
An Evaluation of Asynchronous Software

Events on Modern Hardware

Kyle C. Hale

Department of Computer Science

Illinois Insitute of Technology

khale@cs.iit.edu

Peter A. Dinda

Department of EECS

Northwestern University

pdinda@northwestern.edu

Abstract—Runtimes and applications that rely heavily
on asynchronous event notifications suffer when such
notifications must traverse several layers of processing in
software. Many of these layers necessarily exist in order to
support a general-purpose, portable kernel architecture,
but they introduce considerable overheads for demand-
ing, high-performance parallel runtimes and applications.
Other overheads can arise from a mismatched event pro-
gramming or system call interface. Whatever the case, the
average latency and variance in latency of commonly used
software mechanisms for event notifications is abysmal
compared to the capabilities of the hardware, which can
exhibit orders of magnitude lower latency.

We leverage the flexibility and freedom of the previously
proposed Hybrid Runtime (HRT) model to explore the
construction of low-latency, asynchronous software events
uninhibited by interfaces and execution models commonly
imposed by general-purpose OSes. We propose several
mechanisms in a system we call Nemo which employs
kernel mode-only features to accelerate event notifications
by up to 4,000 times and we provide a detailed evaluation
of our implementation using extensive microbenchmarks.
We carry out our evaluation both on a modern x64
server and the Intel Xeon Phi. Finally, we propose a
small addition to existing interrupt controllers (APICs)
that could push the limit of asynchronous events closer to
the latency of the hardware cache coherence network.

I. INTRODUCTION

Many runtimes leverage event-based primitives as

an out-of-band notification mechanism that can signal

events ranging from task completions or arrivals to

message deliveries or changes in state. They may occur

between logical entities like processes or threads, or

they may happen at the hardware level. They often pro-

vide a foundation for building low-level synchronization

primitives like mutexes and wait queues. The correct

operation of parallel programs written for the shared-

memory model relies crucially on low-latency, mi-

croarchitectural event notifications traversing the CPU’s

cache coherence network. Our focus in this paper is

on asynchronous software events, by which we mean

events that a sending thread or handler can trigger

without blocking or polling, and for which the receiving

thread or handler can wait without polling.

Ultimately these events are just an instance of unidi-

rectional, asynchronous communication, so one might

expect little room for performance improvement. We

find, however, that the opposite is true. While a cache

line invalidation can occur in a handful of CPU cy-

cles and an inter-processor interrupt (IPI) can reach

the opposite edge of a many-core chip in less than

one thousand cycles, commonly used event signaling

mechanisms like user-level condition variables fail to

come within even three orders of magnitude of that

mark.

We can perhaps explain some of this vast difference

by appealing to feature creep and arguing that however

well designed, bloated operating system functionality

ultimately hinders performance. However, the sheer

effort put into and success of highly tuned OSes like

Linux limit the feasibility of this argument. Misuse or

abuse of kernel interfaces by programmers might be

a reasonable objection, but in our experience runtime

developers typically have the sophistication necessary

to extract every bit of performance out of the kernel and

the available machine, so this scenario is also unlikely. If

neither the implementation of the application nor OS are

to blame, how can we explain the poor performance of

asynchronous software event notifications? In this paper,

we argue that one of the biggest obstacles to approach-

ing the capabilities of the hardware may actually be

a fundamental issue with the structure of interactions

between the application/runtime and the OS kernel.

Ultimately, the use of a general-purpose kernel (such

as Linux), will necessarily involve a trade-off between

functionality and performance that can hinder the con-

struction of efficient asynchronous event mechanisms.

In such an environment, the latency of performance

critical operations for a particular application can suffer

due to kernel overheads introduced by layers of ab-

straction, multiprogramming facilities, fixed execution



models, and other instances where kernel code cannot

make any assumptions about the types of applications

and runtimes it will support.

In high-performance environments where low-latency

message delivery is critical, such overheads become

even more detrimental. Furthermore, many applications

use structured communication patterns that necessitate

synchrony among nodes and among hardware threads

within a node. Finally, nondeterminism caused by OS

noise or the hardware on a single node (even a single

CPU) will determine the performance of the applica-

tion as a whole [9], [10], [17]. In response to these

challenges and the perception among high-performance

application developers that operating systems can often

“get in the way”, we have seen the emergence of

lightweight kernels such as Catamount [24], Kitten [25]

and mOS [40], and hardware assists like RDMA for

high-speed interconnects like Infiniband [19]. These

systems observe the user-space/kernel-space distinction,

however.

For applications and runtimes with strict performance

requirements, the hybrid runtime (HRT) model presents

a rich opportunity for deterministic performance and

ultimate control over the machine. In this model, which

we elaborate on in Section II, the runtime (and applica-

tion) essentially is the kernel, and determines the kernel

abstractions it will use. An HRT has access to all of

the hardware capabilities of the machine, and can thus

leverage the hardware as necessary to achieve maximum

performance. Not only is such access fully privileged,

but there are also no privilege transitions.

The crux of this paper is to determine the hardware

limits for asynchronous event notification on today’s

hardware, particularly on x64 NUMA machines and the

Intel Xeon Phi, and then to approach those limits with

software abstractions implemented in an environment

uninhibited by an underlying kernel, namely an HRT

environment.

In the limit, an asynchronous event notification is

bounded from below by the signaling latency on a

hardware line. We measure and analyze inter-processor

interrupts (IPIs) on our hardware, arguing that they

serve as a first approximation for this lower bound.

We consider both unicast and broadcast event notifi-

cations, which are used in extant runtimes, and have

IPI equivalents. We then describe the design and imple-

mentation of Nemo, a system for asynchronous event

notifications in HRTs that builds on IPIs. Nemo presents

abstractions to the runtime developer that are identical

to the pthreads condition variable unicast and broadcast

mechanisms and thus are friendly to use, but are much

faster. Unlike IPIs, where a thread invokes an interrupt

handler on a remote core, these abstractions allow a

thread to wake another thread on a remote core. In

addition, Nemo provides an interface for unconventional

event notification mechanisms that operate near the IPI

limit.

As we show through a range of microbenchmarking

on both platforms, Nemo can approach the hardware

limit imposed by IPIs for the average latency and

variance of latency for asynchronous event notifications.

Unicast notifications in Nemo enjoy up to five times

lower average latency than the user-level pthreads con-

structs and the Linux futex construct, while broadcast

notifications have up to 4,000 times lower average

latency. Furthermore, the variance seen in Nemo is

up to an order of magnitude lower for unicast, and

many orders of magnitude lower for broadcast. Finally,

Nemo can deliver broadcast events with much higher

synchrony, exhibiting nearly identical latency to all

destinations.

We then speculate about a small hardware change that

would reduce the hardware limit (and Nemo’s latency).

Our measurements suggest that a large portion of IPI

cost stems from the interrupt dispatch mechanism. The

syscall/sysret instructions avoid similar costs for

hardware thread-local system calls by avoiding this dis-

patch overhead. We propose that syscall be included

as an IPI type. When receiving a “remote syscall”

IPI, the faster dispatch mechanism would be used,

reducing IPI costs for specific asynchronous events such

as those in Nemo.

