
Modeling and Testing a Family of Surgical Robots:
An Experience Report

Niloofar Mansoor∗

Dept of Computer Science &
Engineering

University of Nebraska-Lincoln
Lincoln, NE, 68502-0115
nmansoor@cse.unl.edu

Jonathan A. Saddler∗

Dept of Computer Science &
Engineering

University of Nebraska-Lincoln
Lincoln, NE, 68502-0115
jsaddle@cse.unl.edu

Bruno Silva
Dept of Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0115
bsilva@cse.unl.edu

Hamid Bagheri
Dept of Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0115
hbagheri@cse.unl.edu

Myra B. Cohen
Dept of Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0115
myra@cse.unl.edu

Shane Farritor
Dept of Mechanical & Materials

Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68502-0526
sfarritor@unl.edu

ABSTRACT

Safety-critical applications often use dependability cases to vali-

date that specified properties are invariant, or to demonstrate a

counter example showing how that property might be violated.

However, most dependability cases are written with a single prod-

uct in mind. At the same time, software product lines (families

of related software products) have been studied with the goal of

modeling variability and commonality, and building family based

techniques for both analysis and testing. However, there has been

little work on building an end to end dependability case for a soft-

ware product line (where a property is modeled, a counter example

is found and then validated as a true positive via testing), and none

that we know of in an emerging safety-critical domain, that of

robotic surgery. In this paper, we study a family of surgical robots,

that combine hardware and software, and are highly configurable,

representing over 1300 unique robots. At the same time, they are

considered safety-critical and should have associated dependability

cases. We perform a case study to understand how we can bring

together lightweight formal analysis, feature modeling, and testing

to provide an end to end pipeline to find potential violations of im-

portant safety properties. In the process, we learned that there are

some interesting and open challenges for the research community,

which if solved will lead towards more dependable safety-critical

cyber-physical systems.

CCS CONCEPTS

· Software and its engineering → Software defect analysis;

Formal software verification;Model-driven software engineering;

∗The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275534

KEYWORDS

software product lines, Alloy, testing and analysis, cyber-physical

systems

ACM Reference Format:

Niloofar Mansoor, Jonathan A. Saddler, Bruno Silva, Hamid Bagheri, Myra

B. Cohen, and Shane Farritor. 2018. Modeling and Testing a Family of

Surgical Robots: An Experience Report. In Proceedings of the 26th ACM

Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’18), November 4ś9, 2018,

Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 6 pages. https:

//doi.org/10.1145/3236024.3275534

1 INTRODUCTION

Modern surgery is moving towards the cyber-physical, using robots,

controlled by surgeons from a console. These systems have tightly

interwoven hardware-software controls with the hardware impact-

ing which software is selected, and the software constraining the

limits of the hardware. These robots can be configured in multiple

ways, for different types of surgeries and can use different physical

and virtual components. For instance, they can perform dissections,

cautery, or sew an entry wound closed. They can be used for gen-

eral, cardiac and/or gynecologic surgeries and on different types

of patients. In essence, such systems can be viewed as a family

of robots (i.e. a software product line) leading to hundreds if not

thousands of possible configurations that may be used by a surgeon

to satisfy his or her personal preferences. Yet, these systems are

also safety-critical, and if they do not interact in a reliable and safe

manner with the end user (the surgeon), this can lead to potentially

severe consequences.

Current approaches to assuring safety-critical systems in-

clude using model-based techniques [5], formal methods [11, 13],

architecture-based safety analysis [15], and techniques based on

real world types and type checking [16]. The majority of these

approaches, however, are subject to a common limitation: they are

intended to ensure safety in a single system, but fail to be cognizant

of the commonality and variability in the system, i.e., ensuring the

dependability of a highly configurable safety-critical cyber-physical

system. Other research has examined testing cyber-physical prod-

uct lines [8]; however, that work does not address the safety-critical

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mansoor, Saddler, Silva, Bagheri, Cohen, Farritor

