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Abstract
Advances in renewable and sustainable energy technologies critically depend on our ability to
design and realize materials with optimal properties. Materials discovery and design efforts
ideally involve close coupling between materials prediction, synthesis and characterization.
The increased use of computational tools, the generation of materials databases, and advances
in experimental methods have substantially accelerated these activities. It is therefore an
opportune time to consider future prospects for materials by design approaches. The purpose
of this Roadmap is to present an overview of the current state of computational materials
prediction, synthesis and characterization approaches, materials design needs for various
technologies, and future challenges and opportunities that must be addressed. The various
perspectives cover topics on computational techniques, validation, materials databases,
materials informatics, high-throughput combinatorial methods, advanced characterization
approaches, and materials design issues in thermoelectrics, photovoltaics, solid state lighting,
catalysts, batteries, metal alloys, complex oxides and transparent conducting materials. It is
our hope that this Roadmap will guide researchers and funding agencies in identifying new
prospects for materials design.

Keywords: density functional theory, materials genome initative, materials design,
high-throughput methods, energy applications
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1. Introduction

Kirstin Alberi', Marco Buongiorno Nardelli?
and Andriy Zakutayev'

! National Renewable Energy Laboratory, Golden, CO 80401,
United States of America

2 University of North Texas, Denton, TX, United States of
America

Advances in renewable and sustainable energy technolo-
gies critically depend on our ability to design materials
with the optimal properties for each individual application.
Computational methods have accelerated materials design
efforts through rapid and comprehensive prediction of mat-
erials stability and properties. A very simplistic metric for
assessing the rise of computational materials efforts is the
total number of materials that have been ‘predicted’ (which
does not capture the extent or diversity of the calculated prop-
erties). As schematically shown in figure 1(a), the number of
theoretically predicted materials in computational materials
property databases, including AFLOW, the Open Quantum
Materials Database and the Materials Project (10*-10°),
is now comparable to the number of experimental entries
in crystallographic databases (~ 10°). Perhaps even more
importantly, increased accessibility to the computed proper-
ties has also sped up experimental research and development
of new functional materials for a wide range of applications.
Acceleration of materials by design research is evidenced
by the nearly exponential growth in the number of publica-
tions on materials design, shown in figure 1(b), where break-
throughs were facilitated by the development of user friendly
ab initio codes (mid-90s) and automation of these codes to run
high-throughput computations (>2010). Yet, for all its recent
successes, the materials by design concept is relatively new
and has the potential for further expansion and impact.

The purpose of this Roadmap is to present an overview
of the current state of computational materials prediction
approaches, corresponding advanced synthesis and charac-
terization methods, and the application of these computa-
tional and experimental techniques to various energy relevant
technologies. Future challenges and opportunities that must
be addressed to improve materials by design approaches are
also discussed. We have asked leading researchers in each
of these areas to weigh in on these issues and provide their
perspectives and visions for the advancement of the materials
by design field. The covered topics include computational
techniques, validation of the results, materials databases, mat-
erials informatics, high-throughput combinatorial methods,
advanced characterization approaches, as well as materials
design issues in thermoelectrics, photovoltaics, solid state
lighting, batteries, metal alloys, complex oxides and transpar-
ent conducting materials.

A unifying theme of many of the contributions to this collec-
tion is the need for high-throughput computational and exper-
imental techniques as a foundation for the materials by design
paradigm, as well as methods to exploit synthesis and manu-
facturing processes for new materials. Nowadays, we possess

Total Records

S 106F @ computational Ml
S databases
Y]
()
o
(]
2 10°1 1
0
©
©
()
104 ICSD |
400 ! T T T T
N b
o
S 300
§ Publications based on search term
< 500k ‘materials design
=}
a
g 100}
wv

1970 1980

1990
Year

2000 2010

Figure 1. (a) Total number of compounds contained within the
Inorganic Crystal Structure Database (ICSD) and computational
databases. These values do not reflect the extent of the information
in each entry. (b) The number of publications returned in from

a Scopus search using query terms ‘materials design’ and
constraining the search to exclude irrelevant results (e.g. furniture,
textiles, bridges, etc).

the ability to efficiently generate and manage large amounts of
computational data in open repositories, facilitating access to
a plethora of calculated properties and functions of millions of
different materials. Computational efforts that go beyond pre-
dicting the thermodynamic stability of a material and provide
additional calculations of electronic structure, properties and
even optical spectra of diverse material systems are becom-
ing increasingly important and valuable. Similar large data
repositories of experimentally measured properties are less
common but would be needed to benchmark and supplement
the computations. From here, we envision innovative ways to
interrogate the big data space through data mining, machine
learning, autonomous systems and artificial intelligence tech-
niques. We emphasize that all of these techniques must work
together to realize the full potential of the materials by design
approach. Another common theme of several contributions to
this Roadmap is the need for in sifu and operando measure-
ment techniques to derive deeper scientific insight into mat-
erial synthesis processes.

A simplified example of a materials design process that
can be used to accelerate materials transfer from computer
simulations to lab bench and consumer products is illus-
trated in figure 2. Theoretical challenges range from intelli-
gent optimization algorithms that predict candidate material
compositions and structures to the exploitation of the appro-
priate descriptors of functional properties. Experimental
needs include accelerated synthesis of the most promising
candidates and advanced characterization of these materials.
Finally, application requirements involve validation of the
measured or calculated properties, improved synthesis routes,
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Figure 2. Schematic of the materials by design approach.

testing of the materials in devices, and the clear articulation
of desired materials properties needed for prediction of next
generation materials candidates in the next cycle.

The resulting Roadmap is broadly divided in two main
sections on Methods and Applications. In the Methods sec-
tion, we review advances and challenges in three areas: com-
putation of materials properties beyond the current standard,
novel experimental techniques for materials design and
discovery, and the curation and use of digital data. In the
Applications section, we provide a snapshot of the current
issues and trends in materials design in areas ranging from

semiconductors to batteries to structural materials. Each
application may present its own specific material design
challenges to overcome, but the general materials design
approach is expected to be germane to all of them. Another
relevant issue is how to rapidly and efficiently implement
such material design approaches at laboratory prototyping
and even industrial manufacturing scales.

‘We hope that this Roadmap will provide a concise yet com-
prehensive review of a fast-growing field of materials design,
one that has the potential to shape the global economy and
human well-being for years to come.
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2. Data generation beyond standard DFT
for high-throughput applications

Marco Buongiorno Nardelli' and Lubos Mitas®

1University of North Texas, Denton, TX, United States of
America

2 North Carolina State University, Raleigh, NC, United States
of America

Status. The last decade has established that a combination
of first principles theoretical computations in synergy with
experimental investigation is a powerful foundation for the
discovery of new materials, new functions, and new design
concepts in a multi-disciplinary effort that encompasses the
development of transformative computational tools, unprec-
edented data analysis approaches, and systematic interaction
with experimental discovery and validation.

All the existing materials property databases derived from
computation are based on density functional theory (DFT)
in the local density (LDA) or generalized gradient (GGA)
approximations. Although the reproducibility of results in
density functional calculations of solids has by now been
an established fact [1], much less documented at the scale
of large materials databases is the veracity of the quanti-
ties that are calculated. Accurate prediction of the electronic
properties of materials at a low computational cost has been
a major challenge in ab initio computational materials sci-
ence from the first applications of DFT in the early 80s to
the current advanced high-throughput frameworks. Despite
the enormous success of DFT in describing many physical
properties of real systems, the method is crippled by the
presence of a correlation term that represents the differ-
ence between the true energy of the many-body system of
the electrons (only formally known) and the approximate
energy that we can compute. The next step beyond DFT is
based on GW theory that provides perturbational improve-
ments, in particular for band gaps that are crucial for many
applications [2].

At present, many-body approaches, such as quantum Monte
Carlo (QMC) methods, are becoming used more broadly for
many key energy differences, such as fundamental and opti-
cal gaps, cohesions, energy orderings of various structures
and defect energetics [3-5]. Very recently, QMC has reached
even finer energy scales, such as differences between differ-
ent magnetic states or dissociations of non-covalently bonded
systems with subchemical accuracy (0.1 kcal mol~!) [3, 6]. For
reliable description of spectral properties and response func-
tions, the methods of choice are based on dynamical mean
field theory (DMFT) that offers insights beyond perturbative
corrections and enables one to also study electronic phase
changes, such as metal-insulator and magnetic transitions.
Finite temperature effects that are crucial for functions of real
materials are often studied by a combination of DFT electronic
structure and molecular dynamics approaches. Many-body
alternatives, such as path integral Monte Carlo, are still under
development and so far have been applied mostly to systems
with light elements. Despite all of these promising advances,
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databases of tools and calculations from many-body methods
are basically non-existent at present, as a result of still very
intense developments and the diversity of ideas that are being
pursued (see below for very recent progress in this direction).

Current and future challenges. The key to achieving signifi-
cant breakthroughs rests on our ability to efficiently integrate
all the components in a seamless constructive cycle and in
particular one development of innovative theoretical meth-
ods and tools beyond the state-of-the-art DFT approaches,
which are fast, robust and amenable to high-throughput (HT)
computation.

In this respect, we see many distinct but parallel
requirements:

1. The development and validation of novel functionals
to improve accuracy of traditional DFT; verification of
data for complex materials systems with strong electron
localization and correlation; development of novel com-
putational algorithms to evaluate exchange energy in
hybrid density functional for HT applications.

2. The inclusion of methodologies beyond DFT for the
generation of materials data towards chemical and
subchemical accuracy, such as QMC and DMFT, which
are crucial for increasing the accuracy of calculations for
energetics, as well as spectral properties that are needed
for building significantly more accurate data sets for both
equilibrium and non-equilibrium conformations.

3. The development of procedures for fast computational
characterization of materials properties, such as:
calculation of transport (both regular and anomalous)
properties; development of efficient methodologies
for the simulation of theoretical spectroscopies in the
broadest energy range and with maximum accuracy and
high computational efficiency.
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4. The development of materials modelling and prediction
software to match the scaling challenges posed by the
ever-evolving hardware architectures and accelerated
hybrid computer systems. This effort requires a substantial
redesign of software and algorithms to efficiently take
advantage of the increased hardware power.

5. Another important direction is expansions of calcul-
ations to nonzero temperatures both by DFT+ molecular
dynamics approaches, as well as by many-body treat-
ments based on thermal density matrices, such as path
integral Monte Carlo.

6. A further important goal is the many-body treatment of
spin, spin—orbit effects and relativity in general for heavy
element materials, including fast characterization of
phases with topological properties.

Advances in science and technology to meet challenges. A
key challenge for current DFT is the accurate description of
materials with strong electron localization and correlation.
Work to address this challenge and at the same time maintain a
competitive computational cost must continue beyond the exist-
ing efforts (see, for instance, figure 3 [7, 8]). There are impor-
tant developments in many-body methods, such as the new
generation of pseudopotentials from correlated treatments [9],
second-quantized QMC approaches based on auxiliary fields
and/or stochastically sampled excited state expansions, as well
as finite temperature many-body calculations [4, 5]. Another
direction of intense study is the use of stochastic methods for
responses and time-dependent phenomena both in DMFT and
QMC approaches. The databases for many-body methods as
well as for the storage of results from many-body calculations
have been getting significant attention very recently and several
initiatives have been formed that aim to establish such reposito-
ries in a systematic open source/open data framework for both
many-body codes and data for broad use [9].

Concluding remarks. The next leap in building reliable data
will encompass several important aspects. There is a continuing
effort to push the limits of accuracy for materials in key direc-
tions: energy differences for systems in equilibrium and non-
equilibrium atomic conformations; explorations of non-ideal
or composite systems, such as imperfect crystals with defects
and impurities; 1D and 2D systems on substrates; organic—
inorganic and cluster-based structures. Much better quality of
data and the inclusion of spin-dependent interactions in many-
body methods is highly important for finer energy scales, such
as magnetic, topological or exotic electronic phases and heavy
atom systems. Materials functions at nonzero temperatures and
therefore better and more accurate description of many quanti-
ties at finite temperatures are highly desirable. Almost all
materials operate in some type of response regime and there-
fore a better understanding of responses and time-dependent
phenomena is another important goal—systematic description
of such phenomena for materials is still very difficult in gen-
eral. Since materials research is a vast ‘universe’ of phenomena
and spans a huge range of observed quantities, the diversity of
approaches is of paramount importance to address all of these
important challenges.
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3. Computational infrastructures for data
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Status. New materials have historically been designed
through intuition and experimentation. However, the high
cost, long times, and manual effort required for experimental
study have always served as major barriers to this process.
In the last two decades, however, advancements in theory,
computing hardware, and numerical algorithms have conv-
erged to provide new simulation-based methods for investi-
gating materials that are fast, cost-efficient, and scalable to
millions of materials. In particular, density functional theory
(DFT) calculations, which solve the electronic structure of a
material with few adjustable parameters, are now routinely
run in a ‘high-throughput” mode [10] in which researchers
are able to evaluate thousands or even millions of materials
on supercomputers with little intervention (figure 4). Today,
there exist several examples in which such computational
techniques have identified new functional materials that have
subsequently been confirmed by experiments [11].

Furthermore, computational data sets can be shared through
one of several online databases [12], such as the Materials
Project (www.materialsproject.org) or AFLOWIib (www.
aflow.org). These resources contain millions of computational
‘measurements’ of materials properties, such as formation
enthalpy, electronic band structure, and elastic moduli, that
can be systematically searched and that are constantly expand-
ing in scope. The ability to rapidly generate reliable materials
data in this manner improves every year as computing costs
decrease, theoretical methods to study materials become more
accurate, and the software to apply these techniques becomes
more powerful and accessible to a larger audience.

Today, many research groups regularly employ high-
throughput computing to screen materials libraries for func-
tional applications. However, a major opportunity for the
future is to incorporate techniques from the fields of data min-
ing and statistical learning to the analysis of materials data.
The arrival of large-scale computational data generation infra-
structures has created the potential to develop a new science
of ‘materials informatics’ [13]. It is possible that entirely new
ways of developing chemical rules and thinking about mat-
erials behaviour will result from the marriage of simulation
data with machine learning advancements, thereby adding a
new dimension to the traditional methods of materials design.

Current and future challenges. There exist both fundamental
and practical challenges in data generation through simula-
tion. For example, developing physical theories that are ame-
nable to computation and that achieve high accuracy across
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Figure 4. High-throughput computational analysis of binary alloy
formation as compared with known experimental data. This serves
an example of how computational data generation can rapidly
‘map’ a chemical space. Reprinted by permission from Macmillan
Publishers Ltd: Nature Materials [10], Copyright 2013.

materials with very diverse electronic structures (such as met-
als, semiconductors, ceramics) is an extremely difficult task. In
this regard, the DFT approach, pioneered by Kohn and Sham,
and for which Kohn would later receive a Nobel prize, serves
as a very good starting point. Even simple approximations
to DFT can produce accurate results across many materials
classes, with discrepancies in accuracy between computation
and experiment being as low as a few percent. However, cer-
tain materials classes (such as strongly-correlated systems) and
certain materials properties (such as excited-state properties,
e.g. band gap or optical spectrum) are poorly modelled with the
typical DFT approaches. Thus, major research efforts world-
wide are being devoted to developing methods that improve
the accuracy of the method. For example, frameworks to auto-
mate the QMC method (despite its very high computational
cost) are now actively being developed and tested [14, 15].

