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Abstract

The responses of species to environmental changes will determine future commu-

nity composition and ecosystem function. Many syntheses of global change

experiments examine the magnitude of treatment effect sizes, but we lack an

understanding of how plant responses to treatments compare to ongoing changes

in the unmanipulated (ambient or background) system. We used a database of

long‐term global change studies manipulating CO2, nutrients, water, and tempera-

ture to answer three questions: (a) How do changes in plant species abundance

in ambient plots relate to those in treated plots? (b) How does the magnitude of

ambient change in species‐level abundance over time relate to responsiveness to

global change treatments? (c) Does the direction of species‐level responses to
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global change treatments differ from the direction of ambient change? We esti-

mated temporal trends in plant abundance for 791 plant species in ambient and

treated plots across 16 long‐term global change experiments yielding 2,116

experiment–species–treatment combinations. Surprisingly, for most species (57%)

the magnitude of ambient change was greater than the magnitude of treatment

effects. However, the direction of ambient change, whether a species was

increasing or decreasing in abundance under ambient conditions, had no bearing

on the direction of treatment effects. Although ambient communities are inher-

ently dynamic, there is now widespread evidence that anthropogenic drivers are

directionally altering plant communities in many ecosystems. Thus, global change

treatment effects must be interpreted in the context of plant species trajectories

that are likely driven by ongoing environmental changes.
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elevated CO2, nitrogen, phosphorus, plant community, warming, water

1 | INTRODUCTION

Plant community composition can respond to global change and

mediate important long‐term effects of global change on ecosys-

tem processes (Avolio et al., 2015; Cowles, Wragg, Wright, Pow-

ers, & Tilman, 2016; Langley & Hungate, 2014; Smith, Knapp, &

Collins, 2009; Zhang, Niinemets, Sheffield, & Lichstein, 2018), so

understanding those changes is key for projecting future ecosys-

tem functions. For at least five decades (Valiela, Teal, & Sass,

1975), ecologists have conducted long‐term field experiments test-

ing how plant communities will respond to environmental changes

such as chemical (e.g., CO2 and nutrient pollution) and climatic dri-

vers (e.g., temperature and precipitation change). These experi-

ments are often considered predictive of which species will be

favored by future environmental change, “winners,” and which will

not, “losers,” based on whether the specific change driver alters

some measure of performance such as abundance (Craine, 2009;

Dukes & Mooney, 1999; Langley & Hungate, 2014; O'Brien & Lei-

chenko, 2003; Poorter & Navas, 2003). Accordingly, many manipu-

lative studies collect very high‐quality, detailed data on individual

species abundance through time. Manipulative experiments are

powerful in that plant response can be attributed to a single fac-

tor if adequate controls are included in the experimental design.

However, global change experimental plots are typically small‐
scale, and there are limits to the number of experimental treat-

ments that can be feasibly imposed. When analyzed individually,

these experiments often yield idiosyncratic treatment effects (Zhu,

Chiariello, Tobeck, Fukami, & Field, 2016) that can vary in space

and though time. Treatment effects often diminish through time, a

finding that has been interpreted as evidence of acclimation or

negative feedbacks (Leuzinger et al., 2011; Smith et al., 2015).

With the goal of generalizing global patterns, meta‐analyses have

summarized the results across many individual global change

experiments (Andresen et al., 2016; Hedges, Gurevitch, & Curtis,

1999; Wu, Dijkstra, Koch, Peñuelas, & Hungate, 2011; Xia &

Wan, 2008), and scientists have established networks of similar

manipulative experiments (Borer, Grace, Harpole, MacDougall, &

Seabloom, 2017). To reduce noise and complexity, such synthetic

efforts often focus on effect sizes that are structured to isolate

relative differences between treatments and controls (Hedges

et al., 1999). Still, predicting changes in abundance of plant spe-

cies or functional groups has proven exceptionally difficult (Kimball

et al., 2016; Lavorel & Garnier, 2002; Meir, Mencuccini, & Dewar,

2015; Reich, Hobbie, Lee, & Pastore, 2018; Verheyen et al.,

2017).

