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SUMMARY

Reliable mesh-based simulations are needed to solve complex engineering problems. Mesh adaptivity can
increase reliability by reducing discretization errors, but requires multiple software components to exchange
information. Often, components exchange information by reading and writing a common file format. This
file-based approach becomes a problem on massively parallel computers where filesystem bandwidth is
a critical performance bottleneck. Our approach using data streams and component interfaces avoids the
filesystem bottleneck. In this paper we present these techniques, and their use for coupling mesh adaptivity to
the PHASTA computational fluid dynamics solver, the Albany multi-physics framework, and the Omega3P
linear accelerator frequency analysis applications. Performance results are reported on up to 16,384 cores of
an Intel Knights Landing-based system.
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1. INTRODUCTION

Simulations on massively parallel systems are most effective when data movement is minimized.

Data movement costs increase with the depth of the memory hierarchy; a design trade-off for

increased capacity. For example, the lowest level on-node storage in the IBM Blue Gene/Q A2

processor [1] is the per core 16KiB L1 cache (excluding registers) and has a peak bandwidth of

819 GiB/s. The highest level on-node storage, 16GiB of DDR3 main memory, provides a million

times more capacity but at a greatly reduced bandwidth of 43GiB/s, 1/19th of L1 cache [2]. One

level further up the hierarchy is the parallel filesystem†. At this level, the bandwidth and capacity

relationship are again less favorable and further compromised by the fact that the filesystem is a

shared resource. Table I lists the per node peak main memory and filesystem bandwidth across five

generations of Argonne National Laboratory leadership class systems: Blue Gene/L [5, 6], Intrepid

Blue Gene/P [7, 8], Mira Blue Gene/Q [1, 9], Theta [10, 11], and 2018’s Aurora [12]. Based on these

peak values the bandwidth gap between main memory and the filesystem is at least three orders of

magnitude. Software must leverage the cache and main memory bandwidth performance advantage

during as many workflow operations as possible to maximize performance.

∗Correspondence to: Email: smithc11@rpi.edu
†For the sake of simplicity we assume that the main memory of other nodes is not available. But, there are checkpoint-
restart methods that use local and remote memory for increased performance [3, 4].
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2 C. W. SMITH ET-AL.

Table I. Per node main memory and filesystem peak bandwidth over five generations of Argonne National
Laboratory systems. The values in parentheses indicate the increase relative to the previous generation

system.

Memory BW Filesystem BW

(GiB/s) (GiB/s)

BG/L 5.6 0.0039

BG/P 14 (2.4x) 0.0014 (0.36x)

BG/Q 43 (3.1x) 0.0049 (3.5x)

Theta 450 (11x) 0.058 (12x)

Aurora 600 (1.3x) 0.020 (0.34x)

This paper presents a set of in-memory component coupling techniques that avoid filesystem

use. We demonstrate these techniques for three different unstructured mesh-based adaptive analysis

workflows. These demonstrations highlight the need for in-memory coupling techniques that are

compatible with the design and execution of the analysis software involved. Key to this compatibility

is supporting two interaction modes: bulk and atomic information transfers.

Section 3 provides a definition of the information transfer modes and reviews methods to

couple workflow components using them. The core interfaces supporting adaptive unstructured

mesh workflows are described in Section 3.1, and examples are given for their use in bulk and

atomic information transfers. Section 3.2 details the data stream approach developed to avoid

filesystem use. Section 4 examines the use of data streams to couple the PHASTA massively parallel

computational fluid dynamics analysis package with mesh adaptation. Section 5 describes the use

of interfaces to couple the Trilinos based Albany multi-physics framework to a set of mesh services.

Section 6 discusses the coupling of curved mesh adaptation and load balancing components with the

linear accelerator frequency analysis package Omega3P. In each application example, discussions

are broken down into sub-sections covering the PUMI integration, the example’s workflow, and

performance test results. Section 7 closes the paper.

Throughout the paper the following notation is used:

• C/C++/Fortran code is in a fixed-pitch font. For example, the function printf(...)

is declared in stdio.h; the ellipsis represent omitted arguments.

• The suffix Ki denotes 210. So, for example, 16Ki is equal to 16 ∗ 210 = 16384.

2. CONTRIBUTIONS AND RELATED WORKS

Our work in scientific computing focuses on the interactions of unstructured mesh-based

components executing in the same memory space. This paper extends our previous XSEDE16

conference article [13] with more in-depth discussion of the atomic and bulk information passing

approaches, an additional application example, and results on up to 16Ki cores of an Intel Knights

Landing system; eight times more cores than the XSEDE16 paper and using a newer generation of

architecture.

The three applications discussed all use the Parallel Unstructured Mesh Infrastructure (PUMI)

to provide mesh adaptation, load balancing, and field services [14]. In each application an

existing analysis package is integrated with PUMI using a specific combination of bulk and

atomic information passing methods. The method selected, and the point in the workflow for

transferring the information, is a key focus of our work. For interactions with the computational

fluid dynamics code PHASTA, a bulk data-stream approach re-uses an existing file protocol to

minimize code changes. As shown in the appendix, the code changes to implement this approach

are minimal as the same APIs can be used for reading and writing. In PHASTA we implemented an

additional abstraction layer to provide clean initialization and finalization APIs, ensure backward

compatibility, and support future I/O methods. In total, this abstraction layer was about 500 lines

of code with a very low cyclomatic complexity (maximum function score of two from GNU
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IN-MEMORY PARALLEL WORKFLOWS 3

Complexity) [15, 16]. Integration with the Albany multi-physics code uses bulk transfers via PUMI

and Albany APIs to pass mesh and field information. In the third application, Omega3P, we use a

combination of bulk transfers to pass large collections of mesh and field data structures, and atomic

mesh element information transfers for element stiffness matrix formation. In all three cases, efforts

focused on selecting points within the adaptive workflow to exchange information and, given our

in-depth knowledge of PUMI, determine what analysis software APIs are provided to satisfy the

exchanges.