1 abs t rac t s ig GeomagicTouch {

2 i npu t : one Coord ina te ,

3 f o r c e : Hapt i cFeedback ,

4 }

5 abs t rac t s ig RobotApp {

6 i n c l u d e s : some P lug in

7 }

8 abs t rac t s ig Robo tCon t ro l {

9 ou tpu t : se t ArmAngle

10 }

11 abs t rac t s ig So l v e r F am i l y {

12 c a l l s : one Kinemat icModel

13 }

14 abs t rac t s ig Kinemat icModel {

15 s o l v e r R e s u l t : Coo rd ina t e −> ArmAngle

16 }

17 abs t rac t s ig ArmAngle { }

18 abs t rac t s ig Coord ina t e { }

19 abs t rac t s ig ArmType {

20 a n g l e l i m i t : se t ArmAngle , / / s e t of a l l the arm angles that are

l e s s than l imi t

21 i n v e r s eKSo l v e r : one Kinemat icModel

22 }

23 abs t rac t s ig RobotArm {

24 arms ide : one S ide ,

25 armModel : one ArmType ,

26 e f f e c t o r T yp e : one E f f e c t o rType

27 }

28 / / outputs should be in the range of solverResul t

29 f a c t Outpu tCons t r a i n t {

30 a l l o : Robo tCon t ro l . ou tpu t | one a : getArmAngle [Kinemat icModel

, Coo rd ina t e] | o = a

31 }

32 / / return the angles produced from a spe c i f i c coordinate

33 fun getArmAngle [s : Kinemat icModel , c : Coord ina t e] : one ArmAngle

{

34 s . s o l v e r R e s u l t [c]

35 }

36 / / for each coordinate , there ex i s t s a se t of angle in the

solver re su l t

37 f a c t Ang l eCa l c u l a t i o n {

38 a l l c : Coo rd ina t e | some a : ArmAngle , s : K inemat icModel | c−>a

in s . s o l v e r R e s u l t

39 }

Listing 1: Excerpts from an Alloy specification for the

family of surgical robots.

signatures: GeomagicTouch, SolverFamily, RobotControl, Kinemat-

icModel, ArmAngle, Coordinate, ArmType, RobotArm. Note that

these signatures are defined as abstract, meaning that they cannot

have an instance object without explicitly extending them. Con-

tainment relations (e.g., between GeomagicTouch and Coordinate)

are defined as Alloy relations. The fact OutputConstraint specifies

that the RobotControl output ArmAngles should be produced by a

solver in the system, and the fact AngleCalculation specifies that

the solver transforms each coordinate to a set of arm angles. To

create individual family instances, we extract information about

each specific system and extend its corresponding element type in

the meta-model.

We then state the property that the model is expected to satisfy

as an Alloy assertion. This property is formally specified as Alloy

assertion ArmAngleCorrect in Listing 2. Predicate ProducedFeed-

back describes when the force should be produced and when the

HapticFeedback should be enabled. The assertion then relies on

the ProducedFeedback predicate to state that all the output angles

produced by the solver fall into the set of angle limits. The Alloy

Analyzer then explores all possible behaviors of the system and

identifies a counter example, if any, that corresponds to a violation

of the assertion. The analysis is exhaustive but bounded up to a

user-specified scope on the size of the element types.

1 pred ProduceFeedback [ou tpu t : Robo tCon t ro l . ou tpu t] {

2 ou tpu t not in ArmType . a n g l e l i m i t

3 some n o t i f i c a t i o n : GeomagicTouch . f o r c e | n o t i f i c a t i o n =

Hap t i c sEnab l ed

4 }

5 / / a s s e r t i f the arm angle i s in the se t of armangle l imi t

6 as se r t ArmAngleCorrect {

7 a l l a : Robo tCon t ro l . ou tpu t | a not in ArmType . a n g l e l i m i t

8 imp l i e s ProduceFeedback [a]

9 }

Listing 2:Assertion on the armmovement safety property.

Feature Models. We conducted a series of interviews with the

robot developers focusing on retrieving domain knowledge. We

lacked documentation on how the family was constructed. There-

fore, we needed to understand the necessary and optional compo-

nents of each robot, extract constraints and dependencies and map

this to features. We used FeatureIDE as our tool for creating the

final model, which allowed us to reason about slices of the product

line[2].

From interviews, we learned the robot is to be a combination of

two sets of configurable hardware components, namely arm types

and effectors on the ends, and configurable software components.

The software components are collectively called plugins, an array of

plug and play configurable elements that can be used interchange-

ably to drive all 15 arm types and 4 effectors in specific ways. We

describe our findings in more details in the next section.