A growing body of evidence from observational studies of long‐
term monitoring plots, remotely sensed data, or species range shifts

demonstrates that vegetation distribution is responding strongly to

environmental change (Doughty et al., 2016; Franklin, Serra‐Diaz,

Syphard, & Regan, 2016; Jamiyansharav, Fernández‐Giménez,

Angerer, Yadamsuren, & Dash, 2018; Maguire, Nieto‐Lugilde, Fitz-
patrick, Williams, & Blois, 2015; Parmesan & Yohe, 2003; Schuster,

Martinez, & Dukes, 2014; Simkin et al., 2016). While these studies

capture ongoing responses to environmental change, attribution to a

particular cause can be difficult (Cudlin et al., 2017), thereby compli-

cating comparisons to manipulative studies. For instance, widely

observed encroachment of woody plants into herbaceous ecosys-

tems is commonly attributed to elevated CO2, among other compet-

ing hypotheses (Saintilan & Rogers, 2015). However, CO2

experiments may be ill‐suited to capture landscape‐scale vegetative

shifts because the “island effect” inherent to plot‐level studies can

exclude important large‐scale CO2 feedbacks such as altered regional

humidity or energy balance (de Boeck et al. (2015), Leuzinger, Fati-

chi, Cusens, Körner, & Niklaus, 2015).

These two threads of research, manipulative global change

experiments and observations of ongoing change, have addressed

the same questions independently, yielding some alternative
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assessments of change across landscapes and projections of future

plant change in isolated plots. For instance, observational studies

have recorded losses of legumes but attribute the net loss to land-

scape fragmentation or fire suppression (Leach & Givnish, 1996) or

to mammalian herbivory (Ritchie & Tilman, 1995). Meanwhile, a

meta‐analysis of 304 N fertilization experiments predicted that

legumes will respond negatively to N addition (Xia & Wan, 2008).

Coordinated studies have compared the two approaches at individ-

ual sites. A recent study of alpine tundra plant communities demon-

strated good agreement between responses to ambient warming in

monitored plots and to experimental warming in manipulated plots

(Elmendorf et al., 2015). Yet, the prevailing evidence for plant phe-

nology responses to warming is that experiments generally underes-

timate responses (Wolkovich et al., 2012). Combining approaches of

experimental manipulation and observation can be powerful (de

Boeck et al. 2015), but few studies have undertaken both simultane-

ously. Experiments often document background changes in plant

species abundance in control plots—but this “ambient change” is not

attributable to any manipulated variable. How does ambient change

relate to measured treatment effects? To our knowledge, no multi‐
site studies have explicitly compared global change treatment

responses to ambient change within the same experiments.

We used abundance data from 791 plant species across 16 glo-

bal change experiments at least 10 years in duration to assess long‐
term, directional change in species‐level abundance in ambient plots

(referred to as “ambient change”) and compared these measures to

that observed in plots exposed to relatively long‐term manipulative

treatments: CO2, water, nitrogen, phosphorus, or temperature. We

focused on sustained, directional change in abundances. We propose

that sustained, directional shifts in plant responses provide a signal

of the longer‐term species trajectories rather than shorter‐term
changes that could be cyclical (Stouffer, Wainwright, Flanagan, &

Mayfield, 2018). We expect that owing to the importance of global

change drivers for plant communities and the strength of treatments

applied in global change experiments, treatment effects should over-

whelm background trends in plant abundance. If ambient change in

manipulative experiments is comparable in magnitude to global

change treatment effects, then ambient change could have a pro-

found influence on how we interpret experimental results. We asked

three questions: (a) How do changes in plant abundance in unmanip-

ulated “ambient” plots (ambient change) relate to that in treated

plots (treatment change)? (b) How does the magnitude of ambient

change relate to its responsiveness to global change (treatment

effect)? (c) Does the direction of ambient change differ from the

direction of treatment effect? By capitalizing on existing long‐term
experimental data, the answers to these questions will shape the

interpretation and design of future studies.

2 | MATERIALS AND METHODS

We used species abundance data from experiments in herbaceous

ecosystems including grasslands, tundra, pastures, and wetlands.

Datasets for this analysis were obtained from the CoRRE

(Community Responses to Resource Experiments) database (for

details on data selection see https://corredata.weebly.com). The

dataset includes only herbaceous communities as tree species abun-

dance responses are extremely difficult to extrapolate from decade‐
scale experiments (Franklin et al., 2016). Herbaceous plant communi-

ties can reach a relatively stable state more quickly than forests fol-

lowing disturbances that leave soil intact, such as herbivory or fire

(Koerner et al., 2014). For this analysis, we selected studies from the

database that manipulated at least one global change driver for 10

or more years. The only exception was the inclusion of one 8‐year
dataset from the Tas‐FACE study to improve representation of

warming and CO2 treatments and the southern hemisphere. We

included the five treatments (elevated CO2, nitrogen, phosphorus,

water addition, and warming) that were most commonly applied. The

subset included 791 species across 16 experiments at 12 sites (See

metadata, Supporting information Table S1). We treated the same

species at different sites independently. Our analysis only included

single‐factor treatments and controls.

