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Abstract 

In recent years mass spectrometry-based covalent labeling techniques such as hydroxyl radical 

footprinting (HRF) have emerged as valuable structural biology techniques yielding information 

on protein tertiary structure. This data, however, is not sufficient to predict protein structure 

unambiguously, as it only provides information on the relative solvent exposure of certain residues. 

Despite some recent advances, no software currently exists that can utilize covalent labeling mass 

spectrometry data to predict protein tertiary structure. We have developed the first such tool, which 

incorporates mass spectrometry derived protection factors from HRF labeling as a new centroid 

score term for the Rosetta scoring function to improve the prediction of protein tertiary structure. 

We tested our method on a set of four soluble benchmark proteins with known crystal structures 

and either published HRF experimental results or internally acquired data. Using the HRF labeling 

data, we rescored large decoy sets of structures predicted with Rosetta for each of the four 

benchmark proteins. As a result, the model quality improved for all benchmark proteins, as 

compared to when scored with Rosetta alone. For two of the four proteins, we were even able to 

identify atomic resolution models with the addition of HRF data. 

Introduction 

 Historically, mass spectrometry has been used as a tool to quantify the mass and oligomeric 

distribution of proteins and protein assemblies.1, 2 More recently, advances have been made that 

allow mass spectrometry experiments to yield three-dimensional structural information on proteins 

and their complexes. By itself, there is no one mass spectrometry technique that can 

unambiguously elucidate atomic-resolution tertiary structure of a protein or protein complex. 

Hence, a combination of multiple different techniques is generally required.3-5 Several techniques 
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have been particularly successful in probing the tertiary structure of proteins and their complexes. 

Hydrogen-deuterium exchange (HD/X) is based upon measuring the extent of isotopic exchange 

of backbone amide hydrogens.6, 7 Chemical cross-linking involves studying the structurally 

defined distances by covalently pairing functional groups within a protein.8, 9 Non-covalent 

interactions between lysine residues and 18-crown-6 ether (a cyclic organic compound) can 

provide lysine solvent accessibility within proteins.10 Finally, covalent labeling (sometimes 

referred to as “protein footprinting”) involves exposing a protein in solution to a small labeling 

reagent that will covalently bond to select amino acid sidechains that are exposed to solvent, 

whereas sidechains buried within the core of the protein or occluded by interacting protein subunits 

will not get labeled.11-13 This provides information about the relative location of certain amino 

acids with respect to the solvent (either on the surface and solvent exposed or buried within the 

protein or protein complex structure). A variety of different labeling reagents exist and some are 

highly specific as to which amino acid(s) can react with the reagent and others have a much broader 

range of potential target residues. These techniques have been successfully employed with mass 

spectrometry to analyze protein structures.14-22  

 One covalent labeling method which recently has been increasingly widely used is 

hydroxyl radical footprinting (HRF).23, 24 This method involves exposing a solvated protein of 

interest to hydroxyl radicals generated from one of a variety of sources. Initially, oxidative labeling 

was performed using a synchrotron that ionized water to form the hydroxyl radicals.25 With recent 

advancements, a new method of hydroxyl radical labeling, fast photochemical oxidation of 

proteins (FPOP), has been developed.26, 27 With FPOP, a pulsed laser is used to photolyze hydrogen 

peroxide on a microsecond timescale, which is faster than the unfolding of a protein. This ensures 

that the labeling process does not disrupt the native state of the protein. In conjunction with mass 
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spectrometry, FPOP provides important insight into the structure of proteins. This labeling method 

is quite broad in that it can label 19 of the 20 different amino acids, yielding extensive structural 

information. Despite the wealth of information provided by FPOP, the data itself is sparse, 

meaning that the solvent exposure information of a set of protein residues cannot provide 

unambiguous determination of protein structure. There remains a critical need for computational 

methods that can facilitate and compliment the structural interpretation of mass spectrometry 

FPOP labeling data. 

 Over the years, numerous experimental techniques have been successfully combined with 

computational methods to predict protein structures. Some examples of this are sparse 

experimental data from site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) 

in conjunction with Rosetta to improve protein structure predictions,28, 29 nuclear magnetic 

resonance spectroscopy (NMR),30, 31 small-angle X-ray scattering (SAXS),32-35 and cyro-electron 

microscopy (cryo-EM).36-43 Mass spectrometry techniques have also been utilized in conjunction 

with computational methods. Malmström and coworkers have made significant contributions by 

incorporating data from MS chemical cross-linking experiments as inputs into computational 

methods for protein structure prediction.15, 44-47 The work of Sali and coworkers has contributed 

greatly to the field with the development of the Integrative Modeling Platform (IMP), an open 

source platform that integrates experimental data into computational methods.19, 35, 48-52 IMP is 

designed as a set of self-contained modules that can be mixed and matched based upon a user’s 

preference. Models are generated and scored based upon spatial restraints that are derived from 

multiple sources of experimental data. Currently IMP supports the use of experimental data 

gathered from sources such as SAXS profiles, EM images and density maps, NMR, chemical cross 

linking, HD/X, and chromosome conformation capture. With IMP, both monomeric and multi-
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unit protein structures can be studied. Finally, Yang and coworkers have developed an integrative 

method, iSPOT, to determine protein-protein complexes that combines SAXS, hydroxyl radical 

footprinting, and computational docking of either rigid-body or molecular dynamics models.32  

Computational modeling using FPOP data is still in its early stages. Recently, an integrated 

workflow was developed by Xie and coworkers that successfully demonstrated correlation 

between experimental high-resolution hydroxyl radical footprinting data and residue solvent 

exposure (as measured by absolute average solvent accessible surface area) as well as 

differentiated between low and high RMSD models for the soluble proteins myoglobin and 

lysozyme.53 This elegant work demonstrated that there is strong potential for successfully 

incorporating HRF or FPOP experimental data into computational methods in order to improve 

protein structure prediction. Despite the many advances and successes with using sparse data from 

various experimental methods for structure prediction, the use of covalent labeling mass 

spectrometry as the data source had yet to be accomplished. 

 In this work, we incorporated mass spectrometry derived protection factors from FPOP and 

synchrotron-based HRF labeling as a new score term for the Rosetta scoring function to improve 

the prediction of protein tertiary structure. Rosetta is one of the primary computational tools used 

for protein structure prediction.54 To accomplish our goal, we compiled a set of four soluble 

benchmark proteins with known crystal structures and either published HRF/FPOP experimental 

results or internally acquired data. We developed an efficient metric to quantify residue-specific 

burial that correlated linearly to the natural logarithm of experimental protection factors derived 

from the labeling rates. A new Rosetta centroid score term, that utilizes residue-resolved protection 

factors as inputs, was developed. This score term was used in conjunction with the standard Rosetta 

scoring function to rescore large decoy sets of predicted structures for each of the four benchmark 
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proteins. In this process of rescoring, the quality of all models improved such that after rescoring 

the structures with the best score correlated more closely to the native structures. For two of the 

four proteins, we were even able to identify atomic resolution models using the HRF/FPOP data.  