Testing. Our approach for testing the surgical software relies on

Microsoft CodedUI [10] plugin, a tool for testing user interfaces. It

is capable of generating test cases based on manual interactions

with the GUI. It can replay the tests, though it is not able to reverse

engineer the interface to create a model of the system. CodedUI

generates test cases automatically, but the generated code is tightly

coupled, and if modifications are made, they will be discarded after

building the project. Therefore, there is a need to extract the most

relevant pieces of code, such as how to navigate between interfaces,

the input values, and to verify assertions. We have extracted the

code generated by CodedUI into an auxiliary class and refactored

it, creating a class encapsulating the most important functionality

of a test case, which is then used as a template. Individual robot

classes can call this class, and it will perform the following steps:

(1) Load configuration; (2) Go to solver plugin and select arm type,

Go to the controller and input values to move the arm; (3) Go to the

solver and verify the output. With all this information, it is then

possible to generate a replayable test case for individual robots, as

they will follow the same steps, only varying in the solver, type of

robot arm and input values.

3.2 Results

We present our results and describe our challenges for each part of

the process next.

Finding Alloy Counter Examples. As we built the Alloy model

to search for a counter example, we used guidance primarily from

static analysis. In order to cover the space of products of this robotic

system, we needed to develop different models for each different

robotic arm. This resulted in 15 Alloy models. The necessary fea-

tures for the Alloy models include the Arm Type, Solver, Geomatic

Touch, Haptic Feedback, and two plugins created to manipulate in-

puts from Geomagic Touch, named Clutch and HomePosition. Each

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mansoor, Saddler, Silva, Bagheri, Cohen, Farritor

to the effectors (Clamp Close, Expand Open, Wrist Rotate, Effector

Bend). The behavior of Grasper Limit and Scale plugins is not cap-

tured in our simulation of the system either, as they do not affect

the output angles of the robot arm.

For the five robots that we were able to simulate, we selected a

range of input values/angles on the console. As is common with

configurable software, the configuration layer is orthogonal to

the input layer. We did not have an automated generation tool.

We selected values from a range that we expected would push

the robot beyond a valid extension point (i.e. we used domain

knowledge to help us find the important boundary values). Using

this approach we were able to confirm that the counter examples

do exist and the robot can be pushed outside of its limit with no

feedback returned. As the robot goes out of range, in the systems

without haptic feedback, the arm simply stops moving and records

the same position over and over again once it reaches its limit.

Interestingly one robot, TomBot, printed a message to the debug

console telling the developer that the arm was out of range. The-

oretically, this could be passed to the physician console, but it is

not propagated, so this information is lost when the robot is used

outside of the debugging environment.

4 LESSONS LEARNED

We present our lessons learned next.

• Architecture Plays a Large Role and can Help Analy-

sis. The way a system is designed and implemented has a

significant impact in conducting a safety analysis. While de-

pendencies among the various robot software components

and the external components made it challenging to get the

software running and working, its modular, plug-in-based

nature helped us achieve a clear understanding of the system

and the event flow between various components, which in

turn facilitates the process of creating the dependability case.

• Developers Should Consider the Family of Products.

One of the challenges we faced in concretizing counter ex-

amples and validating them was the unavailability of the

configuration files for the entire surgical robot family. We

only had access to the configurations for a small subset of

robot instances that were currently being used by the engi-

neers working with the system. To check the property for

the rest of the robotic arms, we needed to create new config-

uration files which involved a tedious process of loading and

validating each of necessary plugins for a particular arm.

• WeNeedMethods toMap FeatureModels to Alloy.Our

two views of the family of robots (Alloy and Feature models)

differed in their granularity and focus. The feature model

included both hardware and software and had some arbitrary

divisions (e.g. the arm types), where as the Alloy model

contained only the code-based features that led to the counter

example. However, together they tell the full story of our

robot and its potential safety properties. New methods are

needed to merge these disparate models together.

5 CONCLUSIONS AND FUTUREWORK

In this paper we presented an experience report working with

a cyber-physical safety-critical software product line, a robotic

surgery system. We used both lightweight formal analysis and fea-

ture modeling to reason about (1) a counter example that allows the

arm to move outside of range without providing feedback and (2)

the variability across the product line. We then applied testing to

validate the counter examples discovered. While our Alloy models

and feature models overlap, they are extracted using two different

approaches and hence differ in granularity. This led us to synthe-

size several lessons learned and propose that researchers can use

those to develop novel techniques for merging feature and Alloy

models, for modularizing their architectures and for more easily

discovering configurations for all necessary products. Future work

includes expanding our properties, adding more rigorous testing

and building physical test platforms.