2.1 | Assessment of species abundance change

We assessed long‐term, directional change in plant abundance

through time using different indices for different purposes. To cap-

ture responsiveness for comparisons of species‐level responses

among sites, we used the correlation coefficients (Pearson's r,

referred to as r) from correlations of absolute abundance of each

species versus time (year 1 = first year treatments were applied).

We estimated a separate r for each species in each treatment in

each experiment, pooling across replicate plots. The sign of r

expresses the direction of change and standardizes trajectories on

a scale from −1 to 1 that is universally comparable among species

and sites, and is not influenced by magnitude of abundance or

change like slopes would be (Gurevitch, Curtis, & Jones, 2001). A

value of 1 indicates consistent increase in species abundance; −1

indicates consistent decrease; 0 indicates no consistent trend (refer

to Supporting information Figure S1 for examples of these relation-

ships). To account for the possibility that long‐term increases or

decreases in abundance were consistent but not linear, we also

assessed change with Spearman's rank correlation coefficients (ρ) as

an alternative estimate of responsiveness. Correlation coefficients

capture the consistency of linear increase or decrease in abundance

over time and across plots, but they do not capture the magnitude

of change.

To estimate and compare the magnitude of plant abundance

change within sites, we used linear slopes of abundance through

time (m) using plot‐level data for each timepoint. Though more com-

plex relationships can occur, we used linear relationships because

our questions centered on long‐term, directional change through

time. Because techniques of measuring species abundance varied

among studies (gridline intercept, % cover, biomass; Supporting

information Table S2), the slopes are not directly comparable across

sites. The parameters we used in characterizing plant change are

summarized in Table 1.

5670 | ADAM LANGLEY ET AL.

https://corredata.weebly.com


2.2 | Comparison of species responsiveness across
experiments

To explore patterns of covariance among treatments in responsiveness

between plant species abundance changes across the entire dataset,

we used three different metrics. First, we used the responsiveness

term defined above as correlation coefficient of species change

through time. We correlated species responsiveness in ambient con-

trol plots (rambient) to species responsiveness in each global change

treatment (rCO2, rnitrogen, rphosphorus, rwater, and rwarming) for a total of

1,172 site–species–treatment combinations such that each point rep-

resents a single species. Second, to evaluate the validity of assuming

linearity, we also compared across treatments using Spearman's ρ as

an index of monotonic change through time (ρambient vs. ρCO2, ρnitrogen,

ρphosphorus, ρwater, and ρwarming). Finally, though we could not compare

m across experiments owing to differing metrics of abundance, we did

compare the magnitude of change among treatments within each indi-

vidual experiment. We correlated mambient with (mCO2, mnitrogen,

mphosphorus, mwater, and mwarming) for each experiment.

2.3 | Comparisons of magnitude of change within
experiments

We compared the strength of ambient trends to treatment effects.

We estimated linear slopes of abundance by treatment year, with

treatment year 1 as the first year of measurement for ambient plots

(mambient) and each treatment (mtreatment) for each site. The magni-

tude of ambient trends was defined as the absolute value of mambient

in abundance change per year.

2.4 | The magnitude of dynamic and static
treatment effects

We used two methods to estimate the magnitude of treatment

effects on species abundance within each site, one allowing for a

dynamic treatment effect that may change over the course of the

study (Figure 1a), and one considering a static treatment effect aver-

aged over the course of the study (Figure 1b).

We estimated effects of each treatment on rate of species

change for each experiment as the average absolute value of the dif-

ference between slopes (m) of treatment and control for each spe-

cies. Because the units of slopes were not comparable across

experiments, we relativized treatment effects for each experiment

by dividing by the absolute value of the ambient slope for each spe-

cies:

Relative dynamic treatment effect ¼ mtreatment �mambientj j
mambientj j

This ratio reflects the relative strength of treatment in altering

plant trajectories compared to ambient change. Values >1 indicate

that treatment effects are stronger than ambient change.

A treatment could have a sustained effect that is not well cap-

tured by the linear slope through time. Therefore, we also estimated

mean treatment effects for each site by averaging abundance across

all treatment years of each experiment for each species.

As above, we divided this mean treatment effect size by the

absolute value of mambient to express the treatment effect relative to

the magnitude of ambient change in abundance for each species:

Relative static treatment effect ¼ �xtreatment � �xambientj j
mambientj j

where �xtreatment and �xambientrepresent mean abundance of species

over the entire experiment. Here, we divided a difference in abun-

dance by a rate of change in abundance, yielding a time expressed in

years. This value can be considered the amount of time required for

the magnitude of ambient change to exceed the magnitude of treat-

ment effects.

