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Abstract

In recent years mass spectrometry-based covalent labeling techniques such as hydroxyl radical
footprinting (HRF) have emerged as valuable structural biology techniques yielding information
on protein tertiary structure. This data, however, is not sufficient to predict protein structure
unambiguously, as it only provides information on the relative solvent exposure of certain residues.
Despite some recent advances, no software currently exists that can utilize covalent labeling mass
spectrometry data to predict protein tertiary structure. We have developed the first such tool, which
incorporates mass spectrometry derived protection factors from HRF labeling as a new centroid
score term for the Rosetta scoring function to improve the prediction of protein tertiary structure.
We tested our method on a set of four soluble benchmark proteins with known crystal structures
and either published HRF experimental results or internally acquired data. Using the HRF labeling
data, we rescored large decoy sets of structures predicted with Rosetta for each of the four
benchmark proteins. As a result, the model quality improved for all benchmark proteins, as
compared to when scored with Rosetta alone. For two of the four proteins, we were even able to

identify atomic resolution models with the addition of HRF data.

Introduction
Historically, mass spectrometry has been used as a tool to quantify the mass and oligomeric
distribution of proteins and protein assemblies."*?> More recently, advances have been made that
allow mass spectrometry experiments to yield three-dimensional structural information on proteins
and their complexes. By itself, there is no one mass spectrometry technique that can
unambiguously elucidate atomic-resolution tertiary structure of a protein or protein complex.

Hence, a combination of multiple different techniques is generally required.>-> Several techniques



have been particularly successful in probing the tertiary structure of proteins and their complexes.
Hydrogen-deuterium exchange (HD/X) is based upon measuring the extent of isotopic exchange
of backbone amide hydrogens.® 7 Chemical cross-linking involves studying the structurally
defined distances by covalently pairing functional groups within a protein.® ° Non-covalent
interactions between lysine residues and 18-crown-6 ether (a cyclic organic compound) can
provide lysine solvent accessibility within proteins.!® Finally, covalent labeling (sometimes
referred to as “protein footprinting”) involves exposing a protein in solution to a small labeling
reagent that will covalently bond to select amino acid sidechains that are exposed to solvent,
whereas sidechains buried within the core of the protein or occluded by interacting protein subunits
will not get labeled.!'"!* This provides information about the relative location of certain amino
acids with respect to the solvent (either on the surface and solvent exposed or buried within the
protein or protein complex structure). A variety of different labeling reagents exist and some are
highly specific as to which amino acid(s) can react with the reagent and others have a much broader
range of potential target residues. These techniques have been successfully employed with mass
spectrometry to analyze protein structures.'*?2

One covalent labeling method which recently has been increasingly widely used is
hydroxyl radical footprinting (HRF).?* 2* This method involves exposing a solvated protein of
interest to hydroxyl radicals generated from one of a variety of sources. Initially, oxidative labeling
was performed using a synchrotron that ionized water to form the hydroxyl radicals.?® With recent
advancements, a new method of hydroxyl radical labeling, fast photochemical oxidation of
proteins (FPOP), has been developed.?® 2’ With FPOP, a pulsed laser is used to photolyze hydrogen
peroxide on a microsecond timescale, which is faster than the unfolding of a protein. This ensures

that the labeling process does not disrupt the native state of the protein. In conjunction with mass



spectrometry, FPOP provides important insight into the structure of proteins. This labeling method
is quite broad in that it can label 19 of the 20 different amino acids, yielding extensive structural
information. Despite the wealth of information provided by FPOP, the data itself is sparse,
meaning that the solvent exposure information of a set of protein residues cannot provide
unambiguous determination of protein structure. There remains a critical need for computational
methods that can facilitate and compliment the structural interpretation of mass spectrometry
FPOP labeling data.