We make the following contributions:

• We outline the drawbacks of asynchronous event
notifications in user-space, analyzing their performance
and showing just how far they are from the capabilities
of the hardware.

• We show how a runtime or application can alleviate
some of these drawbacks by leveraging low-level
hardware access and control (e.g. in an HRT).

• We present Nemo, an HRT-based event notification
system which consists of three new notification
mechanisms.

• We present an evaluation of Nemo’s mechanisms
using extensive microbenchmarks which show that they
approach the hardware limits imposed by the IPI
mechanism of the platform.

• We propose a further hardware assist for event
notification in a kernel-mode environment, such as
HRTs.

Nemo is currently available as an open-source extension

of the Aerokernel platform, which we describe in the

next section.

II. HRTS AND AEROKERNEL

The hybrid runtime (HRT) model [15], [16] and the

design and implementation of Aerokernel, an open-



Parallel App

Parallel Runtime

General Kernel

Node HW

User Mode 

Kernel Mode 

Parallel App

Hybrid Runtime
(HRT)

Node HW

User Mode 

Kernel Mode 

(a) Current Model (b) Hybrid Runtime Model 

P
e
r
fo

r
m

a
n

c
e
 P

a
th

 

Fig. 1: HRTs as compared to the existing model. The

runtime and application now act as the kernel.

Paging Thread Misc Timers 

Hardware 

Ints 

A
e

ro
k

e
rn

e
l 

Topo 
Synch/
Events 

Kernel Mode 

User Mode (Nothing) 

H
R

T
 

K
e

rn
e

l 

Alloc 

Parallel Runtime 

PagingThread MiscTimers IntsTopo
Synch/
Events 

Alloc

Parallel Runtime Parallel Runtime PPPaarraalleel RRuunntimmmeePPPPPPPPPPPPPPPPaaaPaaaaPaaaaaaaaarrrrrrrraaaraaaaraalaaaalaaa llllllllll eeleleeeleleeeeeeeeellllllll RRRRRRRRRRRRRRRRRRuuuuuuuuunuuuunuuunnnnnnnnntntntnntntntntititttititt mmimimmmimimmmmmmmmmmmmmmmmmeeeeeeeeeeeeeeeePPPPPPPPPPPPPPPPaaaPaaPaaaaarrrrraaaraaalaaaalllllllllll eeleleelleeeeellllllll RRRRRRRRRRRRRRRRRRuuuuunuuunnnnnnntntntnnttttititttititt mmimimmiimmmmmmmmmmeeeeeeeeeePP ll l RRR tti

Parallel Application 

ro
k

e
rn

k
l

H
R

Te
e

Full Privileged HW Access 

Fig. 2: Structure of Aerokernel.

source framework to support the model, was driven

by the study of parallel runtimes including Legion [1],

the NESL VCODE engine [4], the SWARM data flow

runtime [26], ParalleX [21], Charm++ [22], the futures

and places parallelism extensions to the Racket run-

time [34], [35], [33], and nested data parallelism in

Manticore [13], [12] and Haskell [5], [6].

A common observation is that parallel runtimes often

internally create abstractions and solve problems similar

to those addressed by OS kernels. They do so without

the advantage of running in kernel mode and are thus

unable to leverage hardware functionality that could

help. Additionally, parallel runtime developers typically

perceive—often accurately—that the OS abstractions

made available to them by general purpose or even

lightweight kernels are poorly matched to their needs.

The HRT model promotes a runtime to the same

privilege as a kernel. In fact, the runtime (together with

the application) acts as the kernel, enjoying access to

the full capability set of the machine and ultimately

determining the set of abstractions exposed to the ap-

plication. Figure 1 depicts this model.

Aerokernel was developed to facilitate porting ex-

isting runtimes to become HRTs, and to develop new

HRTs from scratch. Aerokernel implements basic kernel

functionality and building blocks that can be leveraged

by HRT developers. In the style of libOS [8], [20],

the HRT or application may or may not choose to

use these building blocks. They are simply offered

for convenience. Nemo is one such building block of

our own design. Aerokernel links with the runtime

and application to form a full kernel that (currently)

operates on x64 and Intel Xeon Phi hardware. Aeroker-

nel eschews general purpose, non-performance-critical

kernel features. These can instead be delegated to a

general-purpose OS running alongside the HRT. Fig-

ure 2 illustrates Aerokernel in the HRT context. Because

Aerokernel provides a simple, fast, and easily enhanced

kernel-mode environment, it gives us an ideal starting

point for exploring the limits of event notifications.

III. LIMITS OF EVENT NOTIFICATIONS

Our motivation in exploring asynchronous event noti-

fications in the HRT model stems from the observation

that many parallel runtimes use expensive, user-level

software events even though modern hardware already

includes mechanisms for low-latency event communica-

tion. However, these hardware capabilities are tradition-

ally reserved for kernel-only use. We discuss common

uses of event notification mechanisms, particularly for

task invocations in parallel runtimes, then present mea-

surements on modern multi-core machines for common

event-based primitives, demonstrating potential benefits

of a kernel-mode environment for low-latency events.

Our core question for this section is just how fast could

asynchronous event notification in current x64 and Phi

hardware go. We expect that our findings could also

apply to asynchronous events in other runtime environ-

ments that expose privileged hardware features or forego

traditional privilege separation such as Dune [2], IX [3],

and Arrakis [30].

A. Testbeds and Measurement

We carried out all measurements in this paper on two

machines. x64 is a large x86 64 node, similar to what

a supercomputer node might look like. It is a 2.1GHz

AMD Opteron 6272 (Interlagos) server machine with

64 cores and 128 GB of memory spread out across

four sockets and eight NUMA nodes. All CPU cores

in a single NUMA node share an L3 cache, and within

the NUMA nodes, CPUs form groups of four pairs

of hardware threads. Hardware threads (hyperthreads)

share an L1 i-cache and a unified L2 cache. Each

hardware thread has its own L1 d-cache. This machine

is configured for “Max performance” in the BIOS to

eliminate power management effects on measurement.

It also has a “freerunning” TSC, which means that

the TSC ticks at a constant rate regardless of the core

frequency. For Linux tests, it runs Red Hat 6.5 with

stock Linux kernel version 2.6.32. phi is an actively

cooled Intel Xeon Phi 3120A PCI accelerator. Our card

is set up with the Intel MPSS 3.4.2 toolchain and the

stock Linux µOS, which is based on kernel version

2.6.38.

Time measurement in both cases is with the cycle

counter and measurements are taken over at least 1000

runs (unless otherwise noted) with results shown as box



plots or CDFs and summary statistics overlaid in some

cases.

B. Runtime Events

In one common usage pattern of asynchronous event

notifications, a signaling thread notifies one or more

waiting (and not polling) threads that they should con-

tinue. The signaling thread continues executing regard-

less of the status of waiting threads.

In examining the usage of event notifications, we

worked with Charm++ [22], SWARM [26], and Le-

gion [1], [37], all examples of modern parallel runtimes.

They all use asynchronous events in some way, whether

explicitly through an event programming interface or

implicitly by runtime design. In many cases, these

runtimes use events as vehicles to notify remote workers

of available work or tasks that should execute.

