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ABSTRACT 

 

The PM4Silt plasticity model for representing low-plasticity silts and clays in geotechnical 

earthquake engineering applications is presented herein. The PM4Silt model builds on the framework 

of the stress-ratio controlled, critical state compatible, bounding surface plasticity PM4Sand model 

(version 3) described in Boulanger and Ziotopoulou (2015) and Ziotopoulou and Boulanger (2016). 

Modifications to the model were developed and implemented to improve its ability to approximate 

undrained monotonic and cyclic loading responses of low-plasticity silts and clays, as opposed to those 

for purely nonplastic silts or sands. Emphasis was given to obtaining reasonable approximations of 

undrained monotonic shear strengths, undrained cyclic shear strengths, and shear modulus reduction 

and hysteretic damping responses across a range of initial static shear stress and overburden stress 

conditions. The model does not include a cap, and therefore is not suited for simulating consolidation 

settlements or strength evolution with consolidation stress history. The model is cast in terms of the 

state parameter relative to a linear critical state line in void ratio versus logarithm of mean effective 

stress. The primary input parameters are the undrained shear strength ratio (or undrained shear 

strength), the shear modulus coefficient, the contraction rate parameter, and an optional post-strong-

shaking shear strength reduction factor. All secondary input parameters are assigned default values 

based on a generalized calibration. Secondary parameters that are most likely to warrant adjustment 

based on site-specific laboratory test data include the shear modulus exponent, plastic modulus 

coefficient (adjusts modulus reduction with shear strain), bounding stress ratio parameters (affect peak 

friction angles and undrained stress paths), fabric related parameters (affect rate of shear strain 

accumulation at larger strains and shape of stress-strain hysteresis loops), maximum excess pore 

pressure ratio, initial void ratio, and compressibility index. The model is coded as a user defined 

material in a dynamic link library (DLL) for use with the commercial program FLAC 8.0 (Itasca 2016). 

The numerical implementation and DLL module are described.  The behavior of the model is illustrated 

by simulations of element loading tests covering a range of conditions, including undrained monotonic 

and cyclic loading under a range of initial confining and shear stress conditions. The model is shown 

to provide reasonable approximations of behaviors important to many earthquake engineering 

applications and to be relatively easy to calibrate. 
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PM4Silt (Version 1): 

A Silt Plasticity Model for Earthquake Engineering Applications 
 

1. INTRODUCTION 

 

Nonlinear seismic deformation analyses in geotechnical practice require approximating the stress-

strain responses of a broad range of soil types and consistencies. Soil types can span from clearly sand-

like (e.g., clean sands, gravels, gravelly sands) to clearly clay-like (e.g., sedimentary high plasticity 

clays), with a broad range of intermediate soil types that are more difficult to characterize (e.g., low 

plasticity clays and silts, sandy clays and silts, and clayey and silty sands). Soil consistency can range 

from loose or soft to dense or hard in natural deposits or man-made fills. The choice of engineering 

procedures for characterizing a soil's properties (e.g., correlations, in-situ tests, laboratory tests) 

depends on its type and consistency, along with a number of project specific considerations. The choice 

of a constitutive model for representing a specific soil in a nonlinear dynamic analysis (NDA) similarly 

depends on the soil type, its consistency, and a number of project-specific considerations. 

Constitutive models for representing sand and sand-like soils in two-dimensional (2D) or three-

dimensional (3D) NDAs range from relatively simplified, uncoupled cycle-counting models to more 

complex plasticity models (e.g., Wang et al. 1990, Cubrinovski and Ishihara 1998, Dawson et al. 2001, 

Papadimitriou et al. 2001, Yang et al. 2003, Byrne et al. 2004, Dafalias and Manzari 2004, Boulanger 

and Ziotopoulou 2015). Each constitutive model has certain advantages and limitations that can be 

illustrated by examining the constitutive response of the model in single element simulations that cover 

the range of the loading conditions important to various applications in practice. 

Constitutive models for representing clay and clay-like soils in 2D or 3D NDAs are relatively 

limited by comparison to those available for sands. The elastic-plastic Mohr-Coulomb model is widely 

used in practice, which may be attributed to its simplicity, wide availability, and lack of alternatives. 

More complex plasticity models for clay are available that focus on stress-strain behaviors important 

for static problems (e.g., Pestana and Whittle 1999) but are not well suited or vetted for cyclic or 

dynamic loading problems. For some geotechnical structures and loading conditions, the simple Mohr-

Coulomb model may prove adequate for representing the clay-like materials in the system, particularly 

if the overall response and deformations are more strongly controlled by other soil types (e.g., 

liquefiable soils). For other geotechnical structures and loading conditions, the limitations of the Mohr-

Coulomb model can raise significant concerns regarding the reliability of the computed responses and 

deformations.  

The selection of a constitutive model for representing low-plasticity silts and clays in 2D or 3D 

NDAs requires even greater compromises in practice. Low-plasticity silts and clays can exhibit 

behaviors that range from sand-like in some aspects to clay-like in other aspects (Boulanger and Idriss 

2006), such that constitutive models developed for either sand or clay may not reproduce certain 

behaviors that the analyst suspects may be important to the system response. Nonetheless, most efforts 

at modeling cyclic loading responses of intermediate soil types have involved adjustments to existing 

models for sand to improve certain aspects of behavior. For example, efforts have been made toward 

adjusting the UBCSAND model to produce stress-strain responses that better approximate responses 

of low-plasticity silts for specific projects (E. Naesgaard, personal communication 2017).  
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The information available for calibration of constitutive models in design practice varies with the 

soil type. For sands and sand-like soils, the information will most commonly include basic classification 

index tests (e.g., grain size distributions), penetration resistances (e.g., SPT or CPT), and shear wave 

velocity (Vs) measurements. For clays and clay-like soils, the information can also include laboratory 

strength and consolidation test data for field samples, results of other in-situ tests (e.g., vane shear test), 

and knowledge of a site's consolidation stress history. For low-plasticity silts and clays, the availability 

and quality of any laboratory strength and consolidation test data can depend on the nature of the soil 

and project specific considerations (e.g., future loading conditions), which determine whether the 

influence of sampling disturbance can be reasonable assessed or managed (e.g., Hoeg et al. 2000, Dahl 

et al. 2010). 

Constitutive models for geotechnical earthquake engineering applications must be able to 

approximate the range of conditions encountered in the field. For example, a single geotechnical 

structure like the schematic earth dam shown in Figure 1.1 can have strata or zones ranging from very 

loose (or soft) to dense (or hard) under a wide range of confining stresses, initial static shear stresses 

(e.g., at different points beneath the slope), drainage conditions (e.g., above and below the water table), 

and loading conditions (e.g., various levels of shaking). The engineering effort is greatly reduced if the 

constitutive model can reasonably approximate the predicted stress-strain behaviors under all these 

different conditions. If the model cannot approximate the trends across all these conditions, then extra 

engineering effort is required in deciding what behaviors should be prioritized in the calibration 

process, and sometimes by the need to repeat the calibrations for the effects of different initial stress 

conditions within the same geotechnical structure. 

The PM4Silt (version 1) plasticity model for representing low-plasticity silts and clays in 

geotechnical earthquake engineering applications is presented herein. The PM4Silt model builds on the 

framework of the stress-ratio controlled, critical state compatible, bounding surface plasticity PM4Sand 

model (version 3) described in Boulanger and Ziotopoulou (2015) and Ziotopoulou and Boulanger 

(2016). Modifications to the model were developed and implemented to improve its ability to 

approximate undrained monotonic and cyclic loading responses of low-plasticity silts and clays, as 

opposed to those for purely nonplastic silts or sands. The following stress-strain responses and 

engineering correlations were of primary focus in the development of the PM4Silt model:  

 Monotonic undrained shear strengths (su) for low-plasticity silts and clays often exhibit a stress-

history normalization, with undrained shear strength ratios (e.g., su/'vc) being strongly 

dependent on the soil's over-consolidation ratio (OCR) (e.g., Figure 1.2).  

 Undrained cyclic loading of soft low-plasticity silts and clays can generate significant excess 

pore pressures (u) and rapid accumulation of cyclic shear strains (e.g., Figures 1.3, 1.4, and 

1.5), even if the excess pore water pressure ratios (e.g., ru = u/'vc in direct simple shear 

loading) do not reach 100%. 

 Undrained cyclic strength can often be normalized by the monotonic undrained shear strength, 

to arrive at a cyclic strength ratio (cyc/su) that depends on the failure criterion (e.g., a peak shear 

strain) and number of uniform loading cycles (e.g., Figures 1.6 and 1.7). Cyclic and monotonic 

strengths generally increase with loading rate, such that cyc/su can exceed unity at small 

numbers of loading cycles because cyc is measured at fast loading rates (applicable to 

earthquake loading) whereas su is commonly measured at standardized slow loading rates 

(applicable to static loading). The slope of the cyc/su versus number of loading cycles curve 
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(Figure 1.6) is flatter than observed for most sands. The influence of overburden stress is 

accounted for by its effects on su and OCR, such that cyc/su is relatively unaffected.  

 The presence of initial static shear stress reduces cyclic strengths, with the influence being 

greatest for normally consolidation soils and decreasing with increasing OCR or su/'vc ratio  

(e.g., Figures 1.8 and 1.9). 

 Shear modulus and hysteretic damping behaviors for low-plasticity silts and clays vary with 

consolidation stress, consolidation stress history, mineralogy [e.g., often represented by indices 

like the plasticity index (PI)], age, and other factors (e.g., Kokusho et al. 1982, Vucetic and 

Dobry 1991). The small strain shear modulus (Gmax) for these soils can have weaker or stronger 

dependence on the effective confining stress than for sands depending on these various factors. 

Relationships for secant shear modulus reduction (G/Gmax) and equivalent damping ratios 

versus cyclic shear strain amplitude become less nonlinear (for the same strain amplitude) with 

increasing PI (e.g., Figure 1.10) and show less dependence on confining stress than observed 

for sands (e.g., Kokusho et al. 1982, Vucetic and Dobry 1991). 

The PM4Silt model does not include a cap and therefore is not suited for simulating consolidation 

processes, predicting consolidation settlements, or predicting the evolution of undrained shear strength 

with consolidation stress history. The model is also not formulated to approximate anisotropic strengths 

and is currently limited to plane strain applications. 

The organization of this report is structured as follows: 

 Section 2 of this report contains a description of the model formulation. 

 Section 3 contains a description of the model's implementation as a user-defined material in a 

dynamic link library for use in the commercial program FLAC 8.0 (Itasca 2016).  

 Section 4 of this report contains a summary of the model input parameters, guidance on model 

parameter selections, and illustrations of the model responses to a range of elemental loading 

conditions.  

 Section 5 contains summary remarks regarding the model and its use in practice. 

The simulations presented in this report were prepared using the DLL module modelpm4silt005_64.dll 

compiled on January 17, 2018; note that the compilation date is included in the properties of the dll 

file.  
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Figure 1.1. Schematic cross-section for an earth dam with a clay core and a clayey silt foundation. 

 

 

 
 

Figure 1.2.  Normalized shear stress versus shear strain response of Boston Blue clay in undrained 

direct simple shear tests on samples with preconsolidation stresses of 400 to 800 kPa and OCR of 1, 

2, 4 and 8, and the variation of normalized shear strength versus OCR (Ladd and Foott 1974). 
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Figure 1.3.  Stress-strain response and effective stress paths for Cloverdale clay during undrained 

slow cyclic loading (Zergoun and Vaid 1994). 

 

 

 
 

Figure 1.4. Undrained cyclic direct simple shear test results for normally consolidated, slurry 

sedimented specimens of PI=0 silt (left side) and PI=20 clayey silt (right side) (Boulanger et al. 

2016). 
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Figure 1.5. Undrained cyclic direct simple shear tests results for undisturbed field samples from 

Potrero Canyon (Dahl et al. 2014): (a) Stratum A of soft clay and loose silt, and (b) Stratum B of 

loose silty sand and sandy silt. 
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Figure 1.6.  Cyclic strength ratios to cause a peak shear strain of 3% versus number of uniform 

loading cycles at a frequency of 1 Hz (from Boulanger and Idriss 2007):  

(a) samples from natural deposits [Andersen et al. 1988, Azzouz et al. 1989, Hyodo et al. 1994, 

Lefebvre and Pfendler 1996, Woodward-Clyde 1992a, Zergoun and Vaid 1994], and  

(b) samples from tailings deposits [Moriwaki et al. 1982, Romero 1995, Woodward-Clyde 1992b]. 
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Figure 1.7. Variations in cyclic strength ratios with plasticity index for fine-grained soils: Group A 

soils exhibiting clearly clay-like behaviors, and Group B soils exhibiting intermediate behaviors in 

some aspects (Dahl 2011). 
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Figure 1.8.  K versus s/(su)=0 relation for clay-like soils; note that specimens were not consolidated 

under the static shear stress except as otherwise noted (Boulanger and Idriss 2007). 

 

 
 

Figure 1.9. K factor describing the effect that sustained static shear stress ratio (=s/'vc) has on 

cyclic resistance ratio of sands (Boulanger and Idriss 2007). 
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Figure 1.10. Shear modulus reduction and equivalent damping ratio relationship for clays  

(Vucetic and Dobry 1991). 
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2. MODEL FORMULATION 

 

The PM4Silt model presented herein follows the basic framework of the stress-ratio controlled, 

critical state compatible, bounding-surface plasticity PM4Sand (version 3) model presented by 

Boulanger and Ziotopoulou (2015) and Ziotopoulou and Boulanger (2016). The PM4Sand model was 

built on the framework provided by Dafalias and Manzari (2004), which had extended the previous 

work by Manzari and Dafalias (1997) by adding a fabric-dilatancy related tensor quantity to account 

for the effect of fabric changes during loading. The fabric-dilatancy related tensor was used to 

macroscopically model the effect that microscopically-observed changes in sand fabric during plastic 

dilation have on the contractive response upon reversal of loading direction. Dafalias and Manzari 

(2004) provide a detailed description of the motivation for the model framework, beginning with a 

triaxial formulation that simplifies its presentation, followed by a multi-axial formulation.  Additional 

background information on the PM4Sand model (version 2) is provided in Boulanger and Ziotopoulou 

(2013) and Ziotopoulou and Boulanger (2012). The user is referred to the above publications for 

background information and details. 

 

2.1  Basic stress and strain terms 

 

The basic stress and strain terms for the model are as follows.  The model is based on effective 

stresses, with the conventional prime symbol dropped from the stress terms for convenience because 

all stresses are effective for the model.  The stresses are represented by the tensor , the principal 

effective stresses 1, 2, and 3, the mean effective stress p, the deviatoric stress tensor s, and the 

deviatoric stress ratio tensor r.  The present implementation was simplified by casting the various 

equations and relationships in terms of the in-plane stresses only. This limits the present 

implementation to plane-strain applications and is not correct for general cases, but it has the advantage 

of simplifying the implementation and improving computational speed by reducing the number of 

operations. Expanding the implementation to include the general case should not affect the general 

features of the model. Consequently, the relationships between the various stress terms can be 

summarized as follows: 

 

σ
xx xy

xy yy

 

 

 
  
   

(1)  

 

2

xx yy
p

 


 
(2)  

 

s σ I
xx xy xx xy

xy yy xy yy

s s p
p

s s p

 

 

   
      

     
(3)  
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s
r

xyxx

xx xy

xy yy xy yy

p

r r p p

r r pp

p p



 

 
 

 
    
  
 
 

 
(4)  

Note that the deviatoric stress and deviatoric stress ratio tensors are symmetric with rxx=-ryy and 

sxx=-syy (meaning a zero trace), and that I is the identity matrix. 

The model strains are represented by a tensor , which can be separated into the volumetric strain 

v and the deviatoric strain tensor e. The volumetric strain is, 

 v xx yy   
 

(5)  

and the deviatoric strain tensor is, 

 

3

3

3

e ε

v
xx xy

v

v
xy yy

I


 




 

 
 

    
  
   

(6)  

In incremental form, the deviatoric and volumetric strain terms are decomposed into an elastic 

and a plastic part, 

 e e   e
el pld d d 

 

(7)  

 

 

  
el pl

v v vd d d   
 

(8)  

where 

e
eld  = elastic deviatoric strain increment tensor 

e
pld  = plastic deviatoric strain increment tensor 
el

vd  = elastic volumetric strain increment 

pl

vd  = plastic volumetric strain increment 

 

 

2.2  Critical state 

 

The model presented herein uses the state parameter ( (Been and Jefferies 1985), which is the 

difference between the current void ratio (e) and the critical state void ratio (ecs) at the same mean 

effective stress (p). The critical state line is approximated as linear in void ratio versus natural logarithm 
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of mean effective stress space, with a slope  and intercept  when p' = 1 kPa. Thus void ratio at critical 

state (ecs) is related to the mean effective stress at critical state (pcs) by the following expression.  

 ln
1

cs

p
e

kPa


 
     

   

(9)  

 cse e  
 

(10)  

The relationships between the critical state line and above parameters is shown in Figure 2.1. For silts 

and clays with sufficient plasticity to exhibit stress history normalization of strengths, the slope of the 

critical state line is often approximately parallel to the slope of the virgin consolidation line (Cc). The 

value of Cc is generally taken as the slope in void ratio versus logarithm (base 10) of mean effective 

stress space, and thus Cc and  are related as: 

 
 

 

log 10
0.434

ln 10
c cC C   

 (11)  

 

 

2.3  Bounding, dilatancy, and critical surfaces 

 
The model incorporates bounding, dilatancy, and critical stress ratio surfaces. The bounding and 

dilatancy surfaces are functions of the state parameter, and collapse to the critical stress ratio surface 

when the state parameter is zero. Lode angle dependency was removed to simplify the model (e.g., 

friction angles are the same for compression or extension loading).  

