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ABSTRACT

Formal methods use mathematical notations and logical reasoning

to precisely define a program’s specifications, fromwhich we can in-

stantiate valid instances of a system. With these techniques we can

perform a multitude of tasks to check system dependability. Despite

the existence of many automated tools including ones considered

lightweight, they still lack a strong adoption in practice. At the crux

of this problem, is scalability and applicability to large real world

applications. In this paper we show how to relax the completeness

guarantee without much loss, since soundness is maintained. We

have extended a popular lightweight analysis, Alloy, with a genetic

algorithm. Our new tool, EvoAlloy, works at the level of finite

relations generated by Kodkod and evolves the chromosomes based

on the failed constraints. In a feasibility study we demonstrate that

we can find solutions to a set of specifications beyond the scope

where traditional Alloy fails. While small specifications take longer

with EvoAlloy, the scalability means we can handle larger spec-

ifications. Our future vision is that when specifications are small

we can maintain both soundness and completeness, but when this

fails, EvoAlloy can switch to its genetic algorithm.
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1 INTRODUCTION

Software has embedded itself in our daily lives, and is now essen-

tial for communication, healthcare, transportation, and even home

comfort. Yet at the same time, software continues to fail, and ma-

licious users exploit weaknesses of systems [1]. Fifteen years ago
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the National Institutes of Standards reported that a poor software

quality infrastructure was costing the US upwards of $59 Billion

annually [2], and an equally ominous report from Tricentis in 2017

estimated the annual financial loss due to software failures world-

wide at $1.7 Trillion [3]. While many efforts have been made to

improve our software engineering techniques, and to develop better

software validation methods, these problems still persist. Recent

highly publicized bugs like the Toyota acceleration problem and

the heartbleed bug as well as the explosion of Android exploits [4]

show that we still lack sufficient techniques to verify and validate

our software.

One class of techniques that have been used to tackle depend-

ability are those which fall into the category of formal methods,

with their strength residing in the mathematical concepts leveraged

to prove the correctness of dependability properties. Most notably,

lightweight formal methods, such as those based on bounded veri-

fication, have recently received a lot of attention due to their auto-

mated, yet formally precise analysis capabilities, which reduce the

burden on traditional formal verification techniques. This spans a

wide range of software engineering and security domains, including

software design [5, 6], code analysis [7], security analysis [4], test

case generation [8] and tradeoff synthesis and analysis [9, 10]. Such

techniques often transform the system specification into a satisfia-

bility problem, and delegate the task of solving it to a constraint

solver. The analysis is then conducted by exhaustive enumeration

over the bounded scope of specification instances.

Despite significant advances, we still find ourselves lacking

strong adoption of formal techniques. At the crux of this prob-

lem, is scalability and applicability for large real-world applications.

Bounded verification techniques are at once both sound and com-

plete for the given analysis bound, but the completeness means that

on large systems they either fail or need to be reduced in scope. An

alternative approach to solving problems that grow exponentially

has been to use search-based techniques or more specifically evo-

lutionary algorithms [11]. These algorithms heuristically explore

large complex solutions spaces and converge on single solution,

rendering them sound but incomplete.

In this paper, we present a novel tradeoff that provides a new

road towards scalability. Our vision is that when the search space

of specifications are small, we can use the full power of a constraint

solver and maintain both soundness and completeness. When this

fails, we switch on evolutionary algorithms [12] promising to scale

to real-world problems without sacrificing soundness.

To assess the feasibility of the approach, we develop EvoAlloy,

an extension to the existing lightweight formal analysis tool, Al-

loy [13]. EvoAlloy delegates the task of finding satisfying models

to an analysis engine using a genetic algorithm (GA), one of the

most popular types of evolutionary algorithms. They have been

shown to be useful for pinpointing solutions in a large search space.
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1 abs t rac t s ig FSObjec t { }

2 s ig Dir extends FSObjec t {

3 c on t en t s : se t FSObjec t

4 }

5 s ig F i l e extends FSObjec t { }

6 one s ig Root extends Dir { }

7

8 f a c t Hie ra r chy {

9 // Root has no parent

10 no c on t en t s . Root

11 // All FSObjects are reachable from Root

12 FSObjec t in Root . ∗ c on t en t s

13 // Each FSObject has at most one parent

14 a l l ob j : FSObjec t | lone c on t en t s . ob j

15 }

16 pred model {

17 some F i l e

18 }

19 run model f o r 2 F i l e , 2 Di r

Listing 1: An Alloy specification example describing a

simple model of file system.

We have chosen the Alloy platform as an exemplar for our study

since it is a widely-used, open-source tool for modeling and analysis

of software systems, has an active development community, and

suffers from exactly the scalability problems addressed by this work.