A second fundamental challenge relates to the scaling of
the computational effort needed for the computation in rela-
tion to the system size in electrons. Today, it is routine to calcu-
late the properties of systems with unit cells of a few hundred
atoms, but the poor N3 scaling of DFT methods with system
size means that systems with thousands or tens of thousands of
atoms are either inaccessible or require specialized treatment.
DFT methods today are largely limited to systems of low or
intermediate complexity and approaches to either improve the
scaling of DFT methods or to ‘glue together’ different model-
ling techniques through multiscale modelling also form a cur-
rent major research topic.
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There also exist important practical considerations that
must be addressed when generating large amounts of simula-
tion data. For example, one must evaluate the various trade-
offs in computational cost, complexity, and accuracy when
determining the level of theory at which to perform calcul-
ations. Each simulation that is executed must undergo a
complex sequence of steps (figure 5) including generation of
input files, execution on specialized supercomputing centers,
and error handling. Furthermore, many materials properties
require chaining together dozens of such simulations in work-
flows with complex dependencies. One must be able to track
millions of simulations and files and be able to quickly access
any result. Here, advancements in software have greatly pro-
gressed in the last decade such that these practical aspects of
data generation, once a large undertaking, can be handled by
individual researchers.

Advances in science and technology to meet challenges. A
summary of the fundamental challenges for DFT calculations
has been previously covered [16]. Here, we summarize some
of the major active worldwide efforts in developing computa-
tional data generation frameworks.

The Automated Interactive Infrastructure and Database for
Computational Science (AiiDA) platform [17], developed by
the European NCCR-MARVEL collaboration and written in
Python, is available to researchers as open-source and aims to
assist researchers with the ADES (automation, data, environ-
ment, sharing) components of data generation. A major bene-
fit of the AiiDA platform is that one can perform rich searches
over a database of calculation workflows, thus introspecting
many features of the computations both programmatically and
visually.

The Automatic Flow (AFLOW) platform [18], devel-
oped by the AFLOW.org consortium and written in C++
and python is available as a free download. AFLOW assists

users in many aspects of simulations, from generating mat-
erials models (e.g. from common prototypes) to performing
simulation sequences and correcting errors that occur. This
all-in-one nature makes many powerful tools and analyses
available to users and can be used either alone or in combi-
nation with other tools. The AFLOW platform has been used
to create the AFLOW database accessible at www.aflow.
org. Several interface libraries are available for using the
framework in python workflows. Among them are the sym-
metry analysis (AFLOW-SYM), phonon and thermal trans-
port (AFLOW-APL), disordered analysis (AFLOW-POCC),
and machine learning automation (AFLOW-ML, aflow.org/
aflow-ml). The consortium has also standardized a cloud-
language for complex data analysis and retrieval (AFLUX).

The Atomic Simulation Environment (ASE) library [19],
first developed at Denmark Technical University and written
in Python, is available to researchers as open-source. It was
one of the first high-level interfaces to simulation software
and has since expanded to include a host of useful capabili-
ties. ASE can for example help build complex models, such
as surfaces, and is unique in that it allows interchanging the
specific DFT theory calculator (software) used to perform the
calculation.

The atomate library [20], developed by the Materials
Project collaboration and written in Python, is available
as open-source. The atomate library uses several underly-
ing libraries also developed by the same collaboration (e.g.
pymatgen, FireWorks, and custodian) to perform a range of
actions, such as creating sophisticated materials models, man-
aging workflows on supercomputing centers, and providing
error correction. Atomate implements many common mat-
erials workflows and was used to create the Materials Project
database, available at www.materialsproject.org.

Collectively, these frameworks are greatly expanding the
audience for computational data generation.
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Concluding remarks. Advancements in computational data
generation have provided researchers with a new toolkit and a
new avenue with which to address materials design problems.
With a few exceptions, these high-throughput techniques have
only been applied for about a decade or so and it is likely
that some of the most important advancements in the field are
yet to come. In particular, addressing fundamental challenges
in achieving high accuracy and in modelling large, realistic
systems remain formidable topics for future work. Similarly,
extracting knowledge from large materials data sets through
machine learning techniques is still in its infancy. Neverthe-
less, the ability to quickly generate data on a library of mat-
erials of interest and to share these results with collaborators
worldwide has already changed the way in which many

researchers, experimentalists and theories alike, are conduct-
ing materials design studies and has led to a new collective,
collaborative method for applying theory to materials.
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Status. Electronic-structure calculations have had a profound
influence on the development of computational materials sci-
ence, especially thanks to the relative efficiency and accuracy
of density-functional theory (DFT). The ‘Materials Genome
Initiative’, launched by President Obama in 2011, has given
worldwide visibility to this effort, and the task of developing
novel materials has started to leverage queryable databases
whose content is exploited to accelerate the discovery process.
Large sets of experimental and theoretical data, built on the
continuous effort of selected research groups, are now being
curated, organized, and reconsidered for purposes beyond per-
sonal repositories. Because of their homogeneity in terms of
format, results from DFT calculations were among the first
data made publicly available to complement or expand exist-
ing databases of experimental crystal structures, such as those
collected in the Inorganic Crystal Structure Database (ICSD),
the Crystallographic Open Database (COD), and the Pauling
File.

To the best of our knowledge, a list of electronic-structure
databases includes the Materials Project (materialsproject.
org), the Computational Materials Repository (cmr.fysik.
dtu.dk), the Open Quantum Materials Database (ogmd.org),
the Open Materials Database (httk.openmaterialsdb.se), the
Theoretical Crystallographic Open Database (www.crystal-
lography.net/tcod), the Materials Mine (www.materials-mine.
com), the NREL Materials Database (materials.nrel.gov), the
Automatic FLOW repository (aflow.org), the Materials Cloud
(materialscloud.org), and the Novel Materials Discovery
Repository (nomad-repository.eu); these allow, with differ-
ent licenses, to download selected records, or in some cases
even the entire repository. The records that are accessible are
usually generated with standard plane-wave pseudo-potential
electronic structure codes; mostly with VASP (www.vasp.at)
[21], or more recently with Quantum ESPRESSO (www.
quantum-espresso.org) [22] and other electronic-structure
codes. They usually include input files to establish some
amount of reproducibility for the calculations. Typical quanti-
ties that are reported in the databases are relaxed geometries
of crystal structures, together with total energies, band struc-
tures, and densities of states.

In most cases, data generation has been performed for
specific projects and the properties included in the materials
records may vary greatly, even within the same repository.
In addition, due to the specific research goals that drove
the calculations, the overall quality of the data has not been
extensively assessed. It is thus assumed that the data are ‘good
enough’ for the specific research goal, although this approach
hinders the ability to further use the data in unrelated data
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driven research, and often even the same calculations for the
same structure performed with the same code can have signifi-
cant discrepancies. In order to force consistent quality among
the records within a repository, several groups have opted
to establish what the calculation parameters are that should
guarantee reliable results across structural and chemical vari-
ations [23]. Other groups have performed systematic testing
on selected systems aiming to provide stricter transferability
criteria and improve, for example, the quality of the pseudo-
potential calculations against all-electron data ([1, 24] and
http://materialscloud.org/sssp/).

In this Roadmap, we touch upon the efforts toward the
concepts of verification and validation assuming the follow-
ing definitions:

o Verification efforts are aimed at assessing that the calcul-
ations have been performed correctly, and provide the
theoretical results that are expected—e.g. there is one
single theoretical value for the lattice constant of crystal-
line silicon within the LDA approximation to DFT, even
if no one knows what it is with an accuracy greater than a
few parts per thousand. This effort comprises establishing
and assessing the quality of the calculations in terms of
the input parameters, from energy cutoffs to k-point
sampling to the convergence thresholds, the presence of
bugs, approximate numerical methods, and so on. In this
context, the major and most difficult challenges involve
hidden bugs, and the use of the pseudo-potential approx-
imation.

Validation involves comparing the theoretical calculations
and experimental measurements in order to quantify the
predictive value of the theory—for this, one needs also to
carefully assess, for example, the condition at which the
comparisons are made (environmental conditions, such as
temperature, degree of imperfections in the experimental
sample, the role of quantum nuclear effects not consid-
ered in the theory, etc.).

Current and future challenges. Two main aspects must be
stressed when discussing the path toward verification: the
first one involves the definition of quality standards for the
calculated quantities, the second focuses on tools needed to
verify the records already available in the electronic-structure
databases.

The first systematic effort of verification in the world of
solid-state calculations has been performed by Lejaeghere
et al [1], which assessed the reproducibility of DFT calcul-
ations of elemental solids across a variety of electronic-struc-
ture codes and different libraries of pseudo-potentials. It is
noteworthy that this was done more than 50 years after the
introduction of DFT; the computational chemistry community
started such an effort much earlier. The variety of the com-
puted properties available in electronic structure databases,
however, complicates this task. The total energy is the least
sensitive quantity to numerical errors, thanks to the variational
principles, and it has already been pointed out that, for exam-
ple, verified band structures may not translate to agreement
on vibrational properties [25] and that a more careful analysis
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Figure 6. Validation study of the AGL computational method [27] applied to the lattice thermal conductivity and the Debye temperature.
Theoretical predictions of simpler harmonic properties, such as the Debye temperature, have larger predictive values. The calculations
of thermal transport coefficients that must include accurate treatment of the anharmonic contribution provide more scattered results.

Reproduced with permission from Cormac Toher.

must be conducted at least when using density-functional per-
turbation theory [26].

Tools to retrieve/compare/assess records in selected elec-
tronic structure data repositories are often available as a dedi-
cated REST application program interface (API); however,
only recently were search APIs made available to perform
preliminary verification tasks on a large set of data. Rose ef al
[27] have used their search API to analyse the convergence of
variable cell relaxation for all the structures contained in the
ICSD.

Validating theoretical predictions requires synergy with
experimental databases and, although it has been commonly
done on single materials, only a few examples of systematic
comparison are available. Aiming to validate DFT forma-
tion energies, Kirklin et al [28] have found agreement in
86% of the 89 cases considered. Toher et al [29] investi-
gated thermo-mechanical properties, such as bulk and
shear moduli, Debye temperatures, and Gruneisen param-
eters and assessed the reliability of different computational
approaches compared with 74 experimentally characterized
systems (see figure 6).

Advances in science and technology to meet challenges. Sev-
eral major issues remain: (1) establishing transferable standards
and protocols to assess the predictive value of electronic-
structure data, (2) further development and implementation of
software tools for automatic verification, (3) establishing com-
munity test cases ([30] and https://galligroup.uchicago.edu/
Research/hybrid_functionals.php#tables) that contribute to
develop high-quality standard datasets, (4) building synergies
between theoretical and experimental databases for validation,

1

(5) expanding the number of computed quantities in order to
facilitate direct comparison with experiments, (6) defining and
computing universally ‘reliability scores’ to provide direct
information regarding data quality to database users.

A recent and notable effort has been that of the OptiMade
API, which intends to add a compatibility layer to access data
from different repositories. Such an effort is still in progress
but could potentially help to address some of the difficulties
in verifying electronic-structure data. The definition of valida-
tion protocols is even more difficult, since it involves a much
more diverse universe of techniques, formats, and details.

Concluding remarks. Several independent repositories of
electronic structure data based on DFT are currently publicly
accessible. The data contains millions of computed properties
that can be used for machine learning and more. Verification
standards, however, are missing, with limited curation of data;
validation has been rarely addressed and typically on very
small subsets. This rapidly growing area of research dedi-
cated to verification and validation must be expanded, aiming
at community definitions of accepted standards for accuracy,
and well-defined protocols and tools for the calculations.
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Status. The high-throughput (combinatorial) approach to
materials discovery enables synthesis and screening of a large
number of different alloys or compounds simultaneously. Early
incarnations of the high-throughput strategy appeared in the
1960s where co-deposition of thin films was used to generate
composition spreads of ternary metallic alloys and functional
materials, such as ferromagnets and luminescent materials.
Despite some success, early efforts did not lead to widespread
adoption largely because of the lack of tools for rapid charac-
terization, as well as computers and automated measurement
techniques. High-throughput materials exploration truly came
of age in the early 1990s following the advent of combinato-
rial chemistry in biochemical fields and in the pharmaceutical
arena [31]. The early 90s was also the era when the need for
rapid, systematic investigation of new materials was first rec-
ognized by the materials science community, following the
discovery of high temperature superconductors. Since then,
the combinatorial approach has become an accepted method-
ology in almost all areas of materials science [32]. Combi-
natorial catalysis is a large field practiced by academic and
industrial labs alike in tackling a variety of homogeneous and
heterogeneous catalytic reactions with applications in produc-
tion of chemicals, refinery operations and environmental pro-
tection [33]. Polymeric materials also represent a vast target,
including formulations for coating, tissue engineering, and
polymerization catalysts [34]. While stoichiometric control
and the search for new compositions with enhanced physical
properties is the most common mode of combinatorial invest-
igation, microstructure and processing control through fine-
tuning of myriad synthesis parameters is equally important.
In the arena of functional materials, the investigation has been
increasingly focused on energy-related materials, such as bat-
tery electrodes, fuel cell electrolytes, photovoltaic materials,
and thermoelectric materials [35].

Recent advances in computational materials science and
data science are an exciting development. Integration of com-
putational and theoretical predictions of materials with the
experimental combinatorial approach can signal a new chap-
ter in materials discovery, and such efforts are underway in
multiple fronts.

Current and future challenges. The history of the combinato-
rial approach is paved with a series of technical challenges that
the community has endured over the years. In the early days,
the synthesis posed the initial test: is it really possible to make
hundreds to thousands of compositionally varying samples in a
single experiment in a controlled manner? The answer depends
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on the topic, synthesis technique, and the extent of composi-
tion variation one attempts to map on a given library. While it
is enticing to apply the approach to the latest exotic and excit-
ing topics, the cardinal rule is that one needs to be able to reli-
ably synthesize the correct benchmark composition on a corner
of the combinatorial library. To this end, one needs to criti-
cally evaluate the library design taking into account simultane-
ously achievable ranges of synthesis parameters (composition,
temperature, atmosphere, etc) on a library.

The second set of challenges was in the form of high-
throughput screening tools [36]. Because the high-throughput
methodology presented a new way to measure materials
properties, it often required a major instrumentation effort to
develop new tools for local, rapid and accurate characteriza-
tion on libraries comprised of small quantities of materials.
Techniques based on scanning probe microscopy (SPM) have
been effective, and MEMS and electronic device array con-
figurations have also proven to be powerful platforms [37].
For instance, SPM techniques have been used to measure fer-
roelectric properties, magnetic properties, and piezoelectric
properties. Micromachined cantilever arrays have been used
for high-throughput detection of martensitic transformation
for shape memory alloys, hydrogen storage materials, and
magnetostrictive materials. While some properties, such as
electrochemical catalysis and the latent heat in caloric mat-
erials, are inherently difficult to quantitatively capture by
high-throughput experimentation, researchers have made
great strides in streamlining the screening techniques of virtu-
ally all physical and chemical properties [35].

Various types of measurement data, generated from library
characterization in large quantities, have always presented a
challenge for the community. In recent years, the issue of how
to manage (curate and analyze) large, heterogeneous data sets
has come to the fore. Some national laboratories have taken on
this challenge and have successfully set up curated databases
for high-throughput experimentation. Good examples are the
online data handling systems developed at NIST (https://mgi.
nist.gov/materials-data-curation-system) and NREL (https://
htem.nrel.gov/). Given that there are also now enormous
amounts of computed materials properties available from
theoretical work, the situation calls for an integrated approach
to designing theory-guided combinatorial experiments and
performing holistic data processing and mining.

