was
associated with a marginally significant difference in 5-year sur-
vival by TCGA analysis but not by METABRIC analysis (Sup-
plementary Fig. 4b, c). One caveat to this analysis is that data for
11 of the genes in our 70-gene panel were not available in the
METABRIC dataset. The CINP metagene also did not separate
patients with better prognosis in late stage tumors (Supplemen-
tary Fig. 4d). These results indicate that the CINP gene module
could have clinical predictive power in the early stages of breast
cancer. Importantly, further analysis of stage I patients by
molecular subtype45 revealed that the CINP metagene provided
significant prognostic value for Luminal A and triple negative
breast cancer patients (Table 1).
Next, we screened the predictive value of the gene module in

additional cancer types in TCGA independently of stage or
subtype using only age and CINP score as covariates. The CINP
gene module was a significant predictor of survival in lung
adenocarcinoma (LUAD), lower grade glioma (LGG), cervical
squamous cell carcinoma and endocervical adenocarcinoma
(CESC), pancreatic adenocarcinoma (PAAD), mesothelioma
(MESO), adrenocortical carcinoma (ACC), bladder urothelial
carcinoma (BLCA), and kidney chromophobe carcinoma (KICH)
(Table 2), but was not a significant predictor in several other
tumor types found in TCGA (Supplementary Table 3).
Finally, we sought to determine whether the in vitro network-

forming phenotype and associated transcriptional signature were
related to the clinical VM phenotype. Using the Human Protein
Atlas (www.proteinatlas.org)46, we first identified breast cancer
tumor slices displaying hallmarks of the VM phenotype, namely
linear chains of cells lining glycogen-rich matrix networks that
conduct blood flow but do not stain positively for CD3113. The
tumor of patient 1910 displayed linear chains of cancer cells
lining interconnected matrix networks (Fig. 5c). An immunohis-
tochemical stain for GYPA showed red blood cells flowing
through the matrix networks in tumor tissue but highly
concentrated in vessel-like structures in healthy tissue. A stain
against CD31 showed that there were no endothelial cells lining
the matrix networks in the tumor tissues. Although a PAS stain
was not available in the protein atlas database, which would
determine whether the matrix networks were positive for
glycogen, a stain against glycogen synthase (GSK3A) was available
and showed that the chains of cancer cells significantly expressed
this enzyme. The network-forming cell phenotypes combined
with IHC evidence are consistent with the previously described
histopathology of VM13. Next, we asked whether highly
upregulated genes in our 70-gene CINP module were evident at
the protein level in this clinical sample of VM. Stains for THBS1,
JAG1, and EDN1 were available in the protein atlas database for
the same tumor and showed significant expression of all three

Table1 CINP score potential to predict prognosis in stage I
patients from metabric database broken down by molecular
subtype

Metabric
molecular
subtype

Patient
count

Death
observed

HR Cox p

Luminal B 126 33 1.2461 0.3194
Luminal A 202 34 1.5996 0.0162
Triple negative 63 14 3.8537 0.0070
HER2+ 39 13 0.7152 0.3405

Analysis of CINP score potential to predict prognosis in stage I patients from METABRIC
database broken down by molecular subtype

Table 2 TCGA pan cancer analysis independent of stage

Cancer type Patient
count

Death
observed

HR Cox p

LGG 508 92 1.8434 1.1E−13
ACC 79 25 3.1863 2.8E−04
CESC 304 60 1.6560 5.2E−04
MESO 85 28 1.6101 6.9E−04
PAAD 178 59 1.5948 2.2E−03
BLCA 409 111 1.3338 0.0053
LUAD 521 124 1.2448 0.0169
KICH 64 8 2.9277 0.0210

Table showing results from Kaplan–Meier and hazard ratio analysis across all cancer types in
TCGA, where the CINP gene score is significant predictor of prognosis (p< 0.05)
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genes from our CINP transcriptional module in the VM tumor
tissue but little stain in healthy tissues.

Discussion
Our transcriptional, histopathologic, and phenotypic data suggest
that the in vitro CINP and clinical VM share many commonal-
ities. To our knowledge, this is the first time that collagen fiber
architecture, characterized by short fibers and small pores, has
been identified as an inducer of cancer transdifferentiation
associated with a VM-like phenotype or more normal acinar
phenotype, depending on the capacity of cells to upregulate
ITGB1. More broadly, our findings show that collagen fiber
architecture modulates the role ITGB1 plays in migration. In one
architectural context, ITGB1 facilitates a switch from mesenchy-
mal to ameboid migration and in another architectural context it
mediates migration persistence and the shape of structures
formed by collective morphogenesis.
Although ITGB1 was critical for directing the fate of cells