The dilatancy (Md) ratio is related to the critical stress ratio (M) by the expression, 

  expd dM M n  
 

(12)  

where the model parameter nd is a positive number so that Md is smaller than M for dense of critical 

states and greater than M for loose of critical states. For the present implementation, the mean normal 

stress p is taken as the average of the in-plane normal stresses (Equation 2), q is the difference in the 

major and minor principal in-plane stresses, and the relationship for M is reduced to 

  2 sin cvM  
 

(13)  

where cv is the constant volume or critical state effective friction angle. 

The bounding (Mb) ratio has different forms for dense versus loose of critical states. For loose of 

critical states (i.e., the "wet" side), Mb is related to M by the expression, 
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  ,expb b wetM M n   
 

(14)  

where the model parameter nb,wet is a positive number so that Mb is smaller than M on the wet side. For 

dense of critical states (i.e., the "dry" side), Mb is related to M by the expression, 

 

,

1

b dryn

b Mb

Mb

cs

C
M M

p
C

p

 
 
  
  
 

 
(15)  

 
,

1
,max

1

1

b dry
Mb

b n

C

M

M



 
 

 

 
(16)  

  ,max

max2 sinbM  
 

(17)  

The above expression produces Mb values that smoothly vary from equal to M at critical state (i.e., 

p/pcs = 1) to a maximum value Mb,max at the origin (i.e., p = 0). The value of Mb,max corresponds to the 

maximum friction angle than can be mobilized near the origin, max.  

For a fixed value of state parameter (with corresponding fixed values for p/pcs, M
d, and Mb), the 

bounding, dilatancy, and critical stress ratio surfaces can be visualized as linear lines on a q-p plot 

(where q=1-3) as shown in Figure 2.2 or as circular surfaces on a stress-ratio graph of ryy versus rxy 

as shown in Figure 2.3. As the model is sheared toward critical state ( = 0, p/pcs = 1), the values of Mb 

and Md will both approach the value of M. Thus the bounding and dilatancy surfaces move together 

during shearing until they coincide with the critical state surface when the soil has reached critical state. 

For soil at a fixed void ratio, the locus of points on the bounding surface in a q-p plot will be curved 

because changes in p will correspond to changes in state parameter and Mb. This is illustrated in 

Figure 2.4 showing q/pcs versus p/pcs for points on the bounding surface for soil at a fixed void ratio. 

For loose of critical states (i.e., p/pcs > 1), the locus of q-p points on the bounding surface becomes flat 

for nb,wet = 1.0 and becomes steeper with decreasing values of nb,wet until it follows M at the limit of 

nb,wet = 0.0. For dense of critical states (i.e., p/pcs < 1), the concave locus of q-p points on the bounding 

surface is stretched outward for larger values of nb,dry and pulls closer to M with decreasing values of 

nb,dry. The functional forms for the bounding stress ratio, as illustrated in this figure, are later shown 

(Section 4.2) to be important for controlling undrained (i.e., constant void ratio) behaviors in monotonic 

and cyclic loading.  
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2.4  Yield surface and image back-stress ratio tensors 

 

The yield surface and back-stress ratio tensor () follow those of the Dafalias-Manzari model, 

although their final form is considerably simplified by the prior assumption of removing any Lode 

angle dependency. The yield surface is a small cone in stress space, and is defined in stress terms by 

the following expression: 

    
1

2 1: 0
2

s α s αf p p pm      
 

(18)  

The back-stress ratio tensor  defines the center of the yield surface, and the parameter m defines the 

radius of the cone in terms of stress ratio. The parameter m is assigned a default value of 0.01 based on 

results showing it provides reasonable modeling and numerical stability. The yield function can be 

rewritten to emphasize the role of stress ratio terms as follows, 

     1: 0
2

r α r αf m    
 

(19)  

The yield function can then be visualized as related to the distance between the stress ratio r and the 

back-stress ratio , as illustrated in Figure 2.3. 

The bounding surface formulation now requires that bounding and dilatancy stress ratio tensors be 

defined.  Dafalias and Manzari (2004) showed that it is more convenient to track back-stress ratios and 

to similarly define bounding and dilatancy surfaces in terms of back-stress ratios. An image back-stress 

ratio tensor for the bounding surface (b) is defined as,  

 1
2

α n
b bM m     

(20)  

where the tensor n is normal to the yield surface. An image back-stress ratio tensor for the dilatancy 

surface (d) is similarly defined as,  

 1
2

α n
d dM m     

(21)  

The computation of constitutive responses can now be more conveniently expressed in terms of back-

stress ratios rather than in terms of stress ratios, as noted by Dafalias and Manzari (2004). 

 

 

2.5  Stress reversal and initial back-stress ratio tensors 

 
The bounding surface formulation, as described in Dafalias (1986) and adopted by Dafalias and 

Manzari (2004), keeps track of the initial back-stress ratio (in) and uses it in the computation of the 

plastic modulus Kp. This tracking of one instance in loading history is essentially a first-order method 

for tracking loading history. A reversal in loading direction is then identified, following traditional 

bounding surface practice, whenever 



  16  

 

   : 0α a nin 
 

(22)  

A reversal causes the current stress ratio to become the initial stress ratio for subsequent loading. Small 

cycles of load reversal can reset the initial stress ratio and cause the plastic modulus Kp to increase 

accordingly, in which case the stress-strain response becomes overly stiff after a small load reversal. 

This is a well-known problem in bounding surface formulations for which various approaches offer 

different advantages and disadvantages. 

The model presented herein tracks an initial back-stress ratio and a previous initial back-stress ratio 

(in
p), as illustrated in Figure 2.5a. When a reversal occurs, the previous initial back-stress ratio is 

updated to the initial back stress ratio, and the initial back-stress ratio is updated to the current back-

stress ratio. 

 

In addition, the model tracks an apparent initial back-stress ratio tensor (αin
app) as schematically 

illustrated in Figure 2.4b. The schematic in Figure 2.4b is similar to that of Figure 2.4a, except that the 

most recent loading reversals correspond to a small unload-reload cycle on an otherwise positive 

loading branch. The components of αin
app are taken as: (i) for positive loading directions, the minimum 

value they have ever had, but no smaller than zero, and (ii) for negative loading directions, the 

maximum value they have ever had, but no greater than zero. These minimum and maximum past back-

stress ratios are stored for each component individually and for the entire loading history. The use of 

αin
app helps avoid the over-stiffening of the stress-strain response following small unload-reload cycles 

along an otherwise monotonically increasing branch of loading, without having to track the loading 

history through many cycles of load reversals. 

 

The computation of Kp utilizes the values of αin
app, αin

true, and αin
p, as defined in Figure 2.4b, to 

better approximate the stress-strain response during an unload-reload cycle. For the last positive loading 

branch in this figure, the value of Kp is initially most strongly controlled (inversely) by the distance 

(α - αin
true):n, such that the stiffness is initially large. As positive loading continues, the progressive 

reduction in Kp becomes increasingly dependent on αin
app as well. Once the positive loading exceeds 

the previous reversal point, the value of Kp becomes solely dependent on the distance (α - αin
app):n. 

Thus, the computation of Kp has the following dependencies:  

 

 
 

 

( ) : 0 ,p true app

in p in in

app

p in

if  K f

else                      K f

   



   

 

n

 (23)  

The equations relating Kp to these back-stress ratios are given later in section 2.7.  

 

The impact of the above logic for defining αin on stress-strain responses is demonstrated in 

Figure 2.5 showing αxy versus shear strain  computed for two different drained DSS loading 

simulations. For these two examples, the reloading stiffness of the current loading branch (green line) 

is initially large because Kp is initially computed based on αin = αin
true. As the loading exceeds αin

p, the 

loading stiffness becomes much softer because Kp is now computed based on αin = αin
app.
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2.6  Elastic strains and moduli 

 

The elastic deviatoric strain and elastic volumetric strain increments are computed as: 

 
2

s
e

el d
d

G


 
(24)  
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v
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d

K
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(25)  

where G is the elastic shear modulus and K is the elastic bulk modulus.  The elastic shear modulus in 

the model presented herein is dependent on the mean effective stress according to, 
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(26)  

where Go and nG are constants, pA is the atmospheric pressure (101.3 kPa), and CSR is factor that 

accounts for stress ratio effects (described below). 

Dafalias and Manzari (2004) had included dependence of G on void ratio following the form of 

Richart et al. (1970). This aspect was not included in the model herein because: (1) the effects of void 

ratio changes on G are small relative to those of confining stress, (2) the value of Go is more strongly 

affected by environmental factors such as cementation and ageing, and (3) the calibration of G to in-

situ shear wave velocity data is simplified by not including e.  

The CSR factor to account for stress ratio effects was included in the PM4Sand model and retained 

herein for the PM4Silt model. Yu and Richart (1984) showed that the small-strain elastic shear modulus 

of sand is dependent on the stress ratio and stress ratio history. The effect of stress ratio was shown to 

generally be less than about 10% when the ratio of major to minor principal effective stresses is less 

than about 2.5, but to also increase to about 20-30% at higher principal stress ratios. They also showed 

that stress ratio history caused a reduction in the small-strain elastic shear modulus when the maximum 

previous stress ratio was greater than the current stress ratio. The effect of stress ratio and stress ratio 

history on the elastic shear modulus was approximately accounted for in the PM4Sand model by the 

factor CSR. The following equation for CSR is similar in form to that used by Yu and Richart (1984) to 

represent stress ratio effects, except that it uses stress ratio terms consistent with the present model, 
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(27)  

The above equation approximates Yu and Richart's (1984) results for stress ratio effects when CSR,o = 

0.3 and mSR = 2. The effects of stress ratio history would cause further reductions, and is more 

complicated to represent. The calibration examples for PM4Sand worked well with CSR,0 = 0.5 and mSR 

= 4, which keeps the effect of stress ratio on elastic modulus small at small stress ratios, but lets the 
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effect increase to a 60% reduction when the stress ratio is on the bounding surface. The same default 

parameters are retained for PM4Silt, although the experimental basis for extending this relationship to 

low-plasticity silts and clays is lacking. 

The elastic bulk modulus is related to the shear modulus through the Poisson's ratio as, 

 
 

 

2 1

3 1 2

v
K G

v




  

(28)  

as was done by Dafalias and Manzari (2004). 

 

 

2.7  Plastic components without fabric effects 

 

Loading index 

 

The loading index (L) is used to compute the plastic component of the volumetric strain 

increment and the plastic deviatoric strain increment tensor as, 

 
pl

vd L D 
 

(29)  

 
'

e R
pld L

 
(30)  

where D is the dilatancy, R is the direction of dpl, R is the deviatoric component of R, and <> are 

MacCauley brackets that set negative values to zero [i.e., <L> = L if L ≥ 0, and <L> = 0 if L < 0]. The 

tensor R for the assumption of no Lode angle dependency is, 

 
1

3
R n ID 

 
(31)  

where n is the unit normal to the yield surface (Figure 2.3). Note that the assumption of no Lode angle 

dependency also means that R = n. The dilatancy D relates the incremental plastic volumetric strain to 

the absolute value of the incremental plastic deviatoric strain, 
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pl
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d
D

d


  (32)  

The dilatancy D can be also related to the conventional engineering shear strain in this plane strain 

approximation, as 
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The loading index, as derived in Dafalias and Manzari (2004) is, 
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(34)  

The stress increment for an imposed strain increment can then be computed as, 

  2 2e I n Ivd Gd Kd L G KD    
 

(35)  

 

Hardening and the update of the back-stress ratio 

 

Updating of the back-stress ratio is dependent on the hardening aspects of the model. Dafalias and 

Manzari (2004) updated the back-stress ratio according to bounding surface practice as, 

  
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(36)  

where h is the hardening coefficient.  The factor of 2/3 was included for convenience so that model 

constants would be the same in triaxial and multi-axial derivations.  They subsequently showed that 

the consistency condition f=0 was satisfied when the plastic modulus Kp was related to the hardening 

coefficient as, 
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(37)  

This expression can be rearranged so as to show that the consistency equation can be satisfied by 

expressing the hardening coefficient as, 
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  20  

 

The relationship for the plastic modulus can subsequently take a range of forms, provided that the 

hardening coefficient and updating of the back-stress ratio follow the above expressions.   

 

Plastic modulus 

 

The plastic modulus in the multi-axial generalized form of Dafalias and Manzari (2004), after 

substituting in their expression for the hardening coefficient, can be expressed as, 
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(39)  

where ho and Ch are scalar parameters and e is the void ratio. Setting aside the secondary influence of 

void ratio, this form illustrates that Kp is proportional to G, proportional to the distance of the back-

stress ratio to the bounding back-stress ratio, and inversely proportional to the distance of the back-

stress ratio from the initial back-stress ratio. 

The plastic modulus relationship was revised in the model presented herein to provide an improved 

approximation of empirical relationships for secant shear modulus and equivalent damping ratios 

during drained strain-controlled cyclic loading. The plastic modulus is computed as, 
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(41)  

The factor Crev accounts for the effect of unload-reload cycles as discussed in Section 2.5 and 

illustrated in Figure 2.5. The constant C1 in the denominator serves to avoid division by zero and has 

a slight effect on the nonlinearity and damping at small shear strains.  If C1 = 0, then the value of Kp 

will be infinite at the start of a loading cycle because (-in):n will also be zero.  In that case, 

nonlinearity will become noticeable only after (-in):n becomes large enough to reduce Kp closer to 

the value of G (e.g., Kp/G closer to 100 or 200).  Setting the value of C1 = ho/200 produces a reasonable 

response as will be demonstrated later with examples of modulus reduction and equivalent damping 

ratios. The stress ratio is precluded from being outside the bounding surface in the present 

implementation. The plastic modulus is further modified for the effects of fabric and fabric history, as 

described in a later section. 
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Plastic volumetric strains - Dilation 

 

Plastic volumetric strains are related to plastic deviatoric strains through the dilatancy D (Equations 

29 and 30), which is computed in the Dafalias and Manzari (2004) model and the base component of 

the model presented herein (with additional fabric effects described in a later section) as, 

   :α α n
d

doD A    
   

(42)  

Note that dilation (increasing void ratio) occurs whenever the term (d-):n is less than zero whereas 

contraction (decreasing void ratio) occurs when it is positive.  

For sands, the constant Ado in this relationship can be related to the dilatancy relationship proposed 

by Bolton (1986), which follows from the work of Rowe (1962), through the following sequence of 

steps. Bolton showed that the difference between peak and constant volume friction angles in sands 

could be approximated as, 

 0.8pk cv    
 (43)  

with 
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Since  ≈ tan() for  less than about 0.35 radians (20 degrees), the difference between peak and 

constant volume friction angles (in radians) can be approximated as, 
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(45)  

The peak friction angle is mobilized at the bounding surface, so this can be written as, 
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(46)  

The term n:n is equal to unity, and the values of pk and cv (again in radians) can be replaced with 

expressions in terms of Mb and M as,  
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This expression can then be rearranged to solve for Ado as, 
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where the angles returned by the sin-1 functions are in radians.  
 

The parameter Ado should thus be chosen to be consistent with the relationships that control Mb and 

Md. For sands, the value for Ado ranged from 1.26 to 1.45 for a range of relative states and the functions 

used in the PM4Sand model (Boulanger and Ziotopoulou 2015). If these stress-dilatancy relationships 

are considered applicable for low plasticity silts and clays, then the above expression produces Ado 

values ranging from 0.8 to 1.2 for the Mb and Md functions described herein with a wide range of values 

for nb,dry, nd, , and . A default value for Ado of 0.8 is adopted in the PM4Silt model based on the other 

default parameters summarized in a later section, although an alternative value for Ado can be specified 

by the user.

 

 

Plastic volumetric strains - Contraction 

 

Plastic volumetric strains during contraction (i.e., whenever (d-):n is greater than zero) are 

computed in the Dafalias and Manzari (2004) model using the same expression as used for dilatancy, 
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The use of this expression was found to limit the ability of the model to approximate a number of 

important loading responses; e.g., it overestimated the slope of the cyclic resistance ratio (CRR) versus 

number of equivalent uniform loading cycles for undrained cyclic element tests (e.g., Ziotopoulou and 

Boulanger 2012). 

Plastic volumetric strains during contraction for the model presented herein are computed using 

the following expression, 
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(51)  

The various forms in the above relationships were initially developed to improve different aspects 

of the calibrated model's performance for sands. The value of D was set proportional to the square of 

((-in):n + Cin) to improve the slope of the relationship between CRR and number of uniform loading 

cycles.  The Cin term depends on fabric and is described in a later section along with other modifications 

to the above expression for the effects of fabric and fabric history. The inclusion of the term Cin 

improves the stress paths for undrained cyclic loading and the volumetric strain response during drained 

cyclic loading of sand; Inclusion of this constant enables some volumetric strain to develop early in the 

unloading from a point outside the dilatancy surface (as described later). The remaining terms on the 

right hand side of the equation were chosen to be close to unity over most of the loading range, while 

ensuring that D smoothly goes to zero as  approaches d; reasonable results were obtained using a CD 

value of 0.10. 