Advances in science and technology to meet chal-
lenges. Effective integration of experimental and computa-
tional high-throughput approaches can serve as an engine to
drive materials discovery in a variety of fields. In order for
the integration to be seamless, frequent feedback loops are
needed between theory and experiment (figure 7). Combina-
torial experiments can be used to rapidly validate theoretical
predictions of new compounds within targeted yet broad com-
position ranges. Experimental data, systematically generated
from libraries, can in turn be used to build new theoretical
models for further predictions. It would be ideal to have such
an integrated engine on a flexible data-handling platform,
which includes a repository containing both experimental and
computational data. It is also important that the data-handling
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Figure 7. Integration of high-throughput experimentation and theory. Effective coupling of the experimental and theoretical tracks, both
carried out in high-throughput manners, can facilitate materials discovery. The key is to have as many connection points between the two
tracks as possible. We call this coordinated effort the ‘Integrated Materials Discovery Engine’.
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Figure 8. Combinatorial experimentation and data analysis flow. (a) X-ray diffraction data are taken from a thin-film composition spread
wafer mapping a ternary (A—B—C) compositional phase diagram created by co-sputtering. The diffraction data are then analyzed using
cluster analysis to produce a potential structural phase distribution diagram, identifying separated phase regions. (b) The mean shift theory
(MST) as the machine learning algorithm is applied here: feature vectors are produced for each sample on a combinatorial library. Each
sample is projected into the feature vector space—shown here as 2D and unitless for ease of visualization, and the feature vector density
is correlated to an underlying probability density function (PDF) for each ‘hidden’ classification, which in this case are assumed to be two
separated different phase regions R1 and R2. PDF analysis is performed using MST-based mode detection, and all samples from the same
PDF are clustered together. Reprinted by permission from Macmillan Publishers Ltd: Scientific Reports [39], Copyright 2014.
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platform has access to a variety of existing literature data-
bases. The goal is to carry out datamining on such legacy
databases to help delineate composition-structure-property
relationships, as well as to derive models for predicting new
compounds which can serve as the basis for designing new
library experiments [38].

As discussed elsewhere in this article, it is increasingly
becoming clear that machine learning can play a major role
in several aspects of this endeavour. Because combinatorial
experimentation can generate a large amount of data from a
single library, researchers have been relying on machine learn-
ing to quickly decipher the underlying trends in complex sets
of data. For instance, unsupervised machine learning can be
used to rapidly separate a large number of diffraction patterns
into different clusters (figure 8). For a composition spread
library, the clusters nominally correspond to regions of the
same crystal structures [39]. Machine learning is also actively
used to streamline the efforts in computational materials sci-
ence. Here, the goal is to quickly identify proxy descriptors
to simplify the calculations and minimize computational time
and resources. In this manner, machine learning can be used to
curtail the amount of expensive and time-consuming ab initio
simulations, which need to be carried out for a project. There
are also proposed efforts to use machine reading and machine
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vision to comb through volumes of journal articles in order
to automatically build databases based on previous literature.
Proper threading of the results of the various data-centric tasks
is then crucial for effective operation of the integrated engine
for materials discovery.

Concluding remarks. High throughput (combinatorial) mat-
erials science started as a natural extension of developments in
the pharmaceutical industry, but it has evolved into a versatile
approach applicable to a wide variety of materials systems.
Because any materials design project requires actual materials
synthesis and validation, high-throughput experimentation
serves as a sine qua non of any systematic materials discov-
ery and development effort [40]. Moving forward, the key to
continued success of the integration of the high-throughput
experimentation and theory is to close the gap through data-
driven activities.
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Status. Exploratory synthesis has been a key strategy in the
past several decades that has yielded many of the important
new materials we study and use today. The level of predict-
ability in this admittedly highly successful approach is gener-
ally low because the reaction mechanisms, as well as how and
when phases form, is not known and are challenging to predict
within the present theoretical frameworks. In this successful
‘Edisonian’ paradigm, one predetermines a given set of reac-
tion conditions (e.g. time, temperature, heating, cooling rates)
and waits for completion to isolate and identify any formed
compounds. There is a general lack of awareness (‘blind syn-
thesis’) of what has occurred during the reaction and when
phases form and this hinders our ability to identify and make
new materials or to devise successful synthetic processes for
desired and targeted materials. This is particularly pronounced
for synthesis of metastable compounds which often have very
desirable functionality, since such phases often appear tran-
siently and unpredictably during a synthesis. As a result, the
design and synthesis of metastable materials remains largely
empirical.

Current and future challenges. Recently, a number of new
in situ based approaches that allow us to ‘see’ all forming
phases in the course of a variety of synthesis reactions have
become of interest. The in situ approach uses x-ray diffraction
to monitor the reaction to capture signatures of new phases as
they form even when they are transient and short lived. The
results published so far are very encouraging because entire
new phases have been observed to form on reactions which
had been missed in previous investigations on the same sys-
tem. Because all crystalline phases are revealed during the
reaction in this approach, we call it ‘panoramic synthesis’. For
example, this approach has been used for flux reactions, hydro-
thermal growth, and nanoparticle formation [41, 42]. Along
with these experimental developments, the theory is making
rapid progress in advancing computationally-driven predic-
tive synthesis of inorganic materials, through concepts such as
remnant metastability (i.e. during synthesis, metastable phases
that form as end products are remnants of phases that were
thermodynamically stable during particle growth) [43].

In the future, it will be a crucial challenge to implement
complementary panoramic synthesis experimental probes
(such as Raman spectroscopy, total x-ray scattering and x-ray
absorption spectroscopy) that can ‘see’ amorphous phases
which can form important intermediates during synthe-
sis. Likewise, it will be important to augment the structure-
based (diffraction) measurements with local imaging, such
as electron microscopies (see [44] for an example). These
efforts should be carefully compared and integrated into
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computationally-driven predictive synthesis both to test and
refine these theories. Finally, expanding panoramic synthesis
into other spaces (e.g. electrodeposition, hydro- and solvento-
thermal synthesis [45, 46], high pressure synthesis, and rapid
thermal processing [47]) will broaden the applicability.

Advances in science and technology to meet chal-
lenges. Here, we give two short examples of recent advances
in the application of panoramic synthesis to illustrate the
advances that can address the challenges for advanced exper-
imental methods for materials discovery and design.

The first illustration of the power of panoramic synthesis
was in the systems K—-Cu-S and K-Sn-S. A schematic of
the in situ capillary furnace we designed to investigate phase
formation during flux reactions is shown in figure 9. This
experiment generates x-ray diffraction maps that reveal the
complex real-time phase relationships in the reaction [48].
These experiments revealed surprisingly more phases that had
been found in conventional reactions. The diffraction patterns
collected while heating and cooling during this reaction are
given in figure 9(a). The panoramic synthesis showed addi-
tional crystalline phases that formed and then disappeared by
the end of the reaction [48, 49].

First, we see the signatures of the reagent metal and poly-
sulfide phases, but upon heating, low-26 peaks appear in
the diffraction data (red region). This real-time information
(prior to any analysis) clearly shows that ternary K-Cu-S
phases form early in the reaction, as observed in figure 9(a).
Continued heating leads to the disappearance of all Bragg
peaks (the black region in figure 9(a)). At this point, the
formed ternary sulfides have dissolved completely into the
molten polysulfide salt. After cooling, low angle Bragg peaks
again showed the presence of ternary phases (green region in
figure 9(a)). The structures of the occurring phases are closely
related and shown in figure 9(b).

The in-situ monitoring in the reactions of Cu with K,S3 and
Cu with K,Ss produced not only different phases K3;CugSe,
KCusS, and K3CuyS4, but also generated key information of
when they formed during the course of the reaction, how long
they lasted and what the final product was. If this reaction
were to be performed ex-sifu, no evidence of the formation
of KCu3S, and K;CuyS4 would exist—only K3;CugSe would
remain [50].

Another successful example is the new phases discovered
using in-situ synchrotron x-ray diffraction studies in the Cs/
Sn/P/Se system [50]. The diffraction data was translated into
phase fraction versus temperature. Seven known crystalline
phases were observed to form on warming in the experi-
ment: Sn, Cs,Ses, CsySeqq, CsrSes, CsrSnySeg, CsyP2Seq, and
Cs,P>Seg. Six unknown phases were also detected; using the
in-situ x-ray data as a guide, three of them were isolated and
characterized ex-situ. These are Cs4Sn(P»>Seg),, a-Cs,SnP»Seg,
and Cs4(Sn3Seg)[Sn(P,Seq)]r.  Csq(SnszSeg)[Sn(P,Seq)]> s
a 2D compound that behaves as an n-type doped semicon-
ductor below 50K and acts more like a semimetal at higher
temperatures.

A second illustration relates to the development of Pt
nanostructures and shows the power of complementary
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Figure 10. In-situ synthesis of Pt nanostructures (70 °C, 200 kPa H;) at low and high concentrations of stabilizing agent. (a) Time-resolved
x-ray diffraction; (b) time evolution of area under the Pt(1 1 1) peak with growth stages I-IV denoted. (c) Schematic illustration of proposed
Pt nanoparticle growth mechanism for stages (I-III). Pt monomers first nucleate into cuboctahedral nuclei (I), and then grow into single-
crystalline quasi-octapods (II). Growth of the arms of the quasi-octapods, coupled with selective etching on the edges and centers of facets,
leads to the formation of etched-octapods (II). These processes continue and transform the nanocrystals to porous nanocrystals.

techniques [44]. The synthesis involved thermal decomposi-
tion of a Pt precursor under a hydrogen atmosphere in the
presence of a stabilizing agent (at low and high concentra-
tions). Figure 10(a) shows the development of the Pt(111)
x-ray diffraction peak area with growth time; for the low
concentration reaction, this increases approximately lin-
early. However, for the higher concentration these data are
more complex and allow for the identification of four distinct
growth regimes (labeled I-IV). Ex-situ transmission electron

microscopy (TEM) of Pt nanoparticles allow identification
of the nanoparticles shapes and size, showing a fascinating
evolution from a compact cubic morphology (I) to quasi-
octapods (II), etched-octapods (III) to porous nanocrys-
tals (IV). From the diffraction and TEM, a detailed growth
model is developed as illustrated in figure 10(c). This exam-
ple demonstrates the utility and complementarity of TEM
and XRD for revealing nanostructure growth mechanisms.
A future challenge is to develop a predictive capability for
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nanostructure synthesis—not only phase but also particle
shape and size.

Concluding remarks. Progress has been made over the past
decade in developing a rational, predictive understanding of
exploratory synthesis, but much remains to be accomplished to
enable extensive applications of this approach. The challenge
of accelerated and predictable materials discovery will be met
with increasing success if we can achieve the organization of
new knowledge coming from these new approaches so it can
be more effectively taken advantage of. For example, reactivity
patterns under specific reactions conditions may have a gen-
eral scope and could be used to classify reaction and reaction
types so that they can be used as synthetic tools for materials
discovery. We have described an in-situ, ‘panoramic synthesis’
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approach that, when coupled with progress in computational
predictive synthesis, will help enable the widespread adapta-
tion of predictive synthesis. This will profoundly accelerate the
discovery and development of new functional materials.
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Status. The objective of materials informatics [51], or
data-driven materials science, is to use a set of power-
ful tools from data mining, machine learning, and math-
ematical optimization to systematically reveal materials
processing-structure-property-performance (PSPP) relations.
Once uncovered, these PSPP relations can drive the predictive
discovery and design of novel materials and optimized manu-
facturing processes.

The shift toward data-driven discovery is becoming broadly
prevalent in modern research and is referred to as the fourth
paradigm of science [52]. This term, coined by Jim Gray in
2007, reflects the historical developments in scientific meth-
ods, beginning with empirical science (first paradigm), giving
arise to theoretical science (second paradigm), enabling com-
putational science (third paradigm), and ultimately paving the
way for data-driven science. While fields such as biology have
embraced the fourth paradigm for some time, it is a compara-
tively new concept in materials science [53].

The rapid ascent of materials informatics coincides with
the 2011 launch of the US Materials Genome Initiative
(MGI) [54], which explicitly elevated the role of digital data
and related software tools in the materials research enter-
prise. Since the MGI announcement, materials informatics
have driven a series of laboratory discoveries of materials
and processing routes, in areas ranging from thermoelectrics
[55] to hydrothermal synthesis [56]. Further, the community
has seen a rapid increase in research articles wherein vari-
ous materials informatics-based models of PSPP relations are
constructed.

A generic materials informatics workflow is shown in
figure 11. The analysis starts with data extraction and preproc-
essing, which is used to identify and select the key components
of the data set. The reduced data set is further examined for
relationships between the components of interest. The discov-
ered relationships are utilized to generate the so-called inverse
and forward models, the former of which can be used to design
materials with desired properties, whereas the latter are used
for predictive analytics [53]. Experiments and computer simu-
lations based on theoretical models are used to generate new
data for the materials databases, thus closing the loop.

Current and future challenges. Below, we describe five
key challenges that hinder broader application of materials
informatics.

Data heterogeneity and siloing. The datasets characterizing
materials and their properties are of a diverse nature, come
from a wide variety of sources (e.g. myriad different exper-
imental and simulation techniques) with different levels of
accessibility, and are stored in many formats. Materials data

18

tend to exist across many scattered ‘small data’ silos, making
systematic mining more difficult.

Lack of consistent metadata. The generation and collection
of materials data are associated with numerous uncertainties
and sources of error that may not be easily detectable, making
the quality of data difficult to verify. This issue is frequently
exacerbated by a lack of metadata necessary for precisely rep-
licating the experiment or a simulation used to obtain the data
[57].

Inverse materials PSPP models to search materials design
space. Forward models try to predict the structure of a
material based on the processing used, properties based on the
structure, and performance based on properties. On the other
hand, inverse models aim to determine the material design
parameters that would yield materials with desired properties
and performance. In general, the forward modelling problem
is easier than the inverse problem, yet the inverse problem is
more relevant for materials discovery.

Novel representations of materials for informatics applica-
tions. Representing materials concepts (e.g. crystal structure,
chemical composition, or microstructure) as computational
objects for input to analysis algorithms is an essential prereq-
uisite for materials informatics. An example emerging repre-
sentation strategy is describing materials as networks, which
could reveal relationships and connections between materials
and potentially identify multiple materials that have the same
or similar properties or are otherwise related according to
some criteria.

Advances in science and technology to meet chal-
lenges. Below, we highlight two particular science and tech-
nology development goals that promise to be fruitful areas of
exploration for the materials informatics community.