Legion provides a good example. It uses an execution

model in which a thread (e.g., a pthread) implements a

logical processor. Each logical processor sequentially

operates over tasks. In order to notify remote logical

processors of tasks ready to execute, the signaling

processor broadcasts on a condition variable (e.g., a

pthread_cond_t) that wakes up any idle logical

processors, all of which race to claim the task for

execution. This process bears some similarity to the

schedule() interrupts used in Linux at the kernel

level. Since pthread_cond_broadcast() must

involve the kernel scheduler (via a system call), it is

fairly expensive, as we will show in Section III-C.

Linux’s futex abstraction attempts to ameliorate this cost

with mixed success.

C. Microbenchmarks

Figure 3 shows the latency for event wakeups on

x64 and phi. In each of these experiments, we create a

thread on a remote core. This thread goes to sleep until

it receives an event notification. We measure the time

from the instant before the signalling thread sends its

notification to when the remote thread wakes up. We

map threads to distinct cores. The numbers represent

statistics computed over 100 trials for each remote core

(6,300 trials on x64, 22,700 on phi).

We compare three mechanisms. The first two are the

most commonly used asynchronous event mechanisms

in user-space: condition variables and futexes. The

pthreads implementation of condition variables depicted

builds on top of futexes. The overhead of condition

variables compared to futexes may be significant, but

it is platform dependent or implementation dependent—

the average event wakeup latency of condition variables

is nearly double that of futexes on phi, but only a small

increment more on x64.

The third mechanism, denoted with “unicast IPI”

on the figure, shows the unicast latency of an inter-

processor interrupt (IPI). On x64 and phi, each hardware

thread has an associated interrupt controller (an APIC).

The APIC commonly receives external interrupts and

initiates their delivery to the hardware thread, but it

is also exposed as a memory-mapped I/O device to

the hardware thread. From this interface, the hardware

thread can program the APIC to send an interrupt (an

IPI) to one or more APICs in the system. APICs are

privileged devices and are typically used only by the

kernel.

We also considered events triggered using the MON-

ITOR/MWAIT pair of instructions present on modern

AMD and Intel chips. These instructions allow a hard-

ware thread to wait on a write to a particular range of

memory, potentially entering a low-energy sleep state

while waiting. Because the entire hardware thread is

essentially blocked when executing the MWAIT in-

struction, we did not include a comparison with this

technique.

Figure 3 shows that IPIs are, on average, much faster

than either condition variables or futexes. On x64, they

have roughly 16 times lower latency than either, while

on phi, they have roughly 32 times lower latency than

condition variables and 16 times lower latency than

futexes. On phi, the average IPI latency is only 740

cycles. The wall-clock time on the two machines is

similar, as x64 has roughly twice the clock rate.

IPIs are not doing the same thing as a condition

variable or a futex. The closest user-level analog to the

IPI is signal delivery. While the runtimes we examined

do not directly use signal delivery, it is instructive

to compare. The minimum measured one-way signal

delivery latency was 10.8K cycles on x64 and 10.3K

cycles on phi. These latencies are an order of magnitude

higher than the IPI latency these platforms are capable

of. For IPIs, we measure the time from the instant before

the signaling thread sends its notification to when the in-

terrupt handler begins executing, not the waiting thread.

We measure the IPI time because this latency represents

a lower bound for a wakeup mechanism using existing

hardware functionality on commodity machines. There

is significant room for an improvement of more than an

order of magnitude (∼20x). We will attempt to achieve

this improvement in Section IV by moving towards a

purely asynchronous mechanism enabled by the HRT

environment.

We observe that not only is the average time much

lower for an IPI, but its variance is also diminished



 0

 5000

 10000

 15000

 20000

 25000

 30000

pt
hr

ea
d 

co
nd

va
r

fu
te

x 
w
ak

eu
p

un
ic
as

t I
P
I

µ = 25176.5

min  = 1145
max  = 29955

σ = 3698.93

µ = 24640.5

min  = 81
max  = 29996

σ = 3750.51

µ = 1572.68

min  = 1150
max  = 17397

σ = 523.279

C
y
c
le

s
 t
o
 W

a
k
e
u
p

(a) x64

pt
hr

ea
d 

co
nd

va
r

fu
te

x 
w
ak

eu
p

un
ic
as

t I
P
I

µ = 25722.7

min  = 24333
max  = 27834

σ = 618.407

µ = 15637.4

min  = 13311
max  = 22343

σ = 1173.37

µ = 740.85

min  = 732
max  = 761

σ = 5.71205

(b) phi

Fig. 3: Comparing existing unicast event wakeups in user-mode (pthreads and futexes on Linux) with IPIs on x64

and phi. Unicast IPIs are at least an order of magnitude faster and exhibit much less variation in performance on

both platforms.

considerably. As we noted in the introduction, variance

in performance limits parallel runtime performance and

scalability. This is an OS noise problem. The hardware

has fewer barriers to predictable performance.

Broadcast events are of significant interest in parallel

runtimes, for example in Legion as described above.

Figure 4 shows the wakeup latency for a broadcast

event on x64, again comparing a condition variable

based approach in pthreads, Linux futex, and IPIs.

Measurements here operate as with the unicast events,

but we additionally keep track of time of delivery on

every destination so we can assess the synchronicity of

the broadcasts.

The relative latency improvements for broadcasts

with condition variables and futexes are similar to the

unicast case, but the gain from using broadcast IPIs is

much larger. On phi (not shown), the average latency

of a broadcast IPI received by all targets is over 4,000

times lower than for a mechanism based on condition

variables. The gain in variance is similarly startling. On

x64, this gain is 78 times. While broadcast IPIs exploit

the hardware’s own parallelism, the implementations of

all the other techniques are essentially serialized in a

loop that wakes up waiting threads sequentially. In part

this difference between phi and x64 is simply that the

Phi has almost four times as many cores. While one

could argue that a programmer should choose a barrier

over a condition variable to signal a wakeup on multiple

cores, barriers lack the asynchrony needed for these

kinds of event notifications.

We should also hope that a broadcast event causes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  10000  100000  1×10
6

C
D

F

σ

pthread condvar
futex broadcast

broadcast IPI

HW lower bound

user-mode events

~70x

Fig. 5: CDF comparing the σs for various broadcast

(one-to-all) wakeup mechanisms in user-space vs. IPIs

on x64. Broadcast IPIs achieve a synchrony that is three

orders of magnitude better than that achieved by pthread

condition variables or Linux futexes.

wakeups to occur across cores with synchrony; when

a broadcast event is signaled, we would like all recipi-

ents to awaken as close to simultaneously as possible.