The parameter Adc for contraction was related to the value of Ado for dilation by dividing it by a 

parameter hp that can be varied during the calibration process to obtain desired cyclic resistance ratios.  

The effect of varying states on cyclic loading behavior was then conveniently incorporated by making 

hp depend on  as follows.  
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Thus, the scalar constant hpo provides a linear scaling of contraction rates while the functional form 

of the remaining portion of this expression provides for stronger variations with state (which helps with 

calibration of the hpo values). The variation of hp with  for different values of hpo is plotted in 

Figure 2.7. Once the other input parameters have been selected, the constant hpo can be calibrated to 

arrive at a desired cyclic resistance ratio. 

An upper limit was imposed on the contraction rate, with the limiting value computed as, 
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A similar limit was used in PM4Sand to prevent numerical issues that can be encountered with 

excessively large contraction rates with some combinations of input parameters. For most calibrations 

of PM4Silt, this limit does not appear to control contraction rates.  
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2.8  Fabric effects 
 

Dafalias and Manzari (2004) introduced a fabric-dilatancy tensor (z) that could be used to account 

for the effects of prior straining in sand. Their fabric tensor (z) evolved in response to plastic volumetric 

dilation strains, according to, 
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(54)  

where the parameter cz controls the rate of evolution and zmax is the maximum value that z can attain. 

The fabric-dilatancy tensor was modified for the present model as, 
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In this expression, the tensor z evolves in response to plastic deviatoric strains that occur during dilation 

only (i.e., dividing the plastic volumetric strain by the dilatancy gives plastic shear strain).  In addition, 

the evolution of fabric is restricted to only occur when (d –):n < 0; this additional constraint 

precludes fabric evolution during dilation above the rotated dilatancy surface (introduced later) but 

below the non-rotated dilatancy surface. The parameter zcum is the cumulative value of absolute changes 

in z computed according to, 

 
zcumdz d

 (56)  

The rate of evolution for z therefore decreases with increasing values of zcum, which enables the 

undrained cyclic stress-strain response to progressively accumulate shear strains rather than lock-up 

into a repeating stress-strain loop. In addition, the greatest past peak value (scalar amplitude) for z 

during its loading history is also tracked, 
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(57)  

The values of z, zpeak, and zcum are later used to facilitate the accumulation of shear strains under 

symmetric loading through their effects on the plastic modulus and dilatancy relationships. 

The evolution of the fabric tensor terms is illustrated in Figures 2.8, 2.9 and 2.10 showing the 

response of three different specimens to undrained cyclic DSS loading. The results for su,cs/'vc = 0.25 

without any sustained horizontal shear stress (Figure 2.8) show the fabric terms do not grow until the 

soil reaches the dilatancy surface, which only occurs when the effective stress has reduced enough that 

the soil becomes dense of critical. Note that the cyclic loading on this specimen is low enough that the 
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specimen never reaches the bounding surface while it is loose of critical and it also never reaches critical 

state. The fabric oscillates between positive and negative values as the specimen reaches the dilatancy 

surface in opposing directions during this symmetric cyclic loading. The results for su,cs/'vc = 0.25 with 

a sustained horizontal shear stress ratio of 0.10 (Figure 2.9) show the specimen rapidly developing large 

shear strains without ever growing any fabric; this occurs because the soil reaches the bounding surface 

while still loose-of-critical, after which it moves toward critical state without ever reaching a dilatancy 

surface. The results for su,cs/'vc = 0.50 with a sustained horizontal shear stress ratio of 0.20 (Figure 

2.10) shows fabric only developing in one direction because the specimen only reaches the dilatancy 

surface on one side (i.e., per the stress path); this specimen also never reaches critical state.  

 

Additional memory of fabric formation history 

 

Memory of the fabric formation history was included in the model presented herein to improve the 

ability of the model to account for the effects of sustained static shear stresses and account for 

differences in fabric effects for various drained versus undrained loading conditions. 

The initial fabric tensor (zin) at the start of the current loading path is determined whenever a stress 

ratio reversal occurs, and thus correspond to the same times that the initial back-stress ratio and previous 

initial back-stress ratio are updated. The zin tracks the immediate history terms without any 

consideration of whether an earlier loading cycle had produced greater degrees of fabric (i.e., the logic 

is different from that adopted for the updating of back-stress ratio history terms). This history term is 

used for describing the degree of stress rotation and its effects on plastic modulus, as described later.
 

Another aspect of the fabric history that is tracked is the mean stress at which the fabric is formed. 

This aspect of fabric history is tracked by tracking the product of z and p, and defining pzp as the mean 

stress at the time that this product achieves its greatest peak value. The pzp is used in addressing a couple 

of issues, including the issue of how fabric that is formed during cyclic loading may be erased during 

reconsolidation.  For example, saturated soils that develops cyclic mobility behavior during undrained 

cyclic loading clearly remembers its history of plastic deviatoric strains and then subsequently forgets 

(to a large extent) this prior strain history when it reconsolidates back to its pre-earthquake confining 

stress.  As another example, the memory of prior strains during undrained cyclic loading is very 

different than the memory of prior strains during drained cyclic loading.  This memory conceptually 

could be related to the history of plastic and total volumetric strains, but a simpler method to account 

for this effect is to consider how the mean stress p relates to the value of pzp.  Conceptually, it appears 

that prior strain history (or fabric) is most strongly remembered when the soil is operating under mean 

stresses that are smaller than those that existed when the fabric was formed (i.e., p << pzp) and then 

largely forgotten when they are of the same order (i.e., p  pzp).  This attribute will be used in the 

relationships described later for describing the effects of fabric on dilatancy. 

Effect of fabric on plastic modulus 

 

An effect of fabric on the plastic modulus was added to the model presented herein by reducing 

the plastic modulus as the fabric tensor increased in peak amplitude, as follows: 
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where, 
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The above expressions produce a reduction in plastic modulus when fabric is favorable (z:n ≥ 0) and 

with increasing plastic shear strains (which conceptually would break down any cementation). This 

reduces both the plastic modulus and the hysteretic damping at larger shear strains (note that zpeak = 0 

unless the soil has been loaded strongly enough to pass outside the dilatancy surface), improves the 

volumetric strains that develop in drained cyclic loading, and improves the path in undrained cyclic 

loading.  

The CKα and 21 zpkC
 terms both serve to increase Kp during non-reversal loading by amounts 

that depend on the fabric and stress history. During reversal loading, the 21 zpkC
 term approaches 

unity
 
and Kp evolves as it previously had. The roles of each of the other terms are discussed below.

  

Czpk1 and Czpk2 are terms that start from zero and grow to be unity for uni-directional growth of 

fabric which is the case during non-reversing loading conditions. These two terms differ by the rate 

under which they approach unity by the use of the constant zmax /5 or zmax /100 with these respective 

values chosen for their ability to better approximate the engineering behaviors of interest. For full 

reversal loading where the fabric alternates between positive and negative values, these terms will both 

go to zero. 
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Cpzp2 starts initially at zero and stays equal to zero until fabric is formed. After fabric is formed, this 

term quickly transitions to unity for values of mean effective stress p that are less than the value that p 

had when the maximum fabric was formed (pzp). If p increases beyond the value of pzp the term will 

return to zero according to the MacCauley brackets. 

The values for the calibration parameters CKp and CKαf were chosen for their ability to reasonably 

approximate the targeted behaviors, as discussed later. Setting CKp to a default value of 2.0 was found 

to produce reasonable responses for sand with particular emphasis on improving (reducing) the 

equivalent damping ratios at shear strains of 1 to 3% in drained cyclic loading; the same default value 

for CKp was retained for PM4Silt. The parameter CKαf was useful for adjusting the undrained cyclic 

loading response with sustained static shear stresses for sands. For PM4Silt, the CKαf term has little 

effect on cyclic strengths for soils that are loose-of-critical, but does become more influential for dense-

of-critical soils. For the present implementation of PM4Silt, a default value of 4.0 was adopted 

regardless of initial state. 

The cumulative effect of the above parameters can be understood as follows. If a soil is strongly 

loaded in uni-directional loading and forms significant amount of fabric and is then unloaded, then 

upon subsequent reloading the terms Cpzp2 and Czpk1 will be unity and CKα will become large. If the 

loads are increased to where the soil is being sheared and forming fabric at even higher stresses (higher 

values of p  than fabric was previously formed at) then CKα will be unity (Cpzp2 = 0). In this way, an 

element that has developed strong fabric under monotonic or cyclic loading without reversal of the total 

shear stress direction (e.g., an element within a steep slope where the static shear stresses are greater 

than the cyclic shear stresses) will, when unloaded and reloaded, be initially much stiffer (increased 

Kp) followed by a softening (smaller Kp) if the soil is loaded into virgin territory. 

 

Effect of fabric on plastic volumetric dilation 

 

A rotated dilatancy surface with slope MdR which evolves with the history of the fabric tensor z was 

added to the framework of the model to facilitate earlier dilation at low stress ratios under certain 

loading paths for sands (Ziotopoulou and Boulanger 2015). The rotated surface, schematically 

illustrated in Figure 2.11 as a line in q-p space and Figure 2.12 as a circular surface on a stress-ratio 

graph of ryy versus rxy, is equal to the original dilatancy surface scaled-down by a factor Crot1: 
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(64)  

where Md is the slope of the unrotated dilatancy surface. Experimental results (Ziotopoulou and 

Boulanger 2015) indicate that the loading history, the loading direction and the loading pattern play 

important roles in the response of sand to irregular cyclic loading. Thus the scaling factor that defines 

the rotated dilatancy surface was made dependent on whether fabric is favorable (z : n > 0) or 

unfavorable (z : n < 0) and on the factor Czin1 which is an indirect measure of whether there are reversals 

or not: 
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where zin is the fabric tensor at the beginning of the current loading branch. Czin1 can take values ranging 

from 0, when there are no reversals, to 1, when there are reversals. The rotated dilatancy surface is 

operating only for loading with an unfavorable fabric since the factor Crot1 becomes 1 when the fabric 

is favorable (i.e., −z : n = 0). In the present model, rotation of the dilatancy surface was also restricted 

to the case where the soil is dense of critical state (i.e., Crot1 = 1 for  > 0).  

A back-stress ratio tensor for the rotated dilatancy surface (αdR) was introduced as: 

  
1

2
n

dR dRM m   
 

(66)  

Dilation occurs whenever the term (αdR − α) : n is negative whereas contraction occurs when it is 

positive. The calculation of D is still treated separately during dilation and contraction. 

D during dilation is now computed according to the following expressions. First, a value for D is 

computed from the rotated dilatancy surface: 
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(67)  

where the CDR factor is applied to reduce the rate under which dilatancy is increasing and is discussed 

further below. Second, another value for D is computed that would be obtained from the non-rotated 

dilatancy surface: 

  ( ) : n
d

non rot dD A       
 

(68)  

The Macaulay brackets in the above expression ensure that Dnon-rot is equal to zero whenever (αd − α) : n 

> 0 while (αdR − α) : n < 0. Lastly, the operating value of D is selected from the above two values based 

on: 
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(69)  

The above logic is illustrated in Figure 2.13 where D is plotted for a half cycle of loading that goes 

from contraction to dilation. This figure shows that Dnon-rot is used whenever it is smaller (more 

negative) than Drot. For cases where Drot is smaller than Dnon-rot, the value of D is interpolated based on 

the additional term on the right that multiplies the difference between Drot and Dnon-rot. This interpolation 

term is close to unity for stress ratios away from the bounding surface (Mcur < Mb), such that D will be 

equal to Drot as illustrated in the figure. However, this term will also go smoothly to zero as the stress 

ratio gets close to the bounding surface, so that dilatancy smoothly goes to zero as a soil approaches 

the critical state where M = Md = Mb. The constant of 0.01 in the denominator controls the rate under 
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which D goes to zero as the stress ratio nears the bounding surface and was found to provide reasonable 

results in trial simulations. 

The factor CDR in the denominator of the expression for Drot is applied so that the D computed based 

on the rotated dilatancy surface is consistent with experimental observations. A value of 3.0 was used 

for the default calibration described later and found to provide reasonable results in trial simulations. 

Lastly, the parameter Ad in the expressions for both Drot and Dnon-rot is expressed as, 
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(73)  

Consider the five terms added to the denominator of the expression for Ad. The first term [zcum
2/zmax] 

facilitates the progressive growth of strains under symmetric loading by reducing the dilatancy that 

occurs when a liquefied soil has been sheared through many cycles of loading; note that this term 

progressively increases with subsequent cycles of loading. The second term facilitates strain-hardening 

when the plastic shear strain reaches the prior peak value, wherein the term approaches zero (i.e., when 

z:n approaches zpeak√2) and the dilation rate consequently rapidly approaches the virgin loading value 

of Ado. The third term C is a calibration constant that can be used to modify the rate of plastic shear 

strain accumulation.  The fourth term Cpzp causes the effects of fabric on dilation to be diminished 

(erased) whenever the current value of p is near the value of pzp; this term enables the model to provide 

reasonable predictions of responses to large numbers of either drained or undrained loading cycles. The 

fifth term Czin1 facilitates strain-hardening when stress reversals are not causing fabric changes; i.e., 

when the initial and current fabric terms are close to equal, the term Czin1 goes to zero. Lastly, the 

second term in the numerator, Czin2, causes the dilatancy to be decreased by up to a factor of 3 under 

conditions of large strains and full stress (and fabric) reversals, which improves the prediction of cyclic 

strain accumulation during undrained cyclic loading. 
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An additional constraint is placed on D during dilation at very low effective stresses. For p < 2pmin, 

the value of D cannot be smaller in magnitude than computed by the following expression: 
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(74)  

This expression ensures that the model will, for dense of critical soils (i.e., Mb > Md), be dilative when 

p falls below 2pmin.  

The parameter pmin is set one of two ways. If the input parameter ru,max is specified, then pmin is 

computed from the value of p at the time of "consolidation" (i.e., the p value when the flag FirstCall – 

see Section 3 – was last set equal to 0) as: 

  min ,max1
2

u

p
p r 

 
(75)  

The parameter ru,max is limited to a maximum value of 0.99 and a minimum value of zero. For example, 

setting ru,max equal to 0.95 results in pmin being 2.5% of the value of p at consolidation.  If ru,max is not 

specified, pmin is set equal to pcs/8, where pcs is the value of p at critical state for the specified su.  This 

default relation can be expressed as, 

 min

2

8 8

cs up s
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M
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(76)  

The pmin value obtained using this latter expression is limited to be no greater than the pmin computed 

using ru,max = 0. For either case, pmin is further limited to be no smaller than 0.5 kPa.  

 

Effect of fabric on plastic volumetric contraction 

 

Dafalias and Manzari (2004) used the fabric tensor to modify the dilatancy during contraction 

(D > 0) as follows, 

    : :α α n z n
d

dD A 1    
   (77)  

This relationship enhances the volumetric contraction whenever the fabric is favorable (z:n ≥ 0), based 

on the term 1+<z:n> as recommended by Dafalias and Manzari (2004). 

The effect of fabric on dilatancy during contraction was modified for the present model as, 
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The factor Cin in the expression for D has been modified so it now depends on fabric; Cin is zero 

for unfavorable fabric, and increases with increasing z:n for favorable fabric to enhance the contraction 

rate at the start of an unloading cycle (note that D would be zero at the start of an unloading cycle if Cin 

was zero). 

The term Cdz in the denominator of the expression for Adc serves to increase the rate of contraction 

as zpeak nears zmax or as a large amount of cumulative fabric formation/destruction has taken place.  This 

term was developed for improved modeling of the cyclic strength of denser sands, for which the value 

of hp can be on the order of 100 (Boulanger and Ziotopoulou 2015). The degrading of the denominator 

as zpeak or zcum increases enables the generation of high excess pore pressures at higher loading levels 

on stronger soils, and influences the slope of the CRR versus number of uniform loading cycles 

relationship obtained for undrained element loading. Note that the denominator degrades whether fabric 

is favorable or not, but that the overall rate of contraction is more enhanced if the fabric is favorable 

(z:n ≥ 0). The factor Crot2 was introduced into the factor Cdz to provide better control over the rate of 

contraction as zpeak nears zmax or as a large amount of cumulative fabric formation/destruction has taken 

place. The factor Crot2 takes values that range from 1 for loading with zero fabric or cyclic loading that 

causes reversals of fabric (since zcum will become much larger than zpeak), to 0 for loading that causes 

fabric to grow monotonically in one direction such as in non-reversal cyclic loading (since zcum will 

equal zpeak ).  
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The term Cwet in the denominator of the expression for Adc serves to increase the rate of contraction 

when the stress state reaches the bounding surface for loose-of-critical state conditions. This term 

approaches zero for soils that are loose of critical and on the bounding surface, but increases to unity 

for soils that are sufficiently close to critical state (controlled by the constant Cw1) or sufficiently away 

from the bounding surface (controlled by the constant Cw2). The constants Cw1 and Cw2 were set to 0.02 

and 0.1 because they produced reasonable responses for a range of calibrations.  