Explicit integration of experimental data, computational data,
and materials theory to enable multiscale modelling. In the
well-established integrated computational materials engineer-
ing framework, powerful individual PSPP models have been
developed over time, but deep integration is lacking between
these models, experimental results, and established theory.
Materials informatics are a promising integrator of these var-
ied sources of ‘signal’ on the behavior of materials. This capa-
bility is especially important given the distribution of materials
data across many small, isolated data silos as described above.
Similarity metrics for materials. One of the central scientific
questions arising in materials informatics is a systematic way
of determining quantitative metrics characterizing the level of
similarity between pairs of materials. Addressing this question
would help advancing methods for understanding PSPP rela-
tions and would enable the use of network analysis techniques
for exploring both local and global properties of systems of
materials. The metrics of interest could potentially be derived
from first-principles computations, e.g. based on electronic
density of states or projections of localized basis sets [58, 59],
or atomic coordination environments [60]. Then one could rep-
resent the entire space of materials as an extended network of
interacting entities, where the connections between individual
materials are based on pairwise similarities in their properties
derived from first principles. This would allow us to take advan-
tage of powerful network analysis methods, which exploit the
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use of graphs or networks as a convenient tool for modelling
relations in large datasets. In this general framework, certain
elements of a dataset of interest are thought of as vertices, and
the pairwise relations between different elements are described
by edges, yielding a network representation of the underlying
complex system. With respect to the materials databases, sev-
eral conceptually different network representations could be
utilized, which would provide alternative vantage points for
exploring myriad materials data from a systems perspective. For
example, clusters in these networks would correspond to mat-
erials with similar properties. Furthermore, one could develop
optimization models aiming to find the best subsets of materials
according to a given objective function (see figure 12).

Concluding remarks. Materials informatics are a key enabler
of the MGI, as well as related international efforts such as
Japan’s Materials Research by Information Integration Initia-
tive (MI?I), and the faster development of higher-performance
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materials. The focus of this emerging field is on algorith-
mic approaches that would advance our understanding of
processing-structure-property-performance relations. Devel-
oping a cross-disciplinary collaborative culture that would
allow integrating the experimental, computational and applied
sides of materials science in developing advanced data min-
ing solutions is essential. Defining reasonable quantitative
similarity metrics for pairs of materials could lead to signifi-
cant advances in classification of materials and navigating the
ever-expanding search space for new materials. The reader is
referred to recent survey articles [51, 61] for further informa-
tion on advances and challenges in materials informatics.
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Status. The discovery of novel materials and the control of
their properties are key drivers for technological innovations.
This observation is particularly true for electronic and opto-
electronic materials, which have fueled the information tech-
nology revolution, and on which the hopes for the advanced
energy revolution rest. Historically, materials discovery has
been a serendipitous endeavor. For the past century, materials
chemists have been synthesizing numerous solid-state com-
pounds for different reasons and at different times. Their find-
ings are documented in crystallographic databases such as the
Inorganic Crystal Structure Database (ICSD), and that of the
International Centre for Diffraction Data (ICDD). While the
entries in these databases count in the hundreds of thousands,
surprisingly little other than the crystal structure is known for
most of these materials. Starting from the crystal structures
as input, high-throughput first principles calculations based
on density functional theory (DFT) and post-DFT methods
provide an ever-increasing number of calculated properties,
made available in online databases like https://materialspro-
ject.org/, http://www.aflowlib.org/, http://oqmd.org/, https://
materials.nrel.gov/, and others. High throughout exper-
imental materials property databases are also emerging (e.g.
http://htem.nrel.gov/)

While extensive, the crystallographic databases are by no
means complete. The availability of synthesis methods and
preferences of researchers and funding agencies have empha-
sized some chemical spaces over the others, leaving white
spots where plausible materials may exist but are not presently
reported. To unearth these ‘missing materials’, computational
searches are now being performed to predict their structure,
and accompanying experimental efforts are underway to
either verify or falsify their stability. Several broad conclu-
sions can be drawn from such studies. First, there is no doubt
that the search space is vast, considering the combinatorial
explosion of candidate materials with the number of involved
elements and their possible ratios. This is especially true when
including metastable structures and non-stoichiometric com-
positions in materials search. Taking into account this sec-
ond point, it also becomes increasingly clear that the ‘convex
hull’ criterion (thermodynamic stability with respect to other
structures and compositions made of the same elements) is
too narrow to judge whether a potential new material would
be possible to synthesize. These conclusions reflect the chal-
lenges faced by materials discovery discussed next.

Current and future challenges. The biggest current challenge
in systematic materials discovery is the vastness of chemical
space where materials can occur. In general, a ‘material’ is
defined by its constituent chemical elements, their relative
composition (stoichiometry), and the atomic structure, which
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can be depicted in 3D as shown in figure 13. Numerous
approaches and tools to predict crystal structures from first
principles are available [62], but they are often limited to the
materials with a small number of elements, to formula units
with small integer indices, and to unit cells with a small num-
ber of formula units. In fact, stability and properties of real
materials often depend on the non-ideal structures that can-
not be described by their primitive cells, such as defects or
disorder, and, ultimately, the meso- and microstructure. One
theoretical approach to screen for many possible elements is
to constrain the search to one or a few chemical stoichiom-
etries (e.g. ABX, ABXj3, A;BXy, and so forth), and restrict the
possible structures to all known prototypes (e.g. spinel, oliv-
ine, etc, for A,BX4) [63]. An alternative approach is to select
a constrained number of elements and structures, and then
screen many possible low index stoichiometries [64]. To aid
both of these approaches, simplified stability descriptors [65]
can help to identify search spaces where new materials are
likely to be discovered.

One of the biggest future challenges in materials discov-
ery is to go beyond the search for thermodynamic ground
state compounds. Metastability [43] comes in many flavors,
including polymorphs, thermochemically unstable materials,
solid solutions, non-stoichiometric compounds, hierarchical
and low-dimensional materials. Unlike the case of ground
states, which are universally defined by free energy minimi-
zation, computational discovery of metastable materials can
no longer be agnostic to the synthesis approach (figure 14).
Thus, the synthesizability of the predicted candidate materials
would have to be emphasized more; alternatively, materials
searches should be tailored to the capabilities of specific syn-
thesis approaches. For example, non-equilibrium synthesis of
metastable heterostructural semiconductor alloys using physi-
cal vapor deposition methods can be enabled by novel phase
diagram behavior that is not observed in conventional solid
solutions [66]. Such materials discovery on a continuous com-
position scale is distinct from the more common search for
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discrete stoichiometric compounds, and poses new challenges
to computational prediction and experimental realization of
new materials.

Advances in science and technology to meet chal-
lenges. High-throughput experimentation methods can be
used to quickly cover both chemical space and process param-
eters. For example, the growth of sample libraries with contin-
uous composition spreads and temperature gradients provide
large amounts of synthesis data from a single deposition. In
order to connect computational materials predictions to such
non-equilibrium synthesis techniques, it may be possible to
map process parameters onto ‘effective’ thermodynamic vari-
ables. For example, effective non-equilibrium chemical poten-
tials accessible during the synthesis can be used to describe
the formation of thermochemically metastable materials
[67]. Also, finite temperature effects must be reconsidered
in metastable materials. Atomic disorder induced by kinetic
limitations during growth can be converted into an effective
temperature [68], which can be much higher than the actual
temperature. Therefore, such an effective temperature influ-
ence can be vastly stronger than the free energy contributions,
e.g. due to atomic vibrations in the thermodynamic equilib-
rium state. Advancing the understanding of how these descrip-
tors vary between different materials and synthesis parameters
will enable the computational prediction of materials within
their accessible range of effective thermodynamic variables.
The next step is to define effective kinetic variables that facil-
itate a predictive atomistic modelling of synthesis processes.
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Since metastable materials result from the inhibition of the
equilibration of certain processes, modelling of synthesis
requires identification of variables that describe appropriate
kinetic constraints. For example, it is experimentally known
that surface diffusion is usually faster than bulk diffusion
for thin film growth. Creating the corresponding theoretical
models tailored to this synthesis constraint is facilitated by
developing problem-specific model Hamiltonians with simi-
lar (or ideally higher) accuracy as DFT, allowing an efficient
Monte-Carlo or molecular dynamics sampling for specified
non-equilibrium descriptors [69]. Experimentally, the devel-
opment of new in situ techniques for monitoring synthesis and
processing of materials would be an important advance for
validation of computational models. Using synchrotron radia-
tion, it can be shown that many new metastable phases can be
present as reaction intermediates and absent from the reaction
products [48]. The adoption of such in situ techniques on a
smaller scale in research labs would therefore help to acceler-
ate the discovery of metastable materials.

Concluding remarks. Materials discovery is branching out to
capture the opportunities of a wide range of different synthesis
approaches and their capabilities to access a spectrum of meta-
stable materials. The definition of ‘materials’ being discovered
is generalized beyond the Daltonian compositions and the
corresponding crystallographic primitive cells. Future material
discoveries will include metastable compounds, solid solutions,
defect- and disorder-enabled materials, and low-dimensional
structures. Furthermore, it remains a great challenge to concur-
rently discover new materials and design their properties. Pre-
dicting and synthesizing new materials is difficult enough that
property calculations and measurements for the discovered
new materials often come as an afterthought. The truly simul-
taneous search for new materials and their properties may be
enabled by genetic algorithms and machine learning, if it is
possible to train them to significant accuracy, and scale them to
the vast chemical space of materials discovery.
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9. Predicting synthesizability
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Status. Advancements in multiscale multi-physics computa-
tional materials design have led to the accelerated discovery
of advanced materials for energy, electronics and engineering
applications [70]. For many common bulk materials, synthe-
sizing and processing procedures are reasonably well estab-
lished. This also applies to modelling tools that can be utilized
for the understanding of phenomena occurring in these pro-
cedures. However, theoretical approaches have limited ana-
Iytical power for predicting viable synthetic routes towards
making entirely new materials. The knowledge about growth
mechanisms, free-energy landscape and dynamics of chemi-
cal and physical processes during synthesis is quite limited.
This uncertainty is exemplified in figure 15(a) by showing
multiple pathways for crystallization from the solution, where
a mechanism of forming bulk crystal depends on the interplay
between thermodynamic and kinetic factors [71]. Therefore,
the state-of-the-art in materials design needs to be comple-
mented with substantial efforts in advancing the field of
synthesis design. To increase the predictive ability of material
synthesizability, it is necessary to define both equilibrium and
out-of-equilibrium descriptors that control synthetic routes
and outcomes. The key metrics include free-energy surfaces
in multidimensional reaction variables space (e.g. activation
energies for nucleation and formation of stable and metastable
phases in figures 15(b) and (c)), composition, size and struc-
ture of the initial and emerging reactants, and various kinetic
factors, such as diffusion rates of reactive species and the
dynamics of their collision and aggregation.

Current and future challenges. To identify and quantify key
descriptors towards predictable synthesis design, it is essential
to integrate (i) exploratory synthesis and (ii) in-situ process
monitoring with (iii) computational design of synthetic routes.

(i) Challenges of experimental exploratory synthesis are
associated with the complexity of chemistries and reaction
routes that depend on the interplay between equilibrium
and out-of-equilibrium processes. Crystalline material
growth methods, which span from condensed matter
synthesis (all-solid-state synthesis and crystallization
from melt or solution) to physical or chemical deposition
from vapour (sputtering, e-beam deposition, pulsed laser
deposition, atomic layer deposition, chemical vapour
deposition), often proceed at non-equilibrium conditions,
e.g. in highly supersaturated media, at ultra-high pressure,
or at low temperature with suppressed species diffusion.
Identification of chemical evolution reactions and the
associated physical processes followed by their ‘equi-
librium versus metastable’ classification is extremely
difficult but is an essential step towards assessing material
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synthesizability. An illustration of possible reaction path-
ways to realize stable and metastable states of material is
illustrated in figure 15(c), where highly non-equilibrium
synthetic routes are superimposed on a generalized phase
diagram [72].

(ii) Developing in-situ multi-probe measurements to capture
important steps along the synthetic route is critical to make
the synthesis design and its validation more efficient.
For all-solid-state synthesis, it is important to develop
high spatial and temporal resolution 3D tomographic
mapping of phase evolution. The same applies for devel-
oping in-line diagnostics for solid growth under extreme
environments, including synthesis in supercritical fluids,
at extreme pressures, temperatures, photon/radiation
fluxes or electromagnetic fields. This is noteworthy since
real-time multi-probe diagnostics generating massive sets
of data, which need to be promptly utilized in a closed-
loop-feedback with synthesis, data curation protocols and
machine learning techniques, need to be advanced.

(ii1) On the modelling side, the idea of extending computa-
tional material discovery to in-silico synthesis design is
still in its nascent state. Assessment of equilibrium and
dynamic key variables for predicting the lowest activa-
tion energies and fastest routes for fabricating targeted
material remains to be exceptionally challenging. The
availability of data needed for modelling of new materials
and processes poses another challenge.

Advances in science and technology to meet chal-
lenges. The challenge of operating in the multidimensional
space of material fabrication can be addressed by integrating
exploratory synthesis with multimode dynamic process moni-
toring to define key growth process parameters. Experimental
synthesis and in-situ measurements should be further inte-
grated with computational tools to enable robust predictive
synthesis of materials with tailored properties. This unified
‘experimental/in-situ/in-silico’ synthesis concept is empha-
sized in the Department of Energy report [73] with a focus on
materials for energy, including experimentally verified design
of novel thermoelectric and battery materials, metal nanopar-
ticle catalysts, and transparent conducting oxides.

To address emerging materials needs, exploratory synthesis
is focusing more and more on metastable, hybrid, and hierar-
chical structures, such as thin film heterostructures, nanoparti-
cle superlattices, and core—shell nanostructures. For example,
the core—shell nanowire in figure 16(a) demonstrates how
thermodynamically favoured phase separation in a GaAsSb
alloy can be suppressed by strain from the GaAs shell layer
[74]. Similarly, a metastable rock-salt structure in the SnSe
thin film in figure 16(b) can be stabilized by depositing it epi-
taxially on a suitable substrate [75].

Advances in in-situ diagnostics include the application of
multi-probe optical spectroscopies and neutron/x-ray scatter-
ing and diffraction for real-time process monitoring, e.g. for
crystal growth from melt [42], roll-to-roll solution drying of
organic photovoltaic films, solvothermal synthesis of metal-
organic frameworks, etc. In addition, in-situ scanning probes
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and electron microscopies can provide direct insight into
synthetic phenomena with atomic scale resolution [76].

Theory-guided data science has shown great potential for
discovery and design in diverse scientific disciplines [77].
A recent example of theory-guided synthesis is shown in
figure 16(c): ab initio modelling has predicted a new metasta-
ble allotrope of 2D boron, a.k.a. ‘borophene’, and suggested
a synthetic route via epitaxial deposition on a metal substrate,
which was subsequently validated by the experiment [78].
Efficient in silico synthesis of new materials requires the
availability of data. A need for reliable data makes the integra-
tion of experiments, computation and theory imperative and
machine learning and artificial intelligence methodologies
will be needed to fill modelling and data gaps.

Concluding remarks. Even though the prediction of material
synthesizability is an extremely challenging task, advances in
modelling, in-sifu measurements and increasing computational
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power will pave the way for it to become a reality. In-silico
design of advanced materials will have to combine theory
guided data science with statistical and theoretical computa-
tional methods. However, it is an open question whether it
will be possible even with the most advanced modelling and
simulation techniques to predict completely unknown path-
ways for synthesizability. For example, is an additional crystal
growth route possible other than those shown in figure 15(a)?
The development of techniques and tools to propose the most
efficient synthetic pathways will remain one of the major chal-
lenges for predicting new material synthesizability.
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10. Thermoelectric materials discovery
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Status. Achieving the widespread use of thermoelectric
generators for direct heat-to-electricity power conversion
critically relies on novel, better performing, and less costly
thermoelectric materials [79, 80]. The vital role that new
materials play is best witnessed by a recent, nearly three-fold
improvement in the efficiency of thermoelectric generators
spawned exclusively by the discovery of new materials classes
(see figure 17) [81]. As a result, a new research paradigm
emerged about a decade ago: computational screening of large
chemical spaces in searching for new and even better thermo-
electric materials. Following the pioneering work of Madsen
[82], several groups made significant contributions to devel-
oping and applying computational tools to assess the transport
properties of solids, both charge carrier and heat transport, in
a manner amenable to high-throughput computational screen-
ing [83-86].