during collagen-induced transdifferentiation, it was not necessary
for initiating the transition from single cell to collective mor-
phogenesis. Thus, it is not yet clear how cells sense the collagen
architecture to initiate this process, but the response appears to be
unique to stem-like cancer cells (MDA-MB-231 and HT-1080) as
opposed to normal cells (HFF-1). Since, in our system, cells are
embedded sparsely and undergo transcriptional reprogramming
prior to cell division, the involvement of cell–cell interactions
does not appear to have a role in transdifferentiation initiation. It
is possible that cell interactions with the unique matrix archi-
tecture involve matrix sequestration of soluble factors and auto-
crine signaling. Indeed, TGFβ pathways were implicated by GO
enrichment analysis (Fig. 2f). Alternatively, the initial confine-
ment and rounded geometry of the cells enforced by the matrix
may play a role. Several studies support a role for cellular geo-
metry in numerous cellular processes including gene expression
and differentiation47–51, some of which is mediated by RhoA and
cytoskeletal tension. However, confinement in Matrigel did not
trigger the same process, indicating a unique requirement for
cell–collagen interaction. Future work will address these
questions.
ECM molecules, COL4A1 and LAMC2, were also upregulated

by CINP cells and have previously been implicated in driving
migration and VM network formation in 2D culture43, 44. In our
3D collagen system, knockdown of either gene was not sufficient
to block the VM-like phenotype (Supplementary Fig. 3). This
suggests that regulation of in vitro cell network formation in a
more physiological 3D culture context is distinct from regulation
in a 2D culture context, which has implications for understanding
molecular mechanisms. Given the significantly different require-
ments for cell movement in 3D ECM, such as matrix degradation
and remodeling, our study highlights the importance of both the
type of matrix and the dimensional context for studying phy-
siological migration strategies. This echoes previous studies,
which have shown that cell motility proteins function distinctly in
a more physiologically relevant 3D context20–22.

Interestingly, SERPINE1, a secreted protease inhibitor involved
in coagulation and inflammation regulation, was upregulated by
cancer cells as well as normal fibroblasts in response to confining
collagen architectures. A recent study of cancer cell heterogeneity
using mouse mammary carcinoma 4T1 cells and validated in
human MDA-MB-231 breast cancer cells showed that cells which
intrinsically expressed SERPINE family members were most
efficient at spreading hematogenously, a characteristic that also
correlated with their capacity to undergo VM in vivo18. Together,
with our findings, this suggests that both cell-intrinsic and ECM
factors may contribute to the emergence of VM. Interestingly, our

finding that fibroblasts and cancer cells both upregulate SER-
PINE1 expression in confining collagen conditions hints at a
potential supporting role for stromal cells in SERPINE-mediated
VM metastasis18.

The significant predictive value of our CINP gene signature in
several tumor types may signify the physiological relevance of the
ECM context and network-forming migration phenotype we
created in vitro to a conserved mechanism of solid tumor
metastasis. It is possible that gene expression analysis of addi-
tional cancer cell types induced into VM-like behavior by our 3D
collagen system could help to further refine the conserved CINP
gene module. This would facilitate prioritization of the genes for
targeted functional studies to identify key regulators and potential
therapeutic targets. In addition to regulators of the CINP, the
conserved gene module also likely contains elements responsive
to collagen but not directly involved.
Profiling additional cancer cell types and patient-derived tumor

cells could also help to refine the gene module’s prognostic value
in the nine tumor types already identified or define additional
cancer-specific versions of the CINP. Validation of the prognostic
value of this gene module could help patients avoid the long-term
side effects of aggressive radiation and chemotherapy if the
likelihood of metastasis is very low. A recent meta-analysis of
histological VM in over 3000 patients with various solid tumor
types found that the visual presence of this cancer phenotype is
specifically associated with poor prognosis52. Molecular detection
of VM markers could provide a more quantitative measure.

Methods
Cell culture. HT-1080 and HFF-1 were purchased from (ATCC, Manassas, VA)
MDA-MB-231 cells were provided by Adam Engler (UCSD Bioengineering). All
cell lines were cultured in high glucose Dulbecco’s modified Eagle’s medium
supplemented with 10% (v/v) fetal bovine serum (FBS, Corning, Corning, NY) and
0.1% gentamicin (Gibco Thermofisher, Waltham, MA), and maintained at 37 °C
and 5% CO2 in a humidified environment during culture and imaging. The cells
were passaged every 2–3 days. Cell culture under hypoxia was done on a humi-
dified and temperature controlled environment at 1% O2. Cells were tested for
mycoplasma contamination using the Mycoalert kit (Lonza, Basel, Switzerland)
before performing experiments.

3D culture in collagen I matrix. Cells embedded in 3D collagen matrices were
prepared by mixing cells suspended in culture medium and 10× reconstitution
buffer, 1:1 (v/v), with soluble rat tail type I collagen in acetic acid (Corning,
Corning, NY) to achieve the desired final concentration10, 20, 21. A total of 1 M
NaOH was used to normalize pH in a volume proportional to collagen required at
each tested concentration (pH 7, 10–20 μl 1 M NaOH), and the mixture was placed
in 48-well-culture plates and let polymerize at 37 °C. Final gel volumes were 200 μl.