Over the years, numerous experimental techniques have been successfully combined with
computational methods to predict protein structures. Some examples of this are sparse
experimental data from site-directed spin labeling electron paramagnetic resonance (SDSL-EPR)

in conjunction with Rosetta to improve protein structure predictions,?® 2

nuclear magnetic
resonance spectroscopy (NMR),? 3! small-angle X-ray scattering (SAXS),*?* and cyro-electron
microscopy (cryo-EM).>%** Mass spectrometry techniques have also been utilized in conjunction
with computational methods. Malmstrom and coworkers have made significant contributions by
incorporating data from MS chemical cross-linking experiments as inputs into computational
methods for protein structure prediction.'> *#7 The work of Sali and coworkers has contributed
greatly to the field with the development of the Integrative Modeling Platform (IMP), an open
source platform that integrates experimental data into computational methods.!®> 3> 452 IMP is
designed as a set of self-contained modules that can be mixed and matched based upon a user’s
preference. Models are generated and scored based upon spatial restraints that are derived from
multiple sources of experimental data. Currently IMP supports the use of experimental data

gathered from sources such as SAXS profiles, EM images and density maps, NMR, chemical cross

linking, HD/X, and chromosome conformation capture. With IMP, both monomeric and multi-



unit protein structures can be studied. Finally, Yang and coworkers have developed an integrative
method, iSPOT, to determine protein-protein complexes that combines SAXS, hydroxyl radical
footprinting, and computational docking of either rigid-body or molecular dynamics models.*

Computational modeling using FPOP data is still in its early stages. Recently, an integrated
workflow was developed by Xie and coworkers that successfully demonstrated correlation
between experimental high-resolution hydroxyl radical footprinting data and residue solvent
exposure (as measured by absolute average solvent accessible surface area) as well as
differentiated between low and high RMSD models for the soluble proteins myoglobin and
lysozyme.** This elegant work demonstrated that there is strong potential for successfully
incorporating HRF or FPOP experimental data into computational methods in order to improve
protein structure prediction. Despite the many advances and successes with using sparse data from
various experimental methods for structure prediction, the use of covalent labeling mass
spectrometry as the data source had yet to be accomplished.

In this work, we incorporated mass spectrometry derived protection factors from FPOP and
synchrotron-based HRF labeling as a new score term for the Rosetta scoring function to improve
the prediction of protein tertiary structure. Rosetta is one of the primary computational tools used
for protein structure prediction.’* To accomplish our goal, we compiled a set of four soluble
benchmark proteins with known crystal structures and either published HRF/FPOP experimental
results or internally acquired data. We developed an efficient metric to quantify residue-specific
burial that correlated linearly to the natural logarithm of experimental protection factors derived
from the labeling rates. A new Rosetta centroid score term, that utilizes residue-resolved protection
factors as inputs, was developed. This score term was used in conjunction with the standard Rosetta

scoring function to rescore large decoy sets of predicted structures for each of the four benchmark



proteins. In this process of rescoring, the quality of all models improved such that after rescoring
the structures with the best score correlated more closely to the native structures. For two of the
four proteins, we were even able to identify atomic resolution models using the HRF/FPOP data.

Materials and Methods

Benchmark Dataset and Experimental Protection Factors

For this work, we used protection factor (PF) which was first described by Chance and

coworkers and is derived from a labeling rate constant as a metric for residue labeling.> PF is
defined as the relative intrinsic reactivity of a given residue to hydroxyl radicals divided by the
rate constant. The intrinsic reactivities of each amino acid type are well defined in the literature.?*
The PF, as expressed on a natural logarithmic scale, has been shown to correlate with the solvent
exposure of a given residue.'® >> 3¢ Within the literature, the PF has been defined multiple ways,
but for our purposes we have defined the protection factor for residue i, where R; is the intrinsic
reactivity for residue i and k; is the experimentally determined labeling rate constant, as defined

by eq I:

=

PF,

&

(1)

As a benchmark set, four different proteins with available FPOP or HRF labeling data were
utilized. These proteins were calmodulin (PDB ID: 1PWR), myoglobin (PDB ID: 1DWR),
lysozyme (PDB ID: 1DPX), and cytochrome c (PDB ID: 2B4Z). The experimentally determined
PFs for calmodulin were extracted from the published work of Kaur et al who generated radicals
via a millisecond timescale synchrotron radiation method.!® For myoglobin, the PFs were
calculated from the reported labeling rate constants by Xie et al.>® using the reactivities reported

in the literature.?* For this study, radicals were generated using sub-microsecond FPOP with a



dosimeter to provide varying doses of radicals. Finally, the experimental PFs for both lysozyme
and cytochrome ¢ were oxidatively modified by FPOP at a single radical dose as described in the
Supporting Information.