However, Figures 5 and 6 show that this is clearly

not the case for the condition variable or futex-based

broadcasts. Recall that we measure the time of the

wakeup on each destination. For one broadcast wakeup,

we thus have as many measurements as there are cores,

and we can compute the standard deviation (σ) among

them. In these figures, we repeat this many times and

plot the CDFs of these σ estimates. Note that in the

figures the x-axes are on a log scale. On these platforms,



 0

 500000

 1×10
6

 1.5×10
6

 2×10
6

 2.5×10
6

pt
hr

ea
d 

co
nd

va
r

fu
te

x 
w
ak

eu
p

br
oa

dc
as

t I
P
I

µ = 995795

min  = 17538
max  = 2.17277e+06

σ = 544512

µ = 370630

min  = 16402
max  = 1.89553e+06

σ = 199680

µ = 12827.3

min  = 1252
max  = 57467

σ = 2931.32

C
y
c
le

s
 t
o
 W

a
k
e
u
p

(a) x64

pt
hr

ea
d 

co
nd

va
r

fu
te

x 
w
ak

eu
p

br
oa

dc
as

t I
P
I

µ = 5.64881e+06

min  = 31743
max  = 1.17807e+07

σ = 3.08505e+06

µ = 2.25096e+06

min  = 28545
max  = 4.55009e+06

σ = 1.27551e+06

µ = 1153.68

min  = 1016
max  = 1225

σ = 17.1824

(b) phi

Fig. 4: Comparing existing user-space event broadcasts vs. IPIs on x64 and phi. Broadcast IPIs have over 4000

times lower latency than condition variables and almost 2000 times lower latency than futexes on phi. x64 shows

78 times lower latency than condition variables and 30 times lower latency than futexes. Variance in latency is

similarly reduced.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000  100000  1×10
6

 1×10
7

C
D

F

σ

pthread condvar
futex broadcast

broadcast IPI

HW lower bound

user-mode events

~79000x

Fig. 6: CDF comparing the σs for various broadcast

(one-to-all) wakeup mechanisms in user-space vs. IPIs

on phi. Broadcast IPIs achieve a synchrony that is five

orders of magnitude better than that achieved by pthread

condition variables or Linux futexes.

there are orders of magnitude difference in the degree of

synchrony in wakeups achievable on the hardware and

what is actually achieved by the user-space mechanisms.

D. Discussion

The large gap between the performance of asyn-

chronous software events in user-mode and the hardware

capabilities should cause concern for runtime develop-

ers. Not only do these latencies indicate that software

wakeups may happen roughly on the millisecond time-

scale of a slow network packet delivery, but also that the

programmer can do little to ensure that these wakeups

occur with predictable performance. The problem is

worse for broadcast events, and the problem appears

to scale with increasing core count.

Recall again that we claim IPIs are a hardware limit to

asynchronous event notifications, and that it is important

to understand that an IPI is not an event notification by

itself. The goal of Nemo is to achieve event notifications

compatible with those expected by parallel runtimes

with performance that approaches that of IPIs, as well as

to offer unconventional mechanisms that tradeoff ease

of use for performance near the IPI limit.

IV. NEMO EVENTS

Nemo is an asynchronous event notification system

for HRTs built within an Aerokernel framework. Nemo

addresses the performance issues of asynchronous user-

space notifications by leveraging hardware features not

commonly available to runtime or application develop-

ers. That is, they are enabled by the fact that the entire

HRT runs in kernel mode.

The goal of Nemo is to approach the hardware IPI

latency profile. Figure 7 represents in detail the kind

of profile we would like to achieve. We expect that

these numbers, which were measured on x64, will tell

us something about the machine, given its complex

organization. The knees in the curve (marked with black

circles) indicate boundaries in the IPI network. While

we could not find reliable documentation from AMD or

other parties on the topology of the IPI network on this

machine, we are confident that these inflection points



 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  1200  1400  1600  1800  2000  2200  2400

C
D

F

Cycles mesaured from BSP (core 0)

95
th

 percentile = 1728 cycles

socket

NUMA domain

physical core

logical core

Fig. 7: CDF of unicast IPI latency from the Bootstrap

Processor (BSP) to all other cores on x64. Approaching

this profile is the goal of Nemo.

correspond to distances within the chip hierarchy as

indicated in the captions. As Nemo begins to exhibit

similar behavior, we will know we are near the limits

of available hardware.

Unicast IPI latencies on our phi card (not shown) are

smaller and show less pronounced inflection points. We

suspect this stems from its use of a single-chip processor

with a balanced interconnect joining the cores.

A. Kernel-mode Condition Variables

Existing runtimes, such as Legion, use pthreads fea-

tures in their user-space incarnations. Aerokernel tries to

simplify the porting of such runtimes to become HRTs.

To support thread creation, binding, context switching,

and similar elements, Aerokernel provides a pthreads-

like interface for its kernel threads. Default thread

scheduling (round-robin with or without preemption—

preemption is not used here) and mapping policies

(initial placement by creator, no migration) are intended

to be simple to reason about. Similarly, memory alloca-

tion is NUMA-aware and based on the calling thread’s

location, not by first touch.

For Nemo, the relevant event mechanism in

pthreads is the condition variable, implemented in the

pthread_cond_X() family of functions. Nemo im-

plements a compatible set of these functions within

Aerokernel. There are two implementations. In the first,

there is no special interaction with the scheduler. When

a waiting thread goes to sleep on a condition variable,

it puts itself on the condition variable’s queue and

deschedules itself. When a signaling thread invokes

condvar_signal(), this function will put the wait-

ing thread back on the appropriate processor’s ready

queue. The now signaled thread will not run until the

processor’s background thread yield()s. We would

 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex w
akeup

Aerokernel c
ondvar

Aerokernel c
ondvar +

 IP
I

unicast IP
I

μ = 25176.5

min  = 1145
max  = 29955

σ = 3698.93

μ = 24640.5

min  = 81
max  = 29996

σ = 3750.51

μ = 9128.78

min  = 4195
max  = 29990

σ = 3025.12

min  = 4730
max  = 6392
μ = 5348.51
σ = 290.006

min  = 1150
max  = 17397
μ = 1572.68
σ = 523.279

C
y
c
le

s
 t

o
 W

a
k
e
u
p

Nemo

Fig. 8: Nemo kernel-mode event mechanisms for single

wakeups on x64. Average latency is reduced by over a

factor of four, and variation is considerably reduced.

expect this implementation to increase performance sim-

ply by eliminating user/kernel transitions from system

calls, e.g. the futex() system call.

The second implementation uses a more sophisticated

interaction with the scheduler in order to better support

common uses in runtimes like Legion and SWARM.

In these, the threads that are sleeping on condition

variables are essentially logical processors. Ideally each

one would map to a single physical CPU and would not

compete for resources on that CPU. Scheduling of tasks

(Legion tasks or SWARM tasks, not kernel threads) are

handled by the runtime, so kernel-level scheduling is

superfluous. The condition variable in such systems is

used essentially to awaken logical processors.

On a condvar_signal() our second implementa-

tion sends an IPI to “kick” the physical processor of the

newly runnable thread. The scheduler on the physical

processor can then immediately switch to it. The kick

serves to synchronize the scheduling of the sleeping

thread, reducing the effects of background threads that

may be running.

Figures 8 and 9 show the performance of these two

implementations compared to the existing user-space

techniques and to the unicast IPI. Our first imple-

mentation (“Aerokernel condvar”) roughly halves the

median latency of user-mode event wakeups on both x64

and phi. This latency improvement represents a rough

estimate of the speedup achieved solely by moving the

application/runtime into kernel-mode, thus avoiding ker-

nel/user transition and other implementation overheads.