Materials and Methods 

Benchmark Dataset and Experimental Protection Factors 

 For this work, we used protection factor (PF) which was first described by Chance and 

coworkers and is derived from a labeling rate constant as a metric for residue labeling.55 PF is 

defined as the relative intrinsic reactivity of a given residue to hydroxyl radicals divided by the 

rate constant. The intrinsic reactivities of each amino acid type are well defined in the literature.24 

The PF, as expressed on a natural logarithmic scale, has been shown to correlate with the solvent 

exposure of a given residue.16, 55, 56 Within the literature, the PF has been defined multiple ways, 

but for our purposes we have defined the protection factor for residue 𝑖, where 𝑅𝑖 is the intrinsic 

reactivity for residue 𝑖 and 𝑘𝑖 is the experimentally determined labeling rate constant, as defined 

by eq 1: 

𝑃𝐹𝑖 =
𝑅𝑖

𝑘𝑖
 

(1) 

As a benchmark set, four different proteins with available FPOP or HRF labeling data were 

utilized. These proteins were calmodulin (PDB ID: 1PWR), myoglobin (PDB ID: 1DWR), 

lysozyme (PDB ID: 1DPX), and cytochrome c (PDB ID: 2B4Z). The experimentally determined 

PFs for calmodulin were extracted from the published work of Kaur et al who generated radicals 

via a millisecond timescale synchrotron radiation method.16 For myoglobin, the PFs were 

calculated from the reported labeling rate constants by Xie et al.53 using the reactivities reported 

in the literature.24 For this study, radicals were generated using sub-microsecond FPOP with a 
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dosimeter to provide varying doses of radicals. Finally, the experimental PFs for both lysozyme 

and cytochrome c were oxidatively modified by FPOP at a single radical dose as described in the 

Supporting Information.    

For incorporation of the data into the newly developed score term, input files were created for 

each protein consisting of a heading line followed by two columns comprising the residue number 

and the natural logarithm of the protection factor, with each labeled residue on a new line. 

FPOP/HRF can label 19 of the 20 amino acids, however data from the following residue types 

were omitted due to either too low/high reactivity or unclear products: M, C, D, N, Q, T, S, A, G, 

R, K, and V. Of this list of omitted residues, it has been previously suggested by Xie et al. that the 

sequence context plays a role in whether or not these amino acid types are labeled. This is a 

complex issue and has not been examined in this current work. As a result, only eight of the twenty 

amino acids were considered in the analysis: I, L, P, F, W, Y, E, and H. These residues have 

intermediate reactivities and correspond with the residue types utilized in similar studies.16, 53 

Rosetta ab initio Folding 

 In the absence of any experimental labeling data, decoy sets of 20,000 structures were 

generated for each of the four benchmark proteins using the AbinitioRelax application within 

Rosetta.57-59 The AbinitioRelax protocol consists of two main steps: 1) a coarse-grained fragment-

based search of conformational space that uses a low-resolution “centroid”-based (treating each 

residue with backbone atoms defined explicitly and the side-chain represented as a single sphere) 

scoring function and 2) a high-resolution refinement using the full-atom Rosetta score function.  

The generated decoy sets act as benchmarks to compare the structure prediction capabilities of 

Rosetta in the absence of FPOP/HRF labeling data. Specifics of the protocol have been detailed 

extensively in the literature.60 The fragment libraries for this work were generated using the 
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Robetta online server.61 The required FASTA formatted sequences and native protein structures 

were extracted from each protein’s respective PDB file. The fragment libraries, FASTA sequences, 

and native PDB structures (used solely for determining the deviation of the generated models from 

the native) were used as inputs for Rosetta’s AbinitioRelax application. For lysozyme, disulfide 

bonds were present between the following residues: 6 and 127, 30 and 115, 64 and 80, and 76 and 

94. An additional input file was provided to specify the residues that are a part of the disulfide 

bonds. The generated structures were scored using the Rosetta energy function (Ref15), where the 

score is an approximation of the energy of the protein or complex.62 The scores and respective root 

mean square deviation (RMSD) to the native crystal structure were extracted from the output score 

file. Structures were ranked based upon their scores with lower scores anticipated to correspond to 

models closer in structure to the native. Rosetta score versus RMSD to the native protein were 

generated to demonstrate this correlation. 

For each of the benchmark proteins, two small sets of representative structures were generated. 

The first set represented ten native-like conformations of each protein which were obtained by 

relaxing each crystal PDB in the Rosetta force field using the relax application.63, 64 We will refer 

to these structures as the ten native-like models or the native-like model set. The second set 

contained models that scored well with the Rosetta energy function, but had high RMSDs 

compared to the crystal native structures. These were obtained by extracting the top ten scoring 

models with RMSD > 10 Å for each protein from the initial ab initio calculations. We will refer 

to these structures as the good scoring/high RMSD model set. Together, these sets represented the 

two extremes of potential models that we desired to efficiently differentiate between using our new 

score term.  

Residue Exposure Metric 
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 To compare the protection factors extracted from the FPOP/HRF labeling data to residue 

exposure in protein models, a corresponding residue exposure measure was developed which 

enabled calculation of the level of exposure of every labeled residue in a protein model. The PF 

has been shown to correlate to a residue-level solvent accessible surface area (SASA).16, 53, 56 

Because residue-level SASAs are expensive to calculate,65, 66 we explored other metrics, aside 

from SASA, that were less computationally expensive and provided even stronger correlation to 

the natural logarithm of the experimental FPOP/HRF PFs. Assuming solvent exposed residues are 

preferentially labeled, we sought to find a residue burial/exposure metric that showed correlation 

to the natural logarithm of the PFs. Several methods, such as weighted neighbor count and 

SASA,65, 67 were investigated. For reference, the correlation between SASA and the natural 

logarithm of the PFs can be found in Supplemental Figure S-1. However the burial measure found 

to give the strongest correlation to the experimental data was a neighbor count determined for each 

labeled residue. A residue with a high neighbor count can be thought of as buried whereas a residue 

with a low neighbor count can be considered solvent exposed. For this analysis, a low-resolution 

model of the protein was used where all of the backbone atoms were represented explicitly and the 

side-chain was represented as a single sphere called a centroid. To calculate a residue’s neighbor 

count, the distances between the labeled residue’s centroid (residue 𝑖) and all other residues’ 

centroids (residues 𝑗 ≠ 𝑖) were measured. The distance, 𝑟𝑖𝑗, was then used in a sigmoid function 

that defined a value between 0 and 0.7, as shown in Supplemental Figure S-2, representing the 

amount of contribution of a neighboring residue 𝑗 to the total neighbor count of the target residue 𝑖. 

The closer a residue 𝑗’s centroid is to labeled residue 𝑖’s centroid, the more it contributed to the 

overall neighbor count; conversely, the further away it is, the less it contributed. The total neighbor 
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count for each labeled residue 𝑖 was then defined as the sum of every residue’s contribution to the 

neighbor count: 

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑐𝑜𝑢𝑛𝑡𝑖 =  ∑
1.0

1.0 + 𝑒0.1(𝑟𝑗−9.0)

𝑡𝑜𝑡𝑎𝑙 # 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

𝑗≠𝑖

 

(2) 

We developed a new Rosetta application, burial_measure_centroid, which calculated the 

neighbor counts (as defined in eq 2) for arbitrary protein structures. For each of the eighty models 

comprising the native-like and good score/high RMSD model sets, the neighbor counts were 

calculated using the burial_measure_centroid Rosetta application. The neighbor counts for the ten 

native-like structures of calmodulin (1PRW) were used to perform a linear regression with the 

corresponding experimental lnPF values. The linear fit obtained was then used as a prediction 

function to predict the neighbor count for all 80 representative models with their respective 

experimental lnPF values as inputs.  