For incorporation of the data into the newly developed score term, input files were created for
each protein consisting of a heading line followed by two columns comprising the residue number
and the natural logarithm of the protection factor, with each labeled residue on a new line.
FPOP/HRF can label 19 of the 20 amino acids, however data from the following residue types
were omitted due to either too low/high reactivity or unclear products: M, C, D, N, Q, T, S, A, G,
R, K, and V. Of this list of omitted residues, it has been previously suggested by Xie et al. that the
sequence context plays a role in whether or not these amino acid types are labeled. This is a
complex issue and has not been examined in this current work. As a result, only eight of the twenty
amino acids were considered in the analysis: I, L, P, F, W, Y, E, and H. These residues have
intermediate reactivities and correspond with the residue types utilized in similar studies.'® >3

Rosetta ab initio Folding

In the absence of any experimental labeling data, decoy sets of 20,000 structures were
generated for each of the four benchmark proteins using the AbinitioRelax application within
Rosetta.’”>° The AbinitioRelax protocol consists of two main steps: 1) a coarse-grained fragment-
based search of conformational space that uses a low-resolution “centroid”-based (treating each
residue with backbone atoms defined explicitly and the side-chain represented as a single sphere)
scoring function and 2) a high-resolution refinement using the full-atom Rosetta score function.

The generated decoy sets act as benchmarks to compare the structure prediction capabilities of
Rosetta in the absence of FPOP/HRF labeling data. Specifics of the protocol have been detailed

extensively in the literature.®® The fragment libraries for this work were generated using the



Robetta online server.®' The required FASTA formatted sequences and native protein structures
were extracted from each protein’s respective PDB file. The fragment libraries, FASTA sequences,
and native PDB structures (used solely for determining the deviation of the generated models from
the native) were used as inputs for Rosetta’s AbinitioRelax application. For lysozyme, disulfide
bonds were present between the following residues: 6 and 127, 30 and 115, 64 and 80, and 76 and
94. An additional input file was provided to specify the residues that are a part of the disulfide
bonds. The generated structures were scored using the Rosetta energy function (Ref15), where the
score is an approximation of the energy of the protein or complex.®? The scores and respective root
mean square deviation (RMSD) to the native crystal structure were extracted from the output score
file. Structures were ranked based upon their scores with lower scores anticipated to correspond to
models closer in structure to the native. Rosetta score versus RMSD to the native protein were
generated to demonstrate this correlation.

For each of the benchmark proteins, two small sets of representative structures were generated.
The first set represented ten native-like conformations of each protein which were obtained by
relaxing each crystal PDB in the Rosetta force field using the relax application.®* % We will refer
to these structures as the ten native-like models or the native-like model set. The second set
contained models that scored well with the Rosetta energy function, but had high RMSDs
compared to the crystal native structures. These were obtained by extracting the top ten scoring
models with RMSD > 10 A for each protein from the initial ab initio calculations. We will refer
to these structures as the good scoring/high RMSD model set. Together, these sets represented the
two extremes of potential models that we desired to efficiently differentiate between using our new
score term.

Residue Exposure Metric



To compare the protection factors extracted from the FPOP/HRF labeling data to residue
exposure in protein models, a corresponding residue exposure measure was developed which
enabled calculation of the level of exposure of every labeled residue in a protein model. The PF

has been shown to correlate to a residue-level solvent accessible surface area (SASA).'® 33 56

Because residue-level SASAs are expensive to calculate,> %

we explored other metrics, aside
from SASA, that were less computationally expensive and provided even stronger correlation to
the natural logarithm of the experimental FPOP/HRF PFs. Assuming solvent exposed residues are
preferentially labeled, we sought to find a residue burial/exposure metric that showed correlation
to the natural logarithm of the PFs. Several methods, such as weighted neighbor count and
SASA,% 97 were investigated. For reference, the correlation between SASA and the natural
logarithm of the PFs can be found in Supplemental Figure S-1. However the burial measure found
to give the strongest correlation to the experimental data was a neighbor count determined for each
labeled residue. A residue with a high neighbor count can be thought of as buried whereas a residue
with a low neighbor count can be considered solvent exposed. For this analysis, a low-resolution
model of the protein was used where all of the backbone atoms were represented explicitly and the
side-chain was represented as a single sphere called a centroid. To calculate a residue’s neighbor
count, the distances between the labeled residue’s centroid (residue i) and all other residues’