Both relative static and dynamic treatment effects were log‐nor-
mally distributed owing to some small values in the denominators, so

we report medians of individual species treatment effects in

TABLE 1 Summary of parameters used in assessing change in abundance

Parameter Description Analysis

Linear responsiveness (r) Correlation coefficient of species abundance through time For global comparisons of species‐level abundance
change across all experiments (dependent on linear

change)

Monotonic r

esponsiveness (ρ)

Spearman's rank correlation coefficient of species abundance

through time

For global comparisons of species‐level abundance
change across experiments (not dependent on linear

change)

Magnitude of change (m) Absolute value of slope of species abundance through time For within‐site comparisons of magnitude of change

Dynamic treatment effect Absolute value of difference between mtreatment and mambient For comparisons of dynamic treatment effects to

ambient changeRelative dynamic

treatment effect

Ratio of dynamic treatment effect to ambient change

Average abundance (�x) Average abundance over time For calculation of static treatment effect size

Static treatment effect Absolute value of difference between xtreatment and xambient For comparisons of treatment effects to ambient change

Relative static treatment

effect

Ratio of static treatment effect to ambient change
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characterizing the whole dataset. To avoid over‐representing experi-

ments that have more species, we also estimate mean treatment

effects for each experiment. To calculate experiment means for each

treatment, we used the equation: 10½meanðlog10xÞ� where x is the treat-

ment effect for each species. We report the mean of these site aver-

ages for each treatment (n = 3–11).

2.5 | Direction of treatment effects compared to
direction of ambient change

The treatment effect assessments above compare the magnitude of

change without regard for the direction. To determine whether

treatment effects were likely to amplify or moderate ambient

change, we took the sign of the slope from each linear relationship

of species abundance through time for each experiment–treatment

to represent a binary direction, either positive or negative. We used

Fisher's exact tests to determine whether the direction of the static

treatment effect (+ or −) was related to the direction of ambient

change (+ or −).

2.6 | Robustness

To assess the robustness of the patterns, we restricted the dataset

in three ways and re‐performed some of the above analyses. First,

to determine how important experimental duration was for the pat-

terns, we curtailed each dataset (to include only the first 5 years),

from the full‐length dataset (from 8 to 31 years in duration). Second,

we restricted analyses to species that constituted more than 1% and

more than 5% of total plant abundance to determine whether abun-

dant and rarer plants responded differently. Third, we restricted

analyses to plant species for which abundance in ambient plots

exhibited a slope with p < 0.05 to focus on species that exhibit con-

sistent ambient change. We further restricted them to p < 0.001 to

account for the possibility that multiple comparisons lead to spuri-

ously significant results. Rather than using these P‐values for

hypothesis testing, we used them as arbitrary demarcations to sub-

set species that exhibit consistent (p < 0.05) or highly consistent

(p < 0.001) directional, ambient change across plots and through

time. All data filtering, summarizing and statistical calculations were

performed in JMP Pro 13 (SAS Institute).

3 | RESULTS

3.1 | Assessment of ambient change and how it
relates to change in treated plots

The distribution of rambient across species was flatter than a normal

distribution (Shapiro–Wilk W test, p < 0.001, Figure 2, left panel).

That pattern became more pronounced when the dataset was

restricted to abundant (>1% relative abundance) species (Figure 2,

right panel), indicating more consistent ambient change in species

that play larger roles in ecosystems. Changes in plant species abun-

dances under each treatment were closely related to changes in

abundances in ambient controls (Figure 3). In other words, when

species were increasing (or decreasing) in abundance over time in

ambient plots, they were often also increasing (or decreasing) in

abundance over time in treatment plots. These patterns could be dri-

ven by rare species, which may not strongly influence ecosystem

processes. Therefore, we tested the robustness of these patterns by

restricting the database to only abundant species, by species that

show consistent directional change, and by curtailing the duration of

studies. Restricting the analysis to include only species that
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F IGURE 1 Stylized data illustrating estimation of treatment
effects. The dynamic treatment effect (a) is the difference in linear
trend attributable to the treatment, and the static treatment effect
(b) is the difference in mean abundance over the course of the
experiment. For clarity, symbols here represent treatment means,
though individual plot data were used for the analyses
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F IGURE 2 Distribution of long‐term ambient changes in species
abundance (rambient = correlation coefficient for species abundance
vs. time). On the left (a), the full dataset is shown and hatched bars
represent the site‐species that exhibited consistent, directional
change (slope p < 0.05 for correlations between abundance and
year) under ambient conditions. On the right (b), the dataset is
restricted to include only abundant species (>1% relative
abundance), and hatched bars represent site‐species that were
exhibited highly consistent, directional change (p < 0.001)
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contributed over 1% and 5% of plant abundance (29.1% and 9.4% of