If judged by the number of new and experimentally validated
candidate materials, the success of high-throughput searches
has been limited so far. This is largely due to (i) the challenges
associated with predicting transport properties of materials and
(ii) the slow, serial nature of experimental validation. However,
afew materials and material classes that have been successfully
experimentally validated [79, 80] demonstrate the potential of
computationally guided searches in advancing thermoelectric
material discovery. These include materials previously not
anticipated for thermoelectric performance (e.g. n-type Zintl
compounds), suggesting the power of computation to lift us
away from our assumptions. Calculations have also passed a
critical milestone: we are now consistently able to retrospec-
tively discover known materials without explicit experimental
input. This success likely stems from the development of com-
bined experimental and computational learning sets that are
complementary in the properties they address.

To date, computational searches have predominantly
considered known, previously synthesized materials (i.e.
Inorganic Crystal Structure Database) with unknown charge
carrier and phonon transport properties. Venturing into com-
pletely new material systems, including stoichiometric com-
pounds and their alloys as well as the metastable structures,
has yet to be done on a large scale, but the potential return on
investment may be worth the effort.

Current and future challenges and opportunities. Similar to
other material searches, the large search space size, coupled
with the desire to accurately predict material properties, rep-
resents a significant challenge. As an illustration, figure 18
shows how only a very small fraction out of tens of thousands
of known compounds have actually been experimentally char-
acterized for thermoelectric performance. In combination
with the complexity of the theory of transport phenomena and
the required computational resources to quantitatively predict
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the potential for the thermoelectric performance of a single
material (orders of magnitude more expensive than density
functional theory), computationally guided searches for new
thermoelectrics may at first seem intractable.

However, the size of the search space also represents the
biggest opportunity! The vastness of possible chemistries,
both known and unknown, practically ensures the existence
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of new, game-changing materials for any given application.
The problem is then reduced to how to find the ‘needle in
the haystack’ and not whether ‘the needle is in the haystack’,
which is an important simplification. Second, it is critical to
note that for the purpose of identification of new promising
materials, it is sufficient to estimate relevant properties instead
of accurately predict their absolute values. Although ideally
one would prefer the latter, as long as the chemical trends are
correctly reproduced, the ranking of different materials and
identification of promising candidates can be reliable. This is
what actually allows the screening of large chemical spaces
and is the basis for a number of approaches and/or approx-
imations that have been devised and employed in computa-
tional searches for new thermoelectrics. As a result, a number
of databases providing predictions of transport properties of
materials have emerged in the last decade (see [79, 80] and
the references therein).

The main weakness of all these approaches is the focus on
intrinsic materials properties and the assumption that semi-
conductors can be doped to a given charge carrier type (n or p)
and carrier concentration. Many systems are not dopable at
all and/or exhibit strong doping asymmetry favoring only
one charge carrier type; thus, incorporating dopability assess-
ment into computational searches is critical. Concerning
experiments, the serial nature of material synthesis and char-
acterization is another big challenge limiting accelerated
materials discovery. As the reliability of computational pre-
dictions is largely probabilistic, high-throughput experiments
are required to accurately assess the success rate of various
approaches and provide the feedback loop to the theory about
the feasibility of different approximations that are employed.

Advances in science and technology to meet challenges. In
relation to predicting/assessing the dopability of materials, the
good news is that the theory of defects in semiconductors and
its computational implementations have evolved to a point
where it is possible to accurately predict both the intrinsic and
extrinsic defect chemistry and associated doping levels [87].
This includes advances in predicting materials stability and
phase equilibria, which are an integral part of defect calcul-
ations. Moreover, recent successful automation of defect
calculations [88] demonstrates the maturity of defect theory
and its potential for large-scale applications. Yet, predicting
the dopability of semiconductors is still far away from being
‘black boxed’; it is a relatively tedious process requiring an in
depth domain knowledge. The solution to these obstacles is in
revealing deeper relationships between the defect chemistry
and dopability on one side, and the chemical composition and
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crystal structure on the other. These relationships are pres-
ently either unknown or fairly qualitative.

Concerning the high-throughput experimentation, syn-
thesis techniques are required that yield near-equilibrium
samples with a form factor appropriate for accurate high
throughput measurements. Jointly satisfying these require-
ments is presently not achievable with combinatorial thin
film growth; advances in the high throughput synthesis of
free-standing, dense monoliths would be enabling. Such a
development would have cross-cutting implications for other
bulk functional material searches. Given a high throughput
experimental synthesis infrastructure, challenges remain in
linking the computational descriptors with the experimental
observables. For example, defects and dopants that may drive
electronic and thermal properties are challenging to character-
ize robustly due to their low concentrations. Likewise, scat-
tering sources and strengths are difficult to deconvolute from
transport measurements. Strategies to proceed with while in
an information-limited regime will thus be critical.

Concluding remarks. Thermoelectric materials discovery
has come a long way in the last decade, from being guided
predominantly by intuition and serendipity to the point where
guidance is complemented by high-throughput calculations.
At this point in time, it is safe to say that the computational
challenges associated with assessing the potential of semi-
conductors for thermoelectric applications from the intrinsic
(bulk) materials properties have largely been overcome. The
remaining (grand) challenge that is still obstructing computa-
tional identification of truly game-changing new thermoelec-
trics is the assessment of dopability of candidate materials.
Given the maturity and previous success of the defect theory
and its computational implementations, there is, in our mind,
little doubt that the dopability of semiconductors will be con-
quered and the true potential of computations in guiding ther-
moelectric materials discovery will be fully realized. More
nascent is the development of high throughput bulk synthe-
ses to complement these advances in computation. Given an
effective computational framework coupled to such a high
throughput synthesis, there is the opportunity for active learn-
ing within a machine learning context to further accelerate
materials discovery.
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Status. Metal halide perovskites form a large family of
compounds ranging from small bandgap semiconductors to
wide bandgap dielectrics [89]. The light-to-electricity conver-
sion efficiency of metal halide solar cells now exceeds 22%
for champion laboratory-scale devices [90]—following pio-
neering efforts on perovskite-sensitized [93, 94] and durable
solid-state perovskite solar cells [93, 94]—that is comparable
to mature thin-film photovoltaic technologies.

The compositional flexibility of the perovskite ABXj struc-
ture type allows for the control of chemical and physical prop-
erties over a wide range, including lattice constants, phase
stability, optical bandgaps, charge carrier confinement, and
defect processes. While the prototype hybrid organic-inorganic
perovskite is methylammonium lead iodide (CH3NH;3Pbly),
the highest performing compounds are multi-component mix-
tures, e.g. (CH3NH3);_,(CH(NH,),),Pbls_,Br, [90]. As our
understanding of the fundamental structure-property relation-
ships of halide perovskites increases, many opportunities arise
to design novel materials and composites with enhanced prop-
erties, new device architectures with improved performance,
and to explore alternative application domains including light
emission, heat conversion, chemical sensing, information
storage, spintronics, and radiation (y and x-ray) detectors. The
halide perovskites represent a vast playground for functional
materials discovery (see figure 19 for some examples).

Current and future challenges. The science and technology
of halide perovskite solar cells has developed rapidly over the
past decade. These compounds were first treated as photoac-
tive dyes deposited on a scaffold of TiO, [91, 92]. It took time
to recognise that the materials were themselves semiconduc-
tors with the ability to conduct photogenerated electrons and
holes. It was then found that they could also conduct ions,
giving rise to slow hysteresis in the current—voltage response
of solar cells [95, 96]. Despite a vast literature of thousands
of publications concerning halide perovskites, there is still a
large number of outstanding challenges, ranging from under-
standing the fundamental materials properties to physical pro-
cesses on a device scale. These include:

e Local crystal structure—there is evidence that the local
structure of halide perovskites has lower symmetry
than the average spacegroup symmetry measured using
standard Bragg diffraction techniques [97]. What is not
known is the correlation lengths and lifetimes of local
domains and how they interact with mobile carriers in
operating solar cells.

Conventional Halide Perovskites
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Figure 19. Illustration of the materials and device innovation space
for the halide perovskite family.

e Role of ferroelectricity—there is substantial debate
around the presence of polarisation domains in halide
perovskites, in part because it is hard to separate lattice
polarisation from effects due to mobile charges (electrons
and ions). The literature currently contains many con-
flicting reports.

e Point defect engineering—all current solar cells are based
on an intrinsic (undoped—Ilow carrier concentration)
perovskite layer with selective electron and hole elec-
trical contacts. There have been no convincing reports of
(robust) p- or n-doped halide perovskites, which would
open a wide application space in optoelectronic technolo-
gies.

o Extended lattice defects—very little is known about the
atomic configurations and electronic structure of grain
boundaries, dislocations, interfaces, and surfaces of
perovskites. Effective passivation of extended defects,
in particular suppressing interface recombination events,
could enhance device performance towards the theoretical
limit of ~30% for bandgap of about 1.6eV.

o Chemical stability and breakdown—many halide per-
ovskites react with oxygen and water. Progress has been
made with surface treatments [98] and physical encapsu-
lation, but low-cost and robust approaches to achieving
perovskite devices with long-term stability under realistic
environments would represent a major breakthrough.

e Pb-free compositions—although Pb is a low cost and rela-
tively abundant element, there is motivation for exploring
element substitution, while maintaining beneficial pho-
tovoltaic properties. The isoelectronic replacement of Pb
by Sn or Ge is problematic (reactive M>* ions), so a route
of active current investigation is double (mixed metal)
perovskites, which have stability and electronic issues
that need to be overcome.

e Photophysics of solar cells—in halide perovskites, pho-
togenerated electrons and holes recombine slowly and
hot states have anomalously long lifetimes. There are cur-
rently conflicting experiments and models, but control of



J. Phys. D: Appl. Phys. 52 (2019) 013001

Topical Review

these processes could be used to realise hot carrier solar
cells with efficiencies beyond the single-junction limit of
~30% light to electricity.

Advances in science and technology to meet chal-
lenges. For materials synthesis, the thin-film deposition
of halide perovskites is dominated by solution-processing,
with a growing number of vapour-processing studies being
reported. The growth of higher quality thin-films on a wider
range of substrates could enable better materials charac-
terisation. In particular, epitaxial hetero-interfaces and
perovskite homo-interfaces would allow a number of the
challenges outlined above to be addressed, and the testing of
new device architectures including all-perovskite p-n junc-
tions, high-efficiency tandem solar cells, quantum wells and
field-effect transistors.

Materials theory and simulation have played an important
role in the understanding of perovskite technologies. The limi-
tations of static band structure calculations on small unit cell
representations is now recognised. Multi-scale methods are
required to span the range of length and time scales necessary
to describe the connection between structural disorder and
dynamics with electron—hole generation, transport and recom-
bination in solar cells. Furthermore, relativistic effects and
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electron—phonon coupling cannot be ignored; more research
is required to understand the role of spin—orbit coupling and
associated Rashba—Dresselhaus effects on the macroscopic
physical and device behaviour.

Concluding remarks. Halide perovskites represent fertile
ground for materials exploration. Now that high-efficiency
photovoltaic devices have been realised, there is an opportu-
nity to revisit the intriguing materials science of these com-
pounds. Solving the challenges outlined in this section will
require reliable and quantitative data on well-defined mat-
erials, with the close collaboration between theory, simulation
and experiment. An improved understanding of the chemistry
and physics of halide perovskites is essential to enable ratio-
nal design of new functional materials that can provide similar
technological breakthroughs.
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Status. Organic semiconductor materials have been the sub-
ject of intense research over more than 20 years because of
their potentially tuneable properties, ease of processing, abun-
dance and low cost. Many optoelectronic applications are
based on inorganic semiconductors, but the range of stable
crystalline semiconductors is limited and the ab initio design
of new ones is limited by the strong dependence of properties
on crystal structure and the difficulty in predicting new crys-
talline materials from an atomistic level. Design of organic
functional materials, however, can be reduced to consideration
of the molecular (or monomeric) level and the intermolecular
interactions. Although the latter do influence material behav-
iour, the key optoelectronic properties are typically captured
by examination of a single molecular unit or pairs of neigh-
bouring units. Organic molecules can be thought of as com-
prised of building blocks that have clear structure-property
relationships, making rational inverse design possible.

Here, we focus first on two applications: organic photo-
voltaics (OPVs) and organic light-emitting diodes (OLEDs).
Each of these employs m-conjugated molecules, and depends
on the intermolecular transport and transfer of charge carriers
and the absorption or emission of light. OPVs are an appeal-
ing alternative to the dominant silicon technology because
of straightforward fabrication, low cost, low weight, choice
of colour and device flexibility. Due to these advantages,
research accelerated during the 2000s (figure 20); the current
record for conversion efficiency for a single junction OPV is
over 13% [99], enabled by the recent development of high-
performance organic acceptor materials other than fullerene
derivatives. OLED research began in the late 1970s and poly-
mer OLED research accelerated in the 1990s after the discov-
ery of electroluminescence from conjugated polymers [100].
Blue OLEDs have surged due to the discovery of thermally-
assisted delayed fluorescence, which gives access to higher
luminescent efficiency by allowing both singlet and triplet
excitons to emit light [101]. OLEDs have recently entered
consumer markets as energy-efficient, high-contrast ratio dis-
play materials. Further advances could lead to cheaper dis-
plays with longer lifetimes. In this Roadmap, we will review
the experience gained in materials development for OPVs
and OLEDs and consider how this can assist the design of
other organic functional materials, including organic redox
flow battery (ORFB) electrolytes, organic photocatalysts, and
organic thermoelectrics.

Current and future challenges. Device efficiency (power
conversion efficiency of solar cells and luminous efficacy of
OLEDs) remains a challenge. With OPVs, whilst the design
rules concerning the energetics of component materials are
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well known, the precise role of and means to control film
microstructure are still poorly understood. Processability of
organic semiconductors comes at the cost of structural dis-
order and associated disorder in site energies and charge
transfer rates, penalising efficiency [102]. Local ordering can
benefit charge transport and pair separation, but can also intro-
duce traps. Phase segregation in binary systems in OPVs is
critical to performance but is still challenging to control by
design.

Another persistent challenge in organic semiconductors
is the operational stability of the device. For instance, OPVs
have substantially shorter lifetimes than silicon-based photo-
voltaic devices [103]. Instabilities can come from a variety
of sources, including photo-oxidation, electrochemical stress
and morphological instabilities of thin films (via phase segre-
gation and heterogeneous crystallisation). Samsung cited long
term stability as a reason for their shift from OLED to QLED
(quantum dot LED) development for televisions. Stability is
also an issue in ORFBs, so a strategy that solves the stability
problem for organic semiconductors may shed light and allow
for similar methodologies to emerge in related materials.
Overall, stability has been relatively under-researched to date
compared to other properties and a detailed understanding of
structure-stability relationships is lacking.