We make research artifacts developed in this study and experimen-

tal data available to the research and education community [14].

The preliminary results corroborate the feasibility of the approach,

and denote that this direction of research is promising.

The remainder of this paper is organized as follows. Section 2

uses an illustrative example to describe the intuition behind our

technique as well as the necessary background. Section 3 overviews

our approach towards achieving a more scalable analysis technique.

Section 4 presents the preliminary results obtained in our experi-

ments. Sections 5 and 6 outline related research and conclude.

2 ILLUSTRATIVE EXAMPLE

This section motivates our research and illustrates the EvoAl-

loy technique using a simple example. Section 3 presents a more

detailed discussion of our approach.

Consider the Alloy specification for a simplified model of a file

system, shown in Listing 1. Essential data types are specified in

Alloy by their type signatures (sig), and the relationships between

them are captured by the declarations of fields within the definition

of each signature. The running example defines 4 signatures (lines

1ś6): File system objects, FSObjects, are partitioned into Dir and

File types, with Root defined as a singleton extending Dir. Each Dir

may have a set of contents of type FSObject.

Facts (fact) are formulas that take no arguments, and define con-

straints that every instance of a specification must satisfy, thus

confining the instance space of the specification. The formulas can

be further structured using predicates (pred) and functions (fun),

which are parameterized formulas that can be invoked. The Hierar-

chy fact paragraph (lines 8ś15) states that the Root directory has

no parent, and it cannot be a subdirectory for any other directory;

that each single file and directory should be reachable from the

Root directory; and that each file and directory belongs to at most

one parent directory.

Analysis of specifications written in Alloy is completely auto-

mated, but bounded up to user-specified scopes on the size of type

signatures. In particular, to make the state space finite, certain

scopes need to be specified that limit the number of instances of

each type signature. The run specification (lines 16ś19) then asks

for instances that contain at least one File, and specifies a scope

that bounds the search for specification instances with at most two

elements for both File and Dir top-level signatures.

In order to analyze such a relational specification bounded by

the specified scope, both Alloy Analyzer and EvoAlloy then trans-

late it into a corresponding finite relational model in a language

called Kodkod [15]. Listing 2 partially shows a Kodkod translation

of Listing 1. A model in Kodkod’s relational logic is a triple consist-

ing of a universe of elements (also called atoms), a set of relation

declarations including their lower and upper bounds specified over

the model’s universe, and a relational formula, where the declared

relations appear as free variables [15].

The first line of Listing 2 declares a universe of four uninterpreted

atoms. In this section, we assume an interpretation of atoms, where

the first two (F1 and F2) represent File elements, the next one (R1)

represents a Root element, and the last one (D1) represents aDir ele-

ment. Note that the abbreviated atom names are chosen for readabil-

ity, and do not indicate type, as in Kodkod all relations are untyped.

Lines 3ś6 state relational variables along with their lower and

upper bounds and their size. Similar to Alloy, formulas in Kodkod

are constraints defined over relational variables. Kodkod further

allows specifying a scope over each relational variable from both

above and below by two relational constants. In principle, a rela-

tional constant is a pre-specified set of tuples drawn from a uni-

verse of atoms. Consider the Root declaration (line 3), its upper

and lower bounds both contain just one atom, R1, as it is defined

as a singleton set in Listing 1. The upper bound for the variable

contents ⊆ Dir × FSObject (line 6) is a product of the upper bound

set for its corresponding domain and co-domain relations, taking ev-

ery combination of an element from both and concatenating them.

Formula constraints are in the form of a conjunction of several

sub-formulas, i.e., F = ∧ subformulas. As an example, the formula

at the last line of Listing 2 represents this form for the constraints

specifications in our running example.

The Kodkod’s model finder then leverages off-the-shelf SAT-

solvers to explore within such upper and lower bounds defined for

each relational variable to find instances of a formula, which are

bindings of the formula’s relational variables to relational constants

in a way that makes the formula true. EvoAlloy, however, delegates

the task of model finding currently performed by computationally-

expensive constraint solvers to an analysis engine based on genetic

algorithms.

Figure 1a delineates a genetic representation of the problem,

where a candidate solution is represented as a chromosome, a.k.a. an

individual, consisting of a vector of genes. Evolutionary algorithms

are meta-heuristic optimization techniques that mimic the process

of natural genetic variation and selection into a computational

problem [12]. Each chromosome contains a gene for each relational

variable within the specification under analysis. Each gene has a

domain of values called alleles. Here, alleles are defined as a set of tu-

ples drawn from a universe of uninterpreted atoms within the upper

and lower bounds defined for each relation (Listing 2, lines 3ś6).
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ideal chromosome with a fitness score of 0. The fitness function

establishes truth-invariance, as the Alloy specification is satisfied

provided that all the relations and formulas thereof are satisfied.