The implementation does, however, exhibit considerable

variance in wakeup latency. This is because the wakeup

time depends on how long it takes for the CPU’s

background thread to yield() again.



 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex w
akeup

Aerokernel c
ondvar

Aerokernel c
ondvar +

 IP
I

unicast IP
I

μ = 25722.7

min  = 24333
max  = 27834

σ = 618.407

μ = 15637.4

min  = 13311
max  = 22343

σ = 1173.37

μ = 9014.73

min  = 5528
max  = 14074

σ = 2507.14

min  = 5953
max  = 7305
μ = 6483.89
σ = 213.517

min  = 732
max  = 761
μ = 740.85
σ = 5.71205

C
y
c
le

s
 t

o
 W

a
k
e
u
p

Nemo

Fig. 9: Nemo kernel-mode event mechanisms for single

wakeups on phi. Average latency is reduced by over a

factor of four and variation is considerably reduced.

 0

 500000

 1×10
6

 1.5×10
6

 2×10
6

 2.5×10
6

pthread condvar

futex w
akeup

Aerokernel c
ondvar

Aerokernel c
ondvar +

 IP
I

broadcast IP
I

μ = 995795

min  = 17538
max  = 2.17277e+06

σ = 544512

μ = 370630

min  = 16402
max  = 1.89553e+06

σ = 199680

μ = 265820

min  = 3258
max  = 612959

σ = 159421

min  = 7842
max  = 464015
μ = 132417
σ = 98637.4

min  = 1252
max  = 57467
μ = 12827.3
σ = 2931.32

C
y
c
le

s
 t
o
 W

a
k
e
u
p

Nemo

Fig. 10: Nemo kernel-mode event mechanisms for

broadcast wakeups on x64. Average latency is reduced

by a factor of 10 and variation is considerably reduced.

Our second implementation (“Aerokernel condvar +

IPI”) ameliorates this variation, and further reduces

average and median latency. The use of the IPI kick

collapses the median latency of the wakeup down to the

minimum latency of the standard kernel-mode condition

variable. The variance in this case is much lower than

all of the other wakeup mechanisms.

Figures 10 and 11 show the performance of broadcast

events, where the gain is larger (a factor of 10–16).

Figures 12 and 13 show the improvement of the syn-

chrony of broadcast event wakeups. This is improved

by a factor of 10 on both platforms. Section III-C gives

a description of the format of the latter two figures and

a discussion of broadcast IPIs.

In the current Nemo implementations for broadcast

events, the signaling thread moves each waiting thread

to its processor’s run queue and then (in the second

 0

 2×10
6

 4×10
6

 6×10
6

 8×10
6

 1×10
7

 1.2×10
7

pthread condvar

futex w
akeup

Aerokernel c
ondvar

Aerokernel c
ondvar +

 IP
I

broadcast IP
I

μ = 5.64881e+06

min  = 31743
max  = 1.17807e+07

σ = 3.08505e+06

μ = 2.25096e+06

min  = 28545
max  = 4.55009e+06

σ = 1.27551e+06

μ = 1.02075e+06

min  = 7199
max  = 7.25596e+06

σ = 1.1411e+06 min  = 8267
max  = 3.93142e+06
μ = 558155
σ = 428849

min  = 1016
max  = 1225
μ = 1153.68
σ = 17.1824

C
y
c
le

s
 t

o
 W

a
k
e
u
p

Nemo

Fig. 11: Nemo kernel-mode event mechanisms for

broadcast wakeups on phi. Average latency is reduced

by an factor of 16 and variation is considerably reduced.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  10000  100000  1×10
6

C
D

F

σ

pthread condvar
futex broadcast
Aerokernel condvar
Aerokernel condvar + IPI
broadcast IPI

HW lower bound

user-mode

events

Nemo events

(kernel-mode)

2x

Fig. 12: CDF showing the Nemo kernel-mode event

mechanisms for broadcast wakeups on x64. Nemo

achieves an order of magnitude better synchrony in

thread wakeups.

implementation) kicks that processor with an IPI. Al-

though there is considerable overlap between context

switches, in-flight IPIs, and moving the next thread to its

run queue, we expect that this sequential behavior of the

signaling thread is a current limit on the broadcast event

mechanism both in terms of average/median latency and

in terms of synchrony of the awakened threads. This

is in contrast to the IPI broadcast in hardware, which

is inherently parallel and exhibits significant synchrony

in arrivals, as indicated in the figures and previous

discussions.

B. IPIs and Active Messages

In the previous section, we introduced Nemo events

which were built to conform to the pthreads program-

ming interface, particularly condition variables. With the



 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000  100000  1×10
6

 1×10
7

C
D

F

σ

pthread condvar
futex broadcast
Aerokernel condvar
Aerokernel condvar + IPI
broadcast IPI

HW lower bound

Nemo events

(kernel-mode) 

user-mode 

events

4x

Fig. 13: CDF showing the Nemo kernel-mode event

mechanisms for broadcast wakeups on phi.

CORE 0 NCORES - 1
Action Lookup Table 

0x000000001000076AAction  
For 

Event ID 2 

Action Descriptor Table 

Signaling Thread 

Receiving Thread 

Event IPI 
 Handler 

Incoming  

Event 

 IPI 

1 2 3 4

(1) 

(2) 

(3) 

Fig. 14: Nemo Active Message-inspired event wakeups

implemented using IPIs.

inherent limitations of this interface and the privileged

hardware available to us in an HRT in mind, we

now explore a new event mechanism with a different

interface built directly on top of IPIs. The mechanism

is also informed by how pthreads condition variables

are actually used in Legion and SWARM, namely to in-

directly implement behavior via user-level mechanisms

that can be directly implemented in the kernel context.

For space reasons, we omit performance figures for phi

in this section, as the shapes of the graphs for both

machines are similar.

We claim that Active Messages [38] would better

match the functional behavior that event-based runtimes

need. Active Messages enable low-latency message han-

dling for distributed memory supercomputers with high-

performance interconnects. Since a message delivery

is ultimately just one kind of asynchronous event, we

looked to Active Messages for inspiration on how to

approach the hardware limit for asynchronous software

events. In short, we use the IPI as the basis for an Active

Message model within the shared memory node.

In an Active Message system, the message payload

includes a reference (a pointer) to a piece of code on

the destination that should handle the message receipt.

One advantage of this model is that it reduces the

load on the kernel and results in a faster delivery

to the user-space application. Since the HRT is the

kernel, we do not need to avoid transferring control

to it on an event notification. Furthermore, since the

HRT is not a multi-programmed environment, we can

be sure that the receiving thread is a participant in

the parallel runtime/application, and thus has the high-

level information necessary to process the event. We

can eliminate handling overhead by leveraging existing

logic in the hardware already meant for handling asyn-

chronous events—in this case, IPIs. IPIs by themselves,

however, cannot implement a complete Active Message

substrate, as there is no payload other than the interrupt

vector and state pushed on the stack by hardware.