The information passing approaches we used are common to other applications with similar

design characteristics. Like PUMI, libMesh [17] and MOAB [18] provide MPI-based unstructured

mesh-based services and have been successfully integrated with existing analysis codes using API-

based interactions. ParFUM [19] also provides some similar unstructured mesh-based services, but

given the requirement to work within the Charm++ [20] runtime-based system, has limited support

for integrating with existing software packages. The Helios [21] software framework supports

the in-memory integration of multiple existing software packages, including those providing

unstructured mesh services, through a common API for bulk and atomic transfers to support

rotorcraft aerodynamics simulations. For some domains or developers the cost of implementing

the standard API is well worth the access to the ecosystem of tools, and their users, the framework

provides.

Outside the domain of scientific computing, performance sensitive enterprise applications use

atomic interactions with in-memory databases that far out perform those that reside on disk [22].

Distributed web-based applications often perform bulk transfers between memory spaces across

a network via optimized serialization protocols [23, 24]. Similarly, using ADIOS DataSpaces,

applications (typically for scientific computing) can perform bulk transfers between different

executables [25, 26, 27, 28], on the same node or otherwise, without relying on slow filesystem

interactions.

3. COMPONENT INTERACTIONS

The design and implementation of procedures within existing software packages directly affects how

they interact with other workflow procedures. Procedures provided by a given software package

are often grouped by functionality into a component; a reusable unit of composition with a set

of interfaces to query and modify encapsulated state information [29]. The most interoperable,

reusable, and extensible components are those with APIs, minimal dependencies, minimal exposure

of symbols (e.g., through use of the unnamed namespace in C++ or the static prefix in

C), scoped interfaces (e.g., via C++ namespaces or function name prefixes), and no resource

leaks [30, 31, 32]. Conversely, many legacy components (e.g., analysis codes) may simply have file

or command line interfaces (i.e., they do not provide libraries with APIs) and have little control of

the symbols and memory they use. The xSDK project formalizes these levels of interoperability and,

from that, defines basic requirements of packages for inclusion in its ecosystem [33]. In Sections 4

through 6 we discuss the design of three different analysis components and the impact of each design

on coupling with an unstructured mesh adaptation component.

In-memory component interactions are supported by bulk or atomic information transfers. A

bulk transfer provides a large set of information following some provided format. For unstructured

meshes this transfer could be an array of node-to-element connectivities passed from a mesh

adaptation or generation procedure to an analysis code. Conversely, an atomic transfer provides

a single, or highly localized, piece of information. Continuing the connectivity example, an atomic

transfer would be the nodes bounding a single element. In Section 6 we provide another atomic

example that computes Jacobians of mesh elements classified on curved geometric model entities.

Our approach for high performing and scalable component interactions avoid filesystem I/O by

implementing bulk and atomic transfers with component APIs or data streams. Thus, component

interactions in this work are within a single executable typically built from multiple libraries.

Alternatively, ADIOS DataSpaces provides a mechanism for the in-memory coupling of multiple

executables [25, 26, 27, 28]. Likewise, Rasquin et al. [34] demonstrated in-situ visualization with
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4 C. W. SMITH ET-AL.

PHASTA and ParaView using GLEAN [35]. These inter-executable interaction methods can support

the necessary workflow interactions, but typically at the cost of decreased performance, especially

when information is passed between different system nodes.

The type of interaction chosen to couple a pair of components depends on their implementations.

Components with APIs that encapsulate creation, deletion, and access to underlying data structures

support in-memory interactions at different levels of granularity. At the finest level a developer

may implement all atomic mesh entity query functions such that components can share the same

mesh structure; trading increased development costs for lower memory usage. An excellent example

of mesh data sharing is the use of octree structures in the development of parallel adaptive

analyses [36]. At a coarser level, a developer may simply create another mesh representation (a

bulk transfer) through use of interfaces encapsulating mesh construction; trading higher memory

usage for lower development costs. Although this method will allow for in-memory integration,

it can suffer from the same disadvantages as the former approach in that a significant amount of

time and effort will be required for code modification and verification. A generalization of this

coarser level approach defines common sets of interfaces through which all components interact. For

example, in the rotorcraft aerodynamics community the HELIOS platform provides a set of analysis,

meshing, adaptation, and load balancing components via the Python-based Software Integration

Framework [21].

Components that support a common file format and use one file per process (e.g., POSIX C

stdio.h [37] or C++ iostream) can use our data stream approach with minimal software

changes. Here, the bulk transfer is taken to nearly its highest level; the exchange of process-level

data sets. This approach is also a logical choice for legacy analysis codes that do not provide APIs

to access or create their input and output data structures.

Using a serialization framework like Google’s FlatBuffers [24], or Cap’n Proto [23], also

supports bulk data exchanges through use of their APIs and data layout specification mechanism.

Furthermore, some of these frameworks provide a ‘zero copy’ mode that avoids encode and decode

overheads; the serialized information can be directly accessed after transfer. Like the HELIOS

approach, this approach is an interesting option for components that will be integrated with many

others.

Details for implementing the bulk and atomic transfers are given in the following sub-sections.