The last parameter Cpmin varies linearly with p between values of Cpmin = 0.0 for p ≤ 2pmin and Cpmin 

= 1.0 for p ≥ 8pmin.  This parameter provides the mechanism for limiting the maximum excess pore 

water pressure ratio (or minimum effective stress) that develops during cyclic loading. When p reaches 

2pmin, the contraction rate goes to zero such that further reductions in p will not occur during undrained 

loading. 

 

Effect of fabric on the elastic modulus 

 

The elastic shear modulus and elastic bulk modulus may degrade with increasing values of 

cumulative plastic deviator strain term, zcum. This component of the model was added to account for 

the progressive destruction, with increasing plastic shear strains, of any minor cementation bonds or 

other ageing- or strain history-related phenomena that produced an increase in small-strain shear 

modulus.  The destruction of minor cementation by plastic shear strains is evidenced in the field by 

measurements of shear wave velocities in sand that are lower after earthquake shaking than before 

earthquake shaking (e.g., Arai 2006). The degradation of the elastic shear modulus is computed as, 
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where CGD is the factor by which the shear modulus is degraded (divided) at very large values of zcum. 

This change in the elastic shear modulus G causes the bulk modulus K to progressively decrease with 

increasing zcum. The change in K improves the model's ability to track the stress-strain response of 

liquefying soils. In particular, decreasing K with increasing zcum reduces the rate of strain-hardening 

after phase transformation at larger shear strain levels, and improves the ability to approximate the 

hysteretic stress-strain response of a soil as it liquefies or cyclically softens. 

 

2.9  Post-shaking undrained shear strength 
 

The value of su that should be used for evaluating static stability after strong shaking is often 

smaller than used for evaluating dynamic responses for two primary reasons. First, the su of low 

plasticity silts and clays generally exhibit strain rate dependence, such that the value for post-shaking 

stability should correspond to the slower strain rate associated with static stability (i.e., su,static). 

Secondly, the su can be reduced by cyclic degradation or remolding that occurs during strong shaking.  
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 The ability to reduce su at a specific time during an analysis (e.g., after the end of strong shaking) 

was incorporated into PM4Silt as a pragmatic means for evaluating post-shaking static stability. After 

strong shaking has ended, the input parameter Fsu can be used to shift the critical state line leftward 

relative to its initial position by a factor of Fsu, thereby reducing the undrained shear strength at 

critical state (su,cs) by the same factor for the post-strong-shaking portion of the analysis. This shift in 

the critical state line can be expressed in the calculation of the state parameter as follows. 

 ln
1su

p
e

F kPa
 

  
     
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 (89)  

 

 

The default value for Fsu is 1.0 (no shift in the critical state line), and the code does not require that a 

value for Fsu be specified during the analysis. The use of Fsu is discussed further in Section 4.  
 

2.9  Post-shaking reconsolidation 
 

Volumetric strains that develop during reconsolidation of liquefied sands or cyclically-softened silts 

and clays are difficult to numerically model using the conventional constitutive separation of strains 

into elastic and plastic components, plus the present model is not formulated to model yielding along 

reconsolidation paths (e.g., constant Ko loading). The PM4Silt model retains the form of the PM4Sand 

model for better estimating reconsolidation strains during the post-shaking portion of a numerical 

simulation. The modification involved the pragmatic approach of reducing the post-shaking elastic 

shear modulus G (and hence elastic bulk modulus K) which increases reconsolidation strains, thereby 

compensating for limitations in the model formulation. The user may activate this feature after the end 

of strong shaking, such that post-liquefaction reconsolidation strains are better approximated in the 

remainder of the simulation. This feature should not be activated for the strong shaking portion of a 

simulation. 

 

The post-shaking elastic moduli are determined by multiplying the conventional elastic moduli 

(computed using the expressions described earlier) by a reduction factor Fconsol as, 

 post shaking consolG F G 

 

(90)  

 post shaking consolK F K   (91)  

 

The Fconsol value is computed as, 
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where the parameter CGC determines how much the elastic moduli will be degraded by if zcum becomes 

large. If zcum is small, the value of Gc,min corresponds to an elastic modulus consistent with the one 

dimensional recompression stiffness estimated based on p and . Lastly, the expression for Fconsol will 

return values close to Gc,min if the loading is well within the dilatancy surface (Mcur << Md) and close 

to G if the loading is near the dilatancy surface (Mcur  Md).  

 

2.10  Summary of constitutive equations 
 

The constitutive equations for the model presented herein are summarized in Table 2.1. 
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Table 2.1.  Comparison of constitutive equations 
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Figure 2.1.  Schematic of the critical state line and state parameter . 

 

 

 

 
 

Figure 2.2. Schematic of yield, critical, dilatancy, and bounding lines in q-p space for a fixed value of 

state parameter (after Dafalias & Manzari 2004). Relative location of dilatancy and bounding lines 

corresponds to dense-of-critical states of stress. 
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Figure 2.3. Schematic of the bounding, dilatancy, and yield surfaces on the ryy-rxy stress-ratio plane 

with the yield surface, normal tensor, dilatancy back stress ratio, and bounding back stress ratio. 

Relative locations of the surfaces differ from those of Figure 2.2. 
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Figure 2.4.  Schematic of the bounding lines and critical state line in q-p space for a fixed value of 

void ratio and a range of nb,dry values (for dense of critical state conditions) and nb,wet values (for loose 

of critical state conditions). 
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Figure 2.5. Schematic showing definitions of back-stress ratio tensors on the yy-xy plane for: (a) a loading history with reversals in 

the sign of the shear stress ratios, and (b) a loading history with a recent loading reversal that does not involve reversal of the sign of 

the shear stress ratios. 
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Figure 2.6. Drained DSS simulations showing αxy versus  with the points corresponding to the 

current back-stress ratio α, the apparent initial back-stress ratio αin
app, the true initial back-

stress ratio αin
true, and the previous initial back-stress ratio αin

p for: (a) monotonic shearing 

with one intermediate unload-reload cycle, and (b) a more general sequence of cyclic 

loading. 
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Figure 2.7.  Variation of contraction rate function hp with  and contraction rate parameter hpo. 
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Figure 2.8.  Undrained cyclic DSS loading response for su,cs/'vc = 0.25 with an initial static shear 

stress ratio of α=0.0, showing the variation in stresses, stress ratios, and fabric tensor terms. 
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Figure 2.9. Undrained cyclic DSS loading response for su,cs/'vc = 0.25 with an initial static shear 

stress ratio of α=0.1, showing the variation in stresses, stress ratios, and fabric tensor terms. 
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Figure 2.10. Undrained cyclic DSS loading response for su,cs/'vc = 0.5 with an initial static shear 

stress ratio of α=0.1, showing the variation in stresses, stress ratios, and fabric tensor terms. 
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Figure 2.11.  Schematic of the rotated dilatancy line, along with the yield, critical, dilatancy, and 

bounding lines in q-p space for a fixed value of state parameter. Relative location of dilatancy and 

bounding lines corresponds to dense-of-critical states of stress. 
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Figure 2.12.  Schematic of rotated dilatancy line with the bounding, dilatancy, and yield surfaces 

on the ryy-rxy stress-ratio plane with the yield surface, normal tensor, dilatancy back stress ratio, 

and bounding back stress ratio. Locations of the surfaces differ from those of Figure 2.9. 
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Figure 2.13.  Schematic of dilatancy D calculation based on the stress state with regards to the 

rotated dilatancy (MdR), dilatancy (Md) and bounding (Mb) surfaces during a half-cycle of 

loading that goes from contraction to dilation. 
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3. MODEL IMPLEMENTATION 

 

The PM4Silt model has been implemented as a user defined material (UDM) for use with the 

commercial finite difference program, FLAC 8.0 (Itasca 2016). This section includes a brief 

description of the numerical implementation scheme and information regarding the dynamic link 

library (DLL) and its use in boundary value problem simulations. 

 

3.1  Numerical implementation 
 

FLAC is an explicit finite difference program which uses time steps equal to or smaller than 

the minimum time required for waves to travel between any pair of nodes.  This approach ensures 

that physical information does not propagate faster than numerical information.  FLAC computes 

a default time step based on the properties of the model (e.g., element size, material stiffness, 

permeability, and damping). Users may specify a time step that is smaller than the default value.  

Obtaining numerically convergent solutions to nonlinear problems using FLAC requires that 

integration of the constitutive models is convergent and the explicit global solution is convergent. 

The default time step computed by FLAC does not necessarily ensure a numerically convergent 

solution, especially for FLAC models that are subjected to very high loading rates.  Convergence 

of the constitutive model's integration depends more strongly on the strain increment size, which 

is dependent on both the loading rate and time step size. Convergence of the explicit global solution 

depends more strongly on the sizes of the stress increments generated in the materials, which again 

are only indirectly controlled by the default time step size. For this reason, the user needs to 

evaluate the sensitivity of the solution to the time step size and not automatically assume that the 

default time step size ensures a convergent solution. 

The numerical implementation of PM4Silt is identical to that used for PM4Sand, and thus the 

user is referred to the PM4Sand manual (Boulanger and Ziotopoulou 2015) for detailed 

descriptions of the code implementation, how it relates to FLAC's mixed discretization scheme, 

and examples of its performance across a range of time steps (or strain rates). The implementation 

scheme is described by the schematic in Figure 3.1, the pseudo-code listed in Table 3.1, and the 

initialization steps listed in Table 3.2. At the end of each time step, the stress and internal variables 

are averaged over the four subzones. A drift correction is applied to ensure that the averaged 

stresses and internal variables satisfy the consistency condition; the correction involves projecting 

the back-stress ratio in the direction of the zone-averaged stress ratio. Another correction is applied 

if the zone-averaged stress ratio lies outside the bounding surface; the correction involves 

projecting the zone averaged stress ratio back along a normal to the bounding surface. The zone-

averaged stresses are then used to compute a new dilatancy D and plastic modulus Kp that are 

consistent with the average response of the zone over this step. These values for D and Kp are then 

used by all four subzones in the next time step (i.e., the values of D and Kp lag one step behind the 

time step for which they were determined); note that this approach is used by other elasto-plastic 

models available in FLAC.  Consequently, the four subzones will use a common D and Kp during 

each time step. Most other internal parameters are also computed and retained at the zone level, as 

described by the pseudo-code in Table 3.1.  
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The implementation includes a scheme to reduce hour-glassing modes which can develop in 

liquefied zones with essentially zero shear resistance. The four subzones have, in parallel to the 

PM4Silt constitutive model, an elastic-plastic resistance to shear stresses which acts independently 

in each of the subzones. The properties of this parallel elastic-plastic model are set at the instance 

when PM4Silt is initialized; the elastic moduli of the parallel elastic-plastic model is set equal to 

0.1 times that for PM4Silt and its plastic shear strength (chg) is set as the product of a strength ratio 

(crhg) times the mean effective stress in the zone. If the user specifies values for both chg and crhg, 

then chg is taken as the greater of the specified chg value and the value computed using the specified 

crhg. The default value for crhg is 0.005 and for chg is pA/100. The parallel elastic-plastic model only 

responds to deviatoric strains (producing shear stresses) and not to volumetric strains (producing 

no mean stress). This nominal amount of independent shearing resistance in the subzones was 

found to adequately control hour-glassing modes for the range of problems examined to date. 

 

Implementation of PM4Silt uses explicit integration and thus the user should routinely check 

that the solutions are not sensitive to time step size.  The addition of substepping could improve 

the constitutive model's integration but would not eliminate the need to evaluate the effect of time 

step size on the global solution.  In our experiences, the default time steps of FLAC in dynamic 

analyses of liquefaction problems have been small enough to ensure that numerical solutions are 

not significantly affected by time step size, and thus the additional computational cost of including 

substepping at the constitutive level was not considered necessary. An example of the effects of 

time step size on cyclic loading response in a single element simulation is given in Figure 3.2. 

Additional examples of the effects of time step size on element responses and system level 

responses, using PM4Sand, are presented in Boulanger and Ziotopoulou (2015).  

 

Numerical stability of the implemented model has been evaluated for a wide range of 

simulations of both element responses and system responses using the default range of parameters 

which are also summarized in the next section. Numerical stability problems may, however, 

develop when using input parameters which fall outside the ranges explored during model 

development, calibration, and implementation. Some initial bounds have therefore been placed on 

certain parameters whenever parametric analyses identified the potential for such problems; e.g., 

the minimum value of mean stress is limited to 0.5 kPa or 0.005 times the initial consolidation 

stress. The user must be aware that other limits may be identified as additional analyses explore a 

broader range of the possible input parameters. 

 

3.2  DLL module 
 

The PM4Silt model was coded in C++ and compiled as a DLL in Microsoft Visual Studio 

2015. It has been tested in FLAC8 using the software’s option for User Defined Models (UDMs). 

The steps required for using a DLL are described in the FLAC 8.0 manuals (Itasca 2016), and are 

thus only briefly summarized herein. 

Automatic loading of the DLL file 

(1) Load the DLL file in the /Exe32/plugins/models subdirectory of the folder where FLAC 

has been installed. 
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 (2) Open the FLAC 8.0 executable file or the FLAC graphical user interface. If the DLL is 

properly located, then the model should be automatically loaded. In order to verify that it 

has been loaded, the user can type “print model” in the console. If the model has been 

loaded then it should appear as “pm4silt” under the list of “Currently loaded CPP models”. 

 (3) Before constitutive model plug-ins can be assigned to zones, the model must be configured 

for their use by giving the config cppudm command. Otherwise, the user will get a 

“model will not cycle” error message. 

 

Manual loading of the DLL file 

(1) First, the user must make sure that the DLL file is located in the same folder together with 

the project file (*.prj) of the analysis. 

 

(2) In the project file (or the called fish file for the analysis) the model must be first configured 

for the use of constitutive model plug-ins (config cppudm) and then the model’s DLL 

can be loaded (model load modelpm4silt005_64.dll). Again the user can verify 

the loading of the model by subsequently typing "print model" in the console. 

 

In order to assign the model to the preferred zones the following command should be given: 

 
  model pm4silt i = … j = … 

 

Additional notes regarding the DLL file 

(1) The ability to use the DLL with FLAC's "free-field" lateral boundary conditions option has 

not been configured at this time. The user should not have PM4Silt in the outer column of 

elements against which the free-field lateral boundary condition will be applied. Similarly, 

it cannot be used in the bottom row of elements above a compliant base. 

 

3.3  Additional notes on use in boundary value problem simulations 

 

FLAC includes both "static" and "dynamic" solution procedures. PM4Silt has been validated 

for use with the dynamic procedure only. The use of PM4Sand with FLAC's static solution 

procedure has produced numerical problems in some simulations; the static solution procedure 

uses extremely high damping values which can carry significant shear and normal stresses, which 

can cause problems with the response of a highly nonlinear, stress-dependent material. For this 

reason, the use of PM4Silt with FLAC's static solution procedure should be avoided unless time 

for a higher degree of scrutiny and evaluation is allowed for.  

 

A nominal amount of Rayleigh damping should be included with PM4Silt zones to control 

numerical noise. A damping ratio of 0.005 has been found sufficient for most applications.  
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Zones at the ground surface, particularly within slopes and above the water table, are 

susceptible to developing large deformations at strong shaking levels (i.e., when the frictional shear 

resistance is exceeded). Excessive distortion of surface zones can lead to premature stoppage of a 

simulation, particularly for soils that liquefy or cyclic soften. Some analysts will use Mohr 

Coulomb materials in lieu of complex sand models for surface zones, for which they can then 

include a nominal amount of cohesion to reduce the potential for surficial shear failures. In the 

current version of PM4Silt, a similar effect can be achieved by increasing the nominal shear 

resistance chg above the default value used to control hour-glassing in liquefied zones. 

 

Loading conditions that cause a progressive increase in the mean effective stresses in PM4Silt, 

or any other pressure-dependent material, require special consideration during the solution process. 

The elastic moduli will increase with increasing mean effective stress, such that the time step 

required for a stable solution will decrease as the loading progresses. FLAC only determines the 

required time step at certain instances, like when the step or solve commands are executed. For 

this reason, the loading should be applied in small increments with the solve command periodically 

repeated so that the required time step is updated as appropriate during the applied loading. 

 

Initial stresses in a boundary value problem are sometimes established using simpler 

constitutive models, like a Mohr-Coulomb or elastic model, prior to switching the materials to a 

more complex model like PM4Silt. Problems can develop if the initial states of stress fall outside 

the bounding surface lines for the PM4Silt model. This can happen in zones where the initial state 

of stress was computed for a Mohr Coulomb material with a nonzero cohesion or for an elastic 

material. For this reason, it is helpful to first ensure that the initial states of stress in all zones 

correspond to a stress ratio that is less than some reasonable limit prior to switching the material 

model to PM4Silt.  
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Table 3.1: Simplified pseudo-code of PM4Silt 

 
Operations within one subzone: 

1. Initialize the model parameters; this only happens when the model is first assigned or when FirstCall is set to 

zero at some point during the analysis. For detailed information on what parameters are initialized (or reset) 

see Table 3.2. 