Figure 14 shows the design and control flow of our

Active Message-inspired event mechanism. We reserve

a slot in the Interrupt Descriptor Table (IDT) for a

special Nemo event interrupt, which will vector to a

common handler (1). If only one type of event is

necessary, this handler will be the final handler and thus

no more overhead is incurred. However, it is likely that a

runtime developer will need to use more than one event.

In this case, the common handler will lookup an event

action (a second-level handler) in an Action Lookup

Table (ALT), which is indexed by its core ID (2). From

this table, we find an action ID, which serves as an

index into a second table called the Action Descriptor

Table (ADT). The ADT holds actions that correspond

to events. After the top-level handler indexes this table,

it then executes the final handler (3). The IPI is used

to deliver the active message, while the Action Table

effectively contains its content.

Figure 15 shows a CDF of the latency of Nemo’s

Active Message-inspired events compared to the unicast

IPI. In all cases Nemo events are only roughly 40 cycles

slower on phi (not shown) and 100 cycles slower on

x64. We are now truly close to the capabilities of the

hardware as evidenced by the performance and by the

observed sensitivity to the hardware topology, which is

implied by the knees in the IPI latency profile (e.g.

in Figure 7). Note that the user-space signal delivery

latencies discussed in Section III-C are more than

double the latency of Nemo’s “Aerokernel condvar +

IPI” mechanism. Furthermore, Nemo’s Active Message-

inspired event wakeups approach IPI latency, and thus

are also an order of magnitude faster than user-space

signals.

Figure 16 shows the latency of Active Message-



 0

 0.2

 0.4

 0.6

 0.8

 1

 1200  1400  1600  1800  2000

C
D

F

Cycles mesaured from BSP (core 0)

unicast IPI
nemo event notify

95
th

% = 1728

95
th

% = 1824

~100 cycles

Fig. 15: CDF showing unicast latency of Nemo’s Active

Message-inspired events compared to unicast IPIs on

x64. Nemo lies within ∼5% of IPI performance.

 0

 5000

 10000

 15000

 20000

 25000

 30000

IP
I b

ro
ad

ca
st

N
em

o 
br

oa
dc

as
t

µ = 12792

min  = 1252
max  = 26838

σ = 2718.73

µ = 12958

min  = 1376
max  = 29703

σ = 2819.29

C
y
c
le

s
 t
o
 W

a
k
e
u
p

Fig. 16: Broadcast latency of Nemo’s Active Message-

inspired events compared to broadcast IPIs on x64.

Performance is nearly identical.

inspired Nemo events compared to broadcast IPIs. The

performance of Nemo events are within tens of cycles of

broadcast IPIs, as we would expect. Figure 17 shows the

amount of synchrony present in Nemo events. We give

an explanation of this type of figure in Section III-C.

V. TOWARDS IMPROVING THE HARDWARE LIMIT

Although we have shown a marked improvement for

asynchronous software events using hardware features

(IPIs in particular) that are not commonly available

to user-space programs, we would like to calibrate

this performance to another hardware capability that

is critical to the performance of multicore machines,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000

C
D

F

σ

IPI broadcast

Nemo broadcast

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
5

2
0

 2
6

1
0

 2
7

0
0

 2
7

9
0

~50 cycles

Fig. 17: CDF comparing Nemo’s Active Message-

inspired broadcast events to broadcast IPIs on x64.

Synchrony is nearly identical.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000

C
D

F

Cycles mesaured from BSP (core 0)

unicast IPI
synchronous event (mem polling)

coherence

network

interrupt

network

Fig. 18: CDF comparing latency of asynchronous uni-

cast IPIs compared to a simple synchronous notification

scheme using memory polling on x64. This represents

the basic cost difference between a synchronous and

asynchronous event imposed by the hardware.

namely the cache coherence network. The question we

ask here is can we improve the hardware limit?

Mogul et al. lamented this issue [28] while advocating

for lightweight, inter-core notifications: “Unfortunately,

today IPIs are the only option.”

The coherence network in a modern CPU propagates

its own form of events between chips, namely mes-

sages that implement the protocol that maintains the

coherence model. Not only do we expect the coherence

network connecting the chips and the associated logic

to have low latency but also predictable performance.

How fast is this network from the perspective of

event notification in general? We implemented a small

synchronous event mechanism using memory polling to

assess this. In this mechanism, much like in a barrier

or a spinlock, the waiting thread simply spins on a



Software event min. cycles

Source APIC write 43

Destination handling 729

Communication delay 378

Total for unicast IPI 1150

Total for syscall 232

Fig. 19: Estimated IPI cost breakdown in cycles on x64.

memory location waiting for its value to change. When

a signaling thread changes this value, its core’s cache

controller will send a coherence message to the waiting

thread’s core, ultimately prompting a cache fill with

the newly written value, and an exit from the spin.

Figure 18 shows the performance of this synchronous

mechanism compared to the asynchronous mechanism

of unicast IPIs on our x64 hardware. IPIs are roughly

1000 cycles more expensive until the notifications (or

invalidations) have to travel further through the chip

hierarchy and off chip. The stepwise nature of the

“coherence network” curve confirms our prediction of

predictable, low-latency performance.

These results prompted us to ask a new question:

what prevents the IPI network from achieving per-

formance comparable to the coherence network? To

address this question, we performed an analysis of IPIs

from the kernel programmer’s perspective, gathering

measurements for the hardware and software events

necessary for their delivery. Figure 19 shows the results.

The latency of a unicast IPI involves three com-

ponents. The first, “Source APIC write”, is the time

to initiate the IPI by writing the APIC registers ap-

propriately at the source. In the figure, we record the

minimum time we observed. The second component,

denoted “Destination handling,” is the time required

at the destination to handle the interrupt, going from

message delivery to the time of the first interrupt handler

instruction. To estimate this number, we measured the

minimum latency from initiating a software interrupt

(via an int instruction) to the entry of its handler on

the same core. We expect that this number is actually an

underestimate since it does not include any latency that

might be introduced by processing in the destination

APIC. The “Communication delay” is simply these

two numbers subtracted from the total unicast IPI cost

shown in Section III-C. It is likely to be an overestimate.

Integrating the observations of Figures 18 and 19

suggests that the reason why an asynchronous IPI has

so much higher latency than a synchronous coherence

event is likely to be due, in large part, to the des-

tination handling costs of an IPI. For asynchronous

event notification in an HRT, much of this handling is

probably not needed—we would like to simply invoke

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000

C
D

F

Cycles mesaured from BSP (core 0)

unicast IPI
synchronous event (mem polling)
projected remote syscall

cost of dest.

handling

Fig. 20: CDF of the projected latency of the proposed

“remote syscall” mechanism. This comparison is made

relative to the measured latencies of Figure 18.

a remote function, much like a Startup IPI (SIPI)

available on modern x86 machines. In particular, the

privilege checks, potential stack switches, and stack

pushes involved in an IPI are unnecessary.

A similar issue was addressed a decade ago when

it was shown how much overhead was involved in

processing of the int instruction used in system calls,

especially as clock speeds grew disproportionally to

interrupt handling logic. Designers at Intel and AMD

introduced the syscall and sysret instructions to

reduce this overhead considerably. Figure 19 notes the

cost of a syscall on our x64 hardware, which is less

than 1/3 of our estimated destination handling costs for

an IPI.