3.1. Component Interfaces

The components in adaptive simulations that provide geometric model, mesh, and field

information [38, 14, 39], and the relations between them, are essential to error estimation,

adaptation [40, 41, 17], and load balancing [42] services. For example, transferring field tensors

during mesh adaptation requires the field-to-mesh relation [43]. Likewise, the mesh-to-model

relation (classification [14]) and geometric model shape information enable mesh modifications

(e.g., vertex re-positioning) that are consistent with the actual geometric domain [38]. Similarly,

classification supports the transformation of the input field tensors onto the mesh to define

the boundary conditions, material parameters and initial conditions [44]. Because of this strong

dependency, we provide these components and services together as the open-source Parallel

Unstructured Mesh Infrastructure (PUMI) [14, 45]. PUMI’s unstructured mesh components include:

• PCU - neighborhood-based non-blocking collective communication routines

• GMI - geometric modeling queries supporting discrete models and, optionally, Parasolid,

ACIS, and Simmetrix GeomSim models using the Simmetrix SimModSuite library

• MDS - array-based modifiable mesh data structure [46]

• APF MDS - partitioned mesh representation using MDS

• Field - describes the variation of tensor quantities over the domain

• ParMA - multi-criteria dynamic load balancing [42]

• MeshAdapt - parallel, size field driven local refinement and coarsening.

A good example of PUMI advanced component interface usage is the Superconvergent Patch

Recovery (SPR) error estimator. The SPR routines estimate solution error by constructing an
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IN-MEMORY PARALLEL WORKFLOWS 5

improved finite element solution using a patch-level Zienkiewicz-Zhu [47] least squares data fit.

SPR provides two methods which use the patch-recovery routines. The first method recovers

discontinuous solution gradients over a patch of elements and approximates an improved solution

by fitting a continuous solution over the elemental patch. The second method provides an improved

solution in much the same way as the first, but operates directly on integration point information

obtained by the finite element analysis. For both methods, the improved and primal solutions are

then used to create a mesh size field that is passed to MeshAdapt to guide mesh modification

operations [48, 49].

3.2. Data Streams

Components can pass information and avoid expensive filesystem operations through the use of

buffer-based data streams. This approach is best suited for components already using POSIX C

stdio.h [37] or C++ iostream String Stream APIs [50] as few code changes are required. The

key changes entail passing buffer pointers during the opening and closing of the stream, and adding

control logic to enable stream use.

In a component using the POSIX APIs, a data stream buffer is opened with either the

fmemopen or open memstream functions from stdio.h. open memstream only supports

write operations and automatically grows as needed. fmemopen supports reading and writing, but

uses a fixed size, user specified, buffer. Once the buffer is created, file read and write operations

are performed through POSIX APIs accepting the FILE pointer returned by the buffer opening

functions; i.e., fread, fwrite, fscanf, fprintf, etc. After all read or write operations are

complete, a call to fclose will automatically dellocate the buffer created with fopen. A buffer

created with open memstream requires the user to deallocate it.

Example uses of the POSIX C and C++ iostream APIs are located in the Appendix.

4. PHASTA

PHASTA solves complex fluid flow problems [51, 52, 53, 54, 55] on up to 768Ki cores with 3Mi

(3 ∗ 220) MPI processes [56] using a stabilized finite element method [57] primarily implemented

with FORTRAN77 and FORTRAN90. Support for mesh adaptivity, dynamic load balancing, and

reordering has previously been provided by the C++ PUMI-based component, chef [45, ?], through

file I/O. This file-based coupling uses a format and procedures that were originally developed over

a decade ago. Our work adds support for PHASTA and chef in-memory bulk data stream transfers.

We show performance of this approach with a multi-cycle test using a fixed size mesh and present

an adaptive, two-phase dam-break analysis.

4.1. Integration with PUMI

The data stream approach for in-memory interactions was the logical choice given the existing

POSIX file support, and the lack of PHASTA interfaces to modify FORTRAN data structures.

The chef and PHASTA data stream implementation maintains support for POSIX file-based I/O

by replacing direct calls to POSIX file open, read and write routines with function pointers.

Our work also adds a few execution control APIs to run PHASTA within an adaptive workflow.

The API implementation uses the singleton design pattern [58] and several of Miller’s Smart Library

techniques [30]. This approach provides backward compatibility for legacy execution modes, such

as scripted file-based adaptive loops, with minimal code changes and easily accounts for the heavy

reliance on global data common to legacy FORTRAN codes.

4.2. Adaptive Dam-break Example

Fig. 1 depicts the evolution of the adaptive mesh for a dam-break test case ran on ALCF Theta

using two-phase incompressible PHASTA-chef with data streams [52] . The dense fluid (water) is

initially held against the left wall (not pictured) in a square column created by a fictitious constraint
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6 C. W. SMITH ET-AL.

representing a dam. The remainder of the domain (1.25 column heights high and five column heights

wide) is air. When the constraint is removed, as if the dam broke, the dense fluid falls and advances

to the right [52]. A distance and curvature-based refinement band tracks the air-water interface.

Outside of these bands the mesh is graded to a reference coarse size.

Algorithm 1 lists the steps in the two-phase adaptive analysis. Note, the terms ‘read’ and ‘write’

are used to describe transfers from and to both streams and files. On Lines 2-4 the PUMI partitioned

mesh, geometric model, and problem definition information is loaded. Next, on Line 5 the I/O

mode is set to either data streams or POSIX files by initializing the file handle as described

in Section 3.2. Next, the chef preprocessor is called on Line 6. The preprocessor first executes

adjacency-based mesh entity reordering (l.18) [59] to improve the efficiency of the assembly

and linear algebra solution procedures. Next, it creates the finite element mesh (i.e., nodes and

element connectivity), solution field, and structures containing the point-to-point communication

protocols and boundary conditions (l.19-20). Preprocessing concludes with the writing of this data

to files/streams (l.21).