Additionally, scientists and engineers in these fields need
to learn more about the nature of chemical space of these mat-
erials. Without constraints, chemical space is massive, esti-
mated to be 103 for organic molecules. By determining the
minimum number of starting materials that are needed to cover
all of the relevant parts of functional materials space, materials
development efforts can be further focused. By analogy, it has
been demonstrated that only about 5000 building blocks are
needed to synthesize ~70% of small-molecule natural prod-
ucts [104]. Researchers in organic functional materials need to
discover the corresponding number for their field and the most
relevant degrees of freedom for their particular properties of
interest. Determining these properties of chemical space will
assist in the accelerated, rational development of new mat-
erials that are competitive with inorganic materials.

Advances in science and technology to meet chal-
lenges. Nearly all of the above challenges can be met via
the efficient, rational exploration of chemical space, both
theoretically and experimentally. We will focus on the case
of OPVs, but these principles translate to other materials.
With hindsight, the necessary structural features for some
OPYV properties would have been straightforward to calculate;
theory is an excellent tool for calculating donor—acceptor (or
push—pull) structures for low optical gap, electron-poor or
electron-rich units to control ionization potential and electron
affinity, side chain structure and positioning and backbone tor-
sion to control crystallinity, and searching for molecules with
low conformational phase space to limit energetic disorder.
Other properties, such as mobility or phase separation,
are harder to predict because of more complex dependence
of properties on multiple degrees of freedom. Here, materials
identification can be accelerated by identifying intermedi-
ate properties, for example, isotropy in electronic coupling
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Figure 20. A timeline depicting the strategies used in materials development for OPV. As understanding of the relationships between
material properties and device performance developed, increasingly sophisticated strategies were used to improve device performance. The
results of years of studies, mostly by trial and error, have produced a set of design principles, many of which are relatively straightforward
to implement using calculations and which can be used in screening to accelerate the discovery of new materials.

(considering both sign and amplitude) is beneficial for high
charge carrier mobilities [105]; calculated solubility param-
eters or molecular-dynamics simulations of binaries [106]
could help predict phase behaviour. Although such approaches
could not predict new materials, calculating these more acces-
sible quantities can reduce the design effort by screening
potential winners from losers. Similarly, identifying the most
important structural degrees of freedom for a given property
can reduce the conformational phase space.

Virtual screening methods for organic materials have become
increasingly useful over the past decade, with large-scale stud-
ies conducted to discover new molecules for OLEDs, OPVs,
photocatalysts, thermoelectrics and ORFBs [101, 107]. From
an experimental perspective, accelerating the synthesis and
characterization can be done through adoption of high-through-
put methods and robotics. Similar to theory, experimental meth-
ods can also employ advances in machine learning. A platform
was recently used to optimize carbon nanotube growth based
on on-the-fly characterization via Raman spectroscopy [108]
and highly porous organic materials have been discovered
aided by computational design [109]. The stability problem,
in particular, needs significantly more characterization data to
identify decomposition pathways. With this information, such
pathways could be also screened for virtually. All of these
advances also need to be underpinned by the adoption of better
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data management standards, where negative results are made
available to virtual and experimental screening systems.

Concluding remarks. Research in organic semiconductors
has moved into an era where principles learned from years of
experiments can be employed by theorists to rationally design
new materials. Going forward, theorists need to devise new
techniques to compute more complex properties of organic
semiconductors. Tighter feedback between experimentalists
and theorists, aided by the continued development of machine
learning methods, can accelerate the inverse design of the next
generation of materials. The lessons learned from research in
OPVs and OLEDs could also be used in other organic func-
tional materials, including electrolytes for organic redox flow
batteries, organic photocatalysts, and organic thermoelectrics.
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Status. Solid-state lighting (SSL) exploits electrolumines-
cence processes from semiconductors to produce light more
efficiently than heated filament or gas sources. White light is
typically produced by pairing a blue LED with a down-con-
version material, which re-emits absorbed blue photons across
the rest of the visible spectrum (see figure 21). Advanced
approaches can also mix emission from individual red, green,
blue and amber LEDs [110]. The LEDs and down conversion
materials must be as efficient as possible to maximize energy
savings, while their emission spectra must be carefully tai-
lored to achieve the desired color temperature of white light,
as well as render colors suitably based upon the application

Blue and green LEDs are fabricated from In,Ga;_,N alloys,
where indium is added to shift the emission to longer wave-
lengths [110]. In,Ga,;_,N is a better blue light-emitter compared
to other semiconductors with similar direct band gap energies,
as it is relatively tolerant to extended defects. This allows sin-
gle crystal In,Ga;_,N device layers to be epitaxially grown on
substrates with different lattice constants, despite strain-driven
dislocation formation. Yet, there are drawbacks to this material
system [111]. When grown on SiC or sapphire substrates, the
polar axis of In,Ga;_,N is aligned along the direction of elec-
tron and hole injection. The resulting piezoelectric fields set
up by polarity and strain reduce electron and hole wavefunc-
tion overlap and lower radiative recombination. The addition
of more indium to In,Ga;_,N increases strain, which further
aggravates these losses and contributes to the low efficiencies of
green In,Ga;_,N LEDs. These loss mechanisms can be partially
suppressed through quantum confinement (e.g. quantum wells
or nanowires) or by growing on the non-polar crystal faces of
bulk GaN substrates. However, such approaches have yielded
insufficient efficiency increases at green wavelengths, are too
costly, or are less practical for mass production.

Commercial red and amber LEDs are fabricated from
(ALGaj_,)osIngsP alloys. Since LED efficiency is strongly
affected by dislocations, the In concentration is selected for
strain-free growth on conventional GaAs substrates. The emis-
sion wavelength is tuned by adjusting the ratio of Al and Ga.
(AL Gaj_,)osIngsP undergoes a transition between a direct
and indirect band gap semiconductor at ~2.25eV (550nm).
(ALGaj_,)s5Ing sP LEDs with emission wavelengths of 590 nm
or less have electrons lost to the indirect conduction bands at
room temperature [112]. These losses extend to longer emis-
sion wavelengths LEDs at higher operation temperatures.

Typical LED down-converting materials are inorganic phos-
phors; insulating hosts that are doped with activator ions whose
basic properties (e.g. absorption, emission, efficiency) are
defined by how the atomic transitions of the activator are modi-
fied by the interaction with the host lattice. Currently, three
main activator ions, Ce3*, Eu?t, and Mn** are used the most
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Figure 21. Emission spectra for phosphor-converted (pc) and color-
mixed (cm) LEDs. The wallplug efficiencies of blue, green, amber
and red LEDs (dotted lines) and luminous eye response curve
(shaded area) are also shown.

often in typical LED phosphors (table 1). The quantum efficien-
cies (QEs) of these phosphors are often above 90% across the
visible color spectrum for blue LED excitation. However, the
peak wavelengths and linewidths of their emission as well as
their stability are still factors that can be further improved.

Current and future challenges. In,Ga;_,N and
(ALGa;_,)oslngsP alloys are the semiconductors of choice
for visible LEDs in part because they have properties that are
amenable to both light emission and manufacturing. They are
highly developed direct band gap semiconductors with tunable
band gaps, are relatively robust against defect-induced degra-
dation, and are grown on readily available substrates. However,
the emission efficiencies of green, amber and red LEDs remain
well below that of blue LEDs (see figure 21) and are limited
by the fundamental properties of those materials. Small adjust-
ments in material quality, structure or composition alone are
unlikely to lead to substantial improvements. One path forward
is to identify alternative semiconductors with properties that
are better suited to green, amber or red emission and that meet
several design criteria. The semiconductor must have a high
emission efficiency under high injection or elevated operating
temperatures. Device layers should be grown on conventional,
cost-effective substrates with low defect densities using scal-
able deposition techniques. Finally, they should be resilient
against degradation for extended LED lifetimes.
Semiconductors that have recently been considered for
LEDs include direct band gap Al,In;_.P, [I-IV-N alloys, hal-
ide perovskites and GaN,_,As, [113—-116]. These materials
are in various stages of development, ranging from theoretical
predictions to full device demonstrations, and it is not yet
known if any will offer performance breakthroughs. Materials
discovery and synthesis efforts should focus on understanding
the advantages and disadvantages of different classes of semi-
conductors in the context of the design criteria outlined above.
Current phosphors have enabled sufficient efficacy and
color quality for the widespread acceptance of LEDs for
lighting and displays. Increasing luminaire efficacy to >200
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Table 1. Typical activator ions, their relevant transitions, and representative compositions for phosphors used in blue LEDs.

Activator Absorption transition Representative compositions

ion for blue light Emission transition and emission color

Ce’t 4f' (°Fsp) — 5d! 5d! — 4f'(F5)5,%Fs)0) Y3A150,:Ce* (green—yellow)

Eu** 4f7 — 495d! 4f05d! — 4f7 (Sr,Ca)AlISiN;:Eu®* (orange and red) 3-SiAION:Eu’* (green)
Mn** 3d® (“Ay) — 3d° (*T») 3d® CE) — 3d® (*A,) K,SiFg:Mn** (red)

lumens per watt (Im W~") requires the development of high-
efficiency, stable, narrow linewidth down-converter mat-
erials that emit at specific red, amber and green wavelengths
[117, 118]. Semiconductor quantum dots offer narrow band
emission that may be tuned to desired wavelengths to improve
efficacy, but reliability and European Union Regulation on
Hazardous Substances (RoHS) compliance have been barriers
to adoption. Continued efficacy improvements for high color
rendering LEDs therefore require new phosphor composition
development for ions (i.e. Eu?*, Mn*") that could give narrow
linewidth emission. Narrow band emission from the red phos-
phor in particular minimizes spillover into longer wavelengths
where the human eye response falls off rapidly. There is some
correlation of crystal structures and luminescence properties to
phenomenological understanding of phosphor properties [119,
120], but these phenomenological models have limitations in
their application to new phosphor discovery. Commercial imple-
mentation of new LED phosphors also needs to meet multiple
requirements beyond absorption and emission. New phosphors
require QEs greater than 90%, and their efficiency and color
cannot change significantly over system life. This optimization
requires additional composition and process steps including
choosing appropriate starting materials, determining nominal
stoichiometry, and optimizing processing conditions. Trial-and-
error screening experiments are followed by optimization using
designed experiments once the key factors have been determined.
The success of these optimization steps is usually the difference
between successful and unsuccessful phosphor development,
and takes up the largest portion of time and cost for phosphor
development [121]. As an example, figure 22 shows reliability
improvements through process optimization in K,SiFs:Mn*4, a
narrow line-width, red emitting LED phosphor (GE TriGain"").
These results illustrate the importance of the development phase
after simply identifying a promising material candidate.

Advances in science and technology to meet challenges.
Tools for high-throughput computational screening have and will
continue to aid in the search for new light-emitting and down-
conversion materials. Semiconductor crystal structures and
electronic band structures can already be calculated with a high
degree of accuracy, but advances are still needed in our ability
to predict tolerances to defects, Auger recombination rates and
other parameters that affect radiative recombination efficiency.
This will be enabled by improvements in our understanding of
radiative loss mechanisms. On the phosphor side, advances are
needed in the computation of phosphor crystal structures, excited
states in heavy lanthanide ions and defect chemistries. Improved
understanding in these areas will help to categorize basic phos-
phor properties and pinpoint new phase space in which to search
for promising materials. Identification of loss and degrada-
tion mechanisms in phosphors will also help to guide material
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Figure 22. Accelerated reliability testing of phosphors using

high intensity blue excitation. The industry standard green-

emitting Y3Al50,,:Ce** (YAG:Ce) is compared to a GE TriGain™
K,SiFs:Mn** red-emitting phosphor whose synthesis and
composition have been optimized relative to a typical K,SiFs:Mn**
phosphor. The timescale for these accelerated measurements is
proprietary information, however, these tests can accelerate phosphor
degradation by >100 X versus typical medium-power LEDs.

development and optimization strategies to improve performance
and reliability. Once the most promising LED and phosphor can-
didates are identified, it will likely require substantial resources
to fully develop and evaluate their potential experimentally. Syn-
thesizing new materials can be challenging, particularly if it must
involve non-standard epitaxial growth conditions or new reaction
routes. Advances in tools for materials fabrication and character-
ization will therefore also be important to this effort.

Concluding remarks. While commercial white SSL solutions
are approaching efficacies of 200 Im W~!, opportunities exist
to improve the efficiency of SSL through improved material
design and optimization. Identification of new emitting mat-
erials, either active semiconductors or down-converters for
blue LEDs, offer a direct route to realizing maximal efficiency
gains. A combined approach of theoretical prediction and
experimental development could accelerate materials discov-
ery and optimization for implementation into future lighting
systems and displays. This acceleration can be further enhanced
in combination with the current trend towards lower drive cur-
rent densities in LED packages to produce more efficient, high
color quality SSL solutions with improved reliability.
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Status. Tailoring the design of a material for a specific func-
tion is particularly important in catalysis, including thermal,
electro-, and photo-catalysis. For the present discussion on
materials design, as opposed to reaction design, we focus
on heterogeneous catalysts, for which the most universally
important fundamental properties are the binding energy of
reactant, intermediate, and product molecules on the catalyst
surface along with the respective reaction barriers. Advances
in computational chemistry and computing have made calcul-
ations of the binding energies rather automated [122], with
recent advancements in machine learning-based error correc-
tion making even computationally-inexpensive algorithms
sufficiently accurate to design catalysts. Modern theory-based
computational algorithms have been tailored for specific reac-
tions and operating conditions, in particular where binding
energies and reaction barriers can be modulated via multi-
body interactions, dynamic variations in the reaction environ-
ment, and catalyst surface dynamics under operation [124].
Broadening the catalyst design framework from a binding
site to a catalyst system will enable materials to achieve the
activity of the ultimate catalysts, enzymes, while providing
the longevity required for deployment in energy, commodity
chemical, etc, industries [125].

Current and future challenges. A primary challenge in the
improvement of catalyst design lies in the traditional dis-
connect between computational chemistry and catalysis
experiments, where the former excels at a molecule-level
understanding but struggles to model the full catalyst system
and the latter typically produces a net reaction rate with lim-
ited ability to decompose it into elementary steps. Catalysts
that perform multi-step reactions, such as oxygen evolution
and reduction, CO, reduction to hydrocarbons and oxygen-
ates, and N, reduction to ammonia, comprise some of the
most widely designed catalysts now and in the foreseeable
future. The recent proliferation of so-called scaling relation-
ship theory for such reactions predicts that catalysts with a
single active site will generally be limited in their catalytic
activity [126], which is troubling given that traditional cata-
lyst design focuses on identification and optimization of such
a site. The resulting stagnation in identification of transfor-
mative catalysts further motivates the expansion of catalyst
design to consider more complex and dynamic catalysts, for
example, through incorporation of variability in computa-
tional modelling (figure 23) [123].

The biggest future challenge in catalyst design lies in
the integration of data science, machine learning, and artifi-
cial intelligence in computational and experimental catalyst
exploration. As noted above, machine learning has emerged in
catalyst design primarily as an accelerator for computational
work [127], and while challenges remain in deeper integration
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Figure 23. (Left) Generalized coordination numbers of ontop sites
on a truncated octahedron and (right) and CO oxidation activity

of a 2.8 nm Pt particle used in Monte Carlo modelling of catalytic
activity, which highlights the complexity of identifying and
designing catalytic sites. Reprinted with permission from [123].
Copyright 2017 American Chemical Society.