3.3 Selection

The Algorithm on lines 3ś9 explains the process by which EvoAl-

loy selects chromosome variants to pass to the next generation. It

leverages both elitism and unbiased tournament selection strate-

gies [18] to select half of population members in a new generation

from the current generation. The select group of chromosomes

establishes the next mating pool. Specifically, it first picks a config-

urable number (e) of chromosomes with best fitness values. The use

of elitism prevents the loss of the current fittest members of the pop-

ulation. The new generation is then half-filled with chromosomes

produced by the unbiased tournament selection, which forms two

distinct permutations of the population and conducts a pairwise

comparison to select one chromosome from each pair of compared

chromosomes. The use of unbiased tournament selection promises

to eliminate the loss of diversity due to chromosomes not being

sampled, typically occurred in the traditional tournament selection.

3.4 Crossover

The initial step in producing new chromosomes for the next gen-

eration is crossover. It picks two chromosomes from the popula-

tion, and produces two new chromosomes by mixing their genetic

makeup. The employed crossover operator in EvoAlloy is essen-

tially the well-known two-point crossover. Because the lengths of

the two chromosomes are the same, the cut points are uniformly

chosen within the chromosomes’ length. The crossover creates two

offspring, where it swaps every tuple assigned to the genes between

the two points of the parent chromosomes.

3.5 Mutation

To counter genetic drift [19] and recover lost genes, crossover is

often used along with mutation to achieve a diverse population of

chromosomes. Mutation simply alters parts of the genetic makeup

of a chromosome with a probability threshold that is configurable.

EvoAlloy mutates genes with various creation, transformation and

removal operators.

The creation operator basically generates a new tuple-string

from within the upper and lower bounds specified for the relation

associated with a given gene currently containing no tuple. The

number of added tuples is random with a minimum of one and a

configurable upper threshold. Transformation operators include

changing one tuple to another and inserting a new tuple-string

at a random index. The removal operator omits the tuple-string

assigned to a gene. In other words, the gene becomes empty, if

permitted by its given lower bound.

4 EXPERIMENTAL EVALUATION

Wehave implemented EvoAlloy as an open-source extension to the

Alloy analysis engine. To realize the genetic algorithms discussed

in the prior sections, EvoAlloy modifies both the Alloy Analyzer

and its underlying finite relational model finder, Kodkod [15]. The

modifications lie in realizing the facility to producing the initial

population of chromosomes and next generations, assessing satisfi-

ability of each chromosome within the population, collecting the in-

formation necessary in measuring fitness values, and transforming

chromosome-level model instances into high-level Alloy models.

The EvoAlloy prototype is available at the project website [14].

To assess the effectiveness of EvoAlloy, we compare it with

the state-of-the-art Alloy Analyzer (version 4.2). In addition, we

consider a random exploration approach, RD, that neither applies a

GA nor leverages constraint solvers. Rather, it randomly generates

candidate solutions following the rules implied by the bounds of

specifications relations. We set RD to generate 10,000 candidates.

Objects of Analysis. Our objects of analysis are specifications that

vary in terms of size and complexity and are distributed with the

Alloy Analyzer (cf. Table 1). Chord models the chord distributed

hash table lookup protocol; com specifies Microsoft component

object model query interface and aggregation mechanism; sync

is a model of a generic file synchronizer; fileSystem specifies a

generic file system; and life specification models John Conway’s

game of life. To perform the comparison experiments, we gradually

increased the scope of analysis on each of our object specifications.

Experimental Setup. For our GA parameters we ran some initial

experiments to heuristically tune these to work across more than

one subject. We leave a full evaluation of tuning as future work.

We use 32 as the population size. We configured the algorithm to

perform a two-point crossover with a crossover probability of 50%,

and set the mutation rate to 80%. For mutation, we use the addition

operator 10% of the time, the transformation operators 60% of the

time, and the creation operator 30% of the time. To control for vari-

ance, we ran the technique three times, and report the average. We

did this separately on each of the five specifications under consider-

ation. All of the experiments were conducted on an 8-core 2.0 GHz

AMD Opteron 6128 system, with an 8 GB of memory was dedicated

to the running technique to keep extraneous variables constant.

We used two stopping criteria: reaching a (1) a satisfying solution

or (2) exceeding the given maximum memory.

Results and Interpretation. Table 1 reports the analysis time in sec-

ond taken from EvoAlloy, the Alloy Analyzer (AA), and Random

(RD) over the increasing analysis scope across object specifications.

The scope of analysis is specified on the horizontal axis.