Line 8 of Algorithm 1 begins the solve-adapt cycle that runs until the requested number of solver

time steps is reached. The PHASTA solver first reads its input information from chef via files or

streams (l.34), then executes an analyst-specified number of time steps (l.35), and computes the

distance-based mesh size field (l.36). The solver then writes the computed mesh size field and

solution field to files/streams. Those fields are read on Line 11 and attached to the PUMI mesh.

Next, chef drives MeshAdapt with the mesh size field (l.23). To prevent memory exhaustion during

mesh refinement procedures, ParMETIS part k-way graph re-partitioning (via Zoltan) is called using

weights that approximate the change in mesh element count on each part (l.25, 28). After adaptation,

chef executes preprocessing as previously described (l.14).

4.3. Data Stream Performance Testing

We measured the performance of PHASTA-chef [60] POSIX file and data stream information

exchange in a workflow supporting the adaptive analysis of a two-phase, incompressible dam-break

flow, as shown in Fig. 1. Workflow tests ran on the Intel Knights Landing Theta Cray XC40 system

at the Argonne Leadership Computing Facility (ALCF) using 64 processes per node with a total of

2Ki, 4Ki, 8Ki, and 16Ki processes. All nodes were configured in the ‘cache-quad’ mode [10, 11].

The two Theta filesystems used by POSIX file tests, GPFS [61] and Lustre [62], were in their default

configuration for all runs. Test time is recorded using the low-overhead Read Time-Stamp Counter

instruction (rdtsc()) provided by the Intel compiler. Unlike some other high resolution timers,

rdtsc() is not affected by variations to the Knights Landing core frequency [11].

Each test initially loads the same mesh with 2Ki parts and 124 million elements. For the tests

running on 4Ki, 8Ki, or 16Ki processes the first step is to partition the mesh using a graph-

base partitioner to the target number of processes. Once partitioned, the chef preprocessor is

executed. The preprocessor reads the solution field produced by PHASTA, balances the mesh using

ParMA [42], and then creates and writes the PHASTA mesh and field data structures. Following the

initial preprocessing, the test executes seven solve-then-preprocess cycles. In the adaptive workflow

used to study the dam-break flow (shown in Fig. 1) the preprocess step is preceded by execution

of MeshAdapt. For our information exchange performance tests though, this step is not necessary.

Since we are not adapting the mesh, the mesh size does not change during the test. Combining this

preprocess-only approach with a limited PHASTA flow solver execution mode we can force the

workflow to perform the same work in each cycle.

After preprocessing with chef, the workflow executes the PHASTA solver. PHASTA starts by

reading the mesh and field structures produced by chef, and then executes one time step with field

updates disabled. With the field updates disabled the time spent in the solver is the same in each

cycle. While this configuration does not produce meaningful flow results, it performs sufficient

linear system solve work to emulate the data access and movement of multiple complete solution

steps. Once the linear system is solved, PHASTA writes the solution field and control passes back

to chef to run the preprocessor. After six more solve-then-preprocess cycles, the test is complete.
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IN-MEMORY PARALLEL WORKFLOWS 7

Algorithm 1 Two-phase PHASTA-chef Adaptive Loop

1: procedure ADAPTIVELOOP(in max steps)
2: pumi mesh load the partitioned PUMI mesh from disk
3: geom load the geometric model from disk
4: chef probdef  load the chef problem definition from disk
5: initialize file handle for streams or POSIX I/O
6: PREPROCESSOR(pumi mesh,geom,chef probdef ,file handle)
7: step number  0
8: while step number < max steps do
9: PHASTA(N ,file handle)

10: step number  step number +N
11: read size field and phasta fields from file handle and attach to pumi mesh
12: MESHADAPT(pumi mesh,size field,max iterations)
13: PARMA(vtx>elm,pumi mesh)
14: PREPROCESSOR(pumi mesh,geom,chef probdef ,file handle)
15: end while
16: end procedure
17: procedure PREPROCESSOR(in pumi mesh, in geom, out chef probdef , in/out file handle)
18: reorder the mesh entities holding degrees-of-freedom
19: phasta mesh create PHASTA mesh data structures
20: phasta fields create PHASTA field data structures
21: write phasta mesh and phasta fields to file handle
22: end procedure
23: procedure MESHADAPT (in/out pumi mesh, in size field, in max iterations)
24: w  per element field estimating the change in element volume based on size field
25: predictively balance the mesh elements for element weight w
26: for iteration 0 to max iterations do
27: coarsen the mesh
28: re-balance the mesh elements for element weight w
29: refine the mesh
30: end for
31: re-balance the mesh elements
32: end procedure
33: procedure PHASTA(in N , in/out file handle)
34: read phasta mesh, phasta fields data from file handle
35: run the flow solver for N steps
36: size field isotropic size field based on distance to phasic interface
37: write the mesh size field and phasta fields to file handle
38: end procedure

The minimum, maximum, and average number of bytes read and written per process in a cycle

by chef and PHASTA is plotted in Fig. 2. Since we have a fixed mesh, the bytes read/written in each

cycle is the same. This extends across the different I/O method tests (streams, POSIX, ramdisk) as

the initial partitioning and load balancing called during preprocessing is deterministic. Note, in the

tested configuration PHASTA writes additional fields that are not required for input. Due to the lack

of these additional fields the chef byte count is smaller for write than read, while the PHASTA byte

count is smaller for read than write.

The time spent by chef transferring data to and from PHASTA is reported in Fig. 3 and Fig. 4.

Note, the PHASTA times for these transfers are nearly identical and not reported here. Fig. 3 depicts

the average time spent reading and writing at each process count using data streams, a 96GB ramdisk

in main memory (DRAM), and the GPFS and Lustre filesystems. At each process count Fig. 4a and

Fig. 4b depict the time spent reading and writing in each solve-preprocess cycle. The read time is

reported for the function responsible for opening the PHASTA file/stream containing solution field

data, reading the data, attaching the data to the mesh, and closing the file/stream. Likewise, the write

time includes the time to open, write, and close, plus the time to detach the solution data from the

mesh.