2. Obtain the strain increment from FLAC 𝑑𝜺. 

3. Decompose the strain increment into volumetric and deviatoric components, 𝑑𝜀𝑝 and 𝑑𝜀𝑠. 

4. Calculate the trial elastic stress increment and trial elastic stress: 

tr 0 tr 0 s pd 2Gd Kd    σ σ σ σ ε I  

5. Calculate the trial stress ratio ,rtr the distance from the yield surface 𝑑𝑖𝑠𝑡, the unit normal to the yield 

surface n and the inner product of the change in back-stress ratio tensor with unit normal vector 

daxn. 

tr tr
tr

tr

p

p



σ I

r
I

 

   tr 0 tr 0dist :  r α r α  

 tr 0

dist




r α
n  

 0 indaxn : α α n  

6. Check for yield: 

a. If elastic then commit the trial stresses. Go to step 8. 

1
dist m

2
  

0 trσ σ  

b. If inelastic: 

i. Calculate loading index L: 

2 : :

2 :

v

p

G d Kd
L

K G KD




 

n e n r

n r
 

ii. Calculate trial stress increment and trial stress: 

 tr 0 tr 0 s pd 2Gd Kd L 2G KD      σ σ σ σ ε I n I  

iii. Apply penalties to stress ratios and back-stress ratios to meet the consistency condition and to 

remain within the bounding surface. 

iv. Calculate image back-stress ratios and inner products: 

1
2

b bM m   α n  

1
2

d dM m   α n  

1
2

dR dRM m   α n  

v. Commit the trial stresses (back-stress ratios, stress ratio, mean stress, stress) 

7. Return all stress tensor components to FLAC (at this point FLAC takes over and will average them according 

to the mixed discretization scheme) 

 

 
Operations referring to the whole zone: 

8. After the calculation has completed the 4th subzone, the following additional calculations are performed for 

the overall zone. Recall the following parameters for all 4 subzones and compute area-weighted average 

values for: 
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 Volumetric strain pd   

 Strain increment dε  

 Mean stress p  

 Stress tensor (committed one) 0σ  

 Back-stress ratio tensor 0α  

 Unit normal to yield surface vector n  

9. Apply penalties to the averaged zone parameters to meet the consistency condition and maintain the yield 

surface inside the bounding surface. 

10. Calculate image back-stress ratios and inner products for the averaged zone parameters. 

11. Calculate daxn for the averaged zone parameters and determine whether a loading reversal has occurred. 

12. Compute Dilatancy D and Plastic Modulus Kp for the past average step in the zone. 

13. Compute plastic volumetric strain for use in fabric terms. 

14. If  d :α α n  < 0, update the fabric tensor for the zone and if exceeding its former value, update the 

cumulative fabric term. 

 pz
max

cum

max

dc
z

Dz
max 1,

2z


  

 
 
 

z z n z  

15. Update the relative state parameter, the bounding and dilatancy stress ratios, the elastic shear modulus 

(depends on fabric) and the elastic bulk modulus for the next step. 

16. Update the initial and previous initial back-stress values and the strain increment accumulators. 

17. Update initial back-stress ratios upon reversal. 

18. Commit zone stress tensor, zone mean stress, zone back-stress ratio tensor, zone stress-ratio tensor to memory. 
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Table 3.2: Initialization function of PM4Silt (called during the first application of the model and 

whenever FirstCall=0) 

 

1. Obtain stresses from FLAC and create stress tensor (these will be the committed stresses from which the 

calculation will start): 

𝝈𝝄
𝒊𝒋

 

2. Check stresses and calculate mean effective stress: 

a. If stresses tensile: 

𝜎𝜊
11 > 0 →  𝑝𝑜  =  −

𝑃𝑎𝑡𝑚

20
 

𝝈𝝄
𝒊𝒋

= 𝑝𝑜 ∙ [𝐼] 
b. If stresses compressive (following FLAC’s sign convention that tensile stresses and strains are positive): 

𝜎𝜊
11 < 0 →  𝑝𝑜  =  𝑚𝑖𝑛 (−0.5𝑘𝑃𝑎,

1

2
𝜎𝜊

𝑖𝑖) 

 𝑝𝑚𝑖𝑛 =
𝑝𝑐𝑠

8
> 𝑝𝑜  or 𝑝𝑚𝑖𝑛 = (1 − 𝑟𝑢,𝑚𝑎𝑥)

𝑝𝑜

2
 

 

3. Position the critical state line, calculate state parameter and subsequently calculate the bounding Mb and 

dilatancy Md stress ratios: 

Γ = 𝑒 + λ𝑙𝑛 (101.3
2𝑠𝑢,𝑐𝑠

𝑀𝑃𝐴

) 

𝜉 = 𝑒 − Γ + λ𝑙𝑛 (101.3
𝑝

𝑃𝐴

) 

4. Check that initial stresses are inside the bounding surface and compute the committed back-stress and stress 

ratio tensors from the stress tensor: 

𝑀𝑓𝑖𝑛 = −
2

𝑝0

∙ √
1

2
(𝝈𝝄

𝒊𝒋
− 𝑝𝑜[𝐼]): (𝝈𝝄

𝒊𝒋
− 𝑝𝑜[𝐼]) 

a. If 𝑀𝑓𝑖𝑛 > 𝑀𝑏: 

𝒓𝝄
𝒊𝒋

= (
𝝈𝝄

𝒊𝒋
− 𝑝𝑜[𝐼]

𝑝𝑜

) (
𝑀𝑏

𝑀𝑓𝑖𝑛
) 

 

𝝈𝝄
𝒊𝒋

= 𝑝𝑜[𝐼] + 𝒓𝝄
𝒊𝒋

𝑝𝑜 

 

𝜶𝝄
𝒊𝒋

= 𝒓𝝄
𝒊𝒋

∙
𝑀𝑏 − 𝑚

𝑀𝑏
 

 

 

b. If 𝑀𝑏 > 𝑀𝑓𝑖𝑛: 

𝒓𝝄
𝒊𝒋

= (
𝝈𝝄

𝒊𝒋
− 𝑝𝑜[𝐼]

𝑝𝑜

) 

𝜶𝝄
𝒊𝒋

= 𝒓𝝄
𝒊𝒋

 

5. Create/Initialize the initial back-stress ratio, initial previous back-stress ratio, minimum initial back-stress 

ratio and maximum initial back-stress ratio tensors (see also Section 2.5 on Stress Reversal): 
 

𝜶𝒊𝒏
𝒊𝒋

= 𝜶𝝄
𝒊𝒋

 

 

𝜶𝒊𝒏𝑷
𝒊𝒋

= 𝜶𝒊𝒏𝑴𝒂𝒙
𝒊𝒋

= 𝜶𝒊𝒏𝑴𝒊𝒏
𝒊𝒋

= 𝜶𝒊𝒏
𝒊𝒋

 

 

6. Calculate initial values of elastic shear modulus, elastic bulk modulus, plastic modulus, dilatancy: 
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𝐺 = 𝐺𝑜𝑃𝑎𝑡𝑚√
−𝑝𝑜

𝑃𝑎𝑡𝑚

 

 

𝐾 = 𝐺
2(1 + 𝑣)

3(1 − 2𝑣)
 

 

𝐾𝑝 = 100𝐺 

 

𝐷 =  0 
 

7. Initialize fabric related terms (see Section 2.8) – note that these terms will be referring to the whole zone: 

𝑝𝑧𝑝 =
𝑝𝑜

100
 

 

𝑧𝑝𝑒𝑎𝑘 =
𝑧𝑚𝑎𝑥

100000
 

 

𝑧𝑥𝑝 =  𝒛: 𝑝 =  0 

 

𝑧𝑥𝑝𝑃𝑘 = −𝑧𝑚𝑎𝑥

𝑝𝑜

50
 

 

𝒛𝒊𝒋 = 𝒛𝒊𝒏
𝒊𝒋

= 𝒛𝜶
𝒊𝒋

= 𝑧𝑐𝑢𝑚 = 0 
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Figure 3.1 Schematic illustration of the averaging procedure followed in the implementation of 

PM4Silt: zone-averaged values are computed for some internal variables of the model, denoted 

as “m”, at the end of each step, after which other internal parameters, denoted as “q”, are 

computed based on the zone-averaged parameters 
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Figure 3.2 Effect of dynamic time step on the results obtained from (a) drained and (b) undrained 

cyclic DSS element test simulations for baseline properties with su/'vc =0.5, σ'vc = 1atm, and 

a shear strain rate of 5%/s. The black line in each case denotes the response obtained with 

FLAC’s default dynamic time step. 
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4. MODEL INPUT PARAMETERS AND RESPONSES 

 

4.1  Model input parameters 

 
The model parameters are grouped into a set of primary parameters (three required soil 

parameters, one optional soil parameter, one initialization flag, and a unit set indicator) and a set 

of 20 secondary parameters.  Default values are provided for all but the three required primary 

parameters, which are the minimum required inputs for model calibration. The secondary 

parameters may warrant adjustment from their default values if site-specific laboratory test data 

are available for calibration. 

 

Primary input parameters 

 

The four primary soil parameters are the soil's undrained shear strength at critical state under 

earthquake loading ratios (su,cs,eq) (or the corresponding undrained shear strength ratio su,cs,eq/'vc), 

the shear modulus coefficient Go, the contraction rate parameter hpo, and the post-shaking shear 

strength reduction factor (Fsu). The first three are required parameters, whereas the fourth is 

optional.  These parameters are discussed below and summarized in Table 4.1. 

The su of low-plasticity silts and clays can be estimated in practice by a combination of in situ 

testing (e.g., cone penetration tests, vane shear tests), laboratory testing of "undisturbed" field 

samples (e.g., consolidated undrained triaxial or direct simple shear tests), and empirical 

correlations for undrained shear strength ratio versus over-consolidation ratio (e.g., Figure 1.2).  

The undrained stress-strain response at strains greater than a few percent can range from strain-

hardening for highly over-consolidated soils (i.e., dense of critical) to strain-softening for normally 

consolidated or lightly over-consolidated soils (i.e., loose of critical).  In addition, the su is rate 

dependent (e.g., Sheehan et al. 1996) such that the shear resistance during earthquake loading can 

be 20-40% greater than measured in standardized laboratory tests that use far slower loading rates 

(e.g., Boulanger and Idriss 2007). 

The first required soil parameter is the su that corresponds to critical state conditions at the 

strain rate expected during earthquake shaking (i.e., su,cs,eq). The peak su produced by PM4Silt can 

be greater than su,cs,eq if the other input parameter selections (particularly the combination of nb,wet 

and hpo) produce post-peak strain-softening behavior, as illustrated later.  

Alternatively, the su values can be initialized by specifying an undrained shear strength ratio 

(su,cs,eq/'vc) that is used to compute su,cs,eq from the 'vc at "consolidation" (i.e., at the time of model 

initialization or whenever the parameter FirstCall is set equal to zero). If the user inadvertently 

specifies values for both su,cs,eq and su,cs,eq/'vc, the value of su,cs,eq is used.  

The value specified for su,cs,eq is used internally to compute , conditional on the other input 

parameters, and thereby position the critical state line at the time of model initialization as 

illustrated in Figure 1. For this reason, the undrained monotonic and cyclic loading responses are 

generally insensitive to variations in eo or . 



  63  

 

The su values for post-shaking stability should correspond to critical state conditions at the 

slower strain rate associated with static stability (i.e., su,cs,static). The input parameter Fsu is used to 

reduce the su for the post-strong-shaking portion of the analysis by an amount that accounts for the 

slower strain rates and any expected effects of cyclic degradation or remolding.  

 , , , ,u cs static su u cs eqs F s 

 

(94)  

The input parameter Fsu reduces su,cs by shifting the critical state line leftward relative to its initial 

position; i.e., re-setting Fsu at different times will reduce the strength relative to the strength for Fsu 

= 1.0, not relative to the prior Fsu value.  The default value for Fsu is 1.0.  A value for Fsu can be 

specified at any time, but the intended use is for it to be set at the end of strong earthquake shaking, 

after which the dynamic analysis should be continued for sufficient time to evaluate post-shaking 

stability. The code does not require that a value for Fsu be specified during the analysis, and thus it 

is the user's responsibility to evaluate whether the selected input parameters provide appropriately 

conservative strengths for evaluating post-shaking stability.  

Another required soil parameter is the constant Go which controls the elastic (or small strain) 

shear modulus as, 

 

Gn

o A

A

p
G G p

p

 
  

 
 (95)  

The elastic shear modulus can be calibrated to fit in-situ Vs measurements, according to, 

  
2

sG V   (96)  

or alternatively fit to values of Vs that may be estimated by correlations.  The shear modulus 

exponent nG has a default value of 0.75, but may be adjusted as warranted.  

The third required soil parameter is the constant hpo which is used to modify the contractiveness 

and hence enable calibration of the model to specific values of cyclic resistance ratio (CRR).  For 

the examples presented herein, the target CRR values were based on the cyclic strength correlations 

by Boulanger and Idriss (2007) and Dahl (2011). These relationships are intended for the range of 

loading rates expected during earthquakes, recognizing that the cyclic strength for low plasticity 

silts and clays exhibit a strain-rate dependence comparable to that observed for su (e.g., Lefebvre 

and LeBouef 1987, Zergoun and Vaid 1994, Lefebvre and Pfendler 1996, Boulanger et al 1998).  

These relationships indicate that the cyclic stress ratio to cause a peak shear strain of 3% in 30 

uniform load cycles at earthquake loading rates is about 70-90% of the soil's su,cs,static/'vc (e.g., 

Figure 1.6) or about 55-70% of the soil's su,cs,eq/'vc (allowing for su,cs,eq being greater than su,cs,static 

due to rate effects); thus, hpo should be calibrated based on the latter range because the su being 

input to the model corresponds to the su,cs,eq for the strong shaking portion of the dynamic analysis.  
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The flag FirstCall is used to: (1) re-set the back-stress ratio history terms equal to the current 

stress ratio, (2) erase all fabric terms, and (3) compute su,cs,eq using the current 'v if the option for 

inputing su,cs,eq/'vc was used.  The first time the model is called, the flag should be unspecified or 

have a value of 0. The model will then initiate the back-stress ratios and all pertinent history terms 

using the current state of stress. The flag is then set equal to 1.0 internally. If FirstCall is later set 

equal to 0.0 using the property command in FLAC, this will cause the material to re-initiate all 

internal terms, thereby re-setting the back-stress and stress ratio history terms, erasing all fabric 

terms, and re-computing su,cs,eq (if applicable). FirstCall should usually be set to 0.0 just before 

initiating dynamic earthquake loading. Otherwise, the model will retain memory of the loading 

during the static initiation of the model, which may or may not be desired. 

The value of atmospheric pressure, pA, should also be specified in the unit set being used for 

the analysis.  If not specified, it will default to 101,300 Pascal. 

 

Table 4.1 – Primary input parameters (parameter names in square brackets correspond to the 

input name to be used within FLAC) 

 

Parameter 

[FLAC property 

name] 

Comments 

su,cs,eq 

[S_u] 

 

or 

 

su,cs,eq/'vc 

[Su_Rat] 

 
 

Undrained shear strength (Required): Required parameter that is 

used to position the critical state line (i.e., sets ) to obtain the 

specified undrained shear strength at critical state for the current void 

ratio (su,cs,eq).  A value for su,cs,eq/'vc is computed internally from the 

'vc at "consolidation" (i.e., at the time of model initialization or 

whenever the parameter FirstCall is set equal to zero). 

 

The user may instead specify an undrained shear strength ratio 

(su,cs,eq/'vc) that is used to compute su,cs,eq from the 'vc at 

"consolidation" (i.e., at the time of model initialization or whenever 

the parameter FirstCall is set equal to zero).  

 

If the user inadvertently specifies values for both su,cs,eq and 

su,cs,eq/'vc, the value of su,cs,eq is used.  
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Go 

[G_o] 

Shear modulus coefficient (Required): Primary variable 

controlling the small strain shear modulus, Gmax.   

Gn

max o A

A

p
G G p

p

 
  

 
 

Go should be chosen to match estimated or measured shear wave 

velocities according to Gmax =  Vs
2. Note that the exponent nG has a 

default value of 0.75, but may also be adjusted as warranted. 

 

hpo 

[h_po] 

Contraction rate parameter (Required): Primary variable that 

adjusts contraction rates and hence can be adjusted to obtain a target 

cyclic resistance ratio. 

 

Calibration of this parameter should be performed last because its 

value can depend on the values assigned to other parameters. 

 

Fsu 

[Su_factor] 

Undrained shear strength reduction factor (Optional): Primary 

variable that can be used to reduce the su,cs value relative to the value 

at the time of initialization (i.e., when Fsu had its default value of 

1.0). This parameter can be set at the end of strong shaking, and thus 

used to evaluate post-strong-shaking static stability using strengths 

appropriate for the slower loading rates and any estimated effects of 

cyclic degradation or remolding.  