centroids (residues j # i) were measured. The distance, 1;;, was then used in a sigmoid function
that defined a value between 0 and 0.7, as shown in Supplemental Figure S-2, representing the
amount of contribution of a neighboring residue j to the total neighbor count of the target residue i.
The closer a residue j’s centroid is to labeled residue i’s centroid, the more it contributed to the

overall neighbor count; conversely, the further away it is, the less it contributed. The total neighbor



count for each labeled residue i was then defined as the sum of every residue’s contribution to the

neighbor count:

total # residues

1.0
neighbor count; = Z 10 + o010,-90)

J#i
()

We developed a new Rosetta application, burial measure centroid, which calculated the
neighbor counts (as defined in eq 2) for arbitrary protein structures. For each of the eighty models
comprising the native-like and good score/high RMSD model sets, the neighbor counts were
calculated using the burial measure centroid Rosetta application. The neighbor counts for the ten
native-like structures of calmodulin (1IPRW) were used to perform a linear regression with the
corresponding experimental InPF values. The linear fit obtained was then used as a prediction
function to predict the neighbor count for all 80 representative models with their respective
experimental InPF values as inputs.

hrf ms_labeling Score Term

A new score term, hrf ms_labeling, was developed to be incorporated into Rosetta to assess the
agreement of Rosetta models with experimental FPOP/HRF labeling data. This score term was
defined as a centroid score term that rewards protein conformations that show agreement with the
experimental labeling data. By treating the score term in a Bayesian fashion, the total Rosetta score
was derived (as shown explicitly in the Supporting Information) to be the sum of the weighed
score term and the current Rosetta score:

Total Score = wy, ¢ * hrf_ms_labeling + RosettaScore

3)
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The score term, hrf ms_labeling, was implemented using the linear prediction function obtained
by correlating the observed neighbor counts and experimental InPF for the benchmark protein
calmodulin (see the previous section, Residue Exposure Metric). A value for hrf ms_labeling was
calculated by summing the per-residue neighbor scores over the set of labeled residues and was

defined as:

# labeled residues

. -1.0
hrf_ms_labeling = Z 10+ o200 775

i
4

where |diff|; is the absolute value of the difference between the observed neighbor count
(calculated using eq 2 for the modeled protein) and the predicted neighbor count (calculated using
the linear prediction function) for labeled residue i. Using the definition in eq 4, each labeled
residue contributed a per-residue score ranging from -1 to 0 with a value of -1 in case of strong
agreement with the experiment and a value of 0 in case of complete disagreement. If the value of
|dif f|; fell between 5 and 10 (which corresponded to the same cutoffs as the delta lines used in
analyzing the prediction function), the residue received a logistically increasing value ranging from
-1 to 0. The per-residue score (function found within the summation in eq 4) is depicted in Figure
1 with all relevant points highlighted.

Rescoring of Rosetta Structures

To test the capability of our new score term to improve Rosetta model quality, the 20,000 Rosetta
models initially generated as part of the ab initio folding for each benchmark protein were rescored
with the hrf ms_labeling score term. The calculated Arf ms labeling score was weighted by a
value of 6.0 and added to the Rosetta score calculated using Rosetta’s Refl5 energy function:

Total Rosetta Score = Ref15 Rosetta Score + 6.0 * hrf_ms_labeling

11



(5)
A weight of 6.0 was the lowest possible value that showed the greatest improvement. We iterated
through all integer values from 1-36 and determined the top scoring models” RMSDs at each
weight. The results of this analysis are shown in Supplemental Figure S-3. To calculate the
hrf ms_labeling contribution for each model, the score Rosetta application was run on each of the
80,000 models using the output structures from the initial ab initio model generation as input. For
each of the 80,000 rescored models, the total Rosetta scores, the RMSD to the native structure,
and the hrf ms_labeling scores were extracted.
Model Evaluation
Several different metrics were used to evaluate the performance of both Rosetta and the score
term. Those metrics were based upon the concept of an energy funnel, i.e. that within the overall
energy landscape, low RMSD models can be distinguished from high RMSD models due to their
lower energy (Rosetta score).®® The first metric used was a simple determination of the top scoring
model’s RMSD to the native structure. In practice, the Rosetta model with the lowest (most
favorable) Rosetta score is assumed to be closest in structure to the native. Because all the
benchmark proteins chosen for this study had crystal PDB structures available, an RMSD for that
model can be calculated.
The second metric used was the goodness-of-energy-funnel metric P,,,, as defined by Bhardwaj
et al.” A value of P,.,. was calculated for each Rosetta score versus RMSD distribution using the