Figure 24. Atomic resolution in-situ scanning tunneling
microscope image of CO dissociation on a Co catalyst, which
highlights the complexity and evolution (even on the 1h time scale)
of heterogeneous catalysts. Reprinted with permission from [122].
Copyright 2015 American Chemical Society.

of machine learning and theory, the grander challenge lies
in the utilization of machine learning to provide data-driven
identification of the underlying catalyst properties that give
rise to an observed reaction rate. That is, a given catalyst
performance measurement, even when combined with thor-
ough compositional and structural characterization, typically
cannot identify a reaction mechanism or design principle
for improving the catalyst. By consolidating a broad collec-
tion of composition-structure-activity relationships in a data
model, new catalyst understanding and design avenues may
be unveiled. In the present ‘big data’ era where loads of data
are used to provide a black box prediction tool, the relatively
small adoption of machine learning in catalyst design is some-
what understandable as the community neither has the requi-
site data to train such models nor the appetite for data models
that cannot ‘explain’ the underlying science. As artificial
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intelligence research begins to dissect the big data black box
and as new algorithms are designed to utilize known proper-
ties of materials, the power of machine learning in catalyst
design can be fully realized.

Advances in science and technology to meet challenges. The
recent advent of in-situ and operando techniques has greatly
enhanced experiment-driven catalyst understanding, which
largely provides additional characterization of the catalyst
surface or near-surface under operating conditions (figure 24)
[128]. Such data helps relate the computer models of materials
to the experimental catalyst but does not sufficiently bridge
the gap between molecular-level calculations and reaction
rates. Approaches for further bridging the theory-experiment
gap include atomic resolution scanning probe characteriza-
tion that does not alter the catalysis, computational modelling
techniques that simulate experimental observables to enable
more direct comparison, and multi-scale computational tech-
niques that provide quantum mechanics-level accuracy in
many-atom systems. The detection of partial-monolayer reac-
tion intermediates offers perhaps the best means of (in)vali-
dating a computational model, and continued development of
the associated spectroscopic techniques, in particular, infrared
spectroscopy and synchrotron-based electron spectroscopy
techniques, are needed to realize this goal in both thermal and
electro-catalysis. These experimental advancements indirectly
enhance materials design by providing the requisite data from
which hypothesis-driven catalyst modifications or new catalyst
designs can be derived. To enable direct, more ab initio cata-
lyst design, computational modelling must incorporate new
strategies for bridging time and space scales. Single crystals
transforming absolutely pure reactants are useful model sys-
tems, and extending design to deployable catalysts requires
modelling of materials defects, chemical impurities, and the
evolution of catalysts over years of operation, which typically
implies on the order of 10% ‘turnovers’ or catalyst cycles.

For the emerging challenge of integrating machine learning
in catalyst design, the road to success is less well defined, with
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one certainty being that new algorithms will need to combine
the state of the art in machine learning with the constraints and
concepts of catalysis science. To enable algorithm develop-
ment and deploy such algorithms, substantial advancements to
the catalyst community’s data infrastructure are also needed,
as well as experimental methods that can rapidly respond to
new catalyst predictions [129]. On both of these fronts, the
combinatorial and high throughput materials science com-
munity as well as the small molecule and biological chem-
istry communities offer a wealth of best practices that can be
adapted as necessary to accelerate the adoption of machine
learning in materials design for catalysis [40].

Concluding remarks. Transformative advancements in
materials design for catalysis hinge upon further integra-
tion of theory and experiment as well as interdisciplinary
engagement of artificial intelligence and the data science
community. The combination of techniques can enable a sort
of divide and conquer approach to creatively adapt existing
capabilities into new materials design paradigms that harness
the complexity of catalyst systems for multi-step reactions.
A recent illustrative example in photoelectrocatalyst design
involves integration of several theory and experiment steps
to discover classes of materials that respond to new design
concepts [130]. Here, the proficiency of theoretical model-
ling of a materials’ bulk electronic structure was combined
with efficient experimental assessment, with the more gen-
eral concept being that different approaches can tackle dif-
ferent aspects of catalyst design as long as the compilation
of techniques appropriately captures the complexity of the
multi-step catalytic processes that are increasingly important
to industry and society.
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Status. Advanced battery technology has become one of the
core technologies to support a mobile, clean and sustainable
society in the next few decades. Lithium batteries have been used
widely in portable electronic products, electrical vehicles and
energy storage devices for wind and solar power, because of their
high voltage, high specific energy density, rapid recharge capa-
bility, and wide working temperature range [131]. The advances
of battery techniques are always going to go with the develop-
ment of new materials. For example, lithium-rich layered oxide
materials have been considered as an ideal positive electrode in
high-energy-density lithium-ion batteries [132], and the nano
silicon-based anodes as alternative materials show reversible
capacities of 380-2000 mAh g ! [133]. The indisputable fact is
that the discovery of advanced materials and rational design play
key roles in battery research. To speed up the upgrading of the
chemical materials in lithium batteries, high-throughput tech-
niques, including high-throughput simulations, synthesis and
measurement, have been applied to the discovery of new battery
materials. Data mining and machine learning have been intro-
duced to benefit the understanding of the big data obtained from
high-throughput techniques, which provide opportunities for
further exploration of the structure-property relationship of bat-
tery materials and to discover new materials. On the other hand,
by comparing the theoretical results or model predictions with
the myriad experimental data, the sources of error and uncer-
tainty in battery research can be captured, which in turn help us
to build better theoretical models or investigating apparatus. The
mutual promotion of the above aspects shown in figure 25 is
expected to accelerate the discovery of candidate compounds in
the future and shorten the invested time and money, not only for
lithium batteries, but also for other new types of energy storage
devices, like Na, Zn, Mg, Al batteries, etc.

Current and future challenges. The high-throughput calcul-
ation work flow has been established based on density func-
tional theory simulations [134, 135], and the combination of
calculation methods in different accuracy levels [136] has been
proposed to speed up the scanning process of new materials.
The former has been applied to scanning the inorganic crystal
structure database for candidate electrode materials with high
voltage and capacitance [137]. Using ideas originating from the
latter method, a new superionic conductor has been proposed
[138]. To achieve battery devices with higher energy density
and safety, inorganic solid electrolytes are expected to replace
liquid electrolytes in the next generation lithium batteries [139].
The application of solid electrolytes may avoid problems of
leakage, vaporization, decomposition and side reactions found
in the conventional lithium-ion batteries. However, finding
solid electrolytes with excellent performance is still a demand-
ing task, since the comprehensive physical description between
structures and ionic conductivity is still not easy to grasp.
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Similar problems exist in the discovery of other battery mat-
erials. For example, suitable electrode materials with long-term
stability require a small volume change ratio during lithium ion
insertion and extraction [140]. However, the percentage of the
volume change varies from material to material because of the
complicated origins of the cell variation, which leaves huge
obstacles for us to discover low-strain electrodes. As an inte-
grated system, the performance of the battery not only relates to
the properties of the individual components but also is strongly
affected by the interactions among them. One typical case is
that the interface between the electrode and electrolyte seri-
ously impacts the stability, rate and cycle-life of the batteries.
Therefore, looking for favorable combinations of the comp-
onents in the battery is extremely crucial. The details and key
factors in optimizing these interactions are still in development
and remain a major challenge for the design and matching of
battery materials. In general, extending the understanding of the
basic scientific problems in battery systems is the main research
issue on the way to discovery new lithium battery materials.

Advances in science and technology to meet challenges. To
meet the above-mentioned challenges, advances in both sci-
ence and technology are urgent. Figure 26 exhibits the goal
of battery techniques and the methods that need to be devel-
oped in the near future. On the one hand, designing delicate
prototypes to understand the basic scientific phenomena in
batteries by high-throughput experiments and simulations
is a conventional but efficient research mode. With the help
of advanced measurement and analytical tools, more exqui-
site microstructures and evolution processes can be revealed,
which will clarify the failure mechanism of lithium batteries
and direct the discovery of new battery materials. On the other
hand, designing an automatic screening and prediction work-
flow with sufficient accuracy and efficiency is essential. For
each part of the battery, the electrode, electrolyte, additive, col-
lector, etc, it is necessary to meet more than one requirement
to ensure the excellent performance of the whole device. It is
better for a high-voltage cathode to show high-capacitance and
good conductivity. Similarly, fast ionic conductivity and a wide
electrochemical window are both necessary prerequisites for
electrolyte materials. Thus, screening and predicting tools for
multiple objectives must be created. Aside from the advances
addressed above, data science and technology also have to be
developed for material design. It is recognized that machine
learning techniques and big data methods will play an increas-
ingly important role in solving the relationships between mat-
erial properties and complex physical factors in a statistical
way, which builds the basis for material design, and vice versa.
However, material informatics is still an emerging field with
problems like the lack of data standards, the diversity of mat-
erial types, and even the conflict of research culture, etc. Data
management specific to battery materials should be developed
and the descriptors suitable for them should be explored.

Concluding remarks. Rational design of lithium battery mat-
erials is highly desirable in the near future. Because of the
complex structure-property relationships of ionic conductivity,
volume change, electrode/electrolyte interfaces, etc, successful
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Status. Metallic alloys have been of crucial importance
to humankind since the bronze age and will continue to be
a critical material class, enabling new capabilities, applica-
tions and products. The advantages of metallic alloys are their
frequently good mechanical properties like high strength and
plasticity (ductility, toughness), which are hard to achieve in
other material classes. In multifunctional alloys, these favor-
able mechanical properties are combined with additional
functional properties (electrical, magnetic, optical, etc.).
Multifunctionality is frequently related to reversible phase
transformations. Compositional complexity of alloys has usu-
ally increased from binary to multinary systems, often cur-
rently involving more than 10 elements, with compositions
finely tuned to specific applications. Examples of such com-
positionally complex alloys are steels, superalloys and metal-
lic glasses. Whereas these alloys are typically based on one
element (Fe, Ni, Co, Al, Mg, ...), recently multi-principal
element alloys (MPEA) have also attracted interest, as they
promise a mostly unexplored search space for the discovery
of new alloys with interesting properties [141]. Whereas a sin-
gle-phase constitution is crucial for semiconductors, metallic
alloys are typically multiphase materials, and the properties of
the alloys can be tailored by controlling microstructure using
processing. The phase constitutions, their distribution and vol-
ume fractions in the alloy can be used to adjust properties (e.g.
a tough matrix phase with a strengthening precipitate phase).
Further advances in metallic alloys are gained by developing
alloys which combine good mechanical properties with fur-
ther functionalities. For high-temperature alloys, for example,
the formation of a protective oxide scale can lead to a func-
tional property: resistance against corrosion. New or improved
(multi)functionalities need to be developed to realize metallic
materials for future applications. Whereas in bulk applications
of metals, mechanical properties are dominant, in thin film
applications, they are less important, i.e. even materials which
would be too brittle for bulk applications can be used in thin
films. This opens up the field of intermetallic compounds with
(multi)functional properties, which are frequently not ductile,
into the scope of new thin film materials. Such materials com-
prise magnetic alloys, shape memory alloys, magnetic shape
memory alloys, thermoelectric alloys, magneto- and elasto-
caloric alloys, etc. Such classes of (multi)functional metallic
materials can be explored by combinatorial and high-through-
put thin film methods to enable the design, discovery and
optimization of materials based on the acquired knowledge.

Current and future challenges. A current and future challenge
is the design and discovery of new compositionally complex
metallic alloys, i.e. ternary to quinary systems and beyond,
either based on a principal element or as MPEA, with inter-
esting mechanical and functional properties. Additionally, the
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influence of impurity elements on the properties of multinary
alloys should be studied. Complex metallic alloys, character-
ized by extraordinary large unit cells, is another area for new
discoveries [142]. Generally, it is necessary to overcome reli-
ance on serendipitous discoveries (e.g. NiTi) and use com-
binatorial and high-throughput methods, both computational
and experimental, to identify, verify and then optimize new
metallic alloys in a more efficient way. However, this is chal-
lenging, as the largest fraction of elements in the periodic
table are metals, which leads to an almost unlimited search
space, even if the selected elements are restricted to those
which are earth abundant and sustainable. Computational
approaches [143, 10] for the high-throughput prediction of
possibly (meta)stable alloys with interesting properties can
help in this regard to select a few ten to hundred appealing
candidates out of hundreds of thousands of possibilities,
which then can be assessed (verification/falsification of pre-
dictions) with high-throughput experimental methods. How-
ever, these calculations are frequently limited to the intrinsic
properties and sufficiently precise and validated experimental
data for the calculations are often lacking. A further chal-
lenge, next to principal stability and the possibility to fabri-
cate new materials, is to master extrinsic properties such as the
microstructural diversity. For an identical composition, many
microstructures are often possible, e.g. from nanocrystalline
to microcrystalline, from amorphous to single- or multi-phase
crystalline structure, all of which influence the properties of
the alloy. Another challenge is to screen thin film libraries
for ductility and, what is more, how findings from large scale
thin film materials library explorations could be transferred to
the bulk scale, i.e. how new ductile (multi)functional metallic
alloys could be efficiently identified. Examples of correlative
thin film-bulk studies can be found in [144—146].

Advances in science and technology to meet challenges. For
the advancement of the discovery and design of multinary
alloys, several technologies need to be further developed.
Whereas combinatorial deposition methods for thin film mat-
erials libraries are now well-established, the further automa-
tization and speed advances of high-quality characterization
methods need to be continued to enable better high-through-
put characterization. An important methodology to be devel-
oped is ‘combinatorial processing’ to address the challenge of
microstructural complexity. For this, gradient and step heater
concepts for both the formation and annealing of thin films
have been introduced [147]. A high-throughput processing
approach for the identification of new metallic glasses with
thermoplastic formability was performed by parallel blow
forming of co-deposited thin-film libraries on micromachined
substrates [148]. Furthermore, it would be worthwhile to
develop schemes where materials libraries would not be only
characterized for one property, but rather comprehensively for
‘all’ functional properties. Another necessary advancement
is related to the development of materials in systems. This is
because it is not sufficient to only develop a material by itself;
rather it has to be developed in a system, which means it has
to provide functionality in connection with adjacent materials
and environments. Here, interface properties play a key role.
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Furthermore, if the fabrication and characterization of mat-
erials libraries leads to the discovery of new phases, the chal-
lenge arises for an accelerated identification of these phases.
Here, advanced electron diffraction methods in transmission
electron microscopy (TEM) (combination of automated dif-
fraction tomography with precession electron diffraction)
could help, if the materials of interest can be grown to a suf-
ficiently large grain size [149]. A novel accelerated explora-
tion approach for temperature- and environment-dependent
phase evolution in compositionally complex materials has
been introduced by Li et al [150]: combinatorial processing
platforms are created by co-deposition of multinary thin films
on nanoscale tip arrays forming many identical nanoscale
‘reactor volumes’ allowing for fast diffusion and reaction and
immediate observation of the product phases by the atomic-
scale analysis methods atom-probe tomography and TEM.
This allows for an accelerated mapping of the phase space of
multinary metallic alloys. Another challenge is the develop-
ment of materials data science, research data management, and
materials informatics, e.g. machine learning for data-guided
experimentation. Finally, visualization of compositions and
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properties in complex multinary materials systems is difficult
but necessary. Thus, new software tools have to be developed
which will lead to the establishment of functional phase or
existence diagrams (including metastable phases) for multi-
nary alloys for the future design of materials.