Cell tracking and motility analysis. Cells were embedded in 3D collagen matrices
in 48 well plates and left polymerize for 1 h in a standard tissue culture incubator
and then 200 μl of complete growth medium were added on top of the gels. The
gels were transferred to a microscope stage top incubator and cells were imaged at
low magnification (×10) every 2 min for 48 h. Coordinates of the cell location at
each time frame were determined by tracking single cells using image recognition
software (Metamorph/Metavue, Molecular Devices, Sunnyvale, CA). Tracking data
were processed using custom written python scripts based on previously published
scripts53 to calculate cell speed, invasion distances, and mean-squared displace-
ments (MSDs). For cell motility analysis before and after division the time-lapse
videos were scanned to identify dividing cells within the imaging period and the
division point was identified as the frame at which a clear separation could be
identified between daughter cells. The dividing cell was tracked up to the division
point and one of the daughter cells (randomly chosen) was tracked from that point
until the 48 h time point. For collective cell invasion distance, the 48 h time-lapse
video was processed to obtain the maximum intensity projection (MIP), which
highlights the tracks taken by the cells/groups of cells. Individual tracks distin-
guishable in the MIP were measured to obtain an equivalent invasion distance. All
cell tracking data comes from three independent experiments performed on dif-
ferent days and with different cell passages.

Persistence random walk model implementation. To quantify the differences in
the MSDs, we fitted the MSDs for each condition using the persistent random walk
model (PRW model) as described in refs. 53, 54. Briefly, the MSDs were calculated
as in Eq. 1. The Eq. 2 describing the PWR was fitted using python’s lmfit library for

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01556-7 ARTICLE

NATURE COMMUNICATIONS |8: 1651 |DOI: 10.1038/s41467-017-01556-7 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


each MSD. The persistent time (parameter P) was then extracted to calculate
differences between groups as presented in Fig. 1a, b.

MSD τð Þ ¼ x t þ τð Þ � x tð Þð Þ2 þ y t þ τð Þ � y tð Þð Þ2� �
; ð1Þ

}\eqno \eqno \text{(2)}

where, S is the cell speed and P is the persistence time and σ is a function of the
error in the position of the cell as described in ref. 54.

Collagen stiffness modification and measurement using shear rheology. To
modify the stiffness of collagen matrices without increasing density of material, we
kept 2.5 mgml−1 gels at 20 °C for 30 min until they were fully polymerized. After
the initial polymerization the gels were placed on a humidified tissue culture
incubator at 37 °C for at least 1 hour extra before adding cell growth media on top.
To measure the effect of polymerization temperature on the gel stiffness, we
recreated the polymerization conditions for rheology testing (hybrid rheometer
(DHR-2) from TA Instruments, New Castle, DE) using a cone and plate geometry
with a sample volume of 0.6 ml. Shear storage modulus G′ was measured as
reported before10. Briefly, we first performed a strain sweep was from 0.1 to 100%
strain at a frequency of 1 rad s−1 to determine the elastic region. Then a frequency
sweep was performed at a strain within the linear region (0.8%) between 0.1 and
100 rad s−1. Three independent replicates were performed for each condition
tested.

Collagen structure modification using polyethylene glycol. To modify the
structure of the collagen fibers within the gels without changing the final collagen
concentration, Polyethylene glycol (PEG, MW= 8000, Sigma, St. Louis, MO) was
solubilized in phosphate-buffered solution (PBS), filter sterilized. Solubilized PEG
was then mixed into the cells, reconstitution buffer solution described above to
produce a final PEG concentration of 10 mgml−1 in the collagen gel. The gels were
allowed to polymerize in the same conditions as collagen only gels. Collagen
structure modification was verified using confocal reflection microscopy.

RNA Isolation and purification. 3D collagen I gels were seeded in three inde-
pendent experiments and harvested after 24 h of culture for RNA extraction and
directly homogenized in Trizol reagent (Thermofisher, Waltham, MA). Total RNA
was isolated following manufacturer’s instructions. Isolated RNA was further
purified using High Pure RNA Isolation Kit (ROCHE, Branford, CT). RNA
integrity was verified using RNA Analysis ScreenTape (Agilent Technologies, La
Jolla, CA) before sequencing.

RNA sequencing and data analysis. Biological triplicates of total RNA were
prepared for sequencing using the TruSeq Stranded mRNA Sample Prep Kit
(Illumina, San Diego, CA) and sequenced on the Illumina MiSeq platform at a
depth of >25 million reads per sample. The read aligner Bowtie2 was used to build
an index of the reference human genome hg19 UCSC and transcriptome. Paired-
end reads were aligned to this index using Bowtie255 and streamed to eXpress56 for
transcript abundance quantification using command line “bowtie2 -a -p 10 -x
/hg19 -1 reads_R1.fastq -2 reads_R2.fastq | express transcripts_hg19.fasta”. For
downstream analysis TPM was used as a measure of gene expression. A gene was
considered detected if it had mean TPM >5.

Gene ontology term overrepresentation analysis. To assess the overrepresented
GO terms the cytoscape app BiNGO57 was used. Statistical test used was hyper-
geometric test, Benjamini–Hochberg false discovery rate (FDR) correction was
used to account for multiple tests and the significance level was set at 0.05. For a
given term, to assess the sensitivity of the enriched gene sets to the genes used in
the analysis, we varied the threshold for including a gene as differentially upre-
gulated from a fold change of 1.3 to a fold change of 1.9. The probability of a gene
enriched with term is (# of genes in background with term)/(# of genes in back-
ground). The fold enrichment is the observed number of genes associated with
term divided by the expected number of genes associated with term.