following equation:

rmsd? E
oo (T e - )
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(6)
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where N is the total number of models and E,,, and rmsd,,, are the Rosetta score and RMSD of
model m. The parameter A was given a value of 2.0 and controlled how similar a model needed to
be to the native to be considered native-like. The final parameter, kzT, was set to 1.0 and governed
the shallowness or depth of the funnel affects P,.,.. Values of P, can range from 0 (very non-
funnel like) to 1 (funnel-like).

The final metric used was a comparison of the number of top 100 scoring models with
RMSD’s below a 10.0 A. By comparing this metric between different Rosetta score versus RMSD
distributions we were able to investigate how well (or poorly) the addition of hrf ms_labeling was
at improving model quality.

Results & Discussion

Generation of Control ab initio Model Set for Benchmark Proteins using Rosetta

To establish the baseline performance of Rosetta’s Refl5 scoring function at predicting protein
structures without any additional experimental knowledge, decoy sets consisting of 20,000 models
were generated for each of four benchmark proteins. The four proteins selected for the benchmark
were calmodulin (PDB ID: 1PWR), myoglobin (PDB ID: 1DWR), lysozyme (PDB ID: 1DPX),
and cytochrome ¢ (PDB ID: 2B4Z). Table 1 summarizes the benchmark proteins. These proteins
ranged in size from 104 to 153 amino acids in length. Contact orders (CO) were calculated for
each of the proteins.’”® The contact orders for all four proteins were low, ranging from 10.7 to 13.7.
The secondary structure content for the four proteins were relatively high, ranging from 41% to
74%. Because these proteins were all relatively small (approx. fewer than 150 amino acids), had
high secondary structure content and low contact orders, we concluded that they were amendable

to Rosetta ab initio protein structure prediction.
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Using Rosetta to generate 20,000 models for each of the four proteins resulted in the selection
of best-scoring structures with RMSDs ranging from 5.0 A to 15.2 A, as summarized in Table 2
and indicated on the Rosetta score versus RMSD to native structure plots in panel A of Figure 2
by stars. The two proteins with top scoring structures that were closest to their respective native
structures were myoglobin (RMSD = 5.0 A) and cytochrome ¢ (RMSD = 5.5 A). The predictions
for the remaining two proteins, calmodulin and lysozyme, were poor, yielding top scoring models
with RMSD’s of 11.8 and 15.2 A, respectively. Considering the size of the benchmark proteins,
none of these best-scoring models were high-quality, near-atomic resolution models. For two of
the proteins, even an incorrect topology was identified. However, as can be seen in Figure 2A,
models with significantly lower RMSDs to the native structure were built for all four proteins. For
calmodulin, the RMSDs for the generated models ranged from 2.9 A to 21.5 A. Similar ranges
were sampled for cytochrome ¢ and myoglobin, with RMSDs ranging from 1.4 A to 21.3 A and
1.5 A to 27.3 A, respectively. Lysozyme had the poorest sampling, where model RMSDs ranged
from 6.0 A to 18.7 A. This indicated that better, and in some cases even near-atomic resolution
models, were in fact generated for all proteins, but they were generally not identified by the lowest
score.

The goodness-of-energy-funnel metric, P,.,,, Was used to evaluate the funnel quality of each of
the distributions. As can be seen in Table 2, none of the distributions had P,.,. values greater than
0.1, strongly suggesting that none of the ensembles of models exhibited funnel-like score
distributions. This lack of a funnel in the Rosetta score versus RMSD to native structure plots
made structure prediction and particularly native structure identification challenging. Based upon

these ab initio structure prediction results, we concluded that incorporation of experimental data,
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such as HRF/FPOP labeling data, had the potential to improve identification of low RMSD models
by score.