We believe a similar modification to the architecture

could produce comparable benefits for low-latency event

delivery and handling. The essential concept is to in-

troduce a new class of IPIs, the “remote syscall”.

This would combine the IPI generation and transmission

logic with the syscall logic on the destination core.

That is, this form of IPI would act like a syscall

to the remote core, avoiding privilege checks, stack

switches, or any stack accesses. To estimate the gains

from this model, we made a projection of IPI per-

formance if one could reduce destination handling to

the cost of a syscall instruction. Figure 20 shows

the projected improvements. There is now considerable

overlap in the performance of synchronous events based

on the coherence network and asynchronous events

based on the new “remote syscall”.

Current Intel APICs use an Interrupt Command Reg-

ister (ICR), to initiate IPIs. The delivery mode field,

which is 3 bits long, indicates what kind of interrupt

to deliver. Mode 011 is currently reserved, so this



is a possible candidate for a remote syscall mode.

There are, of course numerous varieties of the APIC

model between Intel and AMD, but the ICR is a 64

bit register with numerous reserved bits in all of them.

Any of these bits could be used to encode a request

for a “remote syscall”. As another example, the 2

bit wide delivery shorthand field could be extended

into the adjacent reserved field by one bit to accom-

modate indicating whether delivery should happen by

the traditional interrupt mechanism or via syscall-

like handling. In these delivery modes or shorthands,

the vector might provide a hint to the event handling

dispatch software. We expect that these changes would

be minimal, although we do not know what effort

would be needed to integrate this new functionality with

instruction fetch logic. The fact that a SIPI can already

vector the core to a specific instruction suggests to us

that it might not introduce much new logic. Indeed,

another possible approach might be to allow SIPIs when

the core is outside of its INIT state.

VI. RELATED WORK

The real-time OS community has studied asyn-

chronous events in depth, focusing on events in contexts

such as predictable interrupt handling [31], priority

inversion [32], and fast vectoring to user-level code [14].

However, this work does not consider the design of

asynchronous events in a context where the applica-

tion/runtime has kernel-mode privileges and full access

to hardware, as in an HRT.

Thekkath and Levy introduced a mechanism [36]

to implement user-level exception handlers—instances

of synchronous events in our terminology—to mitigate

the costs of the privilege transitions we discussed in

Section I. The motivation for this technique mirrors

motivations for RDMA-based techniques we see used

in practice today. In contrast, Nemo’s design focuses

on asynchronous events.

Horowitz introduced a programmable hardware tech-

nique for Informing Memory Operations, which vector

to a user-level handler with minimal latency on cache

miss events [18]. These events bear more similarities

to exceptions than to asynchronous events, especially

those originating at a remote core.

Keckler et al. introduced concurrent event handling,

in which a multithreaded processor reserves slots for

event handling in order to reduce overheads incurred

from thread context switching [23]. Chaterjee discusses

further details of this technique, particularly as it ap-

plies to MIT’s J-Machine [29] and M-Machine [11]. A

modern example of this technique can be found in the

MONITOR and MWAIT instruction pair. We discuss

how this type of technique differs from our goals in

Section III-C.

The Message Driven Processor (MDP), from which

the J-Machine was built, had hardware contexts specif-

ically devoted to handling message arrivals [7]. Fur-

thermore, this processor had an instruction (EXECUTE)

that could explicitly invoke an action on a remote node.

This action could be a memory dereference, a call to a

function, or a read/write to memory. This is essentially

the capability that in Section V we suggested could

be implemented in the context of x64 hardware. It

is unfortunate that useful explicit messaging facilities

like those used in the MDP—save some emerging and

experimental hardware from Tilera (née RAW [27]) and

the RAMP project [39]—have not made their way into

commodity processors used in today’s supercomputers,

servers, and accelerators.

VII. CONCLUSIONS AND FUTURE WORK

We have shown how the performance of asyn-

chronous software events suffers when the applica-

tion/runtime is restricted to user-space mechanisms and

mismatched event programming interfaces. The per-

formance of these mechanisms comes nowhere near

the hardware limits of IPIs, much less cache coher-

ence messages. By leveraging the HRT model, wherein

the runtime and application can execute with fully

privileged hardware access, we increased the perfor-

mance of these event mechanisms considerably. We

did so by designing, implementing, and evaluating the

Nemo asynchronous event system within the Aerokernel

framework for building HRTs on x64 and Xeon Phi.

HRTs built using Nemo primitives can enjoy event

wakeup latencies that are as much as 4,000 times lower

than the event mechanisms typically used in user-space.

Furthermore, the variation in wakeup latencies in Nemo

is much lower, allowing a greater degree of synchrony

between broadcasts to multiple cores. In addition to

Nemo, we also considered the design of IPIs themselves

and proposed a small hardware addition that could po-

tentially reduce their cost considerably for constrained

use cases, such as asynchronous event notification. We

showed that such additions can push the performance

of asynchronous software events closer to that of the

hardware cache coherence network.

We next plan to evaluate the performance effects of

these new mechanisms on existing parallel runtimes

(built as HRTs) and the difficulty of adapting these

runtimes to Nemo.



REFERENCES

[1] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion:
Expressing locality and independence with logical regions. In
Proceedings of Supercomputing (SC 2012), Nov. 2012.

[2] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis. Dune: Safe user-level access to privileged CPU
features. In Proceedings of the 10

th USENIX Conference on

Operating Systems Design and Implementation (OSDI 2012),
pages 335–348, Oct. 2012.

[3] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. IX: A protected dataplane operating system
for high throughput and low latency. In Proceedings of the

11
th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 2014), pages 49–65, Oct. 2014.
[4] G. E. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and

M. Zagha. Implementation of a portable nested data-parallel
language. Journal of Parallel and Distributed Computing,
21(1):4–14, Apr. 1994.

[5] M. Chakravarty, G. Keller, R. Leshchinskiy, and W. Pfannenstiel.
Nepal—nested data-parallelism in haskell. In Proceedings of

the 7
th International Euro-Par Conference (EUROPAR), Aug.

2001.
[6] M. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller, and

S. Marlow. Data parallel haskell: A status report. In Proceedings

of the Workshop on Declarative Aspects of Multicore Program-

ming, Jan. 2007.
[7] W. J. Dally, R. Davison, J. S. Fiske, G. Fyler, J. S. Keen,

R. A. Lethin, M. Noakes, and P. R. Nuth. The message-
driven processor: A multicomputer processing node with effi-
cient mechanisms. IEEE Micro, 12(2):23–39, Apr. 1992.

[8] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
An operating system architecture for application-level resource
management. In Proceedings of the 15

th ACM Symposium

on Operating Systems Principles (SOSP 1995), pages 251–266,
Dec. 1995.

[9] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing
application sensitivity to OS interference using kernel-level
noise injection. In Proceedings of Supercomputing (SC 2008),
Nov. 2008.