Gene expression using qPCR. For qPCR experiments, RNA was extracted as
stated above and cDNA was synthesized using superscript iii first-strand synthesis
system (Thermofisher, Waltham, MA). Relative mRNA levels were quantified using
predesigned TaqMan gene expression assays (Thermofisher, Waltham, MA).
Relative expression was calculated using the DCt method using GAPDH as
reference gene. Assays used were: GAPDH (Hs02758991_g1), HIF1A
(Hs00153153_m1), THBS1 (Hs00962908_m1), TGFBI (Hs00932747_m1),
TPM1 (Hs04398572_m1), LAMC2 (Hs01043717_m1), and
HMOX1 (Hs01110250_m1).

Immunofluorescence and cell imaging. For cell imaging after 7 days of culture to
visualize VM structures collagen gels were fixed using two washes of 4% PFA for

30 min each at room temperature. F-actin was stained using AlexaFluor® 488
Phalloidin (Cell signaling technology, Danver, MA) and the nuclei were counter-
stained with DAPI. For immunofluorescence staining the gels were incubated with
the primary antibody for 48–72 h. Anti-COL4A1 (1:200 dilution, NB120-6586,
Novus Biologicals).

Confocal reflection imaging and quantification. Confocal reflection images were
acquired using a Leica SP5 confocal microscope (Buffalo Grove, IL) equipped with
a HCX APO L 20× 1.0 water immersion objective. The sample was excited at 488
nm and reflected light was collected without an emission filter. For the estimation
of pore size we used modification of a previously reported digital imaging pro-
cessing technique10. Briefly, the images were normalized to account for uneven
illumination effects. Then a threshold was applied to generate a binary mask where
pores were identified as the darkest areas of the image. Pore diameter was measured
using NIS elements software (Nikon Instruments Inc., Melville, NY) measure
objects tool.

Gene suppression. The lentiCRISPR v2 was a gift from Feng Zhang (Addgene
plasmid #52961). We cloned small guide RNAs targeting the genes of interest into
the lentiCRISPR v2 following Zhang’s lab instructions. The sg_RNA sequences
using were taken from the GECKO human library A58. Used sequences were:
ITGB1 sg_RNA1 (5′-TGCTGTGTGTTTGCTCAAAC-3′), ITGB1 sg_RNA2 (5′-
ATCTCCAGCAAAGTGAAACC-3′), EGFP sgRNA (5′-GGGCGAG-
GAGCTGTTCACCG-3′). The lentiCRISPR v2 vectors with the cloned desired
sgRNA were sequence verified and viral particles were generated by transfecting
into lentiX293 T cells (Clonetech, Mountain View, CA. Cat #632180) along with
packaging expressing plasmid (psPAX2, Addgene #12260) and envelope expressing
plasmid (pMD2.G, Addgene #12259). Viral particles were collected at 48 h after
transfection and they were purified by filtering through a 0.45 μm filter. Target cells
were transduced with the viral particles in the presence of polybrene (Allele Bio-
technology, San Diego, CA). After overnight incubation media was changed and
cells were left 24–48 h in normal growth media and then changed to puromycin
selection media (2.5 μg ml−1 puromycin) for 7 days before experiments were per-
formed. For shRNA-mediated gene knockdown, glycerol stocks of TRC2-pLKO.1-
puro shRNA targeting LAMC2 (NM_005562.1-1019s1c1: CCGGGCTCACCAA-
GACTTACACATTCTCGAGAATGTGTAAGTCTTGGTGAGCTTTTTG),
COL4A1 (NM_001845.3-3859s1c1:CCGGCCTGGGATTGATGGAGTTAAACTC-
GAGTTTAACTCCATCAA TCCCAGGTTTTTG), and a non-targeting scramble
sequence (SHC016:CCGGGCGCGATAGCGCTAATAATT TCTCGA-
GAAATTATTAGCGCTATCGCGCTTTTT) were purchased from Sigma-Aldrich
packaged in LentiX293T (Clonetech, Mountain View, CA. Cat #632180) along with
packaging expressing plasmid as described above. Lentiviral particles were trans-
duced into target cells and stably expressing cells were selected with puromycin (2
μg ml−1) for at least 5 days before using.

Western blotting. Cells were grown to >90% confluency in 100 mm dishes. After
washing 2X with PBS cells were collected into 100 μl of lysis buffer with 1× Halt
protease inhibitor cocktail (Pierce IP lysis Buffer, Thermofisher, Waltham, MA) by
thoroughly scraping the dish surface. Cell lysate was incubate in ice with constant
shaking for 30 min and then centrifuged at 15,000×g for 20 for protein purification.
Samples were loaded at 50 μg total protein concentration for SDS-PAGE. Mem-
branes were probed with antibodies against ITGB1 (#4706 from Cell signaling
technology, Danver, MA. 1:10,000 dilution) and α−Tubulin (TU-01 MA1-19162,
Thermofisher, Waltham, MA. 1:30,000 dilution).