Rescoring Model Sets using hrf ms_labeling

The overall goal of this work was to utilize experimental HRF/FPOP labeling data in order to
improve models predicted by Rosetta. To accomplish this, a new Rosetta score term,
hrf ms_labeling, was developed that incorporated experimental HRF/FPOP protection factors
(PFs). After developing hrf ms_labeling, we confirmed that incorporation of HRF/FPOP labeling
data did enable discrimination of near-native and high RMSD models and that combination of this
score with the total Rosetta Ref15 score did improve the quality of the models selected from the
structure ensembles.

The first step in this process was to demonstrate that a correlation existed between the
experimental labeling data (the PFs) and a residue solvent exposure metric derived within Rosetta.
The metric that demonstrated the best correlation was the per-residue neighbor count, as defined
in the Methods section. The calculated neighbor count for every labeled residue within calmodulin
(1PRW), one of our benchmark proteins, was plotted against the natural logarithm of the respective
PF values. The positive correlation, as seen in Figure 3, had an R? of 0.48 and p-value of 1.36E-
36. The observed trend matched our expectation where residues with a low InPF also showed a
low neighbor count (suggesting a higher solvent exposure) and residues with a high InPF showed
a high neighbor count (suggesting a lower solvent exposure). The derived relationship between
PFs and neighbor count was used to predict neighbor counts for all four benchmark proteins based
on the experimental HRF/FPOP protection factors. For comparison, observed neighbor counts for
two small sets of representative structures (the native-like model sets and the good scoring/high

RMSD model sets) were calculated from each pdb structure using burial measure centroid. The
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predicted neighbor counts have been plotted against the observed neighbor counts (calculated
directly from representative structures of the four benchmark proteins) in Figure 4. In order to
quantify the accuracy of the prediction, two delta lines were defined (d1 = 5.0 and d2=10.0). These
delta lines represent how close the predicted neighbor counts were to the actual observed values.
Using the native-like model sets for all four proteins, an average of 81% and 59% of the labeled
residues fell within d2 and di, respectively, whereas only 67% and 38% of those belonging to the
good scoring/high RMSD model sets did. This demonstrated that we predicted the majority of the
labeled residues in native-like models within the delta lines and simultaneously excluded the
majority of residues in the high RMSD models from within the delta lines. This suggested that
agreement between a model’s residue exposure and the neighbor count metric derived from
experimental FPOP/HRF mass spectrometry data can indeed distinguish between low and high
RMSD models and can thus be used to rescore protein models built in the absence of experimental
FPOP/HREF labeling data. To be able to rescore protein models, a hrf ms_labeling score term was
developed for incorporation into Rosetta.

We next demonstrated that the new score term was effective in improving model prediction. The
20,000 model decoy sets generated for each of the four benchmark proteins were rescored with the
hrf ms_labeling term added to the Ref15 Rosetta score. For each set of models, Rosetta score +
hrf ms_labeling versus RMSD plots were generated. Based upon the rescored structures, new top
scoring models were selected. As shown in Table 3, the RMSDs of the top scoring models
improved for all four proteins, while for two of the proteins near-atomic resolution models were
identified. The biggest increases in top scoring model quality were observed for lysozyme.
Addition of HRF/FPOP labeling data improved the RMSD of the top scoring lysozyme model

from 15.2 A to 7.2 A, a significant improvement in the model’s quality. Although a model with
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an RMSD of 7.2 A is not usually considered high quality, considering that the best lysozyme ab
initio model had an RMSD of 6.0 A, one of the best existing models was identified. Both
myoglobin and cytochrome ¢ showed decreases in their RMSDs to near-atomic resolution models
(2.2 and 1.8 A respectively), also identifying models with RMSDs close to the best existing models
within the 20,000 structures. Calmodulin had the least improvement with a change in RMSD from
only 11.8 to 10.2 A. When superimposing the top scoring models onto their respective native
structures, as depicted in panels B and D of Figure 2, a significant increase in model quality could
be observed as a result of the addition of 4rf ms_labeling. All top scoring models now identify the
correct protein topology.