hrf_ms_labeling Score Term 

A new score term, hrf_ms_labeling, was developed to be incorporated into Rosetta to assess the 

agreement of Rosetta models with experimental FPOP/HRF labeling data. This score term was 

defined as a centroid score term that rewards protein conformations that show agreement with the 

experimental labeling data. By treating the score term in a Bayesian fashion, the total Rosetta score 

was derived (as shown explicitly in the Supporting Information) to be the sum of the weighed 

score term and the current Rosetta score: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 = 𝑤hrf ∗ ℎ𝑟𝑓_𝑚𝑠_𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔 + 𝑅𝑜𝑠𝑒𝑡𝑡𝑎𝑆𝑐𝑜𝑟𝑒 

(3) 
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The score term, hrf_ms_labeling, was implemented using the linear prediction function obtained 

by correlating the observed neighbor counts and experimental lnPF for the benchmark protein 

calmodulin (see the previous section, Residue Exposure Metric). A value for hrf_ms_labeling was 

calculated by summing the per-residue neighbor scores over the set of labeled residues and was 

defined as: 

ℎ𝑟𝑓_𝑚𝑠_𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔 =  ∑
−1.0

1.0 + 𝑒2.0(|𝑑𝑖𝑓𝑓|i−7.5)

# labeled residues

𝑖

 

(4) 

where |𝑑𝑖𝑓𝑓|𝑖 is the absolute value of the difference between the observed neighbor count 

(calculated using eq 2 for the modeled protein) and the predicted neighbor count (calculated using 

the linear prediction function) for labeled residue 𝑖. Using the definition in eq 4, each labeled 

residue contributed a per-residue score ranging from -1 to 0 with a value of -1 in case of strong 

agreement with the experiment and a value of 0 in case of complete disagreement. If the value of 

|𝑑𝑖𝑓𝑓|𝑖 fell between 5 and 10 (which corresponded to the same cutoffs as the delta lines used in 

analyzing the prediction function), the residue received a logistically increasing value ranging from 

-1 to 0. The per-residue score (function found within the summation in eq 4) is depicted in Figure 

1 with all relevant points highlighted. 

Rescoring of Rosetta Structures 

To test the capability of our new score term to improve Rosetta model quality, the 20,000 Rosetta 

models initially generated as part of the ab initio folding for each benchmark protein were rescored 

with the hrf_ms_labeling score term. The calculated hrf_ms_labeling score was weighted by a 

value of 6.0 and added to the Rosetta score calculated using Rosetta’s Ref15 energy function: 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑠𝑒𝑡𝑡𝑎 𝑆𝑐𝑜𝑟𝑒 = 𝑅𝑒𝑓15 𝑅𝑜𝑠𝑒𝑡𝑡𝑎 𝑆𝑐𝑜𝑟𝑒 + 6.0 ∗ ℎ𝑟𝑓_𝑚𝑠_𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔 
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(5) 

A weight of 6.0 was the lowest possible value that showed the greatest improvement. We iterated 

through all integer values from 1-36 and determined the top scoring models’ RMSDs at each 

weight. The results of this analysis are shown in Supplemental Figure S-3. To calculate the 

hrf_ms_labeling contribution for each model, the score Rosetta application was run on each of the 

80,000 models using the output structures from the initial ab initio model generation as input. For 

each of the 80,000 rescored models, the total Rosetta scores, the RMSD to the native structure, 

and the hrf_ms_labeling scores were extracted. 

 Model Evaluation 

Several different metrics were used to evaluate the performance of both Rosetta and the score 

term. Those metrics were based upon the concept of an energy funnel, i.e. that within the overall 

energy landscape, low RMSD models can be distinguished from high RMSD models due to their 

lower energy (Rosetta score).68 The first metric used was a simple determination of the top scoring 

model’s RMSD to the native structure. In practice, the Rosetta model with the lowest (most 

favorable) Rosetta score is assumed to be closest in structure to the native. Because all the 

benchmark proteins chosen for this study had crystal PDB structures available, an RMSD for that 

model can be calculated. 

The second metric used was the goodness-of-energy-funnel metric 𝑃near, as defined by Bhardwaj 

et al.69 A value of 𝑃near was calculated for each Rosetta score versus RMSD distribution using the 

following equation: 

𝑃near =  
∑ 𝑒𝑥𝑝 (−

𝑟𝑚𝑠𝑑𝑚
2

𝜆2 ) 𝑒𝑥𝑝 (−
𝐸𝑚

𝑘𝐵𝑇
)𝑁

𝑚=1

∑ 𝑒𝑥𝑝 (−
𝐸𝑚

𝑘𝐵𝑇
)𝑁

𝑚=1

 

(6) 
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where 𝑁 is the total number of models and 𝐸𝑚 and 𝑟𝑚𝑠𝑑𝑚 are the Rosetta score and RMSD of 

model 𝑚. The parameter 𝜆 was given a value of 2.0 and controlled how similar a model needed to 

be to the native to be considered native-like. The final parameter, 𝑘𝐵𝑇, was set to 1.0 and governed 

the shallowness or depth of the funnel affects 𝑃near. Values of 𝑃near can range from 0 (very non-

funnel like) to 1 (funnel-like).  

 The final metric used was a comparison of the number of top 100 scoring models with 

RMSD’s below a 10.0 Å. By comparing this metric between different Rosetta score versus RMSD 

distributions we were able to investigate how well (or poorly) the addition of hrf_ms_labeling was 

at improving model quality. 

Results & Discussion 

Generation of Control ab initio Model Set for Benchmark Proteins using Rosetta 

To establish the baseline performance of Rosetta’s Ref15 scoring function at predicting protein 

structures without any additional experimental knowledge, decoy sets consisting of 20,000 models 

were generated for each of four benchmark proteins. The four proteins selected for the benchmark 

were calmodulin (PDB ID: 1PWR), myoglobin (PDB ID: 1DWR), lysozyme (PDB ID: 1DPX), 

and cytochrome c (PDB ID: 2B4Z). Table 1 summarizes the benchmark proteins. These proteins 

ranged in size from 104 to 153 amino acids in length. Contact orders (CO) were calculated for 

each of the proteins.70 The contact orders for all four proteins were low, ranging from 10.7 to 13.7. 

The secondary structure content for the four proteins were relatively high, ranging from 41% to 

74%. Because these proteins were all relatively small (approx. fewer than 150 amino acids), had 

high secondary structure content and low contact orders, we concluded that they were amendable 

to Rosetta ab initio protein structure prediction. 
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Using Rosetta to generate 20,000 models for each of the four proteins resulted in the selection 

of best-scoring structures with RMSDs ranging from 5.0 Å to 15.2 Å, as summarized in Table 2 

and indicated on the Rosetta score versus RMSD to native structure plots in panel A of Figure 2 

by stars. The two proteins with top scoring structures that were closest to their respective native 

structures were myoglobin (RMSD = 5.0 Å) and cytochrome c (RMSD = 5.5 Å). The predictions 

for the remaining two proteins, calmodulin and lysozyme, were poor, yielding top scoring models 

with RMSD’s of 11.8 and 15.2 Å, respectively. Considering the size of the benchmark proteins, 

none of these best-scoring models were high-quality, near-atomic resolution models. For two of 

the proteins, even an incorrect topology was identified. However, as can be seen in Figure 2A, 

models with significantly lower RMSDs to the native structure were built for all four proteins. For 

calmodulin, the RMSDs for the generated models ranged from 2.9 Å to 21.5 Å. Similar ranges 

were sampled for cytochrome c and myoglobin, with RMSDs ranging from 1.4 Å to 21.3 Å and 

1.5 Å to 27.3 Å, respectively. Lysozyme had the poorest sampling, where model RMSDs ranged 

from 6.0 Å to 18.7 Å. This indicated that better, and in some cases even near-atomic resolution 

models, were in fact generated for all proteins, but they were generally not identified by the lowest 

score. 