all species) yielded stronger patterns (R2 across treatments = 0.61

and 0.60, Table 2). For species that experienced consistent, direc-

tional change under ambient conditions (31.9% of linear trends had

a p < 0.05; 10.0% had p < 0.001), the relationship between rambient

and rtreatment was also strong (mean R2 across treatments = 0.66 for

p < 0.05 and R2 = 0.82 for p < 0.001). Curtailing the duration of the

datasets to five years generally weakened the relationships (mean

R2 = 0.33). Using Spearman's rank correlation coefficients to charac-

terize abundance change through time yielded ρambient that were

very closely related to rambient (R2 = 0.92) indicating that assuming

linearity in abundance change did not greatly affect the analysis.

The degree of covariation among rtreatment and rambient depended

on treatment. Elevated CO2 had the highest agreement with ambi-

ent; rambient predicted 65% of the variability in rCO2. Species respon-

siveness in phosphorus treatments (rphosphorus) was the lowest at

24%. The degree of covariation among rtreatment and rambient also var-

ied sharply by experiment (Supporting information Figure S2). For

instance, responsiveness at Smithsonian Ecological Research Center

(SERC), a coastal wetland, strongly covaried across treatments

(R2 = 0.90). Niwot Ridge (alpine tundra) had much lower average cor-

relations of rtreatment with rambient (R2 = 0.11). Though, we could

directly not compare mambient to mtreatment across the entire dataset,

and we did so within individual experiments. Here, too, there was

high agreement (Supporting information Figure S3, across all experi-

ment–treatment combinations average R2 = 0.59).

3.2 | Magnitude and direction of treatment effects
compared to ambient change

We compared rate of abundance change in ambient plots (|mambient|)

to the treatment effect on that rate of change (|mtreatment − mambient|).

Relativizing treatment effects to ambient change allowed us to assess

patterns across the entire dataset. Across all experiments, the median

species had a relative dynamic treatment effect of 0.83 (N = 1,058),

and 57% of species had a value less than 1. The means across treat-

ments did not differ from each other (Figure 4a, n = 3–11, one‐way

ANOVA, p = 0.438), nor did any differ from 1 (95% confidence inter-

vals enveloped 1). When the dataset was restricted to abundant spe-

cies (>1% or >5% relative abundance averaged over entire

experiment) or to cases in which ambient change was consistent

(p < 0.05 or p < 0.001), the magnitude of relative dynamic treatment

effects was similar but generally decreased (Table 3).

We also used a second method of assessing the relative strength

of ambient change by estimating the difference in average abun-

dance over the study period for each species from that in ambient

(�xtreatment � �xambient). We divided this metric, an abundance, by change

in ambient abundance through time, a rate (mambient), to yield the

length of time required for ambient change to exceed the magnitude

of static treatment effects (Figure 4b). The median across all species

was 4.3 yr. Relative static treatment effect did not vary significantly

among treatments (one‐way ANOVA, p = 0.137, n = 3–11).
Species directions (increasing or decreasing in abundance) in all

treatments agreed with directions in ambient plots for 81% of cases.

Still, we tested the tendency of the direction of treatment effects

(whether the treatment increased to decreased abundance relative to

ambient) to agree with the direction of ambient change. The direc-

tion of ambient change had no bearing on direction of static treat-

ment effects for any treatment (Fisher's exact test, two tail, all
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[Colour figure can be viewed at wileyonlinelibrary.com]
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p > 0.1). Overall, treatments were just as likely to amplify (51% of

cases) as antagonize the (49% of cases) ambient trends (Figure 5).

We reran this test on each subset of the dataset described above. In

no case did the direction of treatment effects depend on the direc-

tion of ambient change (Fisher's exact test, two tail, all p > 0.1).

4 | DISCUSSION

4.1 | Covariation of plant abundance change in
ambient and treated plots

The direction and consistency of change in plant species abundance

in ambient plots was very closely related to that in treated plots.

Strong covariation was apparent across the entire database. How-

ever, it was stronger for abundant species, suggesting that the abun-

dance of key species under any treatment is more closely related to

ambient trends than for rarer species, perhaps because of noisier

data for rare species. Cases in which a treatment tended to change

the trajectory of a plant that was consistently increasing or decreas-

ing in ambient abundance were few. This finding challenges the

notion that global change treatments select for “winner” and “loser”
species (Langley & Hungate, 2014; Poorter & Navas, 2003). In other

words, plant species are changing in abundance in global change

experiments, but the change is most strongly driven by factors that

affect both ambient and treatment plots.