Fluorescence-activated cell sorting. Wild type MDA-MB-231 cells were grown
in collagen I-coated tissue culture dished until 80% confluence. Cells were har-
vested using HyClone HyQtase (GE Healthcare Life Sciences, Marlborough, MA)
and resuspended in FACS buffer (1% BSA, 0.5 mM EDTA in PBS). The cell sus-
pension was then labeled using a monoclonal antibody against human CD29 (b1
integrin) conjugated to AlexaFluor 488. A cell suspension without added antibody
was used as negative control. After labeling, the cells were analyzed within 1 h of
detachment at the stem cell core of Sanford Consortium of Regenerative Medicine
(La Jolla, CA) using a BD Influx cell sorter (BD, Franklin lakes, NJ). Cells were
sorted based on fluorescence intensity into the top-expressing population (~15%,
ITGB1 high) and bottom-expressing population (~13%, ITGB1 low). Sorted cells
were replated into collagen-coated dishes and left to recover overnight. After
recovery, the cells were embedded in 3D collagen gels as described above.

Experimental data analysis and statistics. All cell motility data were analyzed for
statistical significance using the Scipy Python package. Additional experimental
data were analyzed using prism Graphpad (San Diego, CA). Significance (p) was
indicated within the figures using the following scale: *p< 0.05, **p< 0.01, ***p <
0.001. Additional relevant information is detailed in the figure captions.

TCGA data reprocessing and survival analysis. The TCGA raw data were
downloaded from CGHub directly using gtdownload59. Corresponding clinical
metadata were obtained from the TCGA data portal (https://tcga-data.nci.nih.gov/
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docs/publications/tcga/). RNA-seq fastq files were realigned and quantified using
sailfish v.0.7.660 with default parameters. Only primary tumors were considered in
our analysis. In the analysis of breast invasive carcinoma, only the patients with
reported histological staining for the three markers (Her2, ER, PR) could be
associated with a molecular subtype. Patients for which any of the histological
markers were not evaluated or were detected at an equivocal level were assigned to
an “unknown” subtype. TCGA data for stage I, II, III, and IV breast cancer patients
were analyzed by principal component analysis (PCA) with respect to the 70 CINP
genes to construct gene expression meta-markers as previously described61. PCA-
based score quantiles were mapped to CINP high and CINP low categories based
on mean CINP gene expression levels. Because the CINP signature comprised only
genes that were upregulated in the presence of the network phenotype, the overall
mean expression of CINP genes was used to map PCA score to CINP signature
activity level.

METABRIC data retrieval and survival analysis. We retrieved the clinical and
microarray expression dataset from cBioPortal (http://www.cbioportal.org/study?
id=brca_metabric). We were able to map 59 out of 70 CINP genes to METABRIC
microarray data (missing genes: ZNF532, TRMT13, AMIGO2, KIN, NKX3-1,
TANC2, TVP23C, SDHAP1, MTND2P28, GTF2IP4, H2BFS). Survival analysis was
performed using the same method as described above for TCGA data. The Cox
multiple regression uses CINP score, age, and three molecular subtype categories as
covariates.

TCGA pan cancer analysis. Tumor types for which at least 100 patients had both
expression and clinical metadata were analyzed to determine correlation between a
CINP gene expression and 5-year survival. Only primary tumors were considered.
Kaplan–Meier analysis was performed comparing the 30% of individuals with the
lowest CINP expression score to the 30% with the highest score. The cox multiple
regression uses age and CINP score as covariates. Both analyses use the Lifelines
python library (https://lifelines.readthedocs.io/en/latest/). The log-rank test was
used to determine significance of survival differences between groups.

Human Protein Atlas data. The online database Human Protein Atlas46 was used
to identify breast cancer tumor slices displaying hallmarks of the VM phenotype
and subsequently assess protein expression of the genes associated with our in vitro
network-forming phenotype. The tumor of patient ID 1910 was found to display
linear chains of cancer cells lining interconnected matrix networks and had been
stained for numerous other proteins of interest. Histological images shown in
Fig. 5d can be found at www.proteinatlas.org by searching for the gene name in the
breast cancer database and selecting patient ID 1910.

Code availability. Relevant scripts for the analysis of TCGA and METABRIC data
are available at: https://github.com/brianyiktaktsui/Vascular_Mimicry.