In addition to analyzing the RMSD of the top scoring models, the overall energy landscape of
the structures was analyzed. Values of P, were calculated for each score versus RMSD
distribution, identical to what was done without the addition of Arf ms labeling (see Table 2).
With the addition of the hrf ms labeling term to the scoring function, there was an increase in
P,car» 1.€. an increase in funnel quality of the score vs RMSD plots, for all four proteins. As can be
seen in panel C of Figure 2, the distributions appear more funnel like with lower RMSD models
receiving lower scores. Interestingly, the P, ., values of the two proteins for which near-atomic
resolution models were identified (myoglobin and cytochrome c) were several orders of magnitude
higher than those of the other proteins. We thus speculated that P,.,. might be used as a confidence
measure to identify cases for which near-atomic resolution models were identified. To explore this
idea we recalculated score vs RMSD plots with respect to the lowest scoring structure (to obviate
the necessity for knowledge of the native structure) and measured P,.,. values for these
distributions as shown in the last column of Table 2. While the trend was not as pronounced as

before, this P, value still served as a confidence measure in that the P,.,, values of the two
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proteins for myoglobin and cytochrome ¢ were more than two orders of magnitude higher than
those of the other proteins. Upon rescoring with hrf ms labeling, the overall distribution of
structures did not shift to a lower RMSD, because hrf ms labeling was simply used to rescore
previously generated models. Plots of Arf ms labeling versus RMSD are shown in Supplemental
Figure S-4. For all four proteins, models with poor (i.e. high, closer to 0) hrf ms_labeling scores
also had a higher RMSD. Likewise, some of the models with a better hrf ms_labeling score tended
to have a lower RMSD. There were a fair number of models however that had good
hrf ms_labeling scores but a high RMSD. This trend is not concerning, because the information
obtained from the HRF/FPOP labeling experiments are not all encompassing of a proteins
structure. Individual score terms within Rosetta generally do not exhibit the exact trend of low
score/low RMSD and high score/high RMSD. Combination of this score term with the Rosetta
scoring function however generated the desired trend.

We finally investigated whether a larger set of top scoring models after the rescoring were of
increased quality. Histograms were generated showing the RMSD frequency of the top 100 scoring
models for the distributions pre- and post-addition of hrf ms labeling. Based upon these
histograms shown in Figure 5, there was a definite shift in the model quality for calmodulin and
myoglobin, with more models scoring well with low RMSDs. The percentage of the top 100
scoring models that had a RMSD < 10 A increased from 35% to 68% for calmodulin with the
addition of hrf ms_labeling. This illustrates that despite not identifying a near-atomic resolution
model for calmodulin, addition of the labeling information significantly improved the model
quality. Myoglobin demonstrated an increase in the percentage of models in the top scoring 100
with RMSD < 5 A from 47% to 70%. A shift in model quality of the top 100 scoring models was

also seen with for lysozyme and cytochrome c, albeit much less significant.
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The hrf ms_labeling score term has shown great success in rescoring structures based on
experimental HRF/FPOP labeling data and has been designed efficiently. A centroid form of the
score term was chosen for two reasons. First, this implementation showed the highest correlation
between the centroid based neighbor count and experimental InPFs. Second, a centroid-based score
function is crucial in predicting structures within Rosetta’s AbinitioRelax protocol. Within this
protocol, the main sampling of conformational space occurs during the centroid scoring phase.
Thus Arf ms_labeling would have maximal impact on predicting structures ab initio if it was
utilized during the centroid scoring phase. Future work will focus on developing these ab initio
capabilities.

Conclusion

In this work, a new Rosetta score term, hrf ms_labeling, was developed. This score term
utilizes residue-resolved protection factors from hydroxyl radical labeling (HRF/FPOP) mass
spectrometry data and assesses agreement of protein model with the experimental data. Four
proteins (calmodulin, cytochrome ¢, myoglobin, and lysozyme) which had both available
experimental data and known crystal structures were used to benchmark the performance of the
score term. Using the linear correlation between the natural logarithm of the experimental
protection factors and calculated neighbor counts for one of the benchmark proteins, calmodulin,
a prediction function was generated to predict the neighbor counts for the other proteins using their
respective InPFs. This prediction function was used as the basis of the new score term
hrf ms_labeling. The new score term was used to rescore sets of 20,000 models for each protein
generated using Rosetta’s AbinitioRelax application. As a result, the top scoring model increased
in quality for all four proteins. The method used for radical generation did not adversely affect the

modeling. For two of the four proteins, we were even able to identify atomic resolution models
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using the HRF/FPOP data. In addition, the overall distribution of models moved more towards a
funnel-like energy landscape, indicating that good scoring models were closer in structure to their
respective natives. Finally, we were able to identify a confidence measure that has the potential to
identify successful models without having to know the native structure.