, , , ,u cs static su u cs eqs F s   

 

FirstCall 

[First_Call] 

Flag (optional), that when set to 0.0 sets the back-stress ratio history 

terms equal to the current stress ratio, erases all fabric terms, and 

computes su,cs based on the current effective stress conditions (if the 

strength ratio option was used). FirstCall defaults to 0.0 at model 

initialization. FirstCall usually should also be set to 0.0 just before 

initiating dynamic earthquake loading. Otherwise, the model will 

retain memory of the loading during the static initiation of the model, 

which may or may not be desired. 

 

pA 

[P_atm] 

Atmospheric pressure in the unit set being used. Defaults to 

101,300 Pascals if not specified. 

 

 

 

Secondary input parameters 

 
Secondary input parameters are those parameters for which default values have been developed 

that will generally produce reasonable behaviors. The secondary input parameters are listed in 

Table 4.2, along with commentary on the recommended default values. The selected values for 
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these parameters have been embedded within the initialization section of the code and unless 

specified otherwise by the user, they are applied by default. In addition, the input logic is structured 

such that secondary parameters will take their default value if the user inputs a value of zero for 

that parameter. 

The secondary parameters that are most likely to warrant adjustment from their default values 

will depend on the nature of the soil's responses in site-specific laboratory testing.  Past experience 

suggests that the parameters ho, n
b,wet, zmax, ce, and cz, are often the most effective in improving 

site-specific calibrations, while the parameters ru,max, CDG, and Ck can also be effective in certain 

situations.   

The last secondary parameter is the flag PostShake, which can be used during the post-shaking 

portion of a simulation to improve the modeling of post-liquefaction reconsolidation strains. The 

flag is set to 0 internally and remains 0 unless the user specifies otherwise. If the flag is set to 1.0, 

the elastic moduli will be reduced according to the expressions presented previously. PostShake 

should only be set to 1.0 at the end of strong shaking, as the reductions in elastic moduli were not 

calibrated for dynamic loading behavior. 
 

 

Table 4.2 – Secondary input parameters 

 

Parameter 

[FLAC name] 
Comments 

nG 

[G_exp] 

Shear modulus exponent (Optional): Primary variable controlling 

how the small strain shear modulus (discussed above) varies with 

confining stress. Default value is 0.75.  

 

ho 

[h_o] 

Variable that adjusts the ratio of plastic modulus to elastic modulus. 

The default value of ho=0.5 was chosen to provide reasonable G/Gmax 

and damping relationships for the baseline set of model calibrations. 

This variable may require adjustment to improve the G/Gmax and 

damping behavior for other model calibrations.  

 

eo 

[e_o]  

The initial void ratio primarily affects how volumetric strains translate 

into changes in state parameter.  Default value is 0.90. Changing eo does 

not affect the undrained shear strength, because the code positions the 

critical state line relative to eo based on the specified undrained shear 

strength. 

 



[lambda] 

The slope of the critical state line in e-ln(p) space. Default value is 

0.060. Changing  influences how  varies with changing p, but the 

influence on model response is not strong because most behaviors 

depend on /.  
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cv' 

[phi_cv] 

Default value is 32 degrees. 

 

nb,wet 

[n_bwet] 

Default value is 0.80, with upper and lower limits of 1.0 and 0.01, 

respectively.  The degree to which the peak su may exceed the critical 

state su,cs increases with decreasing nb,wet.  

 

nb,dry 

[n_bdry] 

Default value is 0.5. Controls peak effective friction angles for dense 

of critical state conditions, and thus influences undrained cyclic loading 

behaviors.  

 

nd 

[n_d] 

Default value is 0.30. Controls the stress-ratio at which contraction 

transitions to dilation, which is often referred to as phase 

transformation. 

 

Ado 

[A_do] 

Default value of 0.8 provides approximate consistency with stress-

dilatancy relationships. 

  

ru,max 

[ru_max] 

If ru,max is specified, pmin is set equal to (1-ru,max)p/2 at the time of 

initialization. 

If ru,max is not specified, the internal parameter pmin defaults to 1/8th of 

pcs for the void ratio at initialization, but not smaller than the pmin 

computed using ru,max = 0.0.  

For either case, pmin is restricted to be greater than, or equal to, pA/200 

(i.e., 0.5 kPa). 

The ru,max specified here (which is based on p) is different from the 

form commonly used to interpret DSS tests (which is based on 'vc); 

this difference in definitions needs to be accounted for in calibration.   

 

zmax 

[z_max] 

Default value is computed at the time of initialization as, 

 

10 0.25

40 0.25 0.50

20 0.50

u
max

vc

u u
max

vc vc

u
max

vc

s
z for

s s
z for

s
z for



 



 


 
   

  

 


 

Can be adjusted to improve approximation of site-specific laboratory 

test data. Increasing zmax increases maximum excess pore pressure, 

reduces width of hysteresis loops, reduces cyclic strength, steepens the 

CRR-cycles curve, and increases rate of strain accumulation. 

 

cz 

[c_z] 

Default value is 100.  Controls strain levels at which fabric effects 

become important. Values between 50 and 250 typical. 
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c

[c_e] 

Default value increases from 0.5 to 1.3 as su,cs,eq/'vc increases: 

0.5 1.2 0.25 1.3u

vc

s
c


   


 

Can be used to adjust the rate of strain accumulation in undrained cyclic 

loading. 

 

CGD 

[G_degr] 

Default value is 3.0.  The small-strain elastic modulus degrades with 

increasing cumulative plastic deviator strains (zcum). The maximum 

degradation approaches a factor of 1/CGD. 

 

Ckf

[Ckaf] 

Default value is 4.0.  This variable can adjust the effect that sustained 

static shear stress has on plastic modulus and hence cyclic strength.  
Effects is small for loose-of-critical state conditions, and becomes more 

signficant as state becomes increasing dense-of-critical. 

 



[pois]

Default value is 0.30.  For 1-D consolidation of an elastic material, 

the value of Ko would correspond to, 

  

The default value for  results in a Ko value of 0.43 in 1-D 

consolidation. 

 

crhg  

[MC_ratio] 

Default value is 0.005. Nominal plastic shear strength ratio used to 

compute chg at the time of initialization or when FirstCall is set equal 

to 0.  

 

chg 

[MC_c] 

Nominal plastic shear strength assigned at initialization or when 

FirstCall is set equal to 0. It is computed as the greater of: (1) crhg times 

p, and (2) the user-specified value for chg. Thus, the user-specified value 

for chg is the minimum value it will be assigned.  

 

PostShake 

[Post_Shake] 

Flag (optional) that can be used during post-shaking portion of a 

simulation to improve modeling of post-liquefaction reconsolidation 

strains. Set PostShake = 1.0 to activate this option; note that PostShake 

should only be activated after the end of strong shaking.  

 

CGC 

[CG_consol] 

Default value is 2.0, and it is restricted to values ≥1. This is the factor 

by which the estimated elastic modulus for 1D reconsolidation is 

degraded (divided by) when the value of zcum >> zmax.  Larger values 

result in greater post-cyclic loading reconsolidation strains.  

  




 
oK
1
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Tracking variables 

 

Many of the parameters internal to PM4Silt may be tracked for debugging purposes. The table 

below lists some of the internal parameters that may be of interest. Other internal parameters that 

can be tracked include: max_G, max_K, pmin, MM, alfa_11, alfa_12, r_11, r_12, aIn_11, aIn_12, 

aInP_11, aInP_12, z_11, z_12, zcum, zpeak, zxpPk, pzp, zxp, Cka, eqsum, evsum, LoadInd, Dilat, 

Kp, zabs, evol, eq_11, eq_22, eq_12, epsIncr and daxn. 

 
 

 

Table 4.3 – Internal parameters available for tracking 

 

Parameter [FLAC Name] Comments 

Mb  

[Mb] 
Bounding surface stress ratio 

Md  

[Md] 
Dilatancy surface stress ratio 

Mcur 

[Mcur] 
Current stress ratio 

G  

[shearG] 
Elastic shear modulus  

K  

[bulkK] 
Elastic bulk modulus 

e 

[e_cur] 
Current void ratio 



[e_1] 
Critical state line intercept at p = 1 kPa 

ξ  

[st_param] 
State parameter 

 

Recall that internal parameters (properties) can be accessed using the z_prop command of FLAC. 

For example, an algorithm to find the maximum bulk modulus in a model can be: 

 

loop $i (1, izones)  

       loop $j (1,jzones) 

               $dummy = z_prop($i,$j,'bulkK') 

               $maxK  = max($dummy,$maxK) 

       end_loop 

end_loop 
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4.2  Model responses with default calibration for secondary parameters 

 

The response of the model is illustrated by presenting simulation results for an example set of 

primary input parameters, while all secondary parameters receive their default values.  Results are 

presented for soils having undrained shear strength ratios of 0.25, 0.5, and 0.75 with Go values of 

588, 776, and 913, respectively.  Values for hpo were calibrated to produce a reasonable slope for 

the CRR versus number of uniform loading cycles curve in direct simple shear (DSS) simulations. 

The default values for all other parameters, as summarized previously in Tables 4.1 and 4.2, were 

used for all simulations unless otherwise noted.  The primary model parameters for the examples 

presented in this section are listed in Table 4.4. 

 

      Table 4.4.  Input parameters for example element responses 

 Model input parameters (a)  

Implied Vs1
 (b) 

(m/s) su,cs,eq/'vc Go hpo 

0.25 588 20 177 

0.5 776 50 204 

0.75 913 60 221 

(a) All other input parameters were assigned the default values listed in Tables 4.2. 
(b) Assuming saturated density of 1.87 Mg/m3. 

 
 

Undrained monotonic loading 

 

The response in undrained monotonic loading in direct simple shear (DSS) for soils with 

su,cs,eq/'vc = 0.25, 0.50, and 0.75 under vertical consolidation stresses of ¼, 1, 2, 4, and 16 atm are 

shown in Figure 4.2, with the results normalized by the vertical consolidation stress. An initial Ko 

of 0.5 was used for all simulations. The normalized stress-strain responses were strain-hardening 

for su,cs,eq/'vc = 0.5 and 0.75, but included some post-peak softening for su,cs,eq/'vc = 0.25. The 

normalized stress-strain responses show that slightly greater strains are required to reach different 

stress levels as the confining stress increases, which is expected because the default nG = 0.75 is 

less than unity; if nG = 1.0, then both strength and stiffness are proportional to confining stress and 

the normalized stress-strain responses become independent of consolidation stress.   

 

The effect of nb,wet on the undrained monotonic loading response for su,cs,eq/'vc = 0.25 and 'vc 

= 1.0 atm is shown in Figure 4.3. Reducing nb,wet from the default value of 0.8 results in the peak 

shear resistance becoming progressively larger, with an associated increase in the amount of post-

peak strain-softening since the critical state strength remains the same.  

 

The effect of Fsu on the undrained monotonic loading response is illustrated in Figure 4.4 for 

su,cs,eq/'vc = 0.25 and 'vc = 1.0 atm. The soil was sheared to 10% shear strain with Fsu at its default 

value of 1.0. Values of Fsu = 0.8, 0.5, and 0.2 were specified at that point, after which undrained 
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shearing continued to 20% shear strain. The responses show that once Fsu has been specified, the 

soil strain-softened toward its new critical state undrained strength.  

 

Undrained cyclic loading 

 

The undrained cyclic loading responses for su,cs,eq/'vc of 0.25, 0.50, and 0.75 are shown in 

Figures 4.5-4.7, respectively.  These figures show the stress-strain and stress-path responses for 

undrained uniform cyclic loading in DSS with a vertical consolidation stress of 1 atm, an initial Ko 

of 0.5, and initial static shear stress ratios () of 0.0, 0.1, and 0.2.   

The stress-strain responses for  = 0.0 illustrate the model's ability to progressively reach larger 

and larger shear strains with continued cyclic loading, rather than locking up in a repeating loop 

as many plasticity models do. The ability to simulate the progressive accumulation of shear strains 

reflects the inclusion of the cumulative fabric terms, as described previously. The limiting excess 

pore pressure ratios (ru) were about 88, 75, and 60% for su,cs,eq/'vc = 0.25, 0.50, and 0.75, 

respectively.  The rates at which peak shear strains increase after the soil reaches a limiting ru value 

decrease with increasing su,cs,eq/'vc and are realistic in magnitude. 

The stress-strain responses with nonzero initial static shear stresses show a progressive 

accumulation of shear strains in the direction of the initial static shear stress, with the rate and 

nature of the stress-strain response also being realistic for the imposed loading.  

 

CRR versus number of loading cycles – Effect of strength ratio and consolidation stress 

 

The cyclic stress ratio (CSR) required to cause single-amplitude shear strains of 3% are plotted 

versus number of uniform loading cycles in Figure 4.8 for su,cs,eq/'vc = 0.25, 0.5, and 0.75 under 

vertical consolidation stresses of 1, 4, and 8 atm. These results are for DSS loading with an initial 

Ko of 0.5 and zero initial static shear stress ratio (). The cyclic resistance ratios (CRR) for 

small numbers of loading cycles (close to one cycle) are close to the su,cs,eq/'vc values, as expected.  

The slopes of these CRR versus number of loading cycle curves are in reasonable agreement 

with typical values obtained in laboratory testing studies. If the numerical results are fitted with a 

power law, the exponent b is generally between 0.14 and 0.20 for these simulations, which is 

reasonably consistent with experimental observations for low-plasticity silts and clays (e.g., 

Figure 1.6). The slopes of the CRR versus number of loading cycles curves is most strongly 

affected by the parameters hpo, zmax, c, and cz, whereas that the cyclic strength at ½ cycle is 

essentially controlled by model's undrained strength ratio.  

 

The effect of overburden stress on CRR is negligible for su,cs,eq/'vc = 0.25, but become more 

significant as su,cs,eq/'vc increases. The effect of overburden stress on the CRR is relatively small 

because the effects of overburden stress on soil strength are already accounted for in the 

specification of su,cs,eq/'vc.  
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CRR versus number of loading cycles – Effect of initial static shear stress 

 

The cyclic stress ratio (CSR) required to cause single-amplitude shear strains of 3% are plotted 

versus number of uniform loading cycles in Figure 4.9 for su,cs,eq/'vc = 0.25, 0.5, and 0.75 with 

initial static shear stress ratios () of 0.0, 0.1, and 0.2. These results are for DSS loading with an 

initial Ko of 0.5 and vertical consolidation stress of 1 atm. The cyclic resistance ratios (CRR) 

decrease with increasing  by amounts that are reasonably consistent with experimental trends 

(Figures 1.8 and 1.9).  

Strain-controlled loading for G/Gmax and damping values 

 

Undrained strain-controlled cyclic loading in DSS for su,cs,eq/'vc = 0.25, 0.50, and 0.75 under 

vertical consolidation stresses of 1 and 4 atm with Ko=1.0 are shown in Figures 4.10, 4.11, and 

4.12, respectively, with results also shown for the equivalent modulus reduction (G/Gmax) and 

equivalent damping ratio (ξ) versus cyclic shear strain amplitude (γ). Also shown on these figures 

are the modulus reduction and equivalent damping ratio curves recommended for clays of low PI 

by Vucetic and Dobry (1991).  The simulated modulus reduction and equivalent damping ratio 

curves show a modest dependence on effective confining stress, which is consistent with 

expectations given that nG is less than unity. Note that setting nG = 1.0 eliminates any dependence 

of the G/Gmax and equivalent damping ratio curves on consolidation stress. The simulated modulus 

reduction curves for this calibration generally fall between the empirical PI = 0 and PI = 10 curves 

by Vucetic and Dobry (1991), whereas the simulated damping ratios are slightly greater than the 

corresponding empirical curves.  

 

The influence of Go and ho on the modulus reduction and damping responses are illustrated for 

su,cs,eq/'vc = 0.50 in Figure 4.13.  Increasing Go, while keeping ho constant, shifts the shear modulus 

reduction curve to the left and increases the equivalent damping values for a given shear strain 

amplitude.  Increasing ho, while keeping Go constant, shifts the shear modulus reduction curve to 

the right and lowers the equivalent damping values for a given shear strain amplitude. In 

calibration, the value of Go should be set first based on the estimated Vs, followed by adjustment 

of ho based on the target modulus reduction and damping responses.  

 

Drained monotonic loading 

 

The response for drained monotonic loading in direct simple shear (DSS) for soil with 

su,cs,eq/'vc = 0.25, 0.50, and 0.75 under vertical confining stresses of ¼, 1, 2, 4, and 16 atm is shown 

in Figure 4.14.  The plots show the response up to shear strains of 20%, while the simulations tend 

to approach critical state conditions at shear strains ranging from 50-70% for su,cs,eq/'vc = 0.75 to 

as large as 150-200% for su,cs,eq/'vc = 0.25.  The simulated response for su,cs,eq/'vc = 0.25 is strain-

hardening, as expected for an initially loose-of-critical soil. The simulated response for su,cs,eq/'vc 

= 0.75 is slightly post-peak strain-softening, as expected for an initially dense-of-critical soil  The 

rates of strain-softening and strain-hardening appear slower than often observed in experimental 

results, which partly reflects the calibration parameters and partly reflects limitations in single 

element simulations. The strain hardening rate for the su,cs,eq/'vc = 0.25 case can be increased by 

adjusting the secondary input parameters, if drained strengths are a primary concern for the 

calibration.  The strain softening rate for the su,cs,eq/'vc = 0.75 case can also be adjusted, but 
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calibrations for strain softening in dilating soils are complicated strain localizations in laboratory 

tests, which is something that single element simulations cannot reproduce accurately.  