[10] K. B. Ferreira, P. G. Bridges, R. Brightwell, and K. T. Pedretti.
Impact of system design parameters on application noise sensi-
tivity. Journal of Cluster Computing, 16(1), Mar. 2013.

[11] M. Fillo, S. W. Keckler, W. J. Dally, C. N. P., A. Chang,
Y. Gurevich, and W. S. Lee. The M-Machine multicomputer.
In Proceedings of the 29

th Annual International Symposium on

Microarchitecture (MICRO 29), pages 146–156, Nov. 1995.
[12] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly threaded

parallelism in manticore. In Proceedings of the 13
th ACM

SIGPLAN International Conference on Functional Programming

(ICFP), Sept. 2008.
[13] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Manticore:

A heterogeneous parallel language. In Proceedings of the

Workshop on Declarative Aspects of Multicore Programming,
January 2007.

[14] G. Fry and R. West. On the integration of real-time asyn-
chronous event handling mechanisms with existing operating
system services. In Proceedings of the 2007 International

Conference on Embedded Systems and Applications (ESA 2007),
June 2007.

[15] K. C. Hale and P. A. Dinda. A case for transforming parallel
runtimes into operating system kernels. In Proceedings of

the 24
th ACM Symposium on High-performance Parallel and

Distributed Computing (HPDC 2015), June 2015.
[16] K. C. Hale and P. A. Dinda. Enabling hybrid parallel runtimes

through kernel and virtualization support. In Proceedings of

the 12
th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments (VEE 2016), pages 161–175,
Apr. 2016.

[17] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing
the influence of system noise on large-scale applications by
simulation. In Proceedings of Supercomputing (SC 2010), Nov.
2010.

[18] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith.
Informing memory operations: Providing memory performance
feedback in modern processors. In Proceedings of the 23

rd An-

nual International Symposium on Computer Architecture (ISCA

1996), pages 260–270, May 1996.
[19] InfiniBand Trade Association. InfiniBand Architecture Specifi-

cation: Release 1.0. InfiniBand Trade Association, 2000.
[20] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño,

R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie. Application performance and flexibility on
Exokernel systems. In Proceedings of the 16th ACM Symposium

on Operating Systems Principles (SOSP 1997), pages 52–65,
Oct. 1997.

[21] H. Kaiser, M. Brodowicz, and T. Sterling. ParalleX: An
advanced parallel execution model for scaling-impaired appli-
cations. In Proceedings of the 38

th International Conference

on Parallel Processing Workshops (ICPPW 2009), pages 394–
401, Sept. 2009.

[22] L. V. Kalé, B. Ramkumar, A. Sinha, and A. Gursoy. The
Charm parallel programming language and system: Part II–the
runtime system. Technical Report 95-03, Parallel Programming
Laboratory, University of Illinois at Urbana-Champaign, 1994.

[23] S. W. Keckler, A. Chang, W. S. Lee, S. Chatterjee, and W. J.
Dally. Concurrent event handling through multithreading. IEEE

Transactions on Computers, 48(9):903–916, Sept. 1999.
[24] S. M. Kelly and R. Brightwell. Software architecture of the

light weight kernel, Catamount. In Proceedings of the 2005

Cray User Group Meeting (CUG 2005), May 2005.
[25] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia,

P. Bridges, A. Gocke, S. Jaconette, M. Levenhagen, and
R. Brightwell. Palacios and kitten: New high performance
operating systems for scalable virtualized and native super-
computing. In Proceedings of the 24

th IEEE International

Parallel and Distributed Processing Symposium (IPDPS 2010),
Apr. 2010.

[26] C. Lauderdale and R. Khan. Towards a codelet-based runtime
for exascale computing. In Proceedings of the 2

nd International

Workshop on Adaptive Self-Tuning Computing Systems for the

Exaflop Era (EXADAPT 2012), pages 21–26, Mar. 2012.
[27] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar,

and S. Amarasinghe. Space-time scheduling of instruction-level
parallelism on a raw machine. In Proceedings of the 8

th Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS 1998), pages 46–
57, Oct. 1998.

[28] J. C. Mogul, A. Baumann, T. Roscoe, and L. Soares. Mind the
gap: reconnecting architecture and os research. In Proceedings

of the 13
th Workshop on Hot Topics in Operating Systems

(HotOS 2011), May 2011.
[29] M. D. Noakes, D. A. Wallach, and W. J. Dally. The j-machine

multicomputer: An architectural evaluation. In Proceedings

of the 20
th Annual International Symposium on Computer

Architecture (ISCA 1993), pages 224–235, May 1993.
[30] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy,

T. Anderson, and T. Roscoe. Arrakis: The operating system
is the control plane. In Proceedings of the 11

th USENIX

Symposium on Operating Systems Design and Implementation

(OSDI 2014), pages 1–16, Oct. 2014.
[31] P. Regnier, G. Lima, and L. Barreto. Evaluation of interrupt

handling timeliness in real-time linux operating systems. ACM

SIGOPS Operating Systems Review, 42(6):52–63, Oct. 2008.
[32] F. Scheler, W. Hofer, B. Oechslein, R. Pfister, W. Shröder-

Preikschat, and D. Lohmann. Parallel, hardware-supported
interrupt handling in an event-triggered real-time operating
system. In Proceedings of the 2009 International Conference on



Compilers, Architecture, and Synthesis for Embedded Systems

(CASES 2009), pages 167–174, Dec. 2009.
[33] J. Swaine, B. Fetscher, V. St-Amour, R. B. Findler, and M. Flatt.

Seeing the futures: Profiling shared-memory parallel Racket. In
Proceedings of the 1

st ACM SIGPLAN Workshop on Functional

High-performance Computing (FHPC 2012), Sept. 2012.
[34] J. Swaine, K. Tew, P. Dinda, R. Findler, and M. Flatt. Back

to the futures: Incremental parallelization of existing sequential
runtime systems. In Proceedings of the ACM SIGPLAN Inter-

national Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA 2010), October 2010.
[35] K. Tew, J. Swaine, M. Flatt, R. Findler, and P. Dinda. Places:

Adding message passing parallelism to racket. In Proceedings of

the 2011 Dynamic Languages Symposium (DLS 2011), October
2011.

[36] C. A. Thekkath and H. M. Levy. Hardware and software support
for efficient exception handling. In Proceedings of the 6

th Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS 1994), pages 110–
119, Oct. 1994.

[37] S. Treichler, M. Bauer, and A. Aiken. Language support
for dynamic, hierarchical data partitioning. In Proceedings of

the 2013 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2013), pages 495–514, Oct. 2013.
[38] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.

Active messages: a mechanism for integrating communication
and computation. In Proceedings of the 25

th Annual Interna-

tional Symposium on Computer Architecture (ISCA 1998), pages
430–440, July 1998.

[39] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis,
J. C. Hoe, D. Chiou, and K. Asanović. Ramp: Research
accelerator for multiple processors. IEEE Micro, 27(2):46–57,
Mar. 2007.

[40] R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen.
mOS: An architecture for extreme-scale operating systems. In
Proceedings of the 4

th International Workshop on Runtime and

Operating Systems for Supercomputers (ROSS 2014), pages 2:1–
2:8, June 2014.