To our knowledge, we are reporting the first method to incorporate experimental
HFR/FPOP labeling data in protein structure prediction. This marks an important first step in fully
utilizing mass-spectrometry-based covalent labeling techniques in quantitative structure
predictions, rather than just qualitative explanations. By demonstrating the potential of covalent
labeling in conjunction with the protein structure prediction capabilities of Rosetta, these
techniques will be elevated to be comparable in utility to other structural biology techniques such
as EPR or FRET. The scoring term and applications discussed in this paper are freely available
and easily accessible through Rosetta. We have added a tutorial, including a summary of necessary
files and command lines to the supporting information.

Future work will focus on extending this methodology to other labeling techniques. While
this particular scoring term is specific to HRF, we plan to implement the capability to use labeling
data from other mass-spectrometry-based covalent labeling experiments in the future. A second
direction of our future efforts will be to develop covalent labeling-guided ab initio structure
prediction, where the labeling data is used as part of the actual structure generation as opposed to
rescoring structures generated in the absence of the experimental data.
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Figure 1. Plot of the per-residue neighbor score for labeled residue i as a function of the absolute
difference between its observed and predicted neighbor counts (|dif f|;). The score function fully
rewarded (with a score of -1) residues that have an |dif f|; <5 and gave no reward (a score of 0)

to residues that have an |dif f|; > 10.
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Figure 2. (A) Rosetta score versus RMSD to the native structure plots for 20,000 models generated

using Rosetta ab initio for each of the four benchmark proteins. The top scoring model is
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represented as a star on each plot. (B) The top scoring models from the Rosetta score versus RMSD
distributions in A (color) superimposed upon the respective native model (grey). (C) Rosetta score
+ hrf ms_labeling versus RMSD to the native structure plots for each of the four benchmark
proteins after rescoring with the new score term. The top scoring model is represented as a star on
each plot. (D) The top scoring models from the Rosetta score + hrf ms labeling rescoring

distributions in C (color) superimposed upon the respective native model (grey).
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Figure 3. Linear regression between the neighbor count and the natural logarithm of the
experimental protection factor (InPF) for ten relaxed native models of calmodulin. The linear fit

along with its coefficient of determination are indicated on the plot.
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each of the four benchmark proteins. (B) Plot of predicted and observed neighbor counts for ten

models with good Rosetta scores and high RMSD values (> 10 A) as compared to their respective

natives for each of the four benchmark proteins. For both plots, the dashed black line represents

the theoretical perfect fit (the predicted matches the observed perfectly) and the yellow and cyan

lines represent the inner (d1 = 5) and outer delta (d2 = 10) lines respectively.
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the top 100 scoring models from both the ensembles generated using Rosetta and the ensembles
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obtained after rescoring with hrf ms_labeling. The histograms are plotted ranging from 0 to 20 A

with bin widths of 0.67 A.

Tables

Table 1. Summary of the four benchmark proteins.

PDB Number | Number of | Contact | Secondary
Protein D of Amino | Labeled order Structure
Acids Residues Content (%)
Calmodulin IPRW | 148 25 10.7 61
Cytochrome C | 2B4Z | 104 9 11.6 41
Myoglobin IDWR | 153 25 12.4 74
Lysozyme IDPX | 129 6 13.7 51

Table 2. Rosetta ab initio prediction and rescoring results summary with and without the addition

of hrf ms_labeling

Rosetta ab initio Results | Rosetta + hrf ms_labeling Rescore Results
Top Scoring Top ‘ Confidence
Scoring Measure (Pyear
. Model !
Protein RMSD  to Poear Model Poear to Top Soring
Native (A) RMSD to RMSD)
Native (A)
Calmodulin (1IPRW) | 11.8 2.10 E-8 10.2 1.17E-6 | 4.18 E-5
Cytochrome C (2B4Z7) | 5.5 0.0805 2.2 0.238 0.038
Myoglobin (IDWR) | 5.0 0.00208 1.8 0.378 0.0089
Lysozyme (1DPX) 15.2 304E-7 |72 1.89 E-6 3.079 E-9
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