Across all process counts read and write times are highest when using POSIX files on the

GPFS filesystem. The Lustre filesystem performs better, especially for writes, and has significantly
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8 C. W. SMITH ET-AL.

Figure 1. Evolution of an adaptive dam-break case ran on 2048 processes of the ALCF Theta system using
two-phase, incompressible PHASTA coupled to PUMI unstructured mesh adaptation with data streams.
Each image (top to bottom) represents an advancement in physical time by 1/100 of a second. The air-water

phasic interface iso-surface is shown in gray.

lowered variability between cycles. As expected though, Lustre is slower than the ramdisk and

streams. Stream writes and reads outperform Lustre by over an order of magnitude at all process

counts. At 8Ki and 16Ki the performance gap widens to over two orders of magnitude. Also, note

that the stream and ramdisk performance improves with the increase in process count and reduction

in bytes transferred per process (see Fig. 2), whereas the filesystem performance degrades for Lustre

and remains flat for GPFS. Clearly, avoiding operations accessing the shared file system can save a

significant amount of time over the course of a parallel adaptive analysis.
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IN-MEMORY PARALLEL WORKFLOWS 9

Figure 2. chef total bytes read and written per process. PHASTA reads(writes) the same number of bytes
that chef wrote(reads).

Figure 3. chef streams, ramdisk, and POSIX average read and write time on ALCF Theta. Lower is better.

Furthermore, serial testing on one Theta node indicates that using preallocated buffers with

open memstream can further improve streaming write performance by over two times. The

performance penalty of dynamic buffer expansion for the non-preallocated writes can clearly be seen

in Fig. 5 by the large drop in effective (bytes/time(open+write+close)) bandwidth at approximately

0.25MB, 0.5MB, 1MB and 2MB. Likewise, POSIX file performance may be improved through use

of the POSIX asynchronous I/O interface (aio) [63], but we have not tested these APIs on Theta.

The impact of I/O on overall workflow performance was measured on 16Ki processes of the

ALCF Mira BlueGene/Q. In the test, the dam-break case was executed for three and a half cycles:

four PHASTA solves (ten time steps each, with field updates enabled) that are interleaved with

three mesh adaptations. Using the data stream method reduces the total execution time by 12%,

approximately eight minutes, versus the POSIX file based method on a GPFS filesystem. While it

may be tempting to focus on the impact of I/O on the overall workflow execution time, we caution

readers that this measure is highly dependent on the application and the time it spends in the flow

solver and adaptation procedures. Specifically, as the number of steps of the flow solver executed

between each adaptation increases, the fraction of time spent in I/O decreases. If the implicit solve

were replaced by an explicit solve, then the solve time may decrease by an order of magnitude.

Lastly, the number of entities modified or created during adaptation strongly impacts the fraction of

time spent adapting the mesh. Prior to this work, the large time spent reading and writing files drove

research towards less frequent adaptation to amortize the I/O time. The reduction of time in data

transfer provides alternatives. For these reasons, we choose to primarily report the performance of

the approaches in terms of direct time spent transferring data between components.
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10 C. W. SMITH ET-AL.

(a) chef read times.

(b) chef write times.

Figure 4. Time for chef to read and write using streams, ramdisk, and POSIX on ALCF Theta. Lower is
better.

5. ALBANY

Albany [64, 65] is a parallel, implicit, unstructured mesh, multi-physics, finite element code used

for the solution and analysis of partial differential equations. The code is built on over 100 software
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Figure 5. Streaming write performance with and without preallocation on a single node of ALCF Theta in
the cache-quad configuration. Higher is better. The code used for these tests is described in the Appendix.

components and heavily leverages packages from the Trilinos project [66]. Both Albany and Trilinos

adopt an ‘agile components’ approach to software development that emphasizes interoperability.

Albany has been used to solve a variety of multi-physics problems including ice sheet modeling and

modeling the mechanical response of nuclear reactor fuel. The largest Albany runs have had over

a billion degrees of freedom and used over 32Ki cores. Albany’s high performance, generality, and

component-based design made it an ideal candidate for the construction of an in-memory adaptive

workflow using bulk API-based transfers.

5.1. Integration with PUMI

The Albany analysis code provides an abstract base class for the mesh discretization. Implementing

the class with PUMI’s complete topological mesh representation simply required understanding

Albany’s discretization structures. Like most finite element codes, Albany stores a list of mesh nodes

and a node-to-element connectivity map to define mesh elements. Albany’s Dirichlet and Neumann

boundary conditions though, need additional data structures. The Dirichlet boundary condition data

structure is simply an array of constrained mesh nodes. The more complex Neumann boundary

condition structure requires lists of mesh elements associated with constrained mesh faces; a

classification check followed by a face-to-element upward adjacency query. Algorithm 2 details this

process. Here the notation Md
j (Gd

j ) refers to the jth mesh (model) entity of dimension d, Md
j @ G

returns the geometric model classification of Md
j , and {Md

i {M
q}} is the set of mesh entities of

dimension q that are adjacent to Md
i . The PUMI implementation of Albany’s discretization and

boundary condition structures allows us to define and solve complex problems without having to

create a second complex mesh data structure (e.g., a Trilinos STK mesh).

5.2. Adaptive Solderball Simulation

We ran an in-memory adaptive simulation of a solderball array subject to thermal creep [67]. Fig. 6

depicts the results of the parallel adaptive analysis using the in-memory integration of SPR and the

PUMI unstructured mesh tools with Albany. The adaptive workflow ran four solve-adapt cycles on

256, 512, and 1024 cores of an IBM Blue Gene/Q using an initial mesh of 8M tetrahedral elements.