Concluding remarks. The success story of metallic alloys
will be continued by applying computational and experimental
combinatorial and high-throughput methods for the discovery
and optimization of new multinary compositions. If the new
materials are developed from the start with regards to their
functionality within a system, i.e. with regards to the inter-
faces which are formed between materials in a system, faster
development of materials from their discovery over optim-
ization to incorporation into a product could be achieved.
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Status. Over the last few decades, complex oxides (materials
with multiple cations and oxygen) have been a central research
focus because of their wide range of properties and applica-
tions. Leveraging an ability to manipulate the charge, lattice,
orbital, and spin degrees of freedom, scientists have explored
arange of exotic, and potentially useful, phenomena including
superconductivity, magnetism, colossal magnetoresistance,
ferroelectricity, multiferroism, relaxor behaviour, ionic con-
ductivity, piezoelectricity, and many more. Such ‘functional’
materials (i.e. materials that can transmit or convert energy
(e.g. electrical, thermal, mechanical, etc) for useful purposes
(e.g. information transfer, sensing, energy production, posi-
tioning, etc)) [151, 152], underpin our ability to address a range
of salient technological challenges, including how we process
and store information, sense and understand the world around
us, produce energy, and more [153]. Ferroic materials, includ-
ing those which are ferroelectric, magnetic, ferroelastic, and/
or multiferroic, continue to receive considerable interest due
to their field-switchable stable spontaneous order parameters
(electric polarization, magnetic moment, strain), which are
strongly coupled to the thermal and mechanical responses of
the material (figure 27). The search for, discovery of, and utili-
zation of these materials has been made possible by important
advances in theoretical and computational approaches, mat-
erials synthesis, and characterization techniques. Functional-
oxide research has enabled the realization of new materials
and the development of new functionality in existing materials.
These research insights are fed back into the design process,
including massively parallel design of new oxide materials and
heterostructures. The advanced state of synthesis and charac-
terization confers unprecedented control of materials chemis-
try and structure, and this will ultimately lead to the creation
of new states of matter and phenomena. Recent innovations
include new single-phase materials, close juxtapositions of
competing or complementary functionalities, and orchestra-
tion of emergent responses on many length and time scales.
Here, we highlight some of the most important recent advances
in terms of materials design and discovery, understanding, and
characterization for functional materials while looking to the
future for what might lie on the horizon for this community.

Current and future challenges.

Advanced computation and data storage. There is great
interest in moving beyond field-effect transistors and Bool-
ean operation, and functional oxides can lead that revolution
by providing negative capacitance, piezotronics, tunnel junc-
tions, and spintronics. In addition, neuromorphic computing
architectures (designed to emulate neuron function) require
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materials exhibiting multiple and addressable microstates
and the ability to evolve continuously in response to voltage-
current stimuli [154]. Ferroic materials are promising because
of their intrinsic non-volatility and fast switching, but limited
progress has been made towards deterministic multi-state
functions. There is likely to be growing interest in designing
and controlling ferroics in ways that will enable low-power
and multi-state operation in this regard.

Energy conversion and efficiency. Societal energy needs
make the development of more efficient energy conversion
a compelling research challenge. Ferroic systems have great
potential in this field. For example, ferroelectric photovoltaics
host the bulk photovoltaic effect, where a ‘shift current’ [155]
and asymmetrically scattered ‘ballistic current’ [156] cause
excited carriers to move in a specific direction determined by
the polarization; it can even give rise to photovoltages that
exceed the bandgap and break Shockley—Queisser limits for
efficiency. Others explore ferroic materials for novel waste-
heat energy conversion as thermoelectrics or via pyroelectric
energy conversion, for low-power, solid-state cooling via the
electro- and magneto-caloric effects [157], vibrational energy
conversion applications, and much more, and as active or sup-
porting materials for catalysts.

Sensing and communications. The Internet of Things (IoT)
and its acquisition of ever-increasing datasets drives a need for
new abilities to sense, communicate, and interact with comp-
onents in many aspects of life. Functional materials will play
vital roles in sensors, energy harvesting/remote power genera-
tion, data storage and transmission, and much more. Materials
that are compatible with advanced healthcare monitoring (in
and ex vivo) will be of particular interest. Ferroic materials
provide a foundation for such applications, since one materials
class provides all these functions—sensing, energy genera-
tion, energy storage, communications, etc—while being both
chemically inert and stable. The future of communications—in
particular, the advent of higher-frequency 5G technologies—
will also likely drive materials innovation to achieve aggres-
sive design requirements. Microwave communication bands
are becoming increasing congested; agile, tunable materials
with high quality factors will be essential to meeting the needs
of commerce, defence, and other applications.

Advances in science and technology to meet challenges.
High-throughput  materials  discovery. The Materials
Genome Initiative [158] ignited high-throughput discovery of
functional materials [159]. A central driver is the optimization
of descriptors that can be rapidly calculated to identify novel
materials and phenomena. Experimentalists must also develop
ways to rapidly produce and characterize an ever-widening set
of candidate materials. Advances in the discovery of complex
oxides portend the dramatic expansion of known or predicted
functional materials (figure 28) [160].

The materials-data nexus. Modern computational and exper-
imental probes have led to orders-of-magnitude increases in
the volume, variety, veracity, and velocity of materials research
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data. High-dimensional, high-resolution data sets make direct
extraction of physically-relevant information challenging.
Brute-force approaches, wherein models or fitting functions
are used to extract parameters of predetermined significance,
fail when the data have unknown variety, veracity, or arrive
with high velocity. Addressing data challenges will require
the adoption of statistical tools including machine learning
to identify data correlations, trends, clusters, and anomalies.
Melding traditional physical sciences with new data-intensive
approaches offers transformational opportunities to simplify
the transition from data to scientific insight.

Managing emergent behaviours. A driver of new functional-
ity will be the harnessing of phenomena on length scales other
than the material dimensions. Prominent examples include
polar nanoregions in relaxor ferroelectric alloys and topological
defects, such as magnetic or electric skyrmions. These phenom-
ena break conventional relationships between order parameters
and stimuli, and the acquisition of a deep understanding of
these may hold the key to a new generation of smart materials.

New modes of synthesis. A key to advancing material func-
tionality will be new strategies for controlling chemistry and
structure. In particular, ‘defect’ control—deterministic pro-
duction of specific types, concentrations, and locations—
could enable a watershed in the design and discovery of new
physics and emergent function. This new approach posits that
defects, long considered deleterious to properties, can now be
viewed positively as a tool to enable elegant manipulation of
the local balance of charge, lattice, orbital, and spin degrees of
freedom. This could induce new properties and effects. Such
routes are particularly amenable to complex oxides, which
naturally host larger defect concentrations. Recasting the role
of defects will provide a pathway to new emergent properties
and could lead to unprecedented material responses.

Concluding remarks. Modern functional ceramics are a
critical part of everyday life. In the near future, their roles in
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advanced electronics, sensing, energy transduction, commu-
nications, and other areas seem poised for strong growth. The
key to this impact lies in the multi-functional and agile nature
of the responses of these materials and their ability to accom-
plish in one material what might otherwise require many. It is
envisioned that these materials will continue to be explored in
non-traditional communities and as replacements for traditional
materials because of the multi-functionality, adaptability, and
robustness to operation in harsh environments. At the same
time, this added function comes at the cost of added complexity
in controlling those materials to elicit the desired properties.
Advances in computational and experimental methodologies
are now poised to revolutionize our understanding of these
materials and their deployment in breakthrough applications.
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Status. Transparent conducting materials (TCMs) are defined
by high electrical conductivity approaching that of a metal-
lic compound (conductivity ¢ > 10* S cm™!), with the high
transmission of photons in the visible or near infrared range
of the electromagnetic spectrum (transmission 7 > 80%). The
unique combination of these two features makes TCMs essen-
tial components of modern optoelectronic devices [161], such
as (a) transparent electrodes for flat panel displays includ-
ing touch screens, (b) transparent electrodes for photovoltaic
cells, (c) smart windows, (d) transparent thin films transistors,
and (e) light emitting diodes and lasers. The first TCM thin
film was reported by Badeker [162] in 1907, more than 100
years ago, and was based on CdO. Afterwards, more TCOs,
such as SnO;, Iny03, ZnO, and their alloys, including amor-
phous alloys, have been discovered and are utilized in our
daily life [163, 164]. All of these materials can be thought
of as very-heavily-doped wide-band-gap n-type semiconduc-
tors. Figure 29 shows characteristic reflection (R), transmis-
sion and absorption (A) spectra for a TCO thin film where the
transmission is cut off on the short wavelength side by the
intrinsic band gap absorption and on the long wavelength side
by the carrier-concentration-dependent onset of absorption,
due to conduction-band-electron plasma oscillations. We will
refer to such materials, where the material itself is both trans-
parent and conducting, simply as TCMs. In contrast, a second
very different class of transparent conductors has emerged
where porous nanoscale networks or grids of highly conduct-
ing wires yield an overall low sheet resistance on a macro-
scopic scale, along with high optical transmission due to the
large openings between the wires [165]. Such transparent con-
ducting networks have been made using both carbon nano-
tubes or metal nanowires, with silver nanowires versions now
seeing limited commercialization for touch screen displays.
Often, the nanoscale conducting network is embedded in a
metal oxide or other matrix to improve both opto-electronic
functionality and mechanical strength. Accordingly, we will
refer to this second class as composite transparent conductors
(c-TCs). Figure 30 compares the optical transmission spectra
for a silver nanowire-based c-TC with that for a conventional
n-type TCO.

At present, the vast majority of TCMs are still n-type TCOs.
The most important n-TCO used today is tin doped indium
oxide, InyO3:Sn [166, 167], typically called indium-tin-oxide
or ITO. ITO along with high-indium content amorphous In—
Zn—0 are the dominant transparent electrode materials for flat
panel displays, the application which represents the largest
annual value for the TCO thin film industry, but also greatly
contributes to the rising cost of In metal. Therefore, it is still
significant to improve the conductivity—transmission (C/T)
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Figure 29. Optical reflection, transmission and absorption spectra
for an Al-doped ZnO TCO film. The plasma wavelength (A,) which
varies with carrier concentration is indicated with an arrow.

performance of the existing TCOs, or develop the new TCMs
or ¢-TCs that are less expensive (i.e. indium free), non-toxic,
have easily-tailored interface and high C/T properties and are
easily fabricated.

Current and future challenges. To improve the o/T perfor-
mance of TCOs, it is essential to simultaneously maximize
the conductivity o and optical transmission in the visible
(VIS) spectrum. Achieving the high electrical conductivity
(0 = nep where e is the elementary charge) asks for increas-
ing the carrier concentration n (electrons or holes), or carrier
mobility p as much as possible. Stoichiometrically perfect
TCOs (In;O3, SnOy, ...) basically have no free carriers due
to the large band gap (E, > 3eV). Therefore, unintentional or
intentional defects along with extrinsic dopants have a critical
role in optimizing the carrier concentration. To achieve the
high VIS transmission (T'=1 — R — A), one should reduce
the reflection (R) and absorption (A). The low VIS absorption
requires TCMs have a large optical band gap (Eg’ "> 3eV),
which is related to the materials with large and direct funda-
mental band gaps or forbidden dipole transition near the band
edges [168].

Nowadays, all the commercial TCOs are of the n-type
because it is easy to achieve the high concentration (n ~ 10?)
by the substitutional doping, such as Sn doped In,O3 (ITO), Al
doped ZnO (AZO), F doped SnO, (FTO), and so on. Further,
the conduction band minimum of TCOs derives from delo-
calized cation s orbitals, which ensures n-type TCOs have a
relatively high mobility. However, so far there are no com-
mercial p-type TCOs, which seriously hinders the applica-
tions of transparent semiconductors because of the absence
of the bipolar transistors and diodes without the p-n junctions.
Achieving high-conductivity p-type TCOs is a big challenge
for the oxides, because the valence band maximum of oxides
is dominated by the very low-energy and localized oxygen p
orbital, which causes the formation of deep acceptor level and
poor hole mobility. Experimentally, beyond equilibrium hole
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Figure 30. Comparison of transmission spectra for a Al-doped ZnO
thin film TCO with that of a Ag-NW/ZnO composite transparent
conductor (c-TC). Insets: left—schematic electronic structure of a
n-type TCO; right—image of a AgNW/ZnO c-TC.

doping levels approaching 10>!/cm™3 have been achieved in
p-type TCOs using non-equilibrium growth methods, such as
sputtering. However, the conductivity remains low (o of order
10? S cm™! or less) due to low mobility and the materials are
generally not very transparent. In the space of amorphous
materials, the key challenge for n-type a-TCMs is to find
high-conductivity indium-free materials, whereas for p-type
materials, it is still just to find high-conductivity materials. For
c-TC materials, there are challenges in the area of using metal
nanowires beyond just silver to reduce reactivity, including
the use of alloy compositions or protective layers as well as
wide open opportunities to tune the application specific func-
tionality of c-TCs through the choice of the matrix materials.

Advances in science and technology to meet challenges. As
discussed before, to improve the conductivity of the TCMs,
one should either increase the carrier concentration or the
mobility, especially for the p-type TCMs, of which both
quantities are far below the standard for commercial applica-
tions. To achieve this, the following strategies may be valu-
ably considered: (i) increase defect solubility by ‘defeating’
bulk defect thermodynamics using non-equilibrium growth
methods, such as extending the achievable chemical poten-
tial through molecular doping or raising the host energy using
surfactant; (ii) reduce the defect ionization energy level by
designing shallow dopants or dopant complexes, including
transition metal doping, co-doping, multivalence-impurity
doping, etc, and (iii) increase the carrier mobility by modi-
fying the host band structure near the band edges. Because
increasing the carrier density can also lead to an increase in the
visible absorption and possible reflection, whereas increasing
the mobility has less bad effects, one of the best strategies is
relying on the band structure engineering to increase carrier
mobility without affecting the optical properties much to real-
ize high performance TCMs.
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At present, ITO is one of the best TCM materials with
both high conductivity and excellent optical transmission.
However, due to the scarcity and high price of In, develop-
ing and searching new TCMs that are cheap, non-toxic, and
have a similar conductivity or even higher than that of ITO has
been in great demand in recent years. A practical and feasible
strategy is that based on the established general guidelines,
we can use materials by design to search new materials with
high transparency and low carrier effective mass, thus good
conductivity, including p-type transparent conductors and
non-oxide transparent conductors [169]. The effective appli-
cation of materials by design approaches to the discovery and
development of improved amorphous materials remains a big
challenge due largely to both the underlying challenges in
computational physics for amorphous materials and the exper-
imental challenges in adequately characterizing amorphous
materials to provide the feedback to theory that is so critical
for materials by design. To advance the composite transparent
conductors through the use of materials by design will require
the bridging of length scales to couple materials by design
with integrated computational materials science and engineer-
ing approaches to develop a functional predictive capability
for topologically complex multi-component systems. Finally,
to actually impact real world technologies and needs, the pre-
dicted target materials must be able to be made, which leads
to the newly emerging challenge of theory-guided predictive
synthesis [170].

Concluding remarks. With the expected increasing use of
TCM reliant consumer electronics and energy technolo-
gies, there will continue to be a need for TCMs with ever
increasing performance and decreasing cost made using
sustainable materials. Specific materials development needs
include high performance indium-free n-type TCOs and
p-type TCMs with qualitatively better performance than are
currently available. There is likely to be great opportunities
for materials development in non-oxide and mixed anion
material systems as well as amorphous materials. Finally,
the alternative approach of ¢-TCs based on porous nanoscale
conducting networks is wide open for further development.
Materials by design methods can accelerate this materials
advancement and, likewise, the relevance here of amorphous
materials and composite materials will push the advance-
ment of materials by design.
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