The effects of nb,wet on the drained monotonic loading response for su,cs,eq/'vc = 0.25 and 'vc 

= ¼, 1, 2, 4, and 16 atm are shown in Figure 4.15. Reducing nb,wet from the default value of 0.8 

results in the drained shear resistance increasing more quickly toward critical state values with 

increasing shear strain.  

Post-cyclic-loading reconsolidation strains 

 

Volumetric strains due to post-cyclic-loading reconsolidation, with and without the PostShake 

option, are plotted in Figure 4.16 versus the maximum shear strain induced during undrained cyclic 

loading. Results are shown for su,cs,eq/'vc = 0.25 loaded in DSS with an initial Ko=0.5, a vertical 

consolidation stress of 1 atm, zero initial static shear stress ratio, and a cyclic stress ratio of 0.20. 

After cyclic loading to different maximum shear strains, the shear strain was returned to zero and 

then the specimen one-dimensionally reconsolidated to its original vertical consolidation stress. 

The computed volumetric strains were less than about 0.3% with PostShake = 0 (default value) 

and are smaller than expected based on common experimental data. The computed volumetric 

strains with PostShake = 1 (imposed at the end of cyclic loading) increased to values ranging from 

0.5% to 1.2% as the parameter CGC was increased from 1.0 to 5.0.  
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Figure 4.1. Positioning the critical state line based on the specified undrained shear strength and other 

input parameters. 

 

 

Figure 4.2. Normalized responses in undrained monotonic DSS loading for baseline parameters. 
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Figure 4.3. Effect of nb,wet on responses to undrained monotonic DSS loading for su/'vc = 0.25. 

 

 

 

 

Figure 4.4. Effect of Fsu on response to undrained monotonic DSS loading for su/'vc = 0.25.  
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Figure 4.5. Stress-strain and stress path responses for undrained cyclic DSS loading for baseline 

parameters with su/'vc = 0.25 and initial static shear stress ratios of 0.0, 0.1, and 0.2. 
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Figure 4.6. Stress-strain and stress path responses for undrained cyclic DSS loading for baseline 

parameters with su/'vc = 0.50 and initial static shear stress ratios of 0.0, 0.1, and 0.2. 
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Figure 4.7. Stress-strain and stress path responses for undrained cyclic DSS loading for baseline 

parameters with su/'vc = 0.75 and initial static shear stress ratios of 0.0, 0.1, and 0.2. 
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Figure 4.8. Cyclic stress ratio versus number of equivalent uniform loading cycles to cause a peak 

shear strain of 3% in undrained cyclic DSS loading for baseline parameters with su/'vc = 0.25, 0.50, 

and 0.75 and vertical consolidation stresses of 1, 4, and 8 atm. 
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Figure 4.9. Cyclic stress ratio versus number of equivalent uniform loading cycles to cause a peak 

shear strain of 3% in undrained cyclic DSS loading for baseline parameters with su/'vc = 0.25, 0.50, 

and 0.75 and initial static shear stress ratios of 0.0, 0.2, and 0.3. 
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Figure 4.10. Shear modulus reduction and equivalent damping ratios from undrained strain-

controlled cyclic DSS loading for baseline parameters with su/'vc = 0.25. 
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Figure 4.11. Shear modulus reduction and equivalent damping ratios from undrained strain-

controlled cyclic DSS loading for baseline parameters with su/'vc = 0.50. 
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Figure 4.12. Shear modulus reduction and equivalent damping ratios from undrained strain-

controlled cyclic DSS loading for baseline parameters with su/'vc = 0.75. 

 

  



  84  

 

 

 

Figure 4.13. Effect of Go and ho on the shear modulus reduction and equivalent damping ratios from 

undrained strain-controlled cyclic DSS loading for baseline parameters with su/'vc = 0.50. 
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Figure 4.14. Normalized responses in drained monotonic DSS loading for baseline parameters. 
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Figure 4.15. Normalized responses in drained monotonic DSS loading for su,cs/'vc = 0.25 with three 

values for nb,wet. 
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Figure 4.16. Volumetric strains due to post-cyclic, one-dimensional reconsolidation after undrained 

cyclic DSS loading to different maximum shear strains for baseline parameters with su/'vc = 0.25 
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5.  CALIBRATION AND CALIBRATION EXAMPLES 

 

The approach used to calibrate PM4Silt will depend on the available site characterization and 

laboratory testing data, as well as on the nature of the system being analyzed. The calibration 

processes and examples presented in this section are intended only as examples, recognizing that 

alternative approaches will be more appropriate in other situations. 

 

A set of FLAC project files for calibrating PM4Silt using single element simulations are 

provided at https://pm4silt.engr.ucdavis.edu/. These example "drivers" include files for simulating 

monotonic DSS loading, cyclic DSS loading with uniform cyclic stress ratios, and cyclic DSS 

loading at different cyclic strain amplitudes to obtain secant shear moduli and equivalent damping 

ratios. Each driver loads five single elements with some variation in loading condition, and can be 

run drained or undrained. Drivers for other loading conditions, such as irregular loading sequences 

or post-cyclic reconsolidation, can be developed using these examples as guides. 

 

5.1 Calibration with minimum required information 

The minimum required information for calibration of PM4Silt corresponds to the primary input 

parameters plus the determination that the soil is expected to exhibit cyclic loading behaviors 

associated with plastic silts and clays and not those of purely nonplastic silts or sands. The 

corresponding calibration process can be summarized as follows. 

[1] Select the undrained shear strength (su,cs,eq) or undrained shear strength ratio (su,cs,eq/'vc) 

for critical state conditions (i.e., large strains) and earthquake loading rates. 

[2] Select the shear modulus coefficient (Go) to match the small-strain shear modulus (Gmax) 

obtained from estimated or measured shear wave velocities. 

[3] Simulate undrained cyclic loading with uniform cyclic stress ratios and iteratively adjust 

the contraction rate parameter (hpo) to obtain a reasonable slope for the simulated CRR 

versus number of uniform loading cycles to cause a peak shear strain of 3%. Referring to 

the laboratory test data compiled in Figure 1.6, a peak shear strain of 3% might reasonably 

be caused by 10-30 uniform loading cycles at a CSR = 0.7 su,cs,eq/'vc or 30-100 uniform 

loading cycles at a CSR = 0.55 su,cs,eq/'vc. 

[4] Simulate the undrained monotonic loading response to confirm and document that the 

response obtained using the above selected parameters is reasonable. 

[5] Simulate undrained cyclic loading at different strain amplitudes to confirm and document 

that the resulting secant shear moduli and equivalent damping ratios are reasonable. If 

desired, the parameter ho can be iteratively adjusted to improve the fit with an empirical 

shear modulus and damping ratio correlation (e.g., Figure 1.10).  

[6] Repeat steps [3] through [6] if necessary, until no further revisions to model parameters 

are warranted. 

The above calibration process requires few, if any, iterations because only the primary parameters 

are being adjusted in most cases.  

 

https://pm4silt.engr.ucdavis.edu/
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Model responses should be examined for any other loading paths that are expected to be 

important to the system level response. For example, it would be appropriate to plot the stress-

strain responses for cyclic loading with a range of initial static shear stress ratios, if the system 

being examined involves sloping ground (e.g., an embankment or levee).  

 

Model responses obtained using the above calibration process should be similar to those 

illustrated in the previous section if the primary input parameters are not greatly outside the range 

of values used in those examples. Nonetheless, variations in material specific values for su,cs,eq/'vc, 

Go, and hpo will affect certain details of behavior and thus the behaviors should always be checked 

and evaluated for reasonableness.  

 

5.2 Calibration with monotonic and cyclic laboratory test data 

Calibrations are presented in this section for two low-plasticity fine-grained soils – a silty clay 

and a clayey silt – that exhibit significantly different cyclic loading behaviors. These two materials 

were reconstituted mixtures of silica silt and kaolin and had plasticity indices (PIs) of 6 and 20. 

Undrained monotonic and undrained cyclic direct simple shear (DSS) tests were performed on 

normally consolidated, slurry deposited specimens. Test results are presented for specimens 

consolidated to an initial vertical effective stress ('vc) of 100 kPa. Monotonic and cyclic tests were 

generally performed at the same strain rate of 5%/hr, so no adjustment for strain rate effects was 

necessary between these two test types. Additional details regarding laboratory tests on these 

materials are provide in Price et al. (2015, 2017). 

 

The purpose of the following calibrations is to illustrate the ability of the PM4Silt model to 

approximate a range of monotonic and cyclic loading behaviors, and thus the emphasis is on 

approximating the specific laboratory test results. In practice, laboratory measured strengths may 

be adjusted to account for different loading conditions in the field, including multidirectional 

shaking and higher strain rates. In those situations, model simulations cannot be directly compared 

to individual cyclic test results, but rather are compared with allowance for the above adjustments. 

Such adjustments are not included in the following examples. 

 

Calibration of PM4Silt for a PI = 20 silty clay 

 

The first soil examined herein is a normally consolidated, silty clay with a PI of 20, liquid limit 

(LL) of 42, and USCS classification of CL. This soil was manufactured by mixing 70% kaolin 

with 30% silica silt by dry mass (Price et al. 2015, 2017).  

 

The calibration process followed the sequence of steps summarized below. These steps are 

similar to those described in the previous section, but involve a greater number of iterations 

because several secondary parameters were adjusted.  

[1] Select values for the primary input parameters su,cs,eq (or su,cs,eq/'vc) and Go. 

[2] Select values for any secondary parameters that can be informed by soil-specific test data, 

such as nG, eo, , and 'cv. 

[3] Simulate the undrained monotonic loading response and use nb,wet to adjust the peak su if 

the soil is initially wet of critical. 
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[4] Simulate undrained cyclic loading at different strain amplitudes and use ho to adjust, as 

desired, the dependence of secant shear moduli and equivalent damping ratios on cyclic 

shear strain amplitude. 

[5] Simulate undrained cyclic loading with uniform cyclic stress ratios and use hpo to adjust 

the fit to the cyclic DSS data for CRR versus number of uniform loading cycles to cause 

a peak shear strain of 3%. 

[6] Eexamine the stress-strain and stress-path responses of the above cyclic loading 

simulations, and use other secondary parameters such as cz, c, and ru,max to adjust the 

shear strain accumulation rate and other features of behavior, and 

[7] Repeat steps [3] through [6] until no further revisions to input parameters are warranted. 

 

The input parameters obtained by the above process for the PI = 20 silty clay are listed in Table 1. 

Per step [1], su,cs,eq/'vc  was set to 0.21 based on the monotonic DSS test results presented later 

and Go was set to 345 based on the empirical correlation by Carlton and Pestana (2012). Per step 

[2], eo was set to 1.0,  to 0.18, and 'cv to 25 based on the responses of the DSS specimens during 

consolidation and shearing. Additional comments on the calibration process are provided with the 

following comparisons of simulated and measured or target responses.  

 

Measured and simulated responses in monotonic undrained DSS loading are compared in 

Figure 5.1. The simulated and measured shear strengths at critical state are the same, which reflects 

the fact that su,cs,eq is an input parameter. The parameter nb,wet was set to 1.0 because this limits the 

peak shear resistance to su,cs,eq in the simulation, which matches the strain-hardening response 

observed in the test. The stress-strain response is initially much stiffer in the simulation than in the 

test, but this reflects the decision to base Go and the target G/Gmax behavior on empirical 

correlations, rather than attempting to match the measured DSS loading response. The stress-strain 

response measured in DSS tests is known to underestimate small strain stiffness due to various 

limitations with standard equipment, which means that adjusting Go to match the measured DSS 

response would underestimate the true small-strain stiffness. The small-strain modulus and 

modulus reduction behavior are key concerns for any dynamic response analysis, so they were 

given priority in calibration of the model parameters.  

 

Normalized secant shear moduli (G/Gmax) and equivalent damping ratios from simulations of 

undrained cyclic DSS loading at 'vc of 100 and 400 kPa are com-pared to the empirical curves by 

Vucetic and Dobry (1991) for PI = 0 and 15 soils in Figure 5.2. The simulations have three cycles 

of loading at each strain amplitude, and the secant shear moduli and damping ratio from the last 

cycle are the values plotted in Figure 5.2. The G/Gmax and equivalent damping ratios are close the 

PI = 15 curve for cyclic strain amplitudes less than about 0.03%, which was considered sufficiently 

reasonable to not warrant adjusting the parameter ho. The more rapid drop in G/Gmax and increase 

in damping ratios as cyclic strain amplitudes exceed about 0.1% reflect cyclic degradation for this 

soft soil condition (e.g., see the stress-strain loops in the lower left plot of Figure 5.2). This 

deviation from the empirical curves at larger strains is considered reasonable for this soft soil 

condition, and thus no attempt was made to improve the fit with the empirical curves at these larger 

strains. The simulations show negligible effect of 'vc on G/Gmax or equivalent damping ratios 

because the shear modulus exponent nG was set equal to 1.0.  
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Measured and simulated cyclic stress ratios (CSRs) required to cause a peak shear strain of 3% 

are plotted versus number of uniform loading cycles in Figure 5.3. The simulated cyclic strength 

will be approximately equal to the peak su,eq/'vc ratio near a single loading cycle. The parameter 

hpo was then iteratively adjusted to its final value of 1.2 to bring the simulated cyclic strength curve 

into average agreement with the cyclic DSS test results.  

 

Measured and simulated stress-strain and stress-path responses are compared for specimens 

loaded at CSR of 0.16 and 0.13 in Figures 5.4 and 5.5, respectively. The values for cz and c were 

reduced to 20 (compared to a default value of 100) and 0.25 (compared to a default value of 0.5), 

respectively. These adjustments reduced the rates of shear strain accumulation in the simulations 

to levels consistent with the measured responses at different loading levels. The shear modulus 

exponent nG was set to 1.0 because it slightly improved (narrowed) the stress-strain hysteresis 

loops and is consistent with expectations for this more plastic fine-grained soil; e.g., minimal 

effects of 'vc on shear moduli and damping ratio values as shown in Figure 5.2. The maximum 

excess pore pressure ratio was about 85-86% in the simulations (i.e., minimum 'v/'vc of 0.14-

0.15), which is in reasonable agreement with the measured values of 80-88%. The simulated stress-

strain responses are in good agreement with the measured responses for both loading levels.  

 

Calibration of PM4Silt for a PI = 6 clayey silt 

 

The second soil examined herein is a normally consolidated, clayey silt with a PI of 6, liquid 

limit (LL) of 22, and USCS classification of CL-ML. This soil was manufactured by mixing 20% 

kaolin with 80% silica silt by dry mass (Price et al. 2015, 2017).  

 

The calibration process for this soil was the same as described in the previous section. The 

input parameters obtained for this PI = 6 clayey silt are listed in Table 1. Per step [1], su,cs,eq/'vc  

was set to 0.145 based on the monotonic DSS test results presented later and Go was set to 736 

based on the empirical correlation by Carlton and Pestana (2012). Per step [2], eo was set to 0.61, 

 to 0.07, and 'cv to 32 based on the responses of the DSS specimens during consolidation and 

shearing. Additional comments on the calibration process are provided with the following 

comparisons of simulated and measured or target responses. 

 

Measured and simulated responses in monotonic undrained DSS loading are compared in 

Figure 5.6. The simulated and measured shear strengths at critical state are the same, which again 

reflects the fact that su,cs,eq is an input parameter. The parameter nb,wet was left at its default value 

of 0.8 because this produced a slight peak in the shear resistance, consistent with the response 

observed in the test. The stress-strain response is a bit stiffer in the simulation than in the test, 

which again reflects the decision to base Go and the target G/Gmax behavior on empirical 

correlations, rather than attempting to match the measured monotonic DSS loading response.  

 



  92  

 

Shear moduli and equivalent damping ratios from simulations of undrained cyclic DSS loading 

at 'vc of 100 and 400 kPa are compared to the empirical curves by Vucetic and Dobry (1991) for 

PI = 0 and 15 soils in Figure 5.7. The shear moduli and equivalent damping ratios are close the PI 

= 0 curve for cyclic strain amplitudes less than about 0.03%, which was considered sufficiently 

reasonable to not warrant adjusting the parameter ho. The more rapid drop in shear moduli and 

increase in damping ratios as cyclic strain amplitudes exceed about 0.1% reflect cyclic degradation 

for this soft soil condition (e.g., stress-strain loops in the lower left plot of Figure 5.7). This 

deviation from the empirical curves at larger strains is again considered reasonable for this soft 

soil condition. The simulations show a modest increase in G/Gmax values and decrease in equivalent 

damping ratios with increasing 'vc, which is consistent with experimental trends. The simulations 

exhibit this stress dependence because the shear modulus exponent nG was left at its default value 

of 0.75.  

 

Measured and simulated cyclic stress ratios (CSRs) required to cause a peak shear strain of 3% 

are plotted versus number of uniform loading cycles in Figure 5.8. The parameter hpo was 

iteratively adjusted to its final value of 2.2 to bring the simulated cyclic strength curve into average 

agreement with the cyclic DSS test results.  