The goodness-of-energy-funnel metric, 𝑃near, was used to evaluate the funnel quality of each of 

the distributions. As can be seen in Table 2, none of the distributions had 𝑃near values greater than 

0.1, strongly suggesting that none of the ensembles of models exhibited funnel-like score 

distributions. This lack of a funnel in the Rosetta score versus RMSD to native structure plots 

made structure prediction and particularly native structure identification challenging. Based upon 

these ab initio structure prediction results, we concluded that incorporation of experimental data, 



 15 

such as HRF/FPOP labeling data, had the potential to improve identification of low RMSD models 

by score.  

Rescoring Model Sets using hrf_ms_labeling 

The overall goal of this work was to utilize experimental HRF/FPOP labeling data in order to 

improve models predicted by Rosetta. To accomplish this, a new Rosetta score term, 

hrf_ms_labeling, was developed that incorporated experimental HRF/FPOP protection factors 

(PFs). After developing hrf_ms_labeling, we confirmed that incorporation of HRF/FPOP labeling 

data did enable discrimination of near-native and high RMSD models and that combination of this 

score with the total Rosetta Ref15 score did improve the quality of the models selected from the 

structure ensembles. 

The first step in this process was to demonstrate that a correlation existed between the 

experimental labeling data (the PFs) and a residue solvent exposure metric derived within Rosetta. 

The metric that demonstrated the best correlation was the per-residue neighbor count, as defined 

in the Methods section. The calculated neighbor count for every labeled residue within calmodulin 

(1PRW), one of our benchmark proteins, was plotted against the natural logarithm of the respective 

PF values. The positive correlation, as seen in Figure 3, had an R2 of 0.48 and p-value of 1.36E-

36. The observed trend matched our expectation where residues with a low lnPF also showed a 

low neighbor count (suggesting a higher solvent exposure) and residues with a high lnPF showed 

a high neighbor count (suggesting a lower solvent exposure). The derived relationship between 

PFs and neighbor count was used to predict neighbor counts for all four benchmark proteins based 

on the experimental HRF/FPOP protection factors. For comparison, observed neighbor counts for 

two small sets of representative structures (the native-like model sets and the good scoring/high 

RMSD model sets) were calculated from each pdb structure using burial_measure_centroid. The 
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predicted neighbor counts have been plotted against the observed neighbor counts (calculated 

directly from representative structures of the four benchmark proteins) in Figure 4. In order to 

quantify the accuracy of the prediction, two delta lines were defined (d1 = 5.0 and d2 = 10.0). These 

delta lines represent how close the predicted neighbor counts were to the actual observed values. 

Using the native-like model sets for all four proteins, an average of 81% and 59% of the labeled 

residues fell within d2 and d1, respectively, whereas only 67% and 38% of those belonging to the 

good scoring/high RMSD model sets did. This demonstrated that we predicted the majority of the 

labeled residues in native-like models within the delta lines and simultaneously excluded the 

majority of residues in the high RMSD models from within the delta lines. This suggested that 

agreement between a model’s residue exposure and the neighbor count metric derived from 

experimental FPOP/HRF mass spectrometry data can indeed distinguish between low and high 

RMSD models and can thus be used to rescore protein models built in the absence of experimental 

FPOP/HRF labeling data. To be able to rescore protein models, a hrf_ms_labeling score term was 

developed for incorporation into Rosetta.  

We next demonstrated that the new score term was effective in improving model prediction. The 

20,000 model decoy sets generated for each of the four benchmark proteins were rescored with the 

hrf_ms_labeling term added to the Ref15 Rosetta score. For each set of models, Rosetta score + 

hrf_ms_labeling versus RMSD plots were generated. Based upon the rescored structures, new top 

scoring models were selected. As shown in Table 3, the RMSDs of the top scoring models 

improved for all four proteins, while for two of the proteins near-atomic resolution models were 

identified. The biggest increases in top scoring model quality were observed for lysozyme. 

Addition of HRF/FPOP labeling data improved the RMSD of the top scoring lysozyme model 

from 15.2 Å to 7.2 Å, a significant improvement in the model’s quality.  Although a model with 
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an RMSD of 7.2 Å is not usually considered high quality, considering that the best lysozyme ab 

initio model had an RMSD of 6.0 Å, one of the best existing models was identified. Both 

myoglobin and cytochrome c showed decreases in their RMSDs to near-atomic resolution models 

(2.2 and 1.8 Å respectively), also identifying models with RMSDs close to the best existing models 

within the 20,000 structures. Calmodulin had the least improvement with a change in RMSD from 

only 11.8 to 10.2 Å. When superimposing the top scoring models onto their respective native 

structures, as depicted in panels B and D of Figure 2, a significant increase in model quality could 

be observed as a result of the addition of hrf_ms_labeling. All top scoring models now identify the 

correct protein topology.  

In addition to analyzing the RMSD of the top scoring models, the overall energy landscape of 

the structures was analyzed. Values of 𝑃near were calculated for each score versus RMSD 

distribution, identical to what was done without the addition of hrf_ms_labeling (see Table 2). 

With the addition of the hrf_ms_labeling term to the scoring function, there was an increase in 

𝑃near, i.e. an increase in funnel quality of the score vs RMSD plots, for all four proteins. As can be 

seen in panel C of Figure 2, the distributions appear more funnel like with lower RMSD models 

receiving lower scores. Interestingly, the 𝑃near values of the two proteins for which near-atomic 

resolution models were identified (myoglobin and cytochrome c) were several orders of magnitude 

higher than those of the other proteins. We thus speculated that 𝑃near might be used as a confidence 

measure to identify cases for which near-atomic resolution models were identified. To explore this 

idea we recalculated score vs RMSD plots with respect to the lowest scoring structure (to obviate 

the necessity for knowledge of the native structure) and measured 𝑃near values for these 

distributions as shown in the last column of Table 2. While the trend was not as pronounced as 

before, this 𝑃near value still served as a confidence measure in that the 𝑃𝑛𝑒𝑎𝑟 values of the two 
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proteins for myoglobin and cytochrome c were more than two orders of magnitude higher than 

those of the other proteins. Upon rescoring with hrf_ms_labeling, the overall distribution of 

structures did not shift to a lower RMSD, because hrf_ms_labeling was simply used to rescore 

previously generated models. Plots of hrf_ms_labeling versus RMSD are shown in Supplemental 

Figure S-4. For all four proteins, models with poor (i.e. high, closer to 0) hrf_ms_labeling scores 

also had a higher RMSD. Likewise, some of the models with a better hrf_ms_labeling score tended 

to have a lower RMSD. There were a fair number of models however that had good 

hrf_ms_labeling scores but a high RMSD. This trend is not concerning, because the information 

obtained from the HRF/FPOP labeling experiments are not all encompassing of a proteins 

structure. Individual score terms within Rosetta generally do not exhibit the exact trend of low 

score/low RMSD and high score/high RMSD. Combination of this score term with the Rosetta 

scoring function however generated the desired trend. 