ACKNOWLEDGEMENT

We thank L. Cubrich for his help with domain knowledge and for

providing us with an open source robotic surgery code base. This

work was supported in part by an NSF EPSCoR FIRST award, a

University of Nebraska Collaboration Initiative Seed Grant, and

awards CCF-1755890, CCF-1618132 and CCF-1745775 from the National

Science Foundation.

REFERENCES
[1] 2018. Geomagic Touch Device. https://www.3dsystems.com/haptics-devices/

touch.
[2] Mustafa Al-Hajjaji, Jens Meinicke, Sebastian Krieter, Reimar Schröter, Thomas

Thüm, Thomas Leich, and Gunter Saake. 2016. Tool Demo: Testing Configurable
Systems with FeatureIDE. In Proceedings of the ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences (GPCE 2016).
173ś177.

[3] Lou P. Cubrich. 2016. Design of a Flexible Control Platform and Miniature in
vivo Robots for Laparo-Endoscopic Single-Site Surgeries.

[4] Lou P. Cubrich. 2018. Surgical Robot Control Software.
https://github.com/surgical-robots/robot-control-app/tree/tel-surge-update.

[5] Majdi Ghadhab, Sebastian Junges, Joost-Pieter Katoen, Matthias Kuntz, and
Matthias Volk. 2017. Model-Based Safety Analysis for Vehicle Guidance Systems.
In Proceedings of the International Conference on Computer Safety, Reliability, and
Security, SAFECOMP. 3ś19.

[6] Daniel Jackson. 2006. Software Abstractions - Logic, Language, and Analysis. MIT
Press.

[7] Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. 2011. Reducing
Combinatorics in Testing Product Lines. In Proceedings of the Tenth International
Conference on Aspect-oriented Software Development (AOSD ’11). 57ś68.

[8] Urtzi Markiegi. 2017. Test Optimisation for Highly-Configurable Cyber-Physical
Systems. In Proceedings of the 21st International Systems and Software Product
Line Conference - Volume B (SPLC ’17). 139ś144.

[9] Eric Markvicka. 2014. Design and Development of a Miniature In Vivo Surgical
Robot with Distributed Motor Control for Laparoendoscopic Single-Site Surgery.
Ph.D. Dissertation. University of Nebraska-Lincoln, Department of Mechanical
and Materials Engineering.

[10] Microsoft. 2018. Coded UI. https://msdn.microsoft.com/en- us/li-
brary/dd286726.aspx.

[11] Joseph P. Near, Aleksandar Milicevic, Eunsuk Kang, and Daniel Jackson. 2011. A
lightweight code analysis and its role in evaluation of a dependability case. In
Proceedings of the International Conference on Software Engineering, ICSE. 31ś40.

[12] Jonathan A. Saddler Niloofar Mansoor. 2018. Surgical Robot Models.
https://sites.google.com/view/FSESurgeryRobots/.

[13] Stuart Pernsteiner, Calvin Loncaric, Emina Torlak, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Jonathan Jacky. 2016. Investigating Safety of a Radiotherapy
Machine Using System Models with Pluggable Checkers. In Proceedings of the
International Conference on Computer Aided Verification, CAV, Part II. 23ś41.

[14] Sam Procter, John Hatcliff, and Robby. 2014. Towards an AADL-Based Defi-
nition of App Architecture for Medical Application Platforms. In International
Symposium on Software Engineering in Health Care,SEHC. 26ś43.

[15] Danielle Stewart, Michael W. Whalen, Darren D. Cofer, and Mats Per Erik Heim-
dahl. 2017. Architectural Modeling and Analysis for Safety Engineering. In
Proceedings of the International Symposium on Model-Based Safety and Assessment.
97ś111.

[16] Jian Xiang, John C. Knight, and Kevin J. Sullivan. 2015. Real-World Types and
Their Application. In International Conference on Computer Safety, Reliability, and
Security, SAFECOMP. 471ś484.