 

Measured and simulated stress-strain and stress-path responses are compared for specimens 

loaded at CSR of 0.12 and 0.10 in Figures 5.9 and 5.10, respectively. The parameter ru,max was set 

to 0.99 to enable the simulations to reach maximum excess pore pressure ratios consistent with 

those measured in the tests. The values for cz and c were increased to 150 (compared to a default 

value of 100) and 1.0 (compared to a default value of 0.5), respectively. These adjustments 

increased the rates of shear strain accumulation in the simulations to levels consistent with the 

measured responses at different loading levels. The simulated stress-strain responses are in good 

agreement with the measured responses for both loading levels. 
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Table 5.1. Input parameters for PM4Silt example calibrations. 

Input parameter a Default value Calibrated values c 

  PI = 20 

silty clay 

PI = 6 

clayey silt 

su,cs/'vc – su at critical state -- b 0.21 0.145 

Go – shear modulus coefficient -- b 345 736 

hpo – contraction rate parameter -- b 1.2 2.2 

nG – shear modulus exponent 0.75 1.0 -- 

ho – plastic modulus ratio 0.5 -- -- 

eo – initial void ratio 0.9 1.00 0.61 

 - compressibility in e-ln(p') space 0.06 0.18 0.07 

'cv – critical state friction angel 32° 25° 32° 

nb,wet – bounding surface parameter 0.8 1.0 -- 

nb,dry – bounding surface parameter 0.5 -- -- 

nd – dilation surface parameter 0.3 -- -- 

Ado – dilatancy parameter 0.8 -- -- 

ru,max – sets bounding pmin pmin = pcs/8 -- 0.99 

zmax – fabric term 
10 ≤ 40(su/'vc) 

≤ 20 
-- -- 

cz – fabric growth parameter 100 20 150 

c - strain accumulation rate factor  
0.5 ≤ (1.2su/'vc 

+ 0.2) ≤ 1.3 
0.25 1.0 

CGD –modulus degradation factor 3.0 -- -- 

Ckf – plastic modulus factor  4.0 -- -- 

o – Poisson ratio 0.3 -- -- 

a Excluding post-shaking analysis parameters (Fsu, PostShake, CGC) and hour-glassing control parameters (crhg, chg). 

b  Required input parameter that does not have a default value. 

c  Retained default value if no entry listed.  
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Figure 5.1. Undrained monotonic DSS loading responses for the PI = 20 silty clay. 

 

 

 
 

Figure 5.2. Shear modulus and equivalent damping ratios from undrained cyclic loading at 

different shear strain amplitudes for the PI = 20 silty clay. 
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Figure 5.3. Cyclic stress ratio versus number of uniform loading cycles to cause 3% shear strain 

in undrained cyclic DSS loading for the PI = 20 silty clay. 

 

 

 

 
Figure 5.4. Stress-strain and stress path responses in undrained cyclic DSS loading at a relative 

high loading level for the PI = 20 silty clay.   
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Figure 5.5. Stress-strain and stress path responses in undrained cyclic DSS loading at a relative 

low loading level for the PI = 20 silty clay. 
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Figure 5.6. Undrained monotonic DSS loading responses for the PI = 6 clayey silt. 

 

 

 
 

Figure 5.7. Shear modulus and equivalent damping ratios from undrained cyclic loading at 

different shear strain amplitudes for the PI = 6 clayey silt. 
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Figure 5.8. Cyclic stress ratio versus number of uniform loading cycles to cause 3% shear strain 

in undrained cyclic DSS loading for the PI = 6 clayey silt. 

 

 

 
Figure 5.9. Stress-strain and stress path responses in undrained cyclic DSS loading at a relative 

high loading level for the PI = 6 clayey silt. 
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Figure 5.10. Stress-strain and stress path responses in undrained cyclic DSS loading at a relative 

low loading level for the PI = 6 clayey silt. 
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6. CONCLUDING REMARKS 

 

The PM4Silt plasticity model was developed for representing low-plasticity silts and clays, as 

opposed to purely nonplastic silts and sands, in geotechnical earthquake engineering applications. 

The PM4Silt model builds on the framework of the stress-ratio controlled, critical state compatible, 

bounding surface plasticity PM4Sand model (version 3) described in Boulanger and Ziotopoulou 

(2015) and Ziotopoulou and Boulanger (2016). Development of PM4Silt emphasized obtaining 

reasonable approximations of undrained monotonic shear strengths, cyclic shear strengths, and 

shear modulus reduction and hysteretic damping responses across a range of initial static shear 

stress and overburden stress conditions. Modifications to the constitutive relationships relative to 

PM4Sand model included:  

 The model was recast in terms of the state parameter and the critical state line was changed 

to be linear in void ratio versus logarithm of mean effective stress space. 

 The bounding surface relationship was modified for both loose (wet) and dense (dry) of 

critical state conditions. 

 The dilatancy and contraction rate relationships were modified to allow for more direct 

control of the maximum excess pore pressure ratio obtained in undrained cyclic loading. 

 The ability to modify the stress exponent in the elastic shear modulus relationship was 

added. 

 An undrained shear strength reduction factor for evaluating post-strong shaking static 

stability was implemented.  

 Default values were developed for all but three required input parameters. 

The model was coded as a user defined material in a dynamic link library (DLL) for use with the 

commercial program FLAC 8.0 (Itasca 2016). 

 

The primary soil parameters are the undrained shear strength ratio (or undrained shear 

strength), shear modulus coefficient, contraction rate parameter, and post-strong-shaking shear 

strength reduction factor. The shear modulus coefficient should be calibrated to the measured or 

estimated in-situ shear wave velocities. The contraction rate parameter should be calibrated to 

approximate the expected slope of the CRR versus number of uniform loading cycles curve. The 

post-strong shaking shear strength reduction factor should be selected based on the soil 

characteristics and shear strains that developed during strong shaking. Other secondary parameters 

may warrant adjustment based on site-specific laboratory test data.  

 

The behavior of the model was illustrated by single-element simulations of undrained 

monotonic and cyclic loading tests for a range of initial consolidation stresses and initial static 

shear stress ratios important to many earthquake engineering applications. The model is stress-

ratio based and therefore not applicable for modeling static consolidation problems (e.g., staged 

construction). The current formulation is limited to plane strain applications. Simulations presented 

in this report were completed using the dynamic link library (DLL) version 

modelpm4silt005_64.dll compiled on January 17, 2018.  The model was shown to provide 

reasonable approximations of behaviors important to many earthquake engineering applications 

and to be relatively easy to calibrate. 

  



  101  

 

ACKNOWLEDGMENTS 

 

The development of PM4Silt progressed under projects for the California Division of Safety 

of Dams under Contract 4600009523, the Department of Water Resources under Contract 

4600009751, and the National Science Foundation under grant CMMI-1635398. Any opinions, 

findings, conclusions, or recommendations expressed herein are those of the authors and do not 

necessarily represent the views of these organizations. 

 

Beta versions of the model were utilized by Dr. Glenn Rix, whose feedback resulted in 

improvements to the model. Comments and results from trial applications by Professor Jack 

Montgomery, Dr. Rambod Hadidi, and Mr. Doug Wahl were also helpful and greatly appreciated. 

 

 

REFERENCES 

 

Andersen, K., Kleven, A., and Heien, D. (1988). "Cyclic soil data for design of gravity structures," 

Journal of the Geotechnical Engineering Div., ASCE, 114(5): 517-539. 

Arai, H. (2006). "Detection of subsurface Vs recovery process using microtremor and weak ground 

motion records in Ojiya, Japan." Third International Conference on Urban Earthquake 

Engineering, Tokyo Institute of Technology, Tokyo, Japan. 

Azzouz, A. S., Malek, A. M., and Baligh, M. M. (1989). "Cyclic behavior of clays in undrained 

simple shear, J. Geotechnical Engineering Div., ASCE, 115(5): 637-657. 

Been, K., and Jefferies, M. G. (1985). "A state parameter for sands." Géotechnique 35(2), 99–112. 

Bolton, M. D. (1986). "The strength and dilatancy of sands." Géotechnique 36(1), 65–78. 

Boulanger, R. W., Moug, D. M., Munter, S. K., Price, A. B., and DeJong, J. T. (2016). "Evaluating 

liquefaction and lateral spreading in interbedded sand, silt, and clay deposits using the cone 

penetrometer." Geotechnical and Geophysical Site Characterisation 5, B. M. Lehane, H. Acosta-

Martinez, and R. Kelly, eds., Australian Geomechanics Society, Sydney, Australia, ISBN 978-0-

9946261-2-7. 

Boulanger, R. W., and Ziotopoulou, K. (2015). "PM4Sand (Version 3): A sand plasticity model 

for earthquake engineering applications."  Report No. UCD/CGM-15/01, Center for Geotechnical 

Modeling, Department of Civil and Environmental Engineering, University of California, Davis, 

CA, 112 pp. 

Boulanger, R. W., and Ziotopoulou, K. (2013). "Formulation of a sand plasticity plane-strain 

model for earthquake engineering applications." Journal of Soil Dynamics and Earthquake 

Engineering, Elsevier, 53, 254-267, 10.1016/j.soildyn.2013.07.006. 

Boulanger, R. W., and Idriss, I. M. (2007). "Evaluation of cyclic softening in silts and clays." 

Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 133(6), 641-652. 



  102  

 

Boulanger, R. W., and Idriss, I. M. (2006). "Liquefaction susceptibility criteria for silts and clays." 

Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(11), 1413-1426. 

Boulanger, R. W., Meyers, M. W., Mejia, L. H., and Idriss, I. M. (1998). "Behavior of a fine-

grained soil during Loma Prieta earthquake."  Canadian Geotechnical J., 35: 146-158. 

Byrne, P. M., Park, S. S., Beaty, M., Sharp, M., Gonzalez, L., Abdoun, T. 2004. "Numerical 

modeling of liquefaction and comparison with centrifuge tests." Canadian Geotechnical Journal. 

41 (2): 193-211. 

Cubrinovski, M., and Ishihara, K. (1998). "State concept and modified elastoplasticity for sand 

modelling." Soils and Foundations; 38(4): 213-225. 

Dafalias, Y. F. (1986). "Bounding surface plasticity. I: Mathematical foundation and 

hypoplasticity." J. Engineering Mechanics, 112(9), 966-987. 

Dafalias, Y. F., and Manzari, M. T. (2004). "Simple plasticity sand model accounting for fabric 

change effects." Journal of Engineering Mechanics, ASCE, 130(6), 622-634. 

Dahl, K. R., DeJong, J. T., Boulanger, R. W., Pyke, R., and Wahl, D. (2014). "Characterization of 

an alluvial silt and clay deposit for monotonic, cyclic and post-cyclic behavior." Canadian 

Geotechnical Journal, 51(4): 432-440, 10.1139/cgj-2013-0057.  

Dahl, K. R. (2011). "Evaluation of seismic behavior of intermediate and fine-grained soils." 

Doctoral thesis, University of California, Davis. 

Dahl, K. R., Boulanger, R. W., DeJong, J. T., and Driller, M. W. (2010). "Effects of sample 

disturbance and consolidation procedures on cyclic strengths of intermediate soils." Fifth 

International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil 

Dynamics, San Diego, CA, paper OSP-1. 

Dawson, E. M., Roth, W. H., Nesarajah, S., Bureau, G., and Davis, C. A. (2001). "A practice 

oriented pore pressure generation model." Proceedings, 2nd FLAC Symposium on Numerical 

Modeling in Geomechanics. Oct. 29-31, Lyon, France. 

Hoeg, K., Dyvik, R., and Sandbaekken, G. (2000). "Strength of undisturbed versus reconstituted 

silt and silty sand specimens." J. of Geotechnical and Geoenvironmental Engineering, ASCE, 

126(7), 606-617. 

Hyodo, M., Yamamoto, Y., and Sugiyama, M. (1994). "Undrained cyclic shear behavior of 

normally consolidated clay subjected to initial static shear stress," Soils and Foundations, JSSMFE, 

34(4), 1-11. 

Itasca (2016). FLAC – Fast Lagrangian Analysis of Continua, Version 8.0, Itasca Consulting 

Group, Inc., Minneapolis, Minnesota. 

Kokusho, T., Yoshida, Y., and Esashi, Y. (1982). "Dynamic properties of soft clay for wide strain 

range." Soils and Foundations, 22(4), 1–18.  



  103  

 

Ladd, C. C., and Foott, R. (1974). "New design procedure for stability of soft clays." Journal of 

the Geotechnical Engineering Div., ASCE, 100(7), 763-786. 

Lefebvre, G., and Pfendler, P. (1996). "Strain rate and preshear effects in cyclic resistance of soft 

clay." J. Geotechnical and Geoenvironmental Engineering, ASCE, 122(1), 21-26. 

Lefebvre, G., and LeBouef, D. (1987). "Rate effects and cyclic loading of sensitive clays," J. 

Geotechnical Engineering, ASCE, 113(5), 476-489. 

Manzari, M. T., and Dafalias, Y. F. (1997). "A critical state two-surface plasticity model for sand." 

Géotechnique, 47(2), 255-272. 

Moriwaki, Y., Akky, M. R., Ebeling, R., Idriss, I. M., and Ladd, R. S. (1982). "Cyclic strength and 

properties of tailing slimes." Specialty Conference on Dynamic Stability of Tailings Dams, 

Preprint 82-539, ASCE. 

Papadimitriou, A. G., Bouckovalas, G. D., and Dafalias, Y. F. (2001). "Plasticity model for sand 

under small and large cyclic strains." J. Geotechnical and Geoenvironmental Engineering, 127(11), 

973-983. 

Pestana, J.M. and Whittle, A. J. 1999. "Formulation of a Unified Constitutive Model for Clays and 

Sands." International Journal for Numerical and Analytical Methods in Geomechanics, 23: 125-

1243.  

Price, A. B., Boulanger, R. W., DeJong, J. T., Parra Bastidas, A. M., and Moug, D. (2015). "Cyclic 

strengths and simulated CPT penetration resistances in intermediate soils." 6th International 

Conference on Earthquake Geotechnical Engineering, November 1 4, Christchurch, New Zealand. 

Price, A. B., DeJong, J. T., and Boulanger, R. W. (2017). "Cyclic loading response of silt with 

multiple loading events." Journal of Geotechnical and Geoenvironmental Engi-neering, ASCE, 

2017, 143(10): 04017080, 10.1061/(ASCE)GT.1943-5606.0001759. 

Richart, F. E., Jr., Hall, J. R., and Woods, R. D. (1970). "Vibration of soils and foundations." 

International series in theoretical and applied mechanics, Prentice-Hall, Englewood Cliffs, N.J. 

Romero, S. (1995). "The behavior of silt as clay content is increased." MS thesis, University of 

California, Davis, 108 pp. 

Rowe, P. W. (1962). "The stress-dilatancy relation for static equilibrium of an assembly of particles 

in contact." Proc. R. Soc. London, Ser. A, 269, 500-527. 

Sheahan, T.C., Ladd, C.C., and Germaine, J.T. (1996). "Rate-dependent undrained shear behavior 

of saturated clay." J. of Geotech. Eng., 122(2), 99-108. 

Vucetic, M., and Dobry, R. (1991). "Effect of soil plasticity on cyclic response." J. Geotech. 

Engrg., 117(1), 89–107. 



  104  

 

Wang, Z. L., Dafalias, Y. F., and Shen, C. K. (1990). "Bounding surface hypoplasticity model for 

sand." J. Engineering Mechanics, ASCE, 116(5), 983-1001. 

Woodward-Clyde Consultants (1992a). "California Water Operations Center – Site Evaluation and 

Remediation – Conceptual Design. Appendix E: CWOC Site Characterization Memo. " Oakland, 

California.  

Woodward-Clyde Consultants (1992b). Seismic Stability Evaluation and Piezometer Installation, 

Tailing Pond No. 7. Denver, Colorado.  

Yang, Z., A. Elgamal and E. Parra, (2003). "Computational model for cyclic mobility and 

associated shear deformation." J. Geotechnical and Geoenvironmental Engineering, ASCE, 

129(12), 1119-1127. 

Yu, P., and Richart, F. E., Jr. (1984). "Stress ratio effects on shear modulus of dry sands." J. 

Geotechnical Engineering, ASCE, 110(3), 331-345. 

Zergoun, M., and Vaid, Y. P. (1994). "Effective stress response of clay to undrained cyclic 

loading," Can. Geotech. J., 31, 714–727. 

Ziotopoulou, K., and Boulanger, R. W. (2012). "Constitutive modeling of duration and overburden 

effects in liquefaction evaluations." 2nd International Conference on Performance-Based Design 

in Earthquake Geotechnical Engineering, ISSMGE, Taormina, Italy, May 28-30, paper no. 03.10, 

467-482. 

Ziotopoulou, K., and Boulanger, R. W. (2013). "Calibration and implementation of a sand 

plasticity plane-strain model for earthquake engineering applications." Journal of Soil Dynamics 

and Earthquake Engineering, 53, 268-280, 10.1016/j.soildyn.2013.07.009.  

Ziotopoulou, K., and Boulanger, R. W. (2016). "Plasticity modeling of liquefaction effects under 

sloping ground and irregular cyclic loading conditions." Soil Dynamics and Earthquake 

Engineering, 84 (2016), 269-283, 10.1016/j.soildyn.2016.02.013. 