Data availability. All sequencing data from this study has been deposited in the
National Center for Biotechnology Information Gene Expression Omnibus (GEO)
and is accessible through the GEO Series accession number GSE101209. All other
relevant data are available within the article and supplementary files, or from the
corresponding author upon request.
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Supplementary Figure 1. A. Representative bright field image of MDA-MB-231 cells embedded in a 
6mg/mL collagen gel but in contact with the coverslip. Scale bar 100 µm B. Representative trajectories of 
cells cells embedded in a 6mg/mL collagen gel but in close contact with the coverslip before and after 
cell division. The trajectories show no appreciable differences between the cell movement before or after 
division. C. Mean Squared Displacement (MSD) and persistent time of HT-1080 cells before and after 
cell division for cells in low density and high density collagen. MSDs shown are 12 representative cell 
trajectories. D. Total invasion distance of single cells and their progeny for HFF-1 fibroblasts cells in 6 
mg/mL (left) and 2.5mg/mL (right) collagen gels in units of cell length (see methods) after 48 h of cell 
encapsulation. E. Representative confocal reflection image showing collagen fibers around a chain 
structure formed by MDA-MB-231 cells cultured in high density collagen gel for 7 days, dotted lines show 
the outline of the chain structure. Scale bar 100um. F. Representative bright field images of HT-1080 
cells after 7 days of culture in 2.5 mg/mL (left) and 6 mg/mL (right) collagen I matrix. Scale bar 250 µm. 
G. Representative bright field images of HFF-1 fibroblast cells after 7 days of culture in 2.5 mg/mL (left) 
and 6 mg/mL (right) collagen I matrix. Scale bar 250 µm. H. Mean structure length formed by MDA-MB-
231 cells cultured in high density 3D collagen after 7 days under normoxia (21% O2) or hypoxia (1% O2). 
Comparison was performed using Mann–Whitney U test. I. Representative confocal reflection image 
showing a 2.5mg/mL collagen gel polymerized at 20°C Scale bar 100 µm. Representative images of N=3 
biological replicates for all experiments unless otherwise noted. Statistical significance is indicated as *, 
**, *** for p≤0.05, p≤0.01, p≤0001 respectively. 
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Supplementary Figure 2. A. Bar plot showing mean of n=3 expression values of the 70 genes 
upregulated by both cancer cell lines. MDA-MB-231 (top), genes sorted by low to high level of 
expression. HT1080 (bottom) gene order from top panel. B. Bar plot showing mean of n=3 expression 
values of the 35 genes upregulated by cancer cells and HFF-1 fibroblasts. MDA-MB-231 (top), genes 
sorted by low to high level of expression. HT1080 (middle) and HFF-1 (bottom) gene order from top 
panel .C. Mean of n=3 expression levels of genes previously reported as being involved in 
vasculogenic mimicry and upregulated by cancer cells in high density collagen. For this panel TPM>5 
was not required for analysis. D. Sensitivity analysis of Gene Ontology Analysis presented in Figure 
2. Left Panel: Plot showing number of genes included in the analysis as a function of fold change 
threshold (yellow) and fold enrichment of 2 key terms (blood vessel development and regulation of 
cell migration, blue and green respectively) for the two gene sets cancer specific (70 Genes) and 
common to all cell lines analyzed (35 genes). Right panel shows the full sensitivity analysis when the 



fold change threshold is varied from 1.3 to 1.9. Details of the analysis can be found in the Methods 
section. 
 
 
 

 
 
Supplementary Figure 3. A. ITGB1 sorted MDA-MB-231 cells at day 1 of embedding in high density 
and low density collagen matrices and plated on tissue culture plastic (2D). Scale bar 200 µm. B. RT-
qPCR validation of shRNA mediated knock down of LAMC2 and COL4A1 C. Representative images 
of MDA-MB-231 cells expressing shRNA constructs against a scramble sequence, COL4A1, or 
LAMC2 after 7 days of culture in high density collagen Scale bar 200µm. N=3 biological replicates for 
all experiments unless otherwise noted. Statistical significance was determined by Wilcoxon rank sum 
test and is indicated as *, **, *** for p≤0.05, p≤0.01, p≤0001 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Supplementary Figure 4. A. Loadings of the first principal component (PC1) in stage I breast cancer 
patients of the 70 CINP associated genes identified in this study (Figure 2). B. Loadings of the first 
principal component (PC1) in stage II breast cancer patients of the 70 CINP associated genes 
identified in this study (Figure 2). C.  Kaplan Meier survival analysis of stage II breast cancer patients 
in TCGA (left) and Metabric (right) databases when the PC1 loadings were used as an expression 
metagene. D. Kaplan Meier plots showing survival prediction by the CINP gene signature in Stage III 
and Stage IV breast cancer from TCGA data and stage III from metabric.  
 
 
 
 



 

 
Supplementary Figure 5.  Uncropped Western blots from Figure 4A. A. Integrin B1 Western blot. 
B. Alpha tubulin western blot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Supplementary Table 1. Sensitivity analysis of GO enrichment 
 
fcThresholdgeneListDescription # 

genes 
in set 

expectation fold_enrich 

1.3 70 
Genes 

blood vessel 
development 16 2.890 5.536 
regulation of cell 
migration 13 2.356 5.518 

35 
Genes 

cell differentiation 28 13.647 2.052 
regulation of smooth 
muscle cell 
migration 3 0.164 18.333 

1.4 70 
Genes 

blood vessel 
development 12 1.630 7.361 
regulation of cell 
migration 12 1.329 9.030 

35 
Genes 

cell differentiation 19 7.696 2.469 
regulation of smooth 
muscle cell 
migration 3 0.092 32.511 

1.5 70 
Genes 

blood vessel 
development 9 0.982 9.167 
regulation of cell 
migration 10 0.800 12.496 

35 
Genes 

cell differentiation 12 3.265 3.676 
regulation of smooth 
muscle cell 
migration 3 0.039 76.639 