As Table 1 shows, for each specification, EvoAlloy outperforms

the state-of-the-art Alloy Analyzer in terms of scalability, and the

difference in the analysis capability is more pronounced for the

larger analysis scopes. The random approach, except in one case,

i.e., the sync specification with the analysis scope of 5, was not able

to find any satisfying solution. This confirms that one has almost no

chance to come up with a valid Alloy solution with a pure random

search. We also see that for smaller scopes Alloy often outperforms

EvoAlloy, but as the scope of analysis increases, EvoAlloy is more

effective than the Alloy Analyzer. For instance, for chord, Alloy

fails at scope 45, but EvoAlloy finds a solution up to a scope of 125.

Indeed, higher analysis scope is accompanied by a larger search

space, which can amplify the relative effectiveness of a GA-based

approach, like EvoAlloy. With com, EvoAlloy goes beyond Alloy

and solves scope 25, but fails afterwards due to out of memory. We

believe that better tuning and a more compact way to store finite

Kodkod models will allow us to keep improving the analysis.

In summary, the preliminary results provide the evidence that

the line of research on exploring the synergy between evolutionary

algorithms and lightweight formal analyzers is worth pursuing.



ASE ’18, September 3–7, 2018, Montpellier, France Jianghao Wang, Hamid Bagheri, and Myra B. Cohen

Table 1: The analysis time in second taken from EvoAlloy (EA), Alloy Analyzer (AA), and Random (RD) over the increasing
analysis scope across objects of study; dashes indicate the approach terminates without finding a solution.

Spec
Analysis Scope

5 25 45 65 85 105 125
RD AA EA RD AA EA RD AA EA RD AA EA RD AA EA RD AA EA RD AA EA

com Ð 11 4 Ð Ð 313 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
sync 1 2 2 Ð 4 3 Ð 13 6 Ð 31 11 Ð 55 30 Ð 235 43 Ð 294 74
fileSys Ð 1 3 Ð 8 8 Ð 23 26 Ð 63 176 Ð 203 333 Ð 363 680 Ð Ð 1501
chord Ð 3 2 Ð 94 16 Ð Ð 241 Ð Ð 299 Ð Ð 391 Ð Ð 705 Ð Ð 1496
life Ð 3 3 Ð 7 80 Ð 26 624 Ð 93 1000 Ð 205 3412 Ð Ð 4389 Ð Ð 6850

5 RELATED WORK

There is a large body of research on using evolutionary algorithms

to solve software engineering problems [11]. EvoAlloy falls within

this class of solutions. Concolic Walk combines linear constraint

solving with tabu search to solve complex arithmetic path condi-

tions [20]. ACO-Solver uses the Ant Colony Optimization to solve

complex string constraints [21]. The work of Godefroid and Khur-

shid [22] is perhaps the most closely related work to ours. It uses a

genetic algorithm to guide a search in the analysis of concurrent

reactive systems towards errors like deadlocks and assertion viola-

tions. In contrast with all of this prior work, the problem addressed

in this paper addresses bounded analysis of large-scale solution

spaces specified in relational logic. Among other things, it requires

the development of both original chromosome encodings and fit-

ness functions appropriate for models specified in Alloy’s relational

logic. To the best of our knowledge, EvoAlloyis the first evolution-

ary technique for automated analysis of bounded relational logic

specifications.

The widespread use of Alloy has lead to a number of extensions

to its underlying analyzer [23, 24]. Among others, Uzuncaova and

Khurshid [25] partition a specification into base and derived slices,

in which a solution to the base slice can be extended to produce a

solution for the entire specification. Rosner et al. [26] present a tech-

nique, Ranger, that leverages a linear ordering of the solution space

to support parallel analysis of first-order logic specifications. These

techniques rely on leveraging multiplicity of computing to improve

the efficiency of the Alloy analyzer, whereas EvoAlloy is geared

towards the application of genetic algorithms to foster exploration

of large, complex solution spaces.

6 CONCLUSIONS AND FUTUREWORK

In this paper we have provided a proof-of-concept for EvoAlloy to

demonstrate its potential benefit and power. However, it is still

early in its development and it suffers from some limitations. First,

the fitness function provides strong guidance early in the search,

but needs refinement when the solution gets close. We plan to

experiment with additional fitness functions and to consider an

adaptive approach that has been used in prior work on evolutionary

algorithms for constraint based problems. Second, we have found

that the parameter tuning (e.g., mutation, crossover) is sensitive to

the specific specification being solved. We plan to explore this issue

further; recent work on self-tuning and hyperheuristic algorithms

may help us in this context. Last, we still depend on loading the

entire Kodkod model which may limit us as we scale to even larger

systems. We plan to examine ways to store in a more efficient way.
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