The adapted meshes contain only negligible differences across the range of core counts.

Algorithm 3 lists the steps of the Albany-PUMI adaptive workflow. The workflow begins by

loading the PUMI mesh, geometric model, and XML formatted problem definition (l.2-4). It then

creates the node and element mesh connectivity (l.5) and sets of mesh entities with boundary

conditions (l.6) for Albany. Next, the workflow enters into the solve-adapt cycle(l.8). Note,

throughout the cycle the PUMI mesh is kept in memory. At the top of the cycle one load step
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Algorithm 2 Construction of Neumann Boundary Condition Structure

1: // store the mapping of geometric model faces to side sets

2: invMap← mapping of G2

j to side sets

3: size set list← ∅

4: for all M2

i ∈ {M2} do

5: // get the geometric model classification of the mesh face

6: Gd
j ← M2

i @ G

7: if Gd
j ∈ invMap then

8: // for simplicity of the example we assume the model is manifold

9: // upward adjacent element to the mesh face

10: M3

j ← {M2

i {M
3}}

11: // collect additional element and face info

12: elm LID← local id of M3

j

13: side id← local face index of M2

i

14: side struct← {elm LID,side id,M3

j }
15: insert side struct into side set list

16: end if

17: end for

Figure 6. Four adaptation cycles (top to bottom, left to right) of 3x3 solderball mesh. The mesh is refined
near the high stress gradients at the interface between the solderballs and the upper and lower slabs.

is solved (l.9). Following the load step, the solution information (a displacement vector at mesh

nodes) and history-dependent state variables at integration points are passed in-memory to an

APF FieldShape [14] (l.10). SPR then computes mesh-entity level error estimates based on an

improved Cauchy stress field (l.11). The estimated error is then transformed into an isotropic mesh

size field, which MeshAdapt then uses to drive local mesh modification procedures (l.12). As the

mesh modifications (split, collapse, etc...) are applied the FieldShape transfer operators [68, 69]

are called to determine the value of state variables at repositioned or newly created integration

points. After mesh coarsening, Zoltan’s interface [70] to ParMETIS is called to predictively balance

the mesh and prevent memory exhaustion on parts where heavy refinement occurs. Once adaptation

is complete ParMA rebalances the mesh (l.13) to reduce element and vertex imbalances for

improved linear system assembly and solve performance. The adaptive cycle concludes with the

Copyright c� 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



IN-MEMORY PARALLEL WORKFLOWS 13

transformation of PUMI unstructured mesh information (l.14-15) and APF field information (l.16)

into Albany analysis data structures.

Algorithm 3 Albany-PUMI Adaptive Loop

1: procedure ADAPTIVELOOP(max steps)
2: pumi mesh load the partitioned PUMI mesh from disk
3: geom load the geometric model from disk
4: probdef  load the Albany problem definition from disk
5: CREATECONNECTIVITY(pumi mesh)
6: CREATENODEANDSIDESETS(pumi mesh,probdef )
7: step number  0
8: while step number < max steps do
9: SOLVELOADSTEP(step number++)

10: GETFIELDS(pumi mesh)
11: size field SPR(pumi mesh)
12: MESHADAPT(pumi mesh,size field)
13: PARMA(vtx>elm,pumi mesh)
14: CREATECONNECTIVITY(pumi mesh)
15: CREATENODEANDSIDESETS(pumi mesh,probdef )
16: SETFIELDS(pumi mesh)
17: end while
18: end procedure

5.3. Performance Testing of In-memory Transfers

Fig. 7 depicts the factor of two performance advantage of in-memory transfers of fields and mesh

data between Albany, PUMI, and SPR versus the writing of the mesh to POSIX files. Based on this

data we estimate the performance advantage of the in-memory approach over a file-based loop that

both reads and writes files to be about four times higher. Another advantage demonstrated by this

data is the low in-memory transfer time imbalance; defined as maximum cycle time divided by the

average cycle time. The in-memory approach has less than a 6% imbalance across all core counts

while the file writing approach has a 22% imbalance at 512 cores (as shown by the large error bar

in Fig. 7). Since the heaviest parts in our test meshes have at most 5% more elements and 12%

more vertices than the average part, and the data transfers are proportional to the number of mesh

vertices and elements on each part, then we conclude that the observed imbalance in file-based I/O

is attributable to shared filesystem resource contention.

Using the Albany-PUMI workflow we also simulated the tensile loading of the 2014 RPI Formula

Hybrid race car suspension upright. Fig. 8 depicts the upright in its initial state, and after multiple

load steps. Without adaptation the severe stretching of domain would result in invalid elements and

the subsequent failure of the analysis.

In the following section we couple PUMI to another modular C++ analysis package. Unlike

Albany though, the provided unstructured mesh APIs are less well-defined and require a different

approach.

6. OMEGA3P

Omega3P is a C++ component within ACE3P for frequency analysis of linear accelerator

cavities [72]. It is built upon multiple components that include distributed mesh functionality

(DistMesh), tensor field management, vector and matrix math, and many linear solvers. Our in-

memory integration of PUMI with Omega3P leverages these APIs to execute bulk mesh and field

transfers, and atomic element Jacobian transfers for element stiffness matrix formation.
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Figure 7. Average per cycle file writing and in-memory transfer times. Minimum and maximum bars are only
shown for the 512 core file writing data point where they are 6% more, or less, than the mean, respectively.

Lower is better.

Figure 8. Large deformation of the RPI Formula Hybrid suspension upright [71].