1.6 70 
Genes 

blood vessel 
development 8 0.667 11.997 
regulation of cell 
migration 8 0.544 14.718 

35 
Genes 

cell differentiation 6 1.982 3.027 
regulation of smooth 
muscle cell 
migration 1 0.024 42.076 

1.7 70 
Genes 

blood vessel 
development 7 0.482 14.534 
regulation of cell 
migration 7 0.393 17.832 

35 
Genes 

cell differentiation 3 1.283 2.339 
regulation of smooth 
muscle cell 
migration 1 0.015 65.027 

1.8 70 
Genes 

blood vessel 
development 6 0.333 17.995 
regulation of cell 
migration 4 0.272 14.718 

35 
Genes 

cell differentiation 3 0.933 3.216 
regulation of smooth 
muscle cell 
migration 1 0.011 89.413 

1.9 70 
Genes 

blood vessel 
development 6 0.278 21.594 
regulation of cell 
migration 3 0.226 13.246 

35 
Genes 

cell differentiation 2 0.816 2.450 
regulation of smooth 
muscle cell 
migration 1 0.010 102.186 

 
 
 
 



 
Supplementary Table 2. Gene ontology enrichment analysis for the genes in the 70 gene list 
 
GO Term #gene

s in 
set 

genes in set 

regulation of cell migration 10 EDN1|JAG1|PODXL|TPM1|HMOX1|FURIN|LAMB1|RBPJ|THBS1|SMAD7 

regulation of developmental 
process 

16 EDN1|JAG1|LTBP4|HPS4|THBS1|SMAD7|SIPA1L1|COL4A2|ID2|HMOX1|ITGAV|HES1|VHL|EPHB2|
SKIL|NKX3-1 

regulation of cellular component 
movement 

10 EDN1|JAG1|PODXL|TPM1|HMOX1|FURIN|LAMB1|RBPJ|THBS1|SMAD7 

regulation of locomotion 10 EDN1|JAG1|PODXL|TPM1|HMOX1|FURIN|LAMB1|RBPJ|THBS1|SMAD7 

anatomical structure development 27 TAGLN|NLGN2|LAMC2|RBPJ|THBS1|SYNE1|LFNG|SIPA1L1|PODXL|HMOX1|ITGAV|HES1|IGF2BP3
|VHL|EPHB2|SKIL|NKX3-1|EDN1|JAG1|TPM1|NAV1|LAMB1|SMAD7|COL5A1|COL4A1|ID2|KCTD11 

regulation of multicellular 
organismal process 

17 EDN1|NLGN2|JAG1|TPM1|FURIN|THBS1|SMAD7|SIPA1L1|COL4A2|ID2|BHLHE40|HMOX1|HES1|IG
F2BP3|EPHB2|SKIL|NKX3-1 

system development 25 TAGLN|NLGN2|LAMC2|RBPJ|THBS1|LFNG|SIPA1L1|PODXL|HMOX1|ITGAV|HES1|VHL|EPHB2|SKI
L|NKX3-1|EDN1|JAG1|TPM1|NAV1|LAMB1|SMAD7|COL5A1|COL4A1|ID2|KCTD11 

developmental process 29 TAGLN|NLGN2|LTBP4|LAMC2|FURIN|RBPJ|THBS1|SYNE1|LFNG|SIPA1L1|PODXL|HMOX1|ITGAV|
HES1|IGF2BP3|VHL|EPHB2|SKIL|NKX3-
1|EDN1|JAG1|TPM1|NAV1|LAMB1|SMAD7|COL5A1|COL4A1|ID2|KCTD11 

blood vessel development 9 EDN1|JAG1|COL5A1|COL4A1|HMOX1|ITGAV|VHL|THBS1|SMAD7 

vasculature development 9 EDN1|JAG1|COL5A1|COL4A1|HMOX1|ITGAV|VHL|THBS1|SMAD7 

cellular component organization 25 NLGN2|LAMC2|RBPJ|THBS1|SYNE1|MRC2|SIPA1L1|ABLIM3|HMOX1|ITGAV|HES1|VHL|EPHB2|SKI
L|TPM1|HPS4|NAV1|LAMB1|H2BFS|SMAD7|DAAM1|COL4A2|COL5A1|LPCAT2|TGFBI 

anatomical structure formation 
involved in morphogenesis 

10 EDN1|JAG1|COL4A1|PODXL|TPM1|HMOX1|VHL|THBS1|SKIL|NKX3-1 

anatomical structure 
morphogenesis 

17 EDN1|JAG1|TPM1|LAMB1|THBS1|SMAD7|LFNG|COL5A1|COL4A1|PODXL|HMOX1|HES1|IGF2BP3|
VHL|EPHB2|SKIL|NKX3-1 

regulation of transforming growth 
factor beta receptor signaling 
pathway 

5 LTBP4|FURIN|THBS1|SKIL|SMAD7 

organ development 20 EDN1|TAGLN|JAG1|TPM1|LAMC2|LAMB1|THBS1|SMAD7|LFNG|COL5A1|COL4A1|PODXL|ID2|HMO
X1|ITGAV|HES1|VHL|EPHB2|SKIL|NKX3-1 