The level of covariation between ambient plant abundance and

treated plant abundance depended on experiment and treatment.

Species changes in elevated CO2 were more closely related ambient

species changes than those under N and P addition (Table 2). This

finding is consistent with results of experimental work showing that

nutrient addition induces stronger effects on community composition

than elevated CO2 (Isbell et al., 2013). The differences in covariation

across experiments could arise partly from the strength of applied

treatments (e.g., the N addition rate in fertilized plots). Experiments

also vary in the importance of external factors that can drive strong

covariation among ambient and treated plots. For instance, in the

tidal marsh at SERC, patterns in plant species abundance are driven

largely by flooding frequency. Variability in flooding frequency

through time is largely determined by decadal‐scale oscillations in

local sea level. Recently, an interval of high sea level has diminished

the abundance of drought‐sensitive, high‐marsh grasses like Spartina

patens (Supporting information Figure S1), overwhelming strong glo-

bal change treatment effects observed during intervals with lower

sea levels (Langley & Megonigal, 2010). At the other end of the

spectrum, low covariance between rambient and rtreatment indicates

that treatment levels are relatively strong compared to background

drivers. For instance, Niwot is a site with low ambient resource sup-

ply coupled with strong selection for slow growth, and high micro-

site heterogeneity may result in low rates of change in response to

current environmental change (Spasojevic, Bowman, Humphries,

Seastedt, & Suding, 2013). There, relatively strong environmental

treatments surpass thresholds in intensity and favor establishment

and population growth of more responsive species (Suding, Farrer,

King, Kueppers, & Spasojevic, 2015; Theodose & Bowman, 1997).

4.2 | The magnitude of ambient change

That change in species abundance of plants in ambient plots is clo-

sely related to that in treatments argues that ambient change is an

R2 with rambient N Full Curtailed >1% >5% p < 0.05 p < 0.001

rCO2 155 0.65 0.47 0.80 0.74 0.84 0.87

rH2O 173 0.48 0.42 0.63 0.60 0.67 0.75

rnitrogen 380 0.40 0.34 0.38 0.48 0.57 0.79

rphosphorus 330 0.24 0.26 0.53 0.66 0.37 0.92

rwarming 134 0.57 0.33 0.70 0.53 0.84 0.78

Notes. Covariation was stronger for the full duration of the study rather than datasets curtailed to

years 1–5, and tended to increase when the dataset was restricted to abundant (>1% and >5% relative

abundance) and consistently changing (p < 0.05 and p < 0.001) species.

TABLE 2 R2 of rambient with each
rtreatment across all studies and for various
subsets of the data

(a)

(b)

F IGURE 4 (a) Means of the relative dynamic treatment effect for
each treatment. Each circle represents one experiment. Effects <1
are smaller than ambient change. (b) The relative static treatment
effect expressed in years required for ambient change to exceed the
static treatment effect in magnitude for an average species in each
experiment. Values represent means for each experiment (n = 3–11)
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important force, so we compared ambient change to treatment

effects quantitatively. The magnitude of ambient change was surpris-

ingly large relative to the magnitude of treatment effects regardless

of the approach for assessing treatment effects. The relative

dynamic treatment effect was generally similar to, but smaller on

average than, the magnitude to ambient change (Figure 4a). A sec-

ond approach of assessing treatment effects, relative static treat-

ment effects, showed similar results. By this estimate, treatment

effects on the average species were equivalent to only 4.3 years of

ambient change in species abundance. This amount of time is

astonishingly short given that most global change experiments apply

treatments at levels that target multiple decades or centuries into

the future (Lin, Xia, & Wan, 2010). Both metrics agreed with the

covariance analysis, such that the soil resource treatments (nitrogen,

phosphorus, and water) tended to yield larger effects than elevated

CO2 or warming (Figure 4a,b). We conclude that ambient change,

whatever drives it, is of similar magnitude or even exceeds the mag-

nitude of treatment effects for most species and that we may be

underestimating the relative importance of inertia already present

community trajectories.