6.1. Integration with PUMI

In the previous section we discussed a similar in-memory integration for efficient parallel adaptive

workflows with Albany. In Omega3P, as with Albany, we again assume a small increase in memory

usage from storing both the PUMI mesh and Omega3P DistMesh. This small memory overhead lets

us avoid spending time destroying and reloading the PUMI mesh after the adaptation and analysis

steps, respectively. Furthermore, having access to the PUMI mesh supports the atomic transfer of

exact geometry of curved domains needed for calculation of mesh element Jacobians during element

stiffness matrix formation. This capability is critical in Omega3P for maintaining convergence of

higher order finite elements when the geometric model has higher order curvature [73, 74, 75].

6.2. Adaptive Linear Accelerator Cavity Analysis

The mesh management and computational steps in the adaptive Omega3P-PUMI workflow are listed

in Algorithm 4. Fig. 9 depicts adapted meshes and fields generated using this process. Execution of

the workflow begins by loading a distributed PUMI mesh and the geometric model (l.2-3). Next,

ParMA balances the owned and ghosted mesh entities holding degrees of freedom (edges and faces
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for quadratic Nedelec shape functions [76]) (l.5). PUMI APIs are then used to create a DistMesh

instance from the balanced PUMI mesh (l.6); a bulk transfer. The time required for this procedure is

less than 0.1% of the total workflow execution time. Next, the workflow runs the solve-adapt cycle

until the eigensolver has converged (l.7). Note, the atomic Jacobian transfer of Algorithm 5 occurs

during the eigensolver execution. Following the solver’s execution, the electric field is attached to

the PUMI mesh (l.8) via a bulk transfer, the DistMesh is destroyed (l.9), a size field is computed

by SPR (l.10), and the mesh is adapted with PUMI (l.11). The cycle ends by balancing the PUMI

mesh with ParMA and creating a new DistMesh.

Algorithm 4 Omega3P-PUMI Adaptive Loop

1: procedure ADAPTIVELOOP(max steps)

2: pumi mesh ← load the partitioned PUMI mesh from disk

3: geom ← load the geometric model from disk

4: probdef ← load the Omega3P problem definition from disk

5: PARMAGHOST(edge=face>rgn,pumi mesh) . quadratic Nedelec

6: dist mesh ← CREATEDISTMESH(pumi mesh) . bulk

7: while not (converged ← EIGENSOLVER(dist mesh)) do . atomic

8: GETELECTRICFIELD(pumi mesh) . bulk

9: DESTROY(dist mesh)

10: size field ← SPR(pumi mesh)

11: MESHADAPT(pumi mesh,size field)

12: PARMAGHOST(edge=face>rgn,pumi mesh) . quadratic Nedelec

13: dist mesh ← CREATEDISTMESH(pumi mesh) . bulk

14: end while

15: end procedure

Algorithm 5 lists the steps needed to compute the exact Jacobian using the APF

getJacobian(...) API and its underlying basis functions. To set up the Jacobian computation,

during the PUMI-to-Distmesh conversion, a pointer to each PUMI mesh element is stored with the

corresponding DistMesh element object as they are being created. As the DistMesh elements are

being traversed for element stiffness matrix assembly the PUMI element pointer is retrieved (l.3).

With this pointer and the barycentric coordinates of the element (l.7) the 3x3 Jacobian matrix is

computed with the call to the APF FieldShape getJacobian function (l.9).

Algorithm 5 Jacobian Calculation for Matrix Assembly

1: // loop over DistMesh elements

2: for all M3

i ∈ {M3} do

3: pumiElementP tr ← getPumiElementP tr(M3

i )
4: for all integration points do

5: // compute element Jacobian using APF’s FieldShape class

6: // associated with the PUMI mesh element

7: xi ← getBaryCentricCoords(integration point)

8: apf::Matrix3x3 J

9: apf::getJacobian(pumiElementP tr,xi,J)

10: // complete element matrix computation

11: end for

12: // insert element matrix contributions into stiffness matrix

13: end for
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Figure 9. The first eigenmode electric field (left column) and adapted meshes (right column) for the
pillbox (top row) and cav17 (bottom row) test cases.

6.3. Memory Usage Overhead

The increase in peak memory usage from storing two copies of the mesh and field data is

insignificant relative to the applications overall memory usage. Fig. 10 shows the peak per node

memory usage over the entire Omega3P execution on the cav17 and pillbox-2M cases for

both the original Omega3P code and with the code that executes PUMI mesh conversion and load

balancing (labelled as Omega3P+PUMI). In the cav17 test case (top half of Fig. 10), the peak

memory when storing the PUMI mesh increases by 2% at 32 cores and by 6% at 128 cores, and

decreases slightly at 64 cores (less than 1%). On the other hand, for the pillbox-2M case at 256,

512, and 1024 cores the peak memory is actually reduced by 2.4%, 0.8% and 1.3%, respectively. The

small reduction is the result of differences in the mesh loading and balancing processes. Specifically,

at 256 processes ParMA balanced the mesh elements (owned and ghosted) in the PUMI workflow

to a 14% imbalance while the non-PUMI workflow using ParMETIS has a 38% imbalance. These

results show that the in-memory integration has an insignificant memory overhead.

7. CLOSING REMARKS

As we move towards the exascale computers being considered [77, 78], it is clear that one of the

only effective means to construct parallel adaptive simulations is by using in-memory interfaces that

avoid filesystem interactions. In the strong scaling regime that these systems target, the problem size

per core is decreasing and thus freeing up additional memory to utilize in-memory techniques that

have a memory overhead. It is precisely in this regime that the in-memory coupling techniques

become critical as overheads from IO can degrade scaling if not properly controlled. Determining

the inflection point at which additional memory becomes available is dependant on the application

and the problem being studied.
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Figure 10. Peak per node memory usage for two Omega3P and Omega3P+PUMI test cases: (top) cav17 and
(bottom) pillbox-2M. The numbers inside the bars list the peak memory usage in MB. The numbers above
the Omega3P+PUMI bars list the ratio of the peak memory used by Omega3P+PUMI relative to the peak

memory used by Omega3P.