multicellular organismal 
development 

26 TAGLN|NLGN2|LTBP4|LAMC2|RBPJ|THBS1|LFNG|SIPA1L1|PODXL|HMOX1|ITGAV|HES1|VHL|EPH
B2|SKIL|NKX3-1|EDN1|JAG1|TPM1|NAV1|LAMB1|SMAD7|COL5A1|COL4A1|ID2|KCTD11 

negative regulation of cellular 
process 

20 EDN1|JAG1|TPM1|AMIGO2|FURIN|RBPJ|THBS1|SMAD7|PODXL|ID2|BHLHE40|HMOX1|ITGAV|HES
1|IGF2BP3|VHL|TGFBI|EPHB2|SKIL|NKX3-1 

negative regulation of biological 
process 

21 EDN1|JAG1|TPM1|AMIGO2|FURIN|RBPJ|THBS1|SMAD7|COL4A2|PODXL|ID2|BHLHE40|HMOX1|IT
GAV|HES1|IGF2BP3|VHL|TGFBI|EPHB2|SKIL|NKX3-1 

regulation of cell differentiation 11 EDN1|SIPA1L1|JAG1|ID2|LTBP4|ITGAV|HES1|VHL|EPHB2|SKIL|SMAD7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Table 3. Gene ontology enrichment analysis for the genes in the 35 gene list 
 
GO Term #gene

s in 
set 

genes in set 

regulation of smooth muscle cell 
migration 

3 ITGA2|SERPINE1|TRIB1 

cell differentiation 12 SEMA7A|UHRF2|CHST11|GADD45B|ITGA2|SPHK1|FN1|FZD8|ULK1|JARID2|FSTL3|IGF1R 

cellular developmental process 12 SEMA7A|UHRF2|CHST11|GADD45B|ITGA2|SPHK1|FN1|FZD8|ULK1|JARID2|FSTL3|IGF1R 

regulation of cell migration 5 ITGA2|SPHK1|SERPINE1|TRIB1|IGF1R 

developmental growth 4 CHST11|SERPINE1|PLAUR|ULK1 

negative regulation of smooth 
muscle cell migration 

2 SERPINE1|TRIB1 

regulation of cellular component 
movement 

5 ITGA2|SPHK1|SERPINE1|TRIB1|IGF1R 

regulation of locomotion 5 ITGA2|SPHK1|SERPINE1|TRIB1|IGF1R 

positive regulation of cell 
migration 

4 ITGA2|SPHK1|SERPINE1|IGF1R 

positive regulation of cellular 
component movement 

4 ITGA2|SPHK1|SERPINE1|IGF1R 

positive regulation of locomotion 4 ITGA2|SPHK1|SERPINE1|IGF1R 

regulation of protein metabolic 
process 

7 NDUFA13|ITGA2|SPHK1|SERPINE1|PLAUR|JARID2|TRIB1 

regulation of cellular component 
organization 

6 ITGA2|SPHK1|SERPINE1|FN1|ULK1|JARID2 

positive regulation of smooth 
muscle contraction 

2 ITGA2|SPHK1 

growth 4 CHST11|SERPINE1|PLAUR|ULK1 

positive regulation of cellular 
component organization 

4 ITGA2|SPHK1|SERPINE1|JARID2 

positive regulation of muscle 
contraction 

2 ITGA2|SPHK1 

regulation of cell proliferation 7 CHST11|ITGA2|SPHK1|SERPINE1|JARID2|TRIB1|IGF1R 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Supplementary table 4. TCGA analysis not significant effect cox p >0.05 
 
 
Cancer 
type  

Patient 
count 

Death 
Observed 

HR Cox p 

BRCA 1131 104 1.1116 0.3268 
UCEC 555 45 1.2440 0.1955 
HNSC 518 167 1.1604 0.0748 
PRAD 505 8 1.3992 0.4090 
THCA 504 14 1.0754 0.8104 
COAD 499 59 0.8250 0.1646 
LUSC 489 154 1.0746 0.3913 
LIHC 369 89 1.1355 0.2679 
OV 337 185 1.0028 0.9721 
KIRP 287 32 1.2456 0.2371 
STAD 279 77 1.2858 0.0571 
SARC 257 75 0.9090 0.4110 
PCPG 179 6 0.8633 0.7016 
READ 165 9 0.5978 0.3112 
GBM 156 53 1.1312 0.2311 
TGCT 133 3 0.9231 0.9001 
THYM 120 6 1.0127 0.9496 
ESCA 119 57 0.7878 0.6258 
SKCM 93 10 1.6624 0.2016 
UVM 80 13 1.4671 0.1305 
UCS 57 25 0.8913 0.5450 
DLBC 47 5 0.9887 0.9806 
CHOL 36 16 1.0232 0.9343 
 
Supplementary Table 4. Cancer types for which there is data available in TCGA but no significant 
differences between high and low CINP groups were detected. Table shows number of patients 
available, number of deaths reported, hazard ratio and cox model p value. See methods for analysis 
details. 
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