We finally investigated whether a larger set of top scoring models after the rescoring were of 

increased quality. Histograms were generated showing the RMSD frequency of the top 100 scoring 

models for the distributions pre- and post-addition of hrf_ms_labeling. Based upon these 

histograms shown in Figure 5, there was a definite shift in the model quality for calmodulin and 

myoglobin, with more models scoring well with low RMSDs. The percentage of the top 100 

scoring models that had a RMSD < 10 Å increased from 35% to 68% for calmodulin with the 

addition of hrf_ms_labeling. This illustrates that despite not identifying a near-atomic resolution 

model for calmodulin, addition of the labeling information significantly improved the model 

quality. Myoglobin demonstrated an increase in the percentage of models in the top scoring 100 

with RMSD < 5 Å from 47% to 70%. A shift in model quality of the top 100 scoring models was 

also seen with for lysozyme and cytochrome c, albeit much less significant. 
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The hrf_ms_labeling score term has shown great success in rescoring structures based on 

experimental HRF/FPOP labeling data and has been designed efficiently. A centroid form of the 

score term was chosen for two reasons. First, this implementation showed the highest correlation 

between the centroid based neighbor count and experimental lnPFs. Second, a centroid-based score 

function is crucial in predicting structures within Rosetta’s AbinitioRelax protocol. Within this 

protocol, the main sampling of conformational space occurs during the centroid scoring phase. 

Thus hrf_ms_labeling would have maximal impact on predicting structures ab initio if it was 

utilized during the centroid scoring phase. Future work will focus on developing these ab initio 

capabilities. 

Conclusion 

 In this work, a new Rosetta score term, hrf_ms_labeling, was developed. This score term 

utilizes residue-resolved protection factors from hydroxyl radical labeling (HRF/FPOP) mass 

spectrometry data and assesses agreement of protein model with the experimental data. Four 

proteins (calmodulin, cytochrome c, myoglobin, and lysozyme) which had both available 

experimental data and known crystal structures were used to benchmark the performance of the 

score term. Using the linear correlation between the natural logarithm of the experimental 

protection factors and calculated neighbor counts for one of the benchmark proteins, calmodulin, 

a prediction function was generated to predict the neighbor counts for the other proteins using their 

respective lnPFs. This prediction function was used as the basis of the new score term 

hrf_ms_labeling. The new score term was used to rescore sets of 20,000 models for each protein 

generated using Rosetta’s AbinitioRelax application. As a result, the top scoring model increased 

in quality for all four proteins. The method used for radical generation did not adversely affect the 

modeling. For two of the four proteins, we were even able to identify atomic resolution models 
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using the HRF/FPOP data. In addition, the overall distribution of models moved more towards a 

funnel-like energy landscape, indicating that good scoring models were closer in structure to their 

respective natives. Finally, we were able to identify a confidence measure that has the potential to 

identify successful models without having to know the native structure.  

 To our knowledge, we are reporting the first method to incorporate experimental 

HFR/FPOP labeling data in protein structure prediction. This marks an important first step in fully 

utilizing mass-spectrometry-based covalent labeling techniques in quantitative structure 

predictions, rather than just qualitative explanations. By demonstrating the potential of covalent 

labeling in conjunction with the protein structure prediction capabilities of Rosetta, these 

techniques will be elevated to be comparable in utility to other structural biology techniques such 

as EPR or FRET. The scoring term and applications discussed in this paper are freely available 

and easily accessible through Rosetta. We have added a tutorial, including a summary of necessary 

files and command lines to the supporting information.  

 Future work will focus on extending this methodology to other labeling techniques. While 

this particular scoring term is specific to HRF, we plan to implement the capability to use labeling 

data from other mass-spectrometry-based covalent labeling experiments in the future. A second 

direction of our future efforts will be to develop covalent labeling-guided ab initio structure 

prediction, where the labeling data is used as part of the actual structure generation as opposed to 

rescoring structures generated in the absence of the experimental data.  
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Figure 1. Plot of the per-residue neighbor score for labeled residue 𝑖 as a function of the absolute 

difference between its observed and predicted neighbor counts (|𝑑𝑖𝑓𝑓|𝑖). The score function fully 

rewarded (with a score of -1) residues that have an |𝑑𝑖𝑓𝑓|𝑖 < 5 and gave no reward (a score of 0) 

to residues that have an |𝑑𝑖𝑓𝑓|𝑖 > 10. 

 

Figure 2. (A) Rosetta score versus RMSD to the native structure plots for 20,000 models generated 

using Rosetta ab initio for each of the four benchmark proteins. The top scoring model is 
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represented as a star on each plot. (B) The top scoring models from the Rosetta score versus RMSD 

distributions in A (color) superimposed upon the respective native model (grey). (C) Rosetta score 

+ hrf_ms_labeling versus RMSD to the native structure plots for each of the four benchmark 

proteins after rescoring with the new score term. The top scoring model is represented as a star on 

each plot. (D) The top scoring models from the Rosetta score + hrf_ms_labeling rescoring 

distributions in C (color) superimposed upon the respective native model (grey). 

 

Figure 3. Linear regression between the neighbor count and the natural logarithm of the 

experimental protection factor (lnPF) for ten relaxed native models of calmodulin. The linear fit 

along with its coefficient of determination are indicated on the plot. 
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Figure 4. (A) Plot of predicted and observed neighbor counts for ten relaxed native models for 

each of the four benchmark proteins. (B) Plot of predicted and observed neighbor counts for ten 

models with good Rosetta scores and high RMSD values (> 10 Å) as compared to their respective 

natives for each of the four benchmark proteins. For both plots, the dashed black line represents 

the theoretical perfect fit (the predicted matches the observed perfectly) and the yellow and cyan 

lines represent the inner (d1 = 5) and outer delta (d2 = 10) lines respectively. 

 

Figure 5. Histograms for each of the four benchmark proteins showing the RMSD frequency of 

the top 100 scoring models from both the ensembles generated using Rosetta and the ensembles 
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obtained after rescoring with hrf_ms_labeling. The histograms are plotted ranging from 0 to 20 Å 

with bin widths of 0.67 Å. 

Tables 

Table 1. Summary of the four benchmark proteins. 

Protein 
PDB 

ID 

Number 

of Amino 

Acids 

Number of 

Labeled 

Residues 

Contact 

order 

Secondary 

Structure 

Content (%) 

Calmodulin 1PRW 148 25 10.7 61 

Cytochrome C 2B4Z 104 9 11.6 41 

Myoglobin 1DWR 153 25 12.4 74 

Lysozyme 1DPX 129 6 13.7 51 

 

Table 2. Rosetta ab initio prediction and rescoring results summary with and without the addition 

of hrf_ms_labeling 

 Rosetta ab initio Results Rosetta + hrf_ms_labeling Rescore Results 

Protein 

Top Scoring 

Model 

RMSD to 

Native (Å) 

Pnear 

Top 

Scoring 

Model 

RMSD to 

Native (Å) 

Pnear 

Confidence 

Measure (Pnear 

to Top Soring 

RMSD) 

Calmodulin (1PRW) 11.8 2.10 E-8 10.2 1.17 E-6 4.18 E-5 

Cytochrome C (2B4Z) 5.5 0.0805 2.2 0.238 0.038 

Myoglobin (1DWR) 5.0 0.00208 1.8 0.378 0.0089 

Lysozyme (1DPX) 15.2 3.04 E -7 7.2 1.89 E-6 3.079 E-9 

 

References 



 26 

1. Fenn, J. B.;  Mann, M.;  Meng, C. K.;  Wong, S. F.; Whitehouse, C. M., Electrospray 

ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71. 