The cost of refactoring existing large-scale parallel partial differential equation solvers to fully

interact with the type of structures and methods used by mesh adaptation components is an

extremely expensive and time consuming process. To address these costs we presented approaches

for in-memory integration of existing solver components with mesh adaptation components,

discussed how code changes can be minimized (for data streams we simply replace existing I/O calls

and write a simple abstraction layer), and demonstrated up to two orders of magnitude performance

advantage of information transfer within adaptive simulations with negligible increases in overall

memory usage. For a specific PHASTA adaptive workflow the I/O performance increase reduced

the overall execution time by 12%. In addition to efforts on developing in-memory approaches with

the PHASTA, Albany, and Omega3P solvers, efforts are underway to interface other state-of-the-art

solvers including NASA’s FUN3D [79] and LLNL’s MFEM [80].
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8. APPENDIX

Example code for using the POSIX C APIs and C++ iostream for data streaming are shown in Listings 1
and 2, respectively. Additional details on their compilation and usage are available in a Zenodo [81] dataset
(http://dx.doi.org/10.5281/zenodo.345749). The dataset also includes the timed version of
the POSIX C example code that was used to generate the bandwidth results shown in Fig. 5.

Listing 1: POSIX C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char** argv) {
const char *method, *mode;
int i;
size_t bytes;
FILE* f;
char filename[1024];
char* buf = NULL;
size_t len;
char* data;
if( argc != 4 ) {

printf("Usage: %s <stream|posix>"

"<read|write> <number of bytes>\n",argv[0]);
return 0;

}
method = argv[1];
mode = argv[2];
bytes = atoi(argv[3]);

data = (char*) malloc(bytes*sizeof(char));
for(i=0;i<bytes;i++) data[i] = 1;

/**** open stream ****/
if( !strcmp(method,"stream") && !strcmp(mode,"write") ) {

f = open_memstream(&buf, &len);
} if( !strcmp(method,"stream") && !strcmp(mode,"writeprealloc") ) {

buf = malloc(bytes*sizeof(char));
f = fmemopen(buf, bytes, "w");

} else if( !strcmp(method,"stream") && !strcmp(mode,"read") ) {
f = fmemopen(buf, bytes, "r");

} else if( !strcmp(method,"stream") && !strcmp(mode,"readprealloc") ) {
buf = malloc(bytes*sizeof(char));
f = fmemopen(buf, bytes, "r");

/**** open posix ****/
} else if( !strcmp(method,"posix") && !strcmp(mode,"write") ) {

f = fopen("/tmp/foo.txt", "w");
} else if( !strcmp(method,"posix") && !strcmp(mode,"read") ) {

sprintf(filename,"/tmp/%lu.dat",bytes);
f = fopen(filename, "r");

}

/**** read|write ****/

if( !strcmp(mode,"write") || !strcmp(mode,"writeprealloc") ) {
fwrite(data,sizeof(char),bytes,f);

} else if( !strcmp(mode,"read") || !strcmp(mode,"readprealloc") ) {
fread(data,sizeof(char),bytes,f);

}
fclose(f);

if( !strcmp(method,"stream") &&

( !strcmp(mode,"write") ||

!strcmp(mode,"writeprealloc") ||
!strcmp(mode,"readprealloc") ) ) {

free(buf);
}
free(data);
return 0;

}
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Listing 2: C++ iostream

#include <iostream>
#include <fstream>
#include <sstream>

using namespace std;

ostream* open_writer(const char* name, bool stream);
istream* open_reader(const char* name, ostream* os=NULL);
void write(ostream* fh, int* data, size_t len);
size_t read(istream* fh, int*& data);

ostream* open_writer(const char* name, bool stream) {
if(stream) {

(void) name;
ostringstream* oss = new ostringstream;
return oss;

} else {
ofstream* ofs = new ofstream;
ofs->open(name,ofstream::binary);
return ofs;

}
}

istream* open_reader(const char* name, ostream* os) {
if(os) {

(void) name;
ostringstream* oss = reinterpret_cast<ostringstream*>(os);
istringstream* iss = new istringstream(oss->str());
return iss;

} else {
ifstream* ifs = new ifstream;
ifs->open(name,ifstream::binary);
return ifs;

}
}

void write(ostream* fh, int* data, size_t len) {
const char* buf = reinterpret_cast<char*>(data);
streamsize sz = static_cast<streamsize>(len*sizeof(int));
fh->write(buf,sz);

}

size_t read(istream* fh, int*& data) {
fh->seekg(0,fh->end);
streamsize sz = fh->tellg();
fh->seekg(0,fh->beg);
cout<< "read size " << sz << "\n";
size_t numints = static_cast<size_t>(sz)/sizeof(int);
cout<< numints << "\n";
data = new int[numints];
char* buf = reinterpret_cast<char*>(data);
fh->read(buf,sz);
return numints;

}

int main() {
const char* fname = "foo.txt";
int outdata[3] = {0,3,13};
for(int i=0;i<2;i++) {

bool streaming = i;
ostream* oh = open_writer(fname,streaming);
write(oh,outdata,3);
int* indata = NULL;
istream* ih = open_reader(fname,oh);
size_t len = read(ih,indata);
delete oh;
delete ih;
for(size_t j=0; j<len; j++)
cout << indata[j] << " ";

cout << "\n";
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delete [] indata;
}

}
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