TABLE 3 Relative dynamic and relative
static treatment effects for each subset

Treatment Full Curtailed >1% >5% p < 0.05 p < 0.001

Relative dynamic treatment effects

CO2 0.8 (0.2) 0.8 (0.1) 0.6 (0.2) 0.6 (0.2) 0.5 (0.1) 0.4 (0.2)

Water 0.9 (0.1) 0.9 (0.1) 0.9 (0.2) 1.1 (0.4) 0.5 (0.1) 0.6 (0.3)

N 1.1 (0.1) 1.2 (0.2) 1.3 (0.2) 1.2 (0.2) 0.8 (0.1) 0.5 (0.1)

P 1.0 (0.1) 1.0 (0.2) 0.6 (0.1) 1.6 (1.2) 0.5 (0.2) 0.2 (0.1)

Warming 0.8 (0.1) 0.8 (0.1) 0.6 (0.1) 0.4 (0.0) 0.4 (0.0) 0.2 (0.1)

Relative static treatment effect

CO2 3.8 (1.2) 2.0 (0.1) 3.5 (1.2) 4.4 (2.0) 1.7 (0.4) 1.4 (0.5)

Water 6.9 (1.4) 2.1 (0.2) 6.2 (1.3) 6.8 (2.1) 3.4 (0.8) 3.6 (1.2)

N 9.3 (1.8) 2.6 (0.4) 10.1 (1.7) 10.8 (1.8) 4.8 (1.0) 3.4 (0.8)

P 4.8 (1.0) 2.1 (0.2) 3.8 (1.2) 9.9 (6.8) 2.9 (1.1) 2.2 (1.0)

Warming 3.9 (1.5) 1.9 (0.0) 2.8 (0.8) 4.5 (1.7) 1.4 (0.4) 1.3 (0.4)

Notes. For relative dynamic treatment effects, the magnitude of ambient change for each species is set

to 1. Relative static treatment effects are expressed in years of ambient change required to overcome

the treatment effect on a species averaged over the course of the study. Values represent experimental

means with standard error in parentheses (n = 3–11).
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F IGURE 5 The distribution of species
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direction of ambient change was not
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4.3 | Drivers of ambient change

The implications of strong ambient change depend on what factors

are driving it. Changes in species abundance in ambient plots could

result from (a) natural (non‐anthropogenic) phenomena, (b) anthro-

pogenic drivers, or (c) experimental artifacts. First, plant communities

change through time due to natural population cycles, such as those

driven by non‐anthropogenic climactic variability, succession, recov-

ery from disturbance, competitive dynamics, demographic stochastic-

ity, mast seeding, or herbivore boom–bust cycles (Fuhlendorf &

Smeins, 1997; Foster & Gross, 1998; Ostfeld & Keesing, 2000; De

Mazancourt et al., 2013; Stouffer et al., 2018). The sites included

herein are dominated by herbaceous plants, many of which have

shorter‐term population cycles than woody species and would likely

exhibit more rapid responses to climatic variability. The long duration

of the studies should minimize the effect of short‐term (<5‐year)
cycles on linear increases or decreases in plant abundance, though

the effects of long‐term succession or recovery from disturbance

may still be important at some sites (Foster & Gross, 1998).

Alternatively, anthropogenic changes, related to climate, biogeo-

chemistry, invasion, or disturbance, may have long‐term (>decades)

directional influence on species abundance, given the long‐term tra-

jectories of directional change in these drivers. Elevated CO2 is the

most homogenous driver of environmental change globally. Climatic

changes such as warming and altered precipitation can drive rapid

changes in plant communities (Gottfried et al., 2012; Kelly & Goul-

den, 2008), and such effects are apparent in observational studies

(Parmesan & Yohe, 2003). Chemical changes like nitrogen deposition

are known to have strong influences on species abundances (De

Schrijver et al., 2011; Pennings et al., 2005; Stevens, Dise, Mount-

ford, & Gowing, 2004). Exotic species invasion has been changing

plant abundance for a century (Hejda, Pyšek, & Jarošík, 2009). It

may be the case that the most important drivers of ambient change

are also some of the factors being manipulated in the global change

experiments.

These first two possibilities can be difficult to disentangle, as

they may not be mutually exclusive. That is, the driver of ambient

change could be a natural cycle that is intensifying. Revisiting the

example from SERC, flooding frequency is the dominant driver of

ambient change (Langley & Hungate, 2014; Langley, Mozdzer, Shep-

ard, Hagerty, & Megonigal, 2013), and it varies with natural cycles.

However, anthropogenic climatic change has likely contributed to

increased flooding frequency at this site in recent decades. Similarly,

droughts can reshape communities naturally. Many regions around

the world, especially in grasslands, are expected to have, and may

already be experiencing, increasing frequency of severe drought (Spi-

noni, Naumann, Carrao, Barbosa, & Vogt, 2014). Therefore, deter-

mining if the driver of ambient change is natural or anthropogenic

depends on attribution of abiotic global changes themselves.

Finally, experimental artifacts and observational error may also

contribute to ambient change. Plot studies incur artifacts such as

physical disturbance, chamber effects, and proximity among treat-

ments. For instance, increasing growth of nitrophilic species in N‐

fertilized plots could allow them to establish in nearby control plots.