2. Link, A. J.;  Eng, J.;  Schieltz, D. M.;  Carmack, E.;  Mize, G. J.;  Morris, D. R.;  Garvik, 

B. M.;  Yates, J. R.; Iii, Direct analysis of protein complexes using mass spectrometry. Nature 

Biotechnology 1999, 17 (7), 676. 

3. Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003. 

4. Küster, B.; Mann, M., Identifying proteins and post-translational modifications by mass 

spectrometry. Current Opinion in Structural Biology 1998, 8 (3), 393-400. 

5. Pi, J.; Sael, L., Mass Spectrometry Coupled Experiments and Protein Structure Modeling 

Methods. International Journal of Molecular Sciences 2013, 14 (10), 20635-20657. 

6. Zhang, Z.; Smith, D. L., Determination of amide hydrogen exchange by mass 

spectrometry: a new tool for protein structure elucidation. Protein Science : A Publication of the 

Protein Society 1993, 2 (4), 522-531. 

7. Katta, V.; Chait, B. T., Conformational changes in proteins probed by hydrogen-exchange 

electrospray-ionization mass spectrometry. Rapid communications in mass spectrometry: RCM 

1991, 5 (4), 214-217. 

8. Sinz, A., Chemical cross-linking and mass spectrometry to map three-dimensional protein 

structures and protein–protein interactions. Mass Spectrometry Reviews 2006, 25 (4), 663-682. 

9. Young, M. M.;  Tang, N.;  Hempel, J. C.;  Oshiro, C. M.;  Taylor, E. W.;  Kuntz, I. D.;  

Gibson, B. W.; Dollinger, G., High throughput protein fold identification by using experimental 



 27 

constraints derived from intramolecular cross-links and mass spectrometry. Proceedings of the 

National Academy of Sciences of the United States of America 2000, 97 (11), 5802-5806. 

10. Ly, T.; Julian, R. R., Using ESI-MS to Probe Protein Structure by Site-Specific 

Noncovalent Attachment of 18-Crown-6. Journal of the American Society for Mass Spectrometry 

2006, 17 (9), 1209-1215. 

11. Mendoza, V. L.; Vachet, R. W., Probing protein structure by amino acid-specific covalent 

labeling and mass spectrometry. Mass Spectrometry Reviews 2009, 28 (5), 785-815. 

12. Hanai, R.; Wang, J. C., Protein footprinting by the combined use of reversible and 

irreversible lysine modifications. Proceedings of the National Academy of Sciences of the United 

States of America 1994, 91 (25), 11904-11908. 

13. Sharp, J. S.;  Becker, J. M.; Hettich, R. L., Analysis of Protein Solvent Accessible Surfaces 

by Photochemical Oxidation and Mass Spectrometry. Analytical Chemistry 2004, 76 (3), 672-683. 

14. Shi, Y.;  Fernandez-Martinez, J.;  Tjioe, E.;  Pellarin, R.;  Kim, S. J.;  Williams, R.;  

Schneidman-Duhovny, D.;  Sali, A.;  Rout, M. P.; Chait, B. T., Structural Characterization by 

Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from 

the Nuclear Pore Complex. Molecular & Cellular Proteomics 2014, 13 (11), 2927-2943. 

15. Pacheco, B.;  Maccarana, M.;  Goodlett, D. R.;  Malmström, A.; Malmström, L., 

Identification of the Active Site of DS-epimerase 1 and Requirement of N-Glycosylation for 

Enzyme Function. Journal of Biological Chemistry 2009, 284 (3), 1741-1747. 



 28 

16. Kaur, P.;  Kiselar, J.;  Yang, S.; Chance, M. R., Quantitative Protein Topography Analysis 

and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion 

Mass Spectrometry (MS). Molecular & Cellular Proteomics 2015, 14 (4), 1159-1168. 

17. Hambly, D.; Gross, M., Laser flash photochemical oxidation to locate heme binding and 

conformational changes in myoglobin. International Journal of Mass Spectrometry 2007, 259 (1), 

124-129. 

18. Guan, J.-Q.;  Vorobiev, S.;  Almo, S. C.; Chance, M. R., Mapping the G-Actin Binding 

Surface of Cofilin Using Synchrotron Protein Footprinting. Biochemistry 2002, 41 (18), 5765-

5775. 

19. Chen, Z. A.;  Pellarin, R.;  Fischer, L.;  Sali, A.;  Nilges, M.;  Barlow, P. N.; Rappsilber, 

J., Structure of Complement C3(H2O) Revealed By Quantitative Cross-Linking/Mass 

Spectrometry And Modeling. Molecular & Cellular Proteomics 2016, 15 (8), 2730-2743. 

20. Jones, L. M.;  B. Sperry, J.;  A. Carroll, J.; Gross, M. L., Fast Photochemical Oxidation of 

Proteins for Epitope Mapping. Analytical Chemistry 2011, 83 (20), 7657-7661. 

21. Sheshberadaran, H.; Payne, L. G., Protein antigen-monoclonal antibody contact sites 

investigated by limited proteolysis of monoclonal antibody-bound antigen: protein "footprinting". 

Proceedings of the National Academy of Sciences of the United States of America 1988, 85 (1), 1-

5. 

22. Steiner, R. F.;  Albaugh, S.;  Fenselau, C.;  Murphy, C.; Vestling, M., A mass spectrometry 

method for mapping the interface topography of interacting proteins, illustrated by the melittin-

calmodulin system. Analytical Biochemistry 1991, 196 (1), 120-125. 



 29 

23. Wang, L.; Chance, M. R., Structural Mass Spectrometry of Proteins Using Hydroxyl 

Radical Based Protein Footprinting. Analytical Chemistry 2011, 83 (19), 7234-7241. 

24. Xu, G.; Chance, M. R., Radiolytic Modification and Reactivity of Amino Acid Residues 

Serving as Structural Probes for Protein Footprinting. Analytical Chemistry 2005, 77 (14), 4549-

4555. 

25. Maleknia, S. D.;  Brenowitz, M.; Chance, M. R., Millisecond radiolytic modification of 

peptides by synchrotron X-rays identified by mass spectrometry. Analytical Chemistry 1999, 71 

(18), 3965-3973. 

26. Hambly, D. M.; Gross, M. L., Laser flash photolysis of hydrogen peroxide to oxidize 

protein solvent-accessible residues on the microsecond timescale. Journal of the American Society 

for Mass Spectrometry 2005, 16 (12), 2057-2063. 

27. Li, K. S.;  Shi, L.; Gross, M. L., Mass Spectrometry-Based Fast Photochemical Oxidation 

of Proteins (FPOP) for Higher Order Structure Characterization. Accounts of Chemical Research 

2018. 

28. Alexander, N. S.;  Stein, R. A.;  Koteiche, H. A.;  Kaufmann, K. W.;  McHaourab, H. S.; 

Meiler, J., RosettaEPR: Rotamer Library for Spin Label Structure and Dynamics. PLOS ONE 

2013, 8 (9), e72851. 

29. Fischer, A. W.;  Alexander, N. S.;  Woetzel, N.;  Karakas, M.;  Weiner, B. E.; Meiler, J., 

BCL::MP-fold: Membrane protein structure prediction guided by EPR restraints. Proteins 2015, 

83 (11), 1947-1962. 



 30 

30. Shen, Y.;  Lange, O.;  Delaglio, F.;  Rossi, P.;  Aramini, J. M.;  Liu, G.;  Eletsky, A.;  Wu, 

Y.;  Singarapu, K. K.;  Lemak, A.;  Ignatchenko, A.;  Arrowsmith, C. H.;  Szyperski, T.;  

Montelione, G. T.;  Baker, D.; Bax, A., Consistent blind protein structure generation from NMR 

chemical shift data. Proceedings of the National Academy of Sciences of the United States of 

America 2008, 105 (12), 4685-4690. 

31. Sgourakis, N. G.;  Lange, O. F.;  DiMaio, F.;  André, I.;  Fitzkee, N. C.;  Rossi, P.;  

Montelione, G. T.;  Bax, A.; Baker, D., Determination of the Structures of Symmetric Protein 

Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. Journal of the American 

Chemical Society 2011, 133 (16), 6288-6298. 

32. Huang, W.;  Ravikumar, K. M.;  Parisien, M.; Yang, S., Theoretical modeling of 

multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical 

footprinting, and computational docking. Journal of Structural Biology 2016, 196 (3), 340-349. 

33. Rossi, P.;  Shi, L.;  Liu, G.;  Barbieri, C. M.;  Lee, H.-W.;  Grant, T. D.;  Luft, J. R.;  Xiao, 

R.;  Acton, T. B.;  Snell, E. H.;  Montelione, G. T.;  Baker, D.;  Lange, O. F.; Sgourakis, N. G., A 

hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using 

Rosetta. Proteins: Structure, Function, and Bioinformatics 2015, 83 (2), 309-317. 

34. Putnam, D. K.;  Weiner, B. E.;  Woetzel, N.;  Lowe, E. W.; Meiler, J., BCL::SAXS: GPU 

accelerated Debye method for computation of small angle X-ray scattering profiles. Proteins 2015, 

83 (8), 1500-1512. 

35. Schneidman-Duhovny, D.;  Kim, S. J.; Sali, A., Integrative structural modeling with small 

angle X-ray scattering profiles. BMC Structural Biology 2012, 12, 17. 



 31 

36. DiMaio, F.;  Tyka, M. D.;  Baker, M. L.;  Chiu, W.; Baker, D., Refinement of protein 

structures into low-resolution density maps using rosetta. Journal of Molecular Biology 2009, 392 

(1), 181-190. 

37. Leelananda, S. P.; Lindert, S., Iterative Molecular Dynamics–Rosetta Membrane Protein 

Structure Refinement Guided by Cryo-EM Densities. Journal of Chemical Theory and 

Computation 2017, 13 (10), 5131-5145. 

38. Lindert, S.; McCammon, J. A., Improved cryoEM-Guided Iterative Molecular Dynamics-

-Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction. 

Journal of Chemical Theory and Computation 2015, 11 (3), 1337-1346. 

39. Lindert, S.;  Alexander, N.;  Wötzel, N.;  Karakaş, M.;  Stewart, P. L.; Meiler, J., EM-fold: 

de novo atomic-detail protein structure determination from medium-resolution density maps. 

Structure (London, England: 1993) 2012, 20 (3), 464-478. 

40. Lindert, S.;  Hofmann, T.;  Wötzel, N.;  Karakaş, M.;  Stewart, P. L.; Meiler, J., Ab initio 

protein modeling into CryoEM density maps using EM-Fold. Biopolymers 2012, 97 (9), 669-677. 

41. DiMaio, F.;  Song, Y.;  Li, X.;  Brunner, M. J.;  Xu, C.;  Conticello, V.;  Egelman, E.;  

Marlovits, T.;  Cheng, Y.; Baker, D., Atomic-accuracy models from 4.5-Å cryo-electron 

microscopy data with density-guided iterative local refinement. Nature Methods 2015, 12 (4), 361-

365. 

42. Jiang, W.;  Baker, M. L.;  Ludtke, S. J.; Chiu, W., Bridging the information gap: 

Computational tools for intermediate resolution structure interpretation. Journal of Molecular 

Biology 2001, 308 (5), 1033-1044. 



 32 

43. Baker, M. L.;  Ju, T.; Chiu, W., Identification of secondary structure elements in 

intermediate-resolution density maps. Structure (London, England: 1993) 2007, 15 (1), 7-19. 

44. Kahraman, A.;  Herzog, F.;  Leitner, A.;  Rosenberger, G.;  Aebersold, R.; Malmström, L., 

Cross-Link Guided Molecular Modeling with ROSETTA. PLOS ONE 2013, 8 (9), e73411. 

45. Kahraman, A.;  Malmström, L.; Aebersold, R., Xwalk: computing and visualizing 

distances in cross-linking experiments. Bioinformatics 2011, 27 (15), 2163-2164. 

46. Walzthoeni, T.;  Joachimiak, L. A.;  Rosenberger, G.;  Röst, H. L.;  Malmström, L.;  

Leitner, A.;  Frydman, J.; Aebersold, R., xTract: software for characterizing conformational 

changes of protein complexes by quantitative cross-linking mass spectrometry. Nature Methods 

2015, 12 (12), 1185. 

47. Herzog, F.;  Kahraman, A.;  Boehringer, D.;  Mak, R.;  Bracher, A.;  Walzthoeni, T.;  

Leitner, A.;  Beck, M.;  Hartl, F.-U.;  Ban, N.;  Malmström, L.; Aebersold, R., Structural Probing 

of a Protein Phosphatase 2A Network by Chemical Cross-Linking and Mass Spectrometry. Science 

2012, 337 (6100), 1348-1352. 

48. Webb, B.;  Viswanath, S.;  Bonomi, M.;  Pellarin, R.;  Greenberg, C. H.;  Saltzberg, D.; 

Sali, A., Integrative structure modeling with the Integrative Modeling Platform. Protein Science, 

n/a-n/a. 

49. Politis, A.;  Schmidt, C.;  Tjioe, E.;  Sandercock, A. M.;  Lasker, K.;  Gordiyenko, Y.;  

Russel, D.;  Sali, A.; Robinson, C. V., Topological models of heteromeric protein assemblies from 

mass spectrometry: application to the yeast eIF3:eIF5 complex. Chemistry & Biology 2015, 22 (1), 

117-128. 



 33 

50. Saltzberg, D. J.;  Broughton, H. B.;  Pellarin, R.;  Chalmers, M. J.;  Espada, A.;  Dodge, J. 

A.;  Pascal, B. D.;  Griffin, P. R.;  Humblet, C.; Sali, A., A Residue-Resolved Bayesian Approach 

to Quantitative Interpretation of Hydrogen–Deuterium Exchange from Mass Spectrometry: 

Application to Characterizing Protein–Ligand Interactions. The Journal of Physical Chemistry B 

2017, 121 (15), 3493-3501. 

51. Zeng-Elmore, X.;  Gao, X.-Z.;  Pellarin, R.;  Schneidman-Duhovny, D.;  Zhang, X.-J.;  

Kozacka, K. A.;  Tang, Y.;  Sali, A.;  Chalkley, R. J.;  Cote, R. H.; Chu, F., Molecular Architecture 

of Photoreceptor Phosphodiesterase Elucidated by Chemical Cross-Linking and Integrative 

Modeling. Journal of Molecular Biology 2014, 426 (22), 3713-3728. 

52. Webb, B.;  Lasker, K.;  Velázquez-Muriel, J.;  Schneidman-Duhovny, D.;  Pellarin, R.;  

Bonomi, M.;  Greenberg, C.;  Raveh, B.;  Tjioe, E.;  Russel, D.; Sali, A., Modeling of proteins and 

their assemblies with the Integrative Modeling Platform. Methods in Molecular Biology (Clifton, 

N.J.) 2014, 1091, 277-295. 

53. Xie, B.;  Sood, A.;  Woods, R. J.; Sharp, J. S., Quantitative Protein Topography 

Measurements by High Resolution Hydroxyl Radical Protein Footprinting Enable Accurate 

Molecular Model Selection. Scientific Reports 2017, 7 (1), 4552. 

54. Leaver-Fay, A.;  Tyka, M.;  Lewis, S. M.;  Lange, O. F.;  Thompson, J.;  Jacak, R.;  

Kaufman, K. W.;  Renfrew, P. D.;  Smith, C. A.;  Sheffler, W.;  Davis, I. W.;  Cooper, S.;  Treuille, 

A.;  Mandell, D. J.;  Richter, F.;  Ban, Y.-E. A.;  Fleishman, S. J.;  Corn, J. E.;  Kim, D. E.;  Lyskov, 

S.;  Berrondo, M.;  Mentzer, S.;  Popović, Z.;  Havranek, J. J.;  Karanicolas, J.;  Das, R.;  Meiler, 

J.;  Kortemme, T.;  Gray, J. J.;  Kuhlman, B.;  Baker, D.; Bradley, P., Chapter nineteen - Rosetta3: 



 34 

An Object-Oriented Software Suite for the Simulation and Design of Macromolecules. In Methods 

in Enzymology, Brand, M. L. J. a. L., Ed. Academic Press: 2011; Vol. 487, pp 545-574. 

55. Huang, W.;  Ravikumar, Krishnakumar M.;  Chance, Mark R.; Yang, S., Quantitative 

Mapping of Protein Structure by Hydroxyl Radical Footprinting-Mediated Structural Mass 

Spectrometry: A Protection Factor Analysis. Biophysical Journal 2015, 108 (1), 107-115. 

56. Gustavsson, M.;  Wang, L.;  Gils, N. v.;  Stephens, B. S.;  Zhang, P.;  Schall, T. J.;  Yang, 

S.;  Abagyan, R.;  Chance, M. R.;  Kufareva, I.; Handel, T. M., Structural basis of ligand interaction 

with atypical chemokine receptor 3. Nature Communications 2017, 8, 14135. 

57. Rohl, C. A.;  Strauss, C. E. M.;  Misura, K. M. S.; Baker, D., Protein Structure Prediction 

Using Rosetta. Enzymology, B. T. M. i., Ed. Academic Press: 2004; Vol. 383, pp 66-93. 

58. Simons, K. T.;  Kooperberg, C.;  Huang, E.; Baker, D., Assembly of protein tertiary 

structures from fragments with similar local sequences using simulated annealing and bayesian 

scoring functions11Edited by F. E. Cohen. Journal of Molecular Biology 1997, 268 (1), 209-225. 

59. Bradley, P.;  Misura, K. M. S.; Baker, D., Toward High-Resolution de Novo Structure 

Prediction for Small Proteins. Science 2005, 309 (5742), 1868-1871. 

60. Bender, B. J.;  Cisneros, A.;  Duran, A. M.;  Finn, J. A.;  Fu, D.;  Lokits, A. D.;  Mueller, 

B. K.;  Sangha, A. K.;  Sauer, M. F.;  Sevy, A. M.;  Sliwoski, G.;  Sheehan, J. H.;  DiMaio, F.;  

Meiler, J.; Moretti, R., Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. 

Biochemistry 2016, 55 (34), 4748-4763. 

61. Kim, D. E.;  Chivian, D.; Baker, D., Protein structure prediction and analysis using the 

Robetta server. Nucleic Acids Research 2004, 32 (suppl_2), W526-W531. 



 35 

62. Alford, R. F.;  Leaver-Fay, A.;  Jeliazkov, J. R.;  O’Meara, M. J.;  DiMaio, F. P.;  Park, H.;  

Shapovalov, M. V.;  Renfrew, P. D.;  Mulligan, V. K.;  Kappel, K.;  Labonte, J. W.;  Pacella, M. 

S.;  Bonneau, R.;  Bradley, P.;  Dunbrack, R. L.;  Das, R.;  Baker, D.;  Kuhlman, B.;  Kortemme, 

T.; Gray, J. J., The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. 

Journal of Chemical Theory and Computation 2017, 13 (6), 3031-3048. 

63. Tyka, M. D.;  Keedy, D. A.;  André, I.;  Dimaio, F.;  Song, Y.;  Richardson, D. C.;  

Richardson, J. S.; Baker, D., Alternate states of proteins revealed by detailed energy landscape 

mapping. Journal of Molecular Biology 2011, 405 (2), 607-618. 

64. Conway, P.;  Tyka, M. D.;  DiMaio, F.;  Konerding, D. E.; Baker, D., Relaxation of 

backbone bond geometry improves protein energy landscape modeling. Protein Science 2014, 23 

(1), 47-55. 

65. Durham, E.;  Dorr, B.;  Woetzel, N.;  Staritzbichler, R.; Meiler, J., Solvent accessible 

surface area approximations for rapid and accurate protein structure prediction. Journal of 

Molecular Modeling 2009, 15 (9), 1093-1108. 

66. Street, A. G.; Mayo, S. L., Pairwise calculation of protein solvent-accessible surface areas. 

Folding and Design 1998, 3 (4), 253-258. 

67. Rocklin, G. J.;  Chidyausiku, T. M.;  Goreshnik, I.;  Ford, A.;  Houliston, S.;  Lemak, A.;  

Carter, L.;  Ravichandran, R.;  Mulligan, V. K.;  Chevalier, A.;  Arrowsmith, C. H.; Baker, D., 

Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 

2017, 357 (6347), 168-175. 



 36 

68. London, N.; Schueler-Furman, O., Funnel Hunting in a Rough Terrain: Learning and 

Discriminating Native Energy Funnels. Structure 2008, 16 (2), 269-279. 

69. Bhardwaj, G.;  Mulligan, V. K.;  Bahl, C. D.;  Gilmore, J. M.;  Harvey, P. J.;  Cheneval, 

O.;  Buchko, G. W.;  Pulavarti, S. V. S. R. K.;  Kaas, Q.;  Eletsky, A.;  Huang, P.-S.;  Johnsen, W. 

A.;  Greisen, P., Jr.;  Rocklin, G. J.;  Song, Y.;  Linsky, T. W.;  Watkins, A.;  Rettie, S. A.;  Xu, 

X.;  Carter, L. P.;  Bonneau, R.;  Olson, J. M.;  Coutsias, E.;  Correnti, C. E.;  Szyperski, T.;  Craik, 

D. J.; Baker, D., Accurate de novo design of hyperstable constrained peptides. Nature 2016, 538 

(7625), 329-335. 

70. Plaxco, K. W.;  Simons, K. T.; Baker, D., Contact order, transition state placement and the 

refolding rates of single domain proteins11Edited by P. E. Wright. Journal of Molecular Biology 

1998, 277 (4), 985-994. 

71. Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. Columbus OH: Ohio 

Supercomputer Center. http://osc.edu/ark:/19495/f5s1ph73. 

 

 

 

 

 

 

 

http://osc.edu/ark:/19495/f5s1ph73


 37 

FOR TABLE OF CONTENTS USE ONLY 

Rosetta Protein Structure Prediction from Hydroxyl Radical Protein Footprinting Mass Spectrometry Data 

Melanie L. Aprahamian, Emily E. Chea, Lisa Jones, Steffen Lindert 

 