Any effects that influence all plots would increase rates of change in

ambient plots as well as covariation among treatments, and may

partly explain the correlations we observe across ambient and treat-

ment plots (Figure 3) and relatively weak treatment effects (Figure 4).

On the other hand, the timing, levels and combinations of global

change treatments may engender artifacts that tend to cause overes-

timation of plant responses to global change treatments. Treatment

application typically occurs more quickly than real perturbations. For

instance, nearly all elevated CO2 experiments elevate CO2 abruptly,

even though the CO2 rise simulated occurs over decades or cen-

turies. Moreover, treatment applications may be more extreme than

are likely to occur in real ecosystems. A recent catchment‐level fer-
tilization experiment found no effects on plant communities despite

large effects often reported in plot‐level studies. The authors attribu-

ted the disparity to unrealistically high levels of N addition in plot‐
level studies (Johnson, Warren, Deegan, & Mozdzer, 2016). Addition-

ally, if measurement methodology (such as misidentification of spe-

cies) varied through time, it could result in spurious covariation in

plant abundance change between ambient and treated plots in our

study. Though perhaps present in some cases, experimental artifacts

are unlikely to explain the consistent importance of ambient change

across these diverse studies.

4.4 | Implications

Like studies that monitor unmanipulated plots (Verheyen et al.,

2017), long‐term global change experiments can provide important

information on background plant community change, and have the

advantage of comparing it to the change caused by treatments. We

found that changes in plant species abundance through time in ambi-

ent plots were stronger on average than the changes attributed to

experimental treatment effects. These unexpectedly large changes in

plant species abundances in unmanipulated plots merit further explo-

ration. The implications of these findings for ecological communities

and ecosystem processes depend on what is driving ambient change,

though we did not directly address attribution in this analysis. Ambi-

ent changes detected in these experiments could be driven by (a)

natural phenomena, (b) anthropogenic factors, or (3) experimental

artifacts.

A preponderance of evidence suggests that ongoing climate

change is dramatically altering terrestrial plant communities (Chen,

Hill, Ohlemüller, Roy, & Thomas, 2011; Parmesan & Hanley, 2015;

Parmesan & Yohe, 2003; Rosenzweig et al., 2008). If, for instance,

an experimental site were already experiencing warming, might addi-

tional, experimentally imposed warming only marginally increase the

already existing rate of change in species abundances? Or, alterna-

tively, would this cause an even greater treatment effect? Here we

found that ambient changes in plant abundance often exceed treat-

ment effects. The most important drivers of this strong ambient

change are likely some of the same factors that global change exper-

iments manipulate. For example, ambient [CO2] is now roughly 50%

higher than it was in preindustrial times. Rising atmospheric CO2

5676 | ADAM LANGLEY ET AL.



could alter plant abundance in ambient plots. Over long intervals,

ambient change driven by CO2 may ultimately reduce the measured

difference between ambient and elevated CO2 plots (Drake, 2014)

given that the treatment difference is consistent CO2 responsiveness

saturates at higher [CO2]. That treatment effect direction was unre-

lated to ambient change direction (Figure 5) argues that the primary

drivers of ambient change frequently differ from the manipulated

factors. The unmanipulated drivers of change may interact with

manipulated factors in unpredictable ways.

Because we did not herein attribute ambient change to particular

drivers, it remains to be more fully explored how plant species

changes under a particular ongoing global change compare to

responses under those same manipulated factors. Such comparisons

would be complicated for several reasons. More than one driver may

contribute to ambient change at most sites. In the present study, we

did not have the replication across experiments necessary to include

analysis of multifactor treatments. The most important driver(s)

would have to be mimicked at realistic levels, and there would need

to be sufficient time for experimental effects to manifest. Experi-

ments involving antecedent conditions (e.g., preindustrial [CO2])

could be useful in linking ongoing ambient change to experimentally

manipulated drivers (Concilio, Nippert, Ehrenfeucht, Cherwin, &

Seastedt, 2016).

Despite uncertainty in attribution of plant abundance changes,

we suggest that our findings have implications for the design and

interpretation of global change experiments. Ongoing global change

studies should assess and report the change in ambient plots. Strict

focus on treatment effect sizes may overlook background changes,

which are often stronger than treatment effects. Long‐term studies,

especially those that measure community composition frequently,

are best able to assess ambient change. Global change studies may

have a variety of different goals. To directly address the importance

of global change relative to dynamic plant communities, some new

global change experiments should locate treatments along invasion

fronts, in pollution hotspots, and near thresholds of abiotic change

such as rising seas, for it is in these places, where rapid community

shifts are already occurring, that the influence of additional global

change drivers will be most important to